xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 5e3934b15a2741b2de6b217e77dc9d798d740804)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/brt.h>
47 #include <sys/wmsum.h>
48 
49 /*
50  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51  * calls that change the file system. Each itx has enough information to
52  * be able to replay them after a system crash, power loss, or
53  * equivalent failure mode. These are stored in memory until either:
54  *
55  *   1. they are committed to the pool by the DMU transaction group
56  *      (txg), at which point they can be discarded; or
57  *   2. they are committed to the on-disk ZIL for the dataset being
58  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
59  *      requirement).
60  *
61  * In the event of a crash or power loss, the itxs contained by each
62  * dataset's on-disk ZIL will be replayed when that dataset is first
63  * instantiated (e.g. if the dataset is a normal filesystem, when it is
64  * first mounted).
65  *
66  * As hinted at above, there is one ZIL per dataset (both the in-memory
67  * representation, and the on-disk representation). The on-disk format
68  * consists of 3 parts:
69  *
70  * 	- a single, per-dataset, ZIL header; which points to a chain of
71  * 	- zero or more ZIL blocks; each of which contains
72  * 	- zero or more ZIL records
73  *
74  * A ZIL record holds the information necessary to replay a single
75  * system call transaction. A ZIL block can hold many ZIL records, and
76  * the blocks are chained together, similarly to a singly linked list.
77  *
78  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79  * block in the chain, and the ZIL header points to the first block in
80  * the chain.
81  *
82  * Note, there is not a fixed place in the pool to hold these ZIL
83  * blocks; they are dynamically allocated and freed as needed from the
84  * blocks available on the pool, though they can be preferentially
85  * allocated from a dedicated "log" vdev.
86  */
87 
88 /*
89  * This controls the amount of time that a ZIL block (lwb) will remain
90  * "open" when it isn't "full", and it has a thread waiting for it to be
91  * committed to stable storage. Please refer to the zil_commit_waiter()
92  * function (and the comments within it) for more details.
93  */
94 static uint_t zfs_commit_timeout_pct = 10;
95 
96 /*
97  * See zil.h for more information about these fields.
98  */
99 static zil_kstat_values_t zil_stats = {
100 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
103 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
108 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
111 	{ "zil_itx_metaslab_normal_write",	KSTAT_DATA_UINT64 },
112 	{ "zil_itx_metaslab_normal_alloc",	KSTAT_DATA_UINT64 },
113 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
114 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
115 	{ "zil_itx_metaslab_slog_write",	KSTAT_DATA_UINT64 },
116 	{ "zil_itx_metaslab_slog_alloc",	KSTAT_DATA_UINT64 },
117 };
118 
119 static zil_sums_t zil_sums_global;
120 static kstat_t *zil_kstats_global;
121 
122 /*
123  * Disable intent logging replay.  This global ZIL switch affects all pools.
124  */
125 int zil_replay_disable = 0;
126 
127 /*
128  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
129  * the disk(s) by the ZIL after an LWB write has completed. Setting this
130  * will cause ZIL corruption on power loss if a volatile out-of-order
131  * write cache is enabled.
132  */
133 static int zil_nocacheflush = 0;
134 
135 /*
136  * Limit SLOG write size per commit executed with synchronous priority.
137  * Any writes above that will be executed with lower (asynchronous) priority
138  * to limit potential SLOG device abuse by single active ZIL writer.
139  */
140 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
141 
142 static kmem_cache_t *zil_lwb_cache;
143 static kmem_cache_t *zil_zcw_cache;
144 
145 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
146 static itx_t *zil_itx_clone(itx_t *oitx);
147 
148 static int
149 zil_bp_compare(const void *x1, const void *x2)
150 {
151 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
152 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
153 
154 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
155 	if (likely(cmp))
156 		return (cmp);
157 
158 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
159 }
160 
161 static void
162 zil_bp_tree_init(zilog_t *zilog)
163 {
164 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
165 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
166 }
167 
168 static void
169 zil_bp_tree_fini(zilog_t *zilog)
170 {
171 	avl_tree_t *t = &zilog->zl_bp_tree;
172 	zil_bp_node_t *zn;
173 	void *cookie = NULL;
174 
175 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
176 		kmem_free(zn, sizeof (zil_bp_node_t));
177 
178 	avl_destroy(t);
179 }
180 
181 int
182 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
183 {
184 	avl_tree_t *t = &zilog->zl_bp_tree;
185 	const dva_t *dva;
186 	zil_bp_node_t *zn;
187 	avl_index_t where;
188 
189 	if (BP_IS_EMBEDDED(bp))
190 		return (0);
191 
192 	dva = BP_IDENTITY(bp);
193 
194 	if (avl_find(t, dva, &where) != NULL)
195 		return (SET_ERROR(EEXIST));
196 
197 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
198 	zn->zn_dva = *dva;
199 	avl_insert(t, zn, where);
200 
201 	return (0);
202 }
203 
204 static zil_header_t *
205 zil_header_in_syncing_context(zilog_t *zilog)
206 {
207 	return ((zil_header_t *)zilog->zl_header);
208 }
209 
210 static void
211 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
212 {
213 	zio_cksum_t *zc = &bp->blk_cksum;
214 
215 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
216 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
217 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
218 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
219 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
220 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
221 }
222 
223 static int
224 zil_kstats_global_update(kstat_t *ksp, int rw)
225 {
226 	zil_kstat_values_t *zs = ksp->ks_data;
227 	ASSERT3P(&zil_stats, ==, zs);
228 
229 	if (rw == KSTAT_WRITE) {
230 		return (SET_ERROR(EACCES));
231 	}
232 
233 	zil_kstat_values_update(zs, &zil_sums_global);
234 
235 	return (0);
236 }
237 
238 /*
239  * Read a log block and make sure it's valid.
240  */
241 static int
242 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
243     blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
244 {
245 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
246 	arc_flags_t aflags = ARC_FLAG_WAIT;
247 	zbookmark_phys_t zb;
248 	int error;
249 
250 	if (zilog->zl_header->zh_claim_txg == 0)
251 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
252 
253 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
254 		zio_flags |= ZIO_FLAG_SPECULATIVE;
255 
256 	if (!decrypt)
257 		zio_flags |= ZIO_FLAG_RAW;
258 
259 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
260 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
261 
262 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
263 	    abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
264 
265 	if (error == 0) {
266 		zio_cksum_t cksum = bp->blk_cksum;
267 
268 		/*
269 		 * Validate the checksummed log block.
270 		 *
271 		 * Sequence numbers should be... sequential.  The checksum
272 		 * verifier for the next block should be bp's checksum plus 1.
273 		 *
274 		 * Also check the log chain linkage and size used.
275 		 */
276 		cksum.zc_word[ZIL_ZC_SEQ]++;
277 
278 		uint64_t size = BP_GET_LSIZE(bp);
279 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
280 			zil_chain_t *zilc = (*abuf)->b_data;
281 			char *lr = (char *)(zilc + 1);
282 
283 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
284 			    sizeof (cksum)) ||
285 			    zilc->zc_nused < sizeof (*zilc) ||
286 			    zilc->zc_nused > size) {
287 				error = SET_ERROR(ECKSUM);
288 			} else {
289 				*begin = lr;
290 				*end = lr + zilc->zc_nused - sizeof (*zilc);
291 				*nbp = zilc->zc_next_blk;
292 			}
293 		} else {
294 			char *lr = (*abuf)->b_data;
295 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
296 
297 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
298 			    sizeof (cksum)) ||
299 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
300 				error = SET_ERROR(ECKSUM);
301 			} else {
302 				*begin = lr;
303 				*end = lr + zilc->zc_nused;
304 				*nbp = zilc->zc_next_blk;
305 			}
306 		}
307 	}
308 
309 	return (error);
310 }
311 
312 /*
313  * Read a TX_WRITE log data block.
314  */
315 static int
316 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
317 {
318 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
319 	const blkptr_t *bp = &lr->lr_blkptr;
320 	arc_flags_t aflags = ARC_FLAG_WAIT;
321 	arc_buf_t *abuf = NULL;
322 	zbookmark_phys_t zb;
323 	int error;
324 
325 	if (BP_IS_HOLE(bp)) {
326 		if (wbuf != NULL)
327 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
328 		return (0);
329 	}
330 
331 	if (zilog->zl_header->zh_claim_txg == 0)
332 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
333 
334 	/*
335 	 * If we are not using the resulting data, we are just checking that
336 	 * it hasn't been corrupted so we don't need to waste CPU time
337 	 * decompressing and decrypting it.
338 	 */
339 	if (wbuf == NULL)
340 		zio_flags |= ZIO_FLAG_RAW;
341 
342 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
343 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
344 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
345 
346 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
347 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
348 
349 	if (error == 0) {
350 		if (wbuf != NULL)
351 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
352 		arc_buf_destroy(abuf, &abuf);
353 	}
354 
355 	return (error);
356 }
357 
358 void
359 zil_sums_init(zil_sums_t *zs)
360 {
361 	wmsum_init(&zs->zil_commit_count, 0);
362 	wmsum_init(&zs->zil_commit_writer_count, 0);
363 	wmsum_init(&zs->zil_itx_count, 0);
364 	wmsum_init(&zs->zil_itx_indirect_count, 0);
365 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
366 	wmsum_init(&zs->zil_itx_copied_count, 0);
367 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
368 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
369 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
370 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
371 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
372 	wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
373 	wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
374 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
375 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
376 	wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
377 	wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
378 }
379 
380 void
381 zil_sums_fini(zil_sums_t *zs)
382 {
383 	wmsum_fini(&zs->zil_commit_count);
384 	wmsum_fini(&zs->zil_commit_writer_count);
385 	wmsum_fini(&zs->zil_itx_count);
386 	wmsum_fini(&zs->zil_itx_indirect_count);
387 	wmsum_fini(&zs->zil_itx_indirect_bytes);
388 	wmsum_fini(&zs->zil_itx_copied_count);
389 	wmsum_fini(&zs->zil_itx_copied_bytes);
390 	wmsum_fini(&zs->zil_itx_needcopy_count);
391 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
392 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
393 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
394 	wmsum_fini(&zs->zil_itx_metaslab_normal_write);
395 	wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
396 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
397 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
398 	wmsum_fini(&zs->zil_itx_metaslab_slog_write);
399 	wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
400 }
401 
402 void
403 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
404 {
405 	zs->zil_commit_count.value.ui64 =
406 	    wmsum_value(&zil_sums->zil_commit_count);
407 	zs->zil_commit_writer_count.value.ui64 =
408 	    wmsum_value(&zil_sums->zil_commit_writer_count);
409 	zs->zil_itx_count.value.ui64 =
410 	    wmsum_value(&zil_sums->zil_itx_count);
411 	zs->zil_itx_indirect_count.value.ui64 =
412 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
413 	zs->zil_itx_indirect_bytes.value.ui64 =
414 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
415 	zs->zil_itx_copied_count.value.ui64 =
416 	    wmsum_value(&zil_sums->zil_itx_copied_count);
417 	zs->zil_itx_copied_bytes.value.ui64 =
418 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
419 	zs->zil_itx_needcopy_count.value.ui64 =
420 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
421 	zs->zil_itx_needcopy_bytes.value.ui64 =
422 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
423 	zs->zil_itx_metaslab_normal_count.value.ui64 =
424 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
425 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
426 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
427 	zs->zil_itx_metaslab_normal_write.value.ui64 =
428 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
429 	zs->zil_itx_metaslab_normal_alloc.value.ui64 =
430 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
431 	zs->zil_itx_metaslab_slog_count.value.ui64 =
432 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
433 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
434 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
435 	zs->zil_itx_metaslab_slog_write.value.ui64 =
436 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
437 	zs->zil_itx_metaslab_slog_alloc.value.ui64 =
438 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
439 }
440 
441 /*
442  * Parse the intent log, and call parse_func for each valid record within.
443  */
444 int
445 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
446     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
447     boolean_t decrypt)
448 {
449 	const zil_header_t *zh = zilog->zl_header;
450 	boolean_t claimed = !!zh->zh_claim_txg;
451 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
452 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
453 	uint64_t max_blk_seq = 0;
454 	uint64_t max_lr_seq = 0;
455 	uint64_t blk_count = 0;
456 	uint64_t lr_count = 0;
457 	blkptr_t blk, next_blk = {{{{0}}}};
458 	int error = 0;
459 
460 	/*
461 	 * Old logs didn't record the maximum zh_claim_lr_seq.
462 	 */
463 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
464 		claim_lr_seq = UINT64_MAX;
465 
466 	/*
467 	 * Starting at the block pointed to by zh_log we read the log chain.
468 	 * For each block in the chain we strongly check that block to
469 	 * ensure its validity.  We stop when an invalid block is found.
470 	 * For each block pointer in the chain we call parse_blk_func().
471 	 * For each record in each valid block we call parse_lr_func().
472 	 * If the log has been claimed, stop if we encounter a sequence
473 	 * number greater than the highest claimed sequence number.
474 	 */
475 	zil_bp_tree_init(zilog);
476 
477 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
478 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
479 		int reclen;
480 		char *lrp, *end;
481 		arc_buf_t *abuf = NULL;
482 
483 		if (blk_seq > claim_blk_seq)
484 			break;
485 
486 		error = parse_blk_func(zilog, &blk, arg, txg);
487 		if (error != 0)
488 			break;
489 		ASSERT3U(max_blk_seq, <, blk_seq);
490 		max_blk_seq = blk_seq;
491 		blk_count++;
492 
493 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
494 			break;
495 
496 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
497 		    &lrp, &end, &abuf);
498 		if (error != 0) {
499 			if (abuf)
500 				arc_buf_destroy(abuf, &abuf);
501 			if (claimed) {
502 				char name[ZFS_MAX_DATASET_NAME_LEN];
503 
504 				dmu_objset_name(zilog->zl_os, name);
505 
506 				cmn_err(CE_WARN, "ZFS read log block error %d, "
507 				    "dataset %s, seq 0x%llx\n", error, name,
508 				    (u_longlong_t)blk_seq);
509 			}
510 			break;
511 		}
512 
513 		for (; lrp < end; lrp += reclen) {
514 			lr_t *lr = (lr_t *)lrp;
515 			reclen = lr->lrc_reclen;
516 			ASSERT3U(reclen, >=, sizeof (lr_t));
517 			if (lr->lrc_seq > claim_lr_seq) {
518 				arc_buf_destroy(abuf, &abuf);
519 				goto done;
520 			}
521 
522 			error = parse_lr_func(zilog, lr, arg, txg);
523 			if (error != 0) {
524 				arc_buf_destroy(abuf, &abuf);
525 				goto done;
526 			}
527 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
528 			max_lr_seq = lr->lrc_seq;
529 			lr_count++;
530 		}
531 		arc_buf_destroy(abuf, &abuf);
532 	}
533 done:
534 	zilog->zl_parse_error = error;
535 	zilog->zl_parse_blk_seq = max_blk_seq;
536 	zilog->zl_parse_lr_seq = max_lr_seq;
537 	zilog->zl_parse_blk_count = blk_count;
538 	zilog->zl_parse_lr_count = lr_count;
539 
540 	zil_bp_tree_fini(zilog);
541 
542 	return (error);
543 }
544 
545 static int
546 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
547     uint64_t first_txg)
548 {
549 	(void) tx;
550 	ASSERT(!BP_IS_HOLE(bp));
551 
552 	/*
553 	 * As we call this function from the context of a rewind to a
554 	 * checkpoint, each ZIL block whose txg is later than the txg
555 	 * that we rewind to is invalid. Thus, we return -1 so
556 	 * zil_parse() doesn't attempt to read it.
557 	 */
558 	if (bp->blk_birth >= first_txg)
559 		return (-1);
560 
561 	if (zil_bp_tree_add(zilog, bp) != 0)
562 		return (0);
563 
564 	zio_free(zilog->zl_spa, first_txg, bp);
565 	return (0);
566 }
567 
568 static int
569 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
570     uint64_t first_txg)
571 {
572 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
573 	return (0);
574 }
575 
576 static int
577 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
578     uint64_t first_txg)
579 {
580 	/*
581 	 * Claim log block if not already committed and not already claimed.
582 	 * If tx == NULL, just verify that the block is claimable.
583 	 */
584 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
585 	    zil_bp_tree_add(zilog, bp) != 0)
586 		return (0);
587 
588 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
589 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
590 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
591 }
592 
593 static int
594 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
595 {
596 	lr_write_t *lr = (lr_write_t *)lrc;
597 	int error;
598 
599 	ASSERT(lrc->lrc_txtype == TX_WRITE);
600 
601 	/*
602 	 * If the block is not readable, don't claim it.  This can happen
603 	 * in normal operation when a log block is written to disk before
604 	 * some of the dmu_sync() blocks it points to.  In this case, the
605 	 * transaction cannot have been committed to anyone (we would have
606 	 * waited for all writes to be stable first), so it is semantically
607 	 * correct to declare this the end of the log.
608 	 */
609 	if (lr->lr_blkptr.blk_birth >= first_txg) {
610 		error = zil_read_log_data(zilog, lr, NULL);
611 		if (error != 0)
612 			return (error);
613 	}
614 
615 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
616 }
617 
618 static int
619 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
620 {
621 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
622 	const blkptr_t *bp;
623 	spa_t *spa;
624 	uint_t ii;
625 
626 	ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE);
627 
628 	if (tx == NULL) {
629 		return (0);
630 	}
631 
632 	/*
633 	 * XXX: Do we need to byteswap lr?
634 	 */
635 
636 	spa = zilog->zl_spa;
637 
638 	for (ii = 0; ii < lr->lr_nbps; ii++) {
639 		bp = &lr->lr_bps[ii];
640 
641 		/*
642 		 * When data in embedded into BP there is no need to create
643 		 * BRT entry as there is no data block. Just copy the BP as
644 		 * it contains the data.
645 		 */
646 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
647 			brt_pending_add(spa, bp, tx);
648 		}
649 	}
650 
651 	return (0);
652 }
653 
654 static int
655 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
656     uint64_t first_txg)
657 {
658 
659 	switch (lrc->lrc_txtype) {
660 	case TX_WRITE:
661 		return (zil_claim_write(zilog, lrc, tx, first_txg));
662 	case TX_CLONE_RANGE:
663 		return (zil_claim_clone_range(zilog, lrc, tx));
664 	default:
665 		return (0);
666 	}
667 }
668 
669 static int
670 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
671     uint64_t claim_txg)
672 {
673 	(void) claim_txg;
674 
675 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
676 
677 	return (0);
678 }
679 
680 static int
681 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
682 {
683 	lr_write_t *lr = (lr_write_t *)lrc;
684 	blkptr_t *bp = &lr->lr_blkptr;
685 
686 	ASSERT(lrc->lrc_txtype == TX_WRITE);
687 
688 	/*
689 	 * If we previously claimed it, we need to free it.
690 	 */
691 	if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
692 	    !BP_IS_HOLE(bp)) {
693 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
694 	}
695 
696 	return (0);
697 }
698 
699 static int
700 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
701 {
702 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
703 	const blkptr_t *bp;
704 	spa_t *spa;
705 	uint_t ii;
706 
707 	ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE);
708 
709 	if (tx == NULL) {
710 		return (0);
711 	}
712 
713 	spa = zilog->zl_spa;
714 
715 	for (ii = 0; ii < lr->lr_nbps; ii++) {
716 		bp = &lr->lr_bps[ii];
717 
718 		if (!BP_IS_HOLE(bp)) {
719 			zio_free(spa, dmu_tx_get_txg(tx), bp);
720 		}
721 	}
722 
723 	return (0);
724 }
725 
726 static int
727 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
728     uint64_t claim_txg)
729 {
730 
731 	if (claim_txg == 0) {
732 		return (0);
733 	}
734 
735 	switch (lrc->lrc_txtype) {
736 	case TX_WRITE:
737 		return (zil_free_write(zilog, lrc, tx, claim_txg));
738 	case TX_CLONE_RANGE:
739 		return (zil_free_clone_range(zilog, lrc, tx));
740 	default:
741 		return (0);
742 	}
743 }
744 
745 static int
746 zil_lwb_vdev_compare(const void *x1, const void *x2)
747 {
748 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
749 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
750 
751 	return (TREE_CMP(v1, v2));
752 }
753 
754 /*
755  * Allocate a new lwb.  We may already have a block pointer for it, in which
756  * case we get size and version from there.  Or we may not yet, in which case
757  * we choose them here and later make the block allocation match.
758  */
759 static lwb_t *
760 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
761     uint64_t txg, lwb_state_t state)
762 {
763 	lwb_t *lwb;
764 
765 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
766 	lwb->lwb_zilog = zilog;
767 	if (bp) {
768 		lwb->lwb_blk = *bp;
769 		lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
770 		sz = BP_GET_LSIZE(bp);
771 	} else {
772 		BP_ZERO(&lwb->lwb_blk);
773 		lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
774 		    SPA_VERSION_SLIM_ZIL);
775 	}
776 	lwb->lwb_slog = slog;
777 	lwb->lwb_error = 0;
778 	if (lwb->lwb_slim) {
779 		lwb->lwb_nmax = sz;
780 		lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
781 	} else {
782 		lwb->lwb_nmax = sz - sizeof (zil_chain_t);
783 		lwb->lwb_nused = lwb->lwb_nfilled = 0;
784 	}
785 	lwb->lwb_sz = sz;
786 	lwb->lwb_state = state;
787 	lwb->lwb_buf = zio_buf_alloc(sz);
788 	lwb->lwb_child_zio = NULL;
789 	lwb->lwb_write_zio = NULL;
790 	lwb->lwb_root_zio = NULL;
791 	lwb->lwb_issued_timestamp = 0;
792 	lwb->lwb_issued_txg = 0;
793 	lwb->lwb_alloc_txg = txg;
794 	lwb->lwb_max_txg = 0;
795 
796 	mutex_enter(&zilog->zl_lock);
797 	list_insert_tail(&zilog->zl_lwb_list, lwb);
798 	if (state != LWB_STATE_NEW)
799 		zilog->zl_last_lwb_opened = lwb;
800 	mutex_exit(&zilog->zl_lock);
801 
802 	return (lwb);
803 }
804 
805 static void
806 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
807 {
808 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
809 	ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
810 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
811 	ASSERT3P(lwb->lwb_child_zio, ==, NULL);
812 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
813 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
814 	ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
815 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
816 	VERIFY(list_is_empty(&lwb->lwb_itxs));
817 	VERIFY(list_is_empty(&lwb->lwb_waiters));
818 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
819 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
820 
821 	/*
822 	 * Clear the zilog's field to indicate this lwb is no longer
823 	 * valid, and prevent use-after-free errors.
824 	 */
825 	if (zilog->zl_last_lwb_opened == lwb)
826 		zilog->zl_last_lwb_opened = NULL;
827 
828 	kmem_cache_free(zil_lwb_cache, lwb);
829 }
830 
831 /*
832  * Called when we create in-memory log transactions so that we know
833  * to cleanup the itxs at the end of spa_sync().
834  */
835 static void
836 zilog_dirty(zilog_t *zilog, uint64_t txg)
837 {
838 	dsl_pool_t *dp = zilog->zl_dmu_pool;
839 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
840 
841 	ASSERT(spa_writeable(zilog->zl_spa));
842 
843 	if (ds->ds_is_snapshot)
844 		panic("dirtying snapshot!");
845 
846 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
847 		/* up the hold count until we can be written out */
848 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
849 
850 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
851 	}
852 }
853 
854 /*
855  * Determine if the zil is dirty in the specified txg. Callers wanting to
856  * ensure that the dirty state does not change must hold the itxg_lock for
857  * the specified txg. Holding the lock will ensure that the zil cannot be
858  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
859  * state.
860  */
861 static boolean_t __maybe_unused
862 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
863 {
864 	dsl_pool_t *dp = zilog->zl_dmu_pool;
865 
866 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
867 		return (B_TRUE);
868 	return (B_FALSE);
869 }
870 
871 /*
872  * Determine if the zil is dirty. The zil is considered dirty if it has
873  * any pending itx records that have not been cleaned by zil_clean().
874  */
875 static boolean_t
876 zilog_is_dirty(zilog_t *zilog)
877 {
878 	dsl_pool_t *dp = zilog->zl_dmu_pool;
879 
880 	for (int t = 0; t < TXG_SIZE; t++) {
881 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
882 			return (B_TRUE);
883 	}
884 	return (B_FALSE);
885 }
886 
887 /*
888  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
889  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
890  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
891  * zil_commit.
892  */
893 static void
894 zil_commit_activate_saxattr_feature(zilog_t *zilog)
895 {
896 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
897 	uint64_t txg = 0;
898 	dmu_tx_t *tx = NULL;
899 
900 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
901 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
902 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
903 		tx = dmu_tx_create(zilog->zl_os);
904 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
905 		dsl_dataset_dirty(ds, tx);
906 		txg = dmu_tx_get_txg(tx);
907 
908 		mutex_enter(&ds->ds_lock);
909 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
910 		    (void *)B_TRUE;
911 		mutex_exit(&ds->ds_lock);
912 		dmu_tx_commit(tx);
913 		txg_wait_synced(zilog->zl_dmu_pool, txg);
914 	}
915 }
916 
917 /*
918  * Create an on-disk intent log.
919  */
920 static lwb_t *
921 zil_create(zilog_t *zilog)
922 {
923 	const zil_header_t *zh = zilog->zl_header;
924 	lwb_t *lwb = NULL;
925 	uint64_t txg = 0;
926 	dmu_tx_t *tx = NULL;
927 	blkptr_t blk;
928 	int error = 0;
929 	boolean_t slog = FALSE;
930 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
931 
932 
933 	/*
934 	 * Wait for any previous destroy to complete.
935 	 */
936 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
937 
938 	ASSERT(zh->zh_claim_txg == 0);
939 	ASSERT(zh->zh_replay_seq == 0);
940 
941 	blk = zh->zh_log;
942 
943 	/*
944 	 * Allocate an initial log block if:
945 	 *    - there isn't one already
946 	 *    - the existing block is the wrong endianness
947 	 */
948 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
949 		tx = dmu_tx_create(zilog->zl_os);
950 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
951 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
952 		txg = dmu_tx_get_txg(tx);
953 
954 		if (!BP_IS_HOLE(&blk)) {
955 			zio_free(zilog->zl_spa, txg, &blk);
956 			BP_ZERO(&blk);
957 		}
958 
959 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
960 		    ZIL_MIN_BLKSZ, &slog);
961 		if (error == 0)
962 			zil_init_log_chain(zilog, &blk);
963 	}
964 
965 	/*
966 	 * Allocate a log write block (lwb) for the first log block.
967 	 */
968 	if (error == 0)
969 		lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
970 
971 	/*
972 	 * If we just allocated the first log block, commit our transaction
973 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
974 	 * (zh is part of the MOS, so we cannot modify it in open context.)
975 	 */
976 	if (tx != NULL) {
977 		/*
978 		 * If "zilsaxattr" feature is enabled on zpool, then activate
979 		 * it now when we're creating the ZIL chain. We can't wait with
980 		 * this until we write the first xattr log record because we
981 		 * need to wait for the feature activation to sync out.
982 		 */
983 		if (spa_feature_is_enabled(zilog->zl_spa,
984 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
985 		    DMU_OST_ZVOL) {
986 			mutex_enter(&ds->ds_lock);
987 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
988 			    (void *)B_TRUE;
989 			mutex_exit(&ds->ds_lock);
990 		}
991 
992 		dmu_tx_commit(tx);
993 		txg_wait_synced(zilog->zl_dmu_pool, txg);
994 	} else {
995 		/*
996 		 * This branch covers the case where we enable the feature on a
997 		 * zpool that has existing ZIL headers.
998 		 */
999 		zil_commit_activate_saxattr_feature(zilog);
1000 	}
1001 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1002 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1003 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1004 
1005 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1006 	IMPLY(error == 0, lwb != NULL);
1007 
1008 	return (lwb);
1009 }
1010 
1011 /*
1012  * In one tx, free all log blocks and clear the log header. If keep_first
1013  * is set, then we're replaying a log with no content. We want to keep the
1014  * first block, however, so that the first synchronous transaction doesn't
1015  * require a txg_wait_synced() in zil_create(). We don't need to
1016  * txg_wait_synced() here either when keep_first is set, because both
1017  * zil_create() and zil_destroy() will wait for any in-progress destroys
1018  * to complete.
1019  * Return B_TRUE if there were any entries to replay.
1020  */
1021 boolean_t
1022 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1023 {
1024 	const zil_header_t *zh = zilog->zl_header;
1025 	lwb_t *lwb;
1026 	dmu_tx_t *tx;
1027 	uint64_t txg;
1028 
1029 	/*
1030 	 * Wait for any previous destroy to complete.
1031 	 */
1032 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1033 
1034 	zilog->zl_old_header = *zh;		/* debugging aid */
1035 
1036 	if (BP_IS_HOLE(&zh->zh_log))
1037 		return (B_FALSE);
1038 
1039 	tx = dmu_tx_create(zilog->zl_os);
1040 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1041 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1042 	txg = dmu_tx_get_txg(tx);
1043 
1044 	mutex_enter(&zilog->zl_lock);
1045 
1046 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
1047 	zilog->zl_destroy_txg = txg;
1048 	zilog->zl_keep_first = keep_first;
1049 
1050 	if (!list_is_empty(&zilog->zl_lwb_list)) {
1051 		ASSERT(zh->zh_claim_txg == 0);
1052 		VERIFY(!keep_first);
1053 		while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1054 			if (lwb->lwb_buf != NULL)
1055 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1056 			if (!BP_IS_HOLE(&lwb->lwb_blk))
1057 				zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1058 			zil_free_lwb(zilog, lwb);
1059 		}
1060 	} else if (!keep_first) {
1061 		zil_destroy_sync(zilog, tx);
1062 	}
1063 	mutex_exit(&zilog->zl_lock);
1064 
1065 	dmu_tx_commit(tx);
1066 
1067 	return (B_TRUE);
1068 }
1069 
1070 void
1071 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1072 {
1073 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1074 	(void) zil_parse(zilog, zil_free_log_block,
1075 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1076 }
1077 
1078 int
1079 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1080 {
1081 	dmu_tx_t *tx = txarg;
1082 	zilog_t *zilog;
1083 	uint64_t first_txg;
1084 	zil_header_t *zh;
1085 	objset_t *os;
1086 	int error;
1087 
1088 	error = dmu_objset_own_obj(dp, ds->ds_object,
1089 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1090 	if (error != 0) {
1091 		/*
1092 		 * EBUSY indicates that the objset is inconsistent, in which
1093 		 * case it can not have a ZIL.
1094 		 */
1095 		if (error != EBUSY) {
1096 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1097 			    (unsigned long long)ds->ds_object, error);
1098 		}
1099 
1100 		return (0);
1101 	}
1102 
1103 	zilog = dmu_objset_zil(os);
1104 	zh = zil_header_in_syncing_context(zilog);
1105 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1106 	first_txg = spa_min_claim_txg(zilog->zl_spa);
1107 
1108 	/*
1109 	 * If the spa_log_state is not set to be cleared, check whether
1110 	 * the current uberblock is a checkpoint one and if the current
1111 	 * header has been claimed before moving on.
1112 	 *
1113 	 * If the current uberblock is a checkpointed uberblock then
1114 	 * one of the following scenarios took place:
1115 	 *
1116 	 * 1] We are currently rewinding to the checkpoint of the pool.
1117 	 * 2] We crashed in the middle of a checkpoint rewind but we
1118 	 *    did manage to write the checkpointed uberblock to the
1119 	 *    vdev labels, so when we tried to import the pool again
1120 	 *    the checkpointed uberblock was selected from the import
1121 	 *    procedure.
1122 	 *
1123 	 * In both cases we want to zero out all the ZIL blocks, except
1124 	 * the ones that have been claimed at the time of the checkpoint
1125 	 * (their zh_claim_txg != 0). The reason is that these blocks
1126 	 * may be corrupted since we may have reused their locations on
1127 	 * disk after we took the checkpoint.
1128 	 *
1129 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1130 	 * when we first figure out whether the current uberblock is
1131 	 * checkpointed or not. Unfortunately, that would discard all
1132 	 * the logs, including the ones that are claimed, and we would
1133 	 * leak space.
1134 	 */
1135 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1136 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1137 	    zh->zh_claim_txg == 0)) {
1138 		if (!BP_IS_HOLE(&zh->zh_log)) {
1139 			(void) zil_parse(zilog, zil_clear_log_block,
1140 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1141 		}
1142 		BP_ZERO(&zh->zh_log);
1143 		if (os->os_encrypted)
1144 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1145 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1146 		dmu_objset_disown(os, B_FALSE, FTAG);
1147 		return (0);
1148 	}
1149 
1150 	/*
1151 	 * If we are not rewinding and opening the pool normally, then
1152 	 * the min_claim_txg should be equal to the first txg of the pool.
1153 	 */
1154 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1155 
1156 	/*
1157 	 * Claim all log blocks if we haven't already done so, and remember
1158 	 * the highest claimed sequence number.  This ensures that if we can
1159 	 * read only part of the log now (e.g. due to a missing device),
1160 	 * but we can read the entire log later, we will not try to replay
1161 	 * or destroy beyond the last block we successfully claimed.
1162 	 */
1163 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1164 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1165 		(void) zil_parse(zilog, zil_claim_log_block,
1166 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1167 		zh->zh_claim_txg = first_txg;
1168 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1169 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1170 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1171 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1172 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1173 		if (os->os_encrypted)
1174 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1175 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1176 	}
1177 
1178 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1179 	dmu_objset_disown(os, B_FALSE, FTAG);
1180 	return (0);
1181 }
1182 
1183 /*
1184  * Check the log by walking the log chain.
1185  * Checksum errors are ok as they indicate the end of the chain.
1186  * Any other error (no device or read failure) returns an error.
1187  */
1188 int
1189 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1190 {
1191 	(void) dp;
1192 	zilog_t *zilog;
1193 	objset_t *os;
1194 	blkptr_t *bp;
1195 	int error;
1196 
1197 	ASSERT(tx == NULL);
1198 
1199 	error = dmu_objset_from_ds(ds, &os);
1200 	if (error != 0) {
1201 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1202 		    (unsigned long long)ds->ds_object, error);
1203 		return (0);
1204 	}
1205 
1206 	zilog = dmu_objset_zil(os);
1207 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1208 
1209 	if (!BP_IS_HOLE(bp)) {
1210 		vdev_t *vd;
1211 		boolean_t valid = B_TRUE;
1212 
1213 		/*
1214 		 * Check the first block and determine if it's on a log device
1215 		 * which may have been removed or faulted prior to loading this
1216 		 * pool.  If so, there's no point in checking the rest of the
1217 		 * log as its content should have already been synced to the
1218 		 * pool.
1219 		 */
1220 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1221 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1222 		if (vd->vdev_islog && vdev_is_dead(vd))
1223 			valid = vdev_log_state_valid(vd);
1224 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1225 
1226 		if (!valid)
1227 			return (0);
1228 
1229 		/*
1230 		 * Check whether the current uberblock is checkpointed (e.g.
1231 		 * we are rewinding) and whether the current header has been
1232 		 * claimed or not. If it hasn't then skip verifying it. We
1233 		 * do this because its ZIL blocks may be part of the pool's
1234 		 * state before the rewind, which is no longer valid.
1235 		 */
1236 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1237 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1238 		    zh->zh_claim_txg == 0)
1239 			return (0);
1240 	}
1241 
1242 	/*
1243 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1244 	 * any blocks, but just determine whether it is possible to do so.
1245 	 * In addition to checking the log chain, zil_claim_log_block()
1246 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1247 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1248 	 */
1249 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1250 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1251 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1252 
1253 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1254 }
1255 
1256 /*
1257  * When an itx is "skipped", this function is used to properly mark the
1258  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1259  * be skipped (and not committed to an lwb) for a variety of reasons,
1260  * one of them being that the itx was committed via spa_sync(), prior to
1261  * it being committed to an lwb; this can happen if a thread calling
1262  * zil_commit() is racing with spa_sync().
1263  */
1264 static void
1265 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1266 {
1267 	mutex_enter(&zcw->zcw_lock);
1268 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1269 	zcw->zcw_done = B_TRUE;
1270 	cv_broadcast(&zcw->zcw_cv);
1271 	mutex_exit(&zcw->zcw_lock);
1272 }
1273 
1274 /*
1275  * This function is used when the given waiter is to be linked into an
1276  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1277  * At this point, the waiter will no longer be referenced by the itx,
1278  * and instead, will be referenced by the lwb.
1279  */
1280 static void
1281 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1282 {
1283 	/*
1284 	 * The lwb_waiters field of the lwb is protected by the zilog's
1285 	 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1286 	 * zl_issuer_lock also protects leaving the open state.
1287 	 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1288 	 * flush_done, which transition is protected by zl_lock.
1289 	 */
1290 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1291 	IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1292 	    MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1293 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1294 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1295 
1296 	ASSERT(!list_link_active(&zcw->zcw_node));
1297 	list_insert_tail(&lwb->lwb_waiters, zcw);
1298 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1299 	zcw->zcw_lwb = lwb;
1300 }
1301 
1302 /*
1303  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1304  * block, and the given waiter must be linked to the "nolwb waiters"
1305  * list inside of zil_process_commit_list().
1306  */
1307 static void
1308 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1309 {
1310 	ASSERT(!list_link_active(&zcw->zcw_node));
1311 	list_insert_tail(nolwb, zcw);
1312 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1313 }
1314 
1315 void
1316 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1317 {
1318 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1319 	avl_index_t where;
1320 	zil_vdev_node_t *zv, zvsearch;
1321 	int ndvas = BP_GET_NDVAS(bp);
1322 	int i;
1323 
1324 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1325 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1326 
1327 	if (zil_nocacheflush)
1328 		return;
1329 
1330 	mutex_enter(&lwb->lwb_vdev_lock);
1331 	for (i = 0; i < ndvas; i++) {
1332 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1333 		if (avl_find(t, &zvsearch, &where) == NULL) {
1334 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1335 			zv->zv_vdev = zvsearch.zv_vdev;
1336 			avl_insert(t, zv, where);
1337 		}
1338 	}
1339 	mutex_exit(&lwb->lwb_vdev_lock);
1340 }
1341 
1342 static void
1343 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1344 {
1345 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1346 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1347 	void *cookie = NULL;
1348 	zil_vdev_node_t *zv;
1349 
1350 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1351 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1352 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1353 
1354 	/*
1355 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1356 	 * not need the protection of lwb_vdev_lock (it will only be modified
1357 	 * while holding zilog->zl_lock) as its writes and those of its
1358 	 * children have all completed.  The younger 'nlwb' may be waiting on
1359 	 * future writes to additional vdevs.
1360 	 */
1361 	mutex_enter(&nlwb->lwb_vdev_lock);
1362 	/*
1363 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1364 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1365 	 */
1366 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1367 		avl_index_t where;
1368 
1369 		if (avl_find(dst, zv, &where) == NULL) {
1370 			avl_insert(dst, zv, where);
1371 		} else {
1372 			kmem_free(zv, sizeof (*zv));
1373 		}
1374 	}
1375 	mutex_exit(&nlwb->lwb_vdev_lock);
1376 }
1377 
1378 void
1379 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1380 {
1381 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1382 }
1383 
1384 /*
1385  * This function is a called after all vdevs associated with a given lwb
1386  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1387  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1388  * all "previous" lwb's will have completed before this function is
1389  * called; i.e. this function is called for all previous lwbs before
1390  * it's called for "this" lwb (enforced via zio the dependencies
1391  * configured in zil_lwb_set_zio_dependency()).
1392  *
1393  * The intention is for this function to be called as soon as the
1394  * contents of an lwb are considered "stable" on disk, and will survive
1395  * any sudden loss of power. At this point, any threads waiting for the
1396  * lwb to reach this state are signalled, and the "waiter" structures
1397  * are marked "done".
1398  */
1399 static void
1400 zil_lwb_flush_vdevs_done(zio_t *zio)
1401 {
1402 	lwb_t *lwb = zio->io_private;
1403 	zilog_t *zilog = lwb->lwb_zilog;
1404 	zil_commit_waiter_t *zcw;
1405 	itx_t *itx;
1406 
1407 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1408 
1409 	hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1410 
1411 	mutex_enter(&zilog->zl_lock);
1412 
1413 	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1414 
1415 	lwb->lwb_root_zio = NULL;
1416 
1417 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1418 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1419 
1420 	if (zilog->zl_last_lwb_opened == lwb) {
1421 		/*
1422 		 * Remember the highest committed log sequence number
1423 		 * for ztest. We only update this value when all the log
1424 		 * writes succeeded, because ztest wants to ASSERT that
1425 		 * it got the whole log chain.
1426 		 */
1427 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1428 	}
1429 
1430 	while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1431 		zil_itx_destroy(itx);
1432 
1433 	while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1434 		mutex_enter(&zcw->zcw_lock);
1435 
1436 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1437 		zcw->zcw_lwb = NULL;
1438 		/*
1439 		 * We expect any ZIO errors from child ZIOs to have been
1440 		 * propagated "up" to this specific LWB's root ZIO, in
1441 		 * order for this error handling to work correctly. This
1442 		 * includes ZIO errors from either this LWB's write or
1443 		 * flush, as well as any errors from other dependent LWBs
1444 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1445 		 *
1446 		 * With that said, it's important to note that LWB flush
1447 		 * errors are not propagated up to the LWB root ZIO.
1448 		 * This is incorrect behavior, and results in VDEV flush
1449 		 * errors not being handled correctly here. See the
1450 		 * comment above the call to "zio_flush" for details.
1451 		 */
1452 
1453 		zcw->zcw_zio_error = zio->io_error;
1454 
1455 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1456 		zcw->zcw_done = B_TRUE;
1457 		cv_broadcast(&zcw->zcw_cv);
1458 
1459 		mutex_exit(&zcw->zcw_lock);
1460 	}
1461 
1462 	uint64_t txg = lwb->lwb_issued_txg;
1463 
1464 	/* Once we drop the lock, lwb may be freed by zil_sync(). */
1465 	mutex_exit(&zilog->zl_lock);
1466 
1467 	mutex_enter(&zilog->zl_lwb_io_lock);
1468 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1469 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1470 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1471 		cv_broadcast(&zilog->zl_lwb_io_cv);
1472 	mutex_exit(&zilog->zl_lwb_io_lock);
1473 }
1474 
1475 /*
1476  * Wait for the completion of all issued write/flush of that txg provided.
1477  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1478  */
1479 static void
1480 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1481 {
1482 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1483 
1484 	mutex_enter(&zilog->zl_lwb_io_lock);
1485 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1486 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1487 	mutex_exit(&zilog->zl_lwb_io_lock);
1488 
1489 #ifdef ZFS_DEBUG
1490 	mutex_enter(&zilog->zl_lock);
1491 	mutex_enter(&zilog->zl_lwb_io_lock);
1492 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1493 	while (lwb != NULL) {
1494 		if (lwb->lwb_issued_txg <= txg) {
1495 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1496 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1497 			IMPLY(lwb->lwb_issued_txg > 0,
1498 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1499 		}
1500 		IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1501 		    lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1502 		    lwb->lwb_buf == NULL);
1503 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1504 	}
1505 	mutex_exit(&zilog->zl_lwb_io_lock);
1506 	mutex_exit(&zilog->zl_lock);
1507 #endif
1508 }
1509 
1510 /*
1511  * This is called when an lwb's write zio completes. The callback's
1512  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1513  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1514  * in writing out this specific lwb's data, and in the case that cache
1515  * flushes have been deferred, vdevs involved in writing the data for
1516  * previous lwbs. The writes corresponding to all the vdevs in the
1517  * lwb_vdev_tree will have completed by the time this is called, due to
1518  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1519  * which takes deferred flushes into account. The lwb will be "done"
1520  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1521  * completion callback for the lwb's root zio.
1522  */
1523 static void
1524 zil_lwb_write_done(zio_t *zio)
1525 {
1526 	lwb_t *lwb = zio->io_private;
1527 	spa_t *spa = zio->io_spa;
1528 	zilog_t *zilog = lwb->lwb_zilog;
1529 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1530 	void *cookie = NULL;
1531 	zil_vdev_node_t *zv;
1532 	lwb_t *nlwb;
1533 
1534 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1535 
1536 	abd_free(zio->io_abd);
1537 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1538 	lwb->lwb_buf = NULL;
1539 
1540 	mutex_enter(&zilog->zl_lock);
1541 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1542 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1543 	lwb->lwb_child_zio = NULL;
1544 	lwb->lwb_write_zio = NULL;
1545 
1546 	/*
1547 	 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1548 	 * called for it yet, and when it will be, it won't be able to make
1549 	 * its write ZIO a parent this ZIO.  In such case we can not defer
1550 	 * our flushes or below may be a race between the done callbacks.
1551 	 */
1552 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1553 	if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1554 		nlwb = NULL;
1555 	mutex_exit(&zilog->zl_lock);
1556 
1557 	if (avl_numnodes(t) == 0)
1558 		return;
1559 
1560 	/*
1561 	 * If there was an IO error, we're not going to call zio_flush()
1562 	 * on these vdevs, so we simply empty the tree and free the
1563 	 * nodes. We avoid calling zio_flush() since there isn't any
1564 	 * good reason for doing so, after the lwb block failed to be
1565 	 * written out.
1566 	 *
1567 	 * Additionally, we don't perform any further error handling at
1568 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1569 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1570 	 * we expect any error seen here, to have been propagated to
1571 	 * that function).
1572 	 */
1573 	if (zio->io_error != 0) {
1574 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1575 			kmem_free(zv, sizeof (*zv));
1576 		return;
1577 	}
1578 
1579 	/*
1580 	 * If this lwb does not have any threads waiting for it to
1581 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1582 	 * command to the vdevs written to by "this" lwb, and instead
1583 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1584 	 * command for those vdevs. Thus, we merge the vdev tree of
1585 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1586 	 * and assume the "next" lwb will handle flushing the vdevs (or
1587 	 * deferring the flush(s) again).
1588 	 *
1589 	 * This is a useful performance optimization, especially for
1590 	 * workloads with lots of async write activity and few sync
1591 	 * write and/or fsync activity, as it has the potential to
1592 	 * coalesce multiple flush commands to a vdev into one.
1593 	 */
1594 	if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1595 		zil_lwb_flush_defer(lwb, nlwb);
1596 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1597 		return;
1598 	}
1599 
1600 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1601 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1602 		if (vd != NULL) {
1603 			/*
1604 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1605 			 * always used within "zio_flush". This means,
1606 			 * any errors when flushing the vdev(s), will
1607 			 * (unfortunately) not be handled correctly,
1608 			 * since these "zio_flush" errors will not be
1609 			 * propagated up to "zil_lwb_flush_vdevs_done".
1610 			 */
1611 			zio_flush(lwb->lwb_root_zio, vd);
1612 		}
1613 		kmem_free(zv, sizeof (*zv));
1614 	}
1615 }
1616 
1617 /*
1618  * Build the zio dependency chain, which is used to preserve the ordering of
1619  * lwb completions that is required by the semantics of the ZIL. Each new lwb
1620  * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1621  * cannot complete until the previous lwb's zio completes.
1622  *
1623  * This is required by the semantics of zil_commit(): the commit waiters
1624  * attached to the lwbs will be woken in the lwb zio's completion callback,
1625  * so this zio dependency graph ensures the waiters are woken in the correct
1626  * order (the same order the lwbs were created).
1627  */
1628 static void
1629 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1630 {
1631 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1632 
1633 	lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1634 	if (prev_lwb == NULL ||
1635 	    prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1636 		return;
1637 
1638 	/*
1639 	 * If the previous lwb's write hasn't already completed, we also want
1640 	 * to order the completion of the lwb write zios (above, we only order
1641 	 * the completion of the lwb root zios). This is required because of
1642 	 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1643 	 *
1644 	 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous
1645 	 * lwb will rely on this lwb to flush the vdevs written to by that
1646 	 * previous lwb. Thus, we need to ensure this lwb doesn't issue the
1647 	 * flush until after the previous lwb's write completes. We ensure
1648 	 * this ordering by setting the zio parent/child relationship here.
1649 	 *
1650 	 * Without this relationship on the lwb's write zio, it's possible
1651 	 * for this lwb's write to complete prior to the previous lwb's write
1652 	 * completing; and thus, the vdevs for the previous lwb would be
1653 	 * flushed prior to that lwb's data being written to those vdevs (the
1654 	 * vdevs are flushed in the lwb write zio's completion handler,
1655 	 * zil_lwb_write_done()).
1656 	 */
1657 	if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1658 		ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1659 		zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
1660 	} else {
1661 		ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1662 	}
1663 
1664 	ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1665 	zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1666 }
1667 
1668 
1669 /*
1670  * This function's purpose is to "open" an lwb such that it is ready to
1671  * accept new itxs being committed to it. This function is idempotent; if
1672  * the passed in lwb has already been opened, it is essentially a no-op.
1673  */
1674 static void
1675 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1676 {
1677 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1678 
1679 	if (lwb->lwb_state != LWB_STATE_NEW) {
1680 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1681 		return;
1682 	}
1683 
1684 	mutex_enter(&zilog->zl_lock);
1685 	lwb->lwb_state = LWB_STATE_OPENED;
1686 	zilog->zl_last_lwb_opened = lwb;
1687 	mutex_exit(&zilog->zl_lock);
1688 }
1689 
1690 /*
1691  * Define a limited set of intent log block sizes.
1692  *
1693  * These must be a multiple of 4KB. Note only the amount used (again
1694  * aligned to 4KB) actually gets written. However, we can't always just
1695  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1696  */
1697 static const struct {
1698 	uint64_t	limit;
1699 	uint64_t	blksz;
1700 } zil_block_buckets[] = {
1701 	{ 4096,		4096 },			/* non TX_WRITE */
1702 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1703 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1704 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1705 	{ 131072,	131072 },		/* < 128KB writes */
1706 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1707 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1708 };
1709 
1710 /*
1711  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1712  * initialized.  Otherwise this should not be used directly; see
1713  * zl_max_block_size instead.
1714  */
1715 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1716 
1717 /*
1718  * Close the log block for being issued and allocate the next one.
1719  * Has to be called under zl_issuer_lock to chain more lwbs.
1720  */
1721 static lwb_t *
1722 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
1723 {
1724 	int i;
1725 
1726 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1727 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1728 	lwb->lwb_state = LWB_STATE_CLOSED;
1729 
1730 	/*
1731 	 * If there was an allocation failure then returned NULL will trigger
1732 	 * zil_commit_writer_stall() at the caller.  This is inherently racy,
1733 	 * since allocation may not have happened yet.
1734 	 */
1735 	if (lwb->lwb_error != 0)
1736 		return (NULL);
1737 
1738 	/*
1739 	 * Log blocks are pre-allocated. Here we select the size of the next
1740 	 * block, based on size used in the last block.
1741 	 * - first find the smallest bucket that will fit the block from a
1742 	 *   limited set of block sizes. This is because it's faster to write
1743 	 *   blocks allocated from the same metaslab as they are adjacent or
1744 	 *   close.
1745 	 * - next find the maximum from the new suggested size and an array of
1746 	 *   previous sizes. This lessens a picket fence effect of wrongly
1747 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1748 	 *   requests.
1749 	 *
1750 	 * Note we only write what is used, but we can't just allocate
1751 	 * the maximum block size because we can exhaust the available
1752 	 * pool log space.
1753 	 */
1754 	uint64_t zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1755 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1756 		continue;
1757 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1758 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1759 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1760 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1761 	DTRACE_PROBE3(zil__block__size, zilog_t *, zilog,
1762 	    uint64_t, zil_blksz,
1763 	    uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]);
1764 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1765 
1766 	return (zil_alloc_lwb(zilog, zil_blksz, NULL, 0, 0, state));
1767 }
1768 
1769 /*
1770  * Finalize previously closed block and issue the write zio.
1771  */
1772 static void
1773 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1774 {
1775 	spa_t *spa = zilog->zl_spa;
1776 	zil_chain_t *zilc;
1777 	boolean_t slog;
1778 	zbookmark_phys_t zb;
1779 	zio_priority_t prio;
1780 	int error;
1781 
1782 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1783 
1784 	/* Actually fill the lwb with the data. */
1785 	for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1786 	    itx = list_next(&lwb->lwb_itxs, itx))
1787 		zil_lwb_commit(zilog, lwb, itx);
1788 	lwb->lwb_nused = lwb->lwb_nfilled;
1789 
1790 	lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1791 	    ZIO_FLAG_CANFAIL);
1792 
1793 	/*
1794 	 * The lwb is now ready to be issued, but it can be only if it already
1795 	 * got its block pointer allocated or the allocation has failed.
1796 	 * Otherwise leave it as-is, relying on some other thread to issue it
1797 	 * after allocating its block pointer via calling zil_lwb_write_issue()
1798 	 * for the previous lwb(s) in the chain.
1799 	 */
1800 	mutex_enter(&zilog->zl_lock);
1801 	lwb->lwb_state = LWB_STATE_READY;
1802 	if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1803 		mutex_exit(&zilog->zl_lock);
1804 		return;
1805 	}
1806 	mutex_exit(&zilog->zl_lock);
1807 
1808 next_lwb:
1809 	if (lwb->lwb_slim)
1810 		zilc = (zil_chain_t *)lwb->lwb_buf;
1811 	else
1812 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1813 	int wsz = lwb->lwb_sz;
1814 	if (lwb->lwb_error == 0) {
1815 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1816 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1817 			prio = ZIO_PRIORITY_SYNC_WRITE;
1818 		else
1819 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1820 		SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1821 		    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1822 		    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1823 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1824 		    &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
1825 		    lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1826 		zil_lwb_add_block(lwb, &lwb->lwb_blk);
1827 
1828 		if (lwb->lwb_slim) {
1829 			/* For Slim ZIL only write what is used. */
1830 			wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1831 			    int);
1832 			ASSERT3S(wsz, <=, lwb->lwb_sz);
1833 			zio_shrink(lwb->lwb_write_zio, wsz);
1834 			wsz = lwb->lwb_write_zio->io_size;
1835 		}
1836 		memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1837 		zilc->zc_pad = 0;
1838 		zilc->zc_nused = lwb->lwb_nused;
1839 		zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1840 	} else {
1841 		/*
1842 		 * We can't write the lwb if there was an allocation failure,
1843 		 * so create a null zio instead just to maintain dependencies.
1844 		 */
1845 		lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
1846 		    zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
1847 		lwb->lwb_write_zio->io_error = lwb->lwb_error;
1848 	}
1849 	if (lwb->lwb_child_zio)
1850 		zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
1851 
1852 	/*
1853 	 * Open transaction to allocate the next block pointer.
1854 	 */
1855 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1856 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1857 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1858 	uint64_t txg = dmu_tx_get_txg(tx);
1859 
1860 	/*
1861 	 * Allocate next the block pointer unless we are already in error.
1862 	 */
1863 	lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
1864 	blkptr_t *bp = &zilc->zc_next_blk;
1865 	BP_ZERO(bp);
1866 	error = lwb->lwb_error;
1867 	if (error == 0) {
1868 		error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
1869 		    &slog);
1870 	}
1871 	if (error == 0) {
1872 		ASSERT3U(bp->blk_birth, ==, txg);
1873 		BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
1874 		    ZIO_CHECKSUM_ZILOG);
1875 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1876 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1877 	}
1878 
1879 	/*
1880 	 * Reduce TXG open time by incrementing inflight counter and committing
1881 	 * the transaciton.  zil_sync() will wait for it to return to zero.
1882 	 */
1883 	mutex_enter(&zilog->zl_lwb_io_lock);
1884 	lwb->lwb_issued_txg = txg;
1885 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1886 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1887 	mutex_exit(&zilog->zl_lwb_io_lock);
1888 	dmu_tx_commit(tx);
1889 
1890 	spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
1891 
1892 	/*
1893 	 * We've completed all potentially blocking operations.  Update the
1894 	 * nlwb and allow it proceed without possible lock order reversals.
1895 	 */
1896 	mutex_enter(&zilog->zl_lock);
1897 	zil_lwb_set_zio_dependency(zilog, lwb);
1898 	lwb->lwb_state = LWB_STATE_ISSUED;
1899 
1900 	if (nlwb) {
1901 		nlwb->lwb_blk = *bp;
1902 		nlwb->lwb_error = error;
1903 		nlwb->lwb_slog = slog;
1904 		nlwb->lwb_alloc_txg = txg;
1905 		if (nlwb->lwb_state != LWB_STATE_READY)
1906 			nlwb = NULL;
1907 	}
1908 	mutex_exit(&zilog->zl_lock);
1909 
1910 	if (lwb->lwb_slog) {
1911 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
1912 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
1913 		    lwb->lwb_nused);
1914 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
1915 		    wsz);
1916 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
1917 		    BP_GET_LSIZE(&lwb->lwb_blk));
1918 	} else {
1919 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
1920 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
1921 		    lwb->lwb_nused);
1922 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
1923 		    wsz);
1924 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
1925 		    BP_GET_LSIZE(&lwb->lwb_blk));
1926 	}
1927 	lwb->lwb_issued_timestamp = gethrtime();
1928 	if (lwb->lwb_child_zio)
1929 		zio_nowait(lwb->lwb_child_zio);
1930 	zio_nowait(lwb->lwb_write_zio);
1931 	zio_nowait(lwb->lwb_root_zio);
1932 
1933 	/*
1934 	 * If nlwb was ready when we gave it the block pointer,
1935 	 * it is on us to issue it and possibly following ones.
1936 	 */
1937 	lwb = nlwb;
1938 	if (lwb)
1939 		goto next_lwb;
1940 }
1941 
1942 /*
1943  * Maximum amount of data that can be put into single log block.
1944  */
1945 uint64_t
1946 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
1947 {
1948 	return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
1949 }
1950 
1951 /*
1952  * Maximum amount of log space we agree to waste to reduce number of
1953  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
1954  */
1955 static inline uint64_t
1956 zil_max_waste_space(zilog_t *zilog)
1957 {
1958 	return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
1959 }
1960 
1961 /*
1962  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1963  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1964  * maximum sized log block, because each WR_COPIED record must fit in a
1965  * single log block.  Below that it is a tradeoff of additional memory copy
1966  * and possibly worse log space efficiency vs additional range lock/unlock.
1967  */
1968 static uint_t zil_maxcopied = 7680;
1969 
1970 uint64_t
1971 zil_max_copied_data(zilog_t *zilog)
1972 {
1973 	uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
1974 	return (MIN(max_data, zil_maxcopied));
1975 }
1976 
1977 /*
1978  * Estimate space needed in the lwb for the itx.  Allocate more lwbs or
1979  * split the itx as needed, but don't touch the actual transaction data.
1980  * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
1981  * to chain more lwbs.
1982  */
1983 static lwb_t *
1984 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
1985 {
1986 	itx_t *citx;
1987 	lr_t *lr, *clr;
1988 	lr_write_t *lrw;
1989 	uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
1990 
1991 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1992 	ASSERT3P(lwb, !=, NULL);
1993 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1994 
1995 	zil_lwb_write_open(zilog, lwb);
1996 
1997 	lr = &itx->itx_lr;
1998 	lrw = (lr_write_t *)lr;
1999 
2000 	/*
2001 	 * A commit itx doesn't represent any on-disk state; instead
2002 	 * it's simply used as a place holder on the commit list, and
2003 	 * provides a mechanism for attaching a "commit waiter" onto the
2004 	 * correct lwb (such that the waiter can be signalled upon
2005 	 * completion of that lwb). Thus, we don't process this itx's
2006 	 * log record if it's a commit itx (these itx's don't have log
2007 	 * records), and instead link the itx's waiter onto the lwb's
2008 	 * list of waiters.
2009 	 *
2010 	 * For more details, see the comment above zil_commit().
2011 	 */
2012 	if (lr->lrc_txtype == TX_COMMIT) {
2013 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2014 		list_insert_tail(&lwb->lwb_itxs, itx);
2015 		return (lwb);
2016 	}
2017 
2018 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2019 		dlen = P2ROUNDUP_TYPED(
2020 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
2021 	} else {
2022 		dlen = 0;
2023 	}
2024 	reclen = lr->lrc_reclen;
2025 	zilog->zl_cur_used += (reclen + dlen);
2026 
2027 cont:
2028 	/*
2029 	 * If this record won't fit in the current log block, start a new one.
2030 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2031 	 */
2032 	lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2033 	max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2034 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2035 	    lwb_sp < zil_max_waste_space(zilog) &&
2036 	    (dlen % max_log_data == 0 ||
2037 	    lwb_sp < reclen + dlen % max_log_data))) {
2038 		list_insert_tail(ilwbs, lwb);
2039 		lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
2040 		if (lwb == NULL)
2041 			return (NULL);
2042 		lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2043 
2044 		/*
2045 		 * There must be enough space in the new, empty log block to
2046 		 * hold reclen.  For WR_COPIED, we need to fit the whole
2047 		 * record in one block, and reclen is the header size + the
2048 		 * data size. For WR_NEED_COPY, we can create multiple
2049 		 * records, splitting the data into multiple blocks, so we
2050 		 * only need to fit one word of data per block; in this case
2051 		 * reclen is just the header size (no data).
2052 		 */
2053 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2054 	}
2055 
2056 	dnow = MIN(dlen, lwb_sp - reclen);
2057 	if (dlen > dnow) {
2058 		ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2059 		ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2060 		citx = zil_itx_clone(itx);
2061 		clr = &citx->itx_lr;
2062 		lr_write_t *clrw = (lr_write_t *)clr;
2063 		clrw->lr_length = dnow;
2064 		lrw->lr_offset += dnow;
2065 		lrw->lr_length -= dnow;
2066 	} else {
2067 		citx = itx;
2068 		clr = lr;
2069 	}
2070 
2071 	/*
2072 	 * We're actually making an entry, so update lrc_seq to be the
2073 	 * log record sequence number.  Note that this is generally not
2074 	 * equal to the itx sequence number because not all transactions
2075 	 * are synchronous, and sometimes spa_sync() gets there first.
2076 	 */
2077 	clr->lrc_seq = ++zilog->zl_lr_seq;
2078 
2079 	lwb->lwb_nused += reclen + dnow;
2080 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2081 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2082 
2083 	zil_lwb_add_txg(lwb, lr->lrc_txg);
2084 	list_insert_tail(&lwb->lwb_itxs, citx);
2085 
2086 	dlen -= dnow;
2087 	if (dlen > 0) {
2088 		zilog->zl_cur_used += reclen;
2089 		goto cont;
2090 	}
2091 
2092 	if (lr->lrc_txtype == TX_WRITE &&
2093 	    lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2094 		txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2095 
2096 	return (lwb);
2097 }
2098 
2099 /*
2100  * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2101  * Does not require locking.
2102  */
2103 static void
2104 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2105 {
2106 	lr_t *lr, *lrb;
2107 	lr_write_t *lrw, *lrwb;
2108 	char *lr_buf;
2109 	uint64_t dlen, reclen;
2110 
2111 	lr = &itx->itx_lr;
2112 	lrw = (lr_write_t *)lr;
2113 
2114 	if (lr->lrc_txtype == TX_COMMIT)
2115 		return;
2116 
2117 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2118 		dlen = P2ROUNDUP_TYPED(
2119 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
2120 	} else {
2121 		dlen = 0;
2122 	}
2123 	reclen = lr->lrc_reclen;
2124 	ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2125 
2126 	lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2127 	memcpy(lr_buf, lr, reclen);
2128 	lrb = (lr_t *)lr_buf;		/* Like lr, but inside lwb. */
2129 	lrwb = (lr_write_t *)lrb;	/* Like lrw, but inside lwb. */
2130 
2131 	ZIL_STAT_BUMP(zilog, zil_itx_count);
2132 
2133 	/*
2134 	 * If it's a write, fetch the data or get its blkptr as appropriate.
2135 	 */
2136 	if (lr->lrc_txtype == TX_WRITE) {
2137 		if (itx->itx_wr_state == WR_COPIED) {
2138 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2139 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2140 			    lrw->lr_length);
2141 		} else {
2142 			char *dbuf;
2143 			int error;
2144 
2145 			if (itx->itx_wr_state == WR_NEED_COPY) {
2146 				dbuf = lr_buf + reclen;
2147 				lrb->lrc_reclen += dlen;
2148 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2149 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2150 				    dlen);
2151 			} else {
2152 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2153 				dbuf = NULL;
2154 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2155 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2156 				    lrw->lr_length);
2157 				if (lwb->lwb_child_zio == NULL) {
2158 					lwb->lwb_child_zio = zio_null(NULL,
2159 					    zilog->zl_spa, NULL, NULL, NULL,
2160 					    ZIO_FLAG_CANFAIL);
2161 				}
2162 			}
2163 
2164 			/*
2165 			 * The "lwb_child_zio" we pass in will become a child of
2166 			 * "lwb_write_zio", when one is created, so one will be
2167 			 * a parent of any zio's created by the "zl_get_data".
2168 			 * This way "lwb_write_zio" will first wait for children
2169 			 * block pointers before own writing, and then for their
2170 			 * writing completion before the vdev cache flushing.
2171 			 */
2172 			error = zilog->zl_get_data(itx->itx_private,
2173 			    itx->itx_gen, lrwb, dbuf, lwb,
2174 			    lwb->lwb_child_zio);
2175 			if (dbuf != NULL && error == 0) {
2176 				/* Zero any padding bytes in the last block. */
2177 				memset((char *)dbuf + lrwb->lr_length, 0,
2178 				    dlen - lrwb->lr_length);
2179 			}
2180 
2181 			/*
2182 			 * Typically, the only return values we should see from
2183 			 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2184 			 *  EALREADY. However, it is also possible to see other
2185 			 *  error values such as ENOSPC or EINVAL from
2186 			 *  dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2187 			 *  ENXIO as well as a multitude of others from the
2188 			 *  block layer through dmu_buf_hold() -> dbuf_read()
2189 			 *  -> zio_wait(), as well as through dmu_read() ->
2190 			 *  dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2191 			 *  zio_wait(). When these errors happen, we can assume
2192 			 *  that neither an immediate write nor an indirect
2193 			 *  write occurred, so we need to fall back to
2194 			 *  txg_wait_synced(). This is unusual, so we print to
2195 			 *  dmesg whenever one of these errors occurs.
2196 			 */
2197 			switch (error) {
2198 			case 0:
2199 				break;
2200 			default:
2201 				cmn_err(CE_WARN, "zil_lwb_commit() received "
2202 				    "unexpected error %d from ->zl_get_data()"
2203 				    ". Falling back to txg_wait_synced().",
2204 				    error);
2205 				zfs_fallthrough;
2206 			case EIO:
2207 				txg_wait_synced(zilog->zl_dmu_pool,
2208 				    lr->lrc_txg);
2209 				zfs_fallthrough;
2210 			case ENOENT:
2211 				zfs_fallthrough;
2212 			case EEXIST:
2213 				zfs_fallthrough;
2214 			case EALREADY:
2215 				return;
2216 			}
2217 		}
2218 	}
2219 
2220 	lwb->lwb_nfilled += reclen + dlen;
2221 	ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2222 	ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2223 }
2224 
2225 itx_t *
2226 zil_itx_create(uint64_t txtype, size_t olrsize)
2227 {
2228 	size_t itxsize, lrsize;
2229 	itx_t *itx;
2230 
2231 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2232 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2233 
2234 	itx = zio_data_buf_alloc(itxsize);
2235 	itx->itx_lr.lrc_txtype = txtype;
2236 	itx->itx_lr.lrc_reclen = lrsize;
2237 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2238 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2239 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2240 	itx->itx_callback = NULL;
2241 	itx->itx_callback_data = NULL;
2242 	itx->itx_size = itxsize;
2243 
2244 	return (itx);
2245 }
2246 
2247 static itx_t *
2248 zil_itx_clone(itx_t *oitx)
2249 {
2250 	itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2251 	memcpy(itx, oitx, oitx->itx_size);
2252 	itx->itx_callback = NULL;
2253 	itx->itx_callback_data = NULL;
2254 	return (itx);
2255 }
2256 
2257 void
2258 zil_itx_destroy(itx_t *itx)
2259 {
2260 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2261 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2262 
2263 	if (itx->itx_callback != NULL)
2264 		itx->itx_callback(itx->itx_callback_data);
2265 
2266 	zio_data_buf_free(itx, itx->itx_size);
2267 }
2268 
2269 /*
2270  * Free up the sync and async itxs. The itxs_t has already been detached
2271  * so no locks are needed.
2272  */
2273 static void
2274 zil_itxg_clean(void *arg)
2275 {
2276 	itx_t *itx;
2277 	list_t *list;
2278 	avl_tree_t *t;
2279 	void *cookie;
2280 	itxs_t *itxs = arg;
2281 	itx_async_node_t *ian;
2282 
2283 	list = &itxs->i_sync_list;
2284 	while ((itx = list_remove_head(list)) != NULL) {
2285 		/*
2286 		 * In the general case, commit itxs will not be found
2287 		 * here, as they'll be committed to an lwb via
2288 		 * zil_lwb_assign(), and free'd in that function. Having
2289 		 * said that, it is still possible for commit itxs to be
2290 		 * found here, due to the following race:
2291 		 *
2292 		 *	- a thread calls zil_commit() which assigns the
2293 		 *	  commit itx to a per-txg i_sync_list
2294 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2295 		 *	  while the waiter is still on the i_sync_list
2296 		 *
2297 		 * There's nothing to prevent syncing the txg while the
2298 		 * waiter is on the i_sync_list. This normally doesn't
2299 		 * happen because spa_sync() is slower than zil_commit(),
2300 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2301 		 * because zil_create() or zil_commit_writer_stall() is
2302 		 * called) we will hit this case.
2303 		 */
2304 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2305 			zil_commit_waiter_skip(itx->itx_private);
2306 
2307 		zil_itx_destroy(itx);
2308 	}
2309 
2310 	cookie = NULL;
2311 	t = &itxs->i_async_tree;
2312 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2313 		list = &ian->ia_list;
2314 		while ((itx = list_remove_head(list)) != NULL) {
2315 			/* commit itxs should never be on the async lists. */
2316 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2317 			zil_itx_destroy(itx);
2318 		}
2319 		list_destroy(list);
2320 		kmem_free(ian, sizeof (itx_async_node_t));
2321 	}
2322 	avl_destroy(t);
2323 
2324 	kmem_free(itxs, sizeof (itxs_t));
2325 }
2326 
2327 static int
2328 zil_aitx_compare(const void *x1, const void *x2)
2329 {
2330 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2331 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2332 
2333 	return (TREE_CMP(o1, o2));
2334 }
2335 
2336 /*
2337  * Remove all async itx with the given oid.
2338  */
2339 void
2340 zil_remove_async(zilog_t *zilog, uint64_t oid)
2341 {
2342 	uint64_t otxg, txg;
2343 	itx_async_node_t *ian;
2344 	avl_tree_t *t;
2345 	avl_index_t where;
2346 	list_t clean_list;
2347 	itx_t *itx;
2348 
2349 	ASSERT(oid != 0);
2350 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2351 
2352 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2353 		otxg = ZILTEST_TXG;
2354 	else
2355 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2356 
2357 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2358 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2359 
2360 		mutex_enter(&itxg->itxg_lock);
2361 		if (itxg->itxg_txg != txg) {
2362 			mutex_exit(&itxg->itxg_lock);
2363 			continue;
2364 		}
2365 
2366 		/*
2367 		 * Locate the object node and append its list.
2368 		 */
2369 		t = &itxg->itxg_itxs->i_async_tree;
2370 		ian = avl_find(t, &oid, &where);
2371 		if (ian != NULL)
2372 			list_move_tail(&clean_list, &ian->ia_list);
2373 		mutex_exit(&itxg->itxg_lock);
2374 	}
2375 	while ((itx = list_remove_head(&clean_list)) != NULL) {
2376 		/* commit itxs should never be on the async lists. */
2377 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2378 		zil_itx_destroy(itx);
2379 	}
2380 	list_destroy(&clean_list);
2381 }
2382 
2383 void
2384 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2385 {
2386 	uint64_t txg;
2387 	itxg_t *itxg;
2388 	itxs_t *itxs, *clean = NULL;
2389 
2390 	/*
2391 	 * Ensure the data of a renamed file is committed before the rename.
2392 	 */
2393 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2394 		zil_async_to_sync(zilog, itx->itx_oid);
2395 
2396 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2397 		txg = ZILTEST_TXG;
2398 	else
2399 		txg = dmu_tx_get_txg(tx);
2400 
2401 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2402 	mutex_enter(&itxg->itxg_lock);
2403 	itxs = itxg->itxg_itxs;
2404 	if (itxg->itxg_txg != txg) {
2405 		if (itxs != NULL) {
2406 			/*
2407 			 * The zil_clean callback hasn't got around to cleaning
2408 			 * this itxg. Save the itxs for release below.
2409 			 * This should be rare.
2410 			 */
2411 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2412 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2413 			clean = itxg->itxg_itxs;
2414 		}
2415 		itxg->itxg_txg = txg;
2416 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2417 		    KM_SLEEP);
2418 
2419 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2420 		    offsetof(itx_t, itx_node));
2421 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2422 		    sizeof (itx_async_node_t),
2423 		    offsetof(itx_async_node_t, ia_node));
2424 	}
2425 	if (itx->itx_sync) {
2426 		list_insert_tail(&itxs->i_sync_list, itx);
2427 	} else {
2428 		avl_tree_t *t = &itxs->i_async_tree;
2429 		uint64_t foid =
2430 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2431 		itx_async_node_t *ian;
2432 		avl_index_t where;
2433 
2434 		ian = avl_find(t, &foid, &where);
2435 		if (ian == NULL) {
2436 			ian = kmem_alloc(sizeof (itx_async_node_t),
2437 			    KM_SLEEP);
2438 			list_create(&ian->ia_list, sizeof (itx_t),
2439 			    offsetof(itx_t, itx_node));
2440 			ian->ia_foid = foid;
2441 			avl_insert(t, ian, where);
2442 		}
2443 		list_insert_tail(&ian->ia_list, itx);
2444 	}
2445 
2446 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2447 
2448 	/*
2449 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2450 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2451 	 * need to be careful to always dirty the ZIL using the "real"
2452 	 * TXG (not itxg_txg) even when the SPA is frozen.
2453 	 */
2454 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2455 	mutex_exit(&itxg->itxg_lock);
2456 
2457 	/* Release the old itxs now we've dropped the lock */
2458 	if (clean != NULL)
2459 		zil_itxg_clean(clean);
2460 }
2461 
2462 /*
2463  * If there are any in-memory intent log transactions which have now been
2464  * synced then start up a taskq to free them. We should only do this after we
2465  * have written out the uberblocks (i.e. txg has been committed) so that
2466  * don't inadvertently clean out in-memory log records that would be required
2467  * by zil_commit().
2468  */
2469 void
2470 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2471 {
2472 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2473 	itxs_t *clean_me;
2474 
2475 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2476 
2477 	mutex_enter(&itxg->itxg_lock);
2478 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2479 		mutex_exit(&itxg->itxg_lock);
2480 		return;
2481 	}
2482 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2483 	ASSERT3U(itxg->itxg_txg, !=, 0);
2484 	clean_me = itxg->itxg_itxs;
2485 	itxg->itxg_itxs = NULL;
2486 	itxg->itxg_txg = 0;
2487 	mutex_exit(&itxg->itxg_lock);
2488 	/*
2489 	 * Preferably start a task queue to free up the old itxs but
2490 	 * if taskq_dispatch can't allocate resources to do that then
2491 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2492 	 * created a bad performance problem.
2493 	 */
2494 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2495 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2496 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2497 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2498 	if (id == TASKQID_INVALID)
2499 		zil_itxg_clean(clean_me);
2500 }
2501 
2502 /*
2503  * This function will traverse the queue of itxs that need to be
2504  * committed, and move them onto the ZIL's zl_itx_commit_list.
2505  */
2506 static uint64_t
2507 zil_get_commit_list(zilog_t *zilog)
2508 {
2509 	uint64_t otxg, txg, wtxg = 0;
2510 	list_t *commit_list = &zilog->zl_itx_commit_list;
2511 
2512 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2513 
2514 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2515 		otxg = ZILTEST_TXG;
2516 	else
2517 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2518 
2519 	/*
2520 	 * This is inherently racy, since there is nothing to prevent
2521 	 * the last synced txg from changing. That's okay since we'll
2522 	 * only commit things in the future.
2523 	 */
2524 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2525 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2526 
2527 		mutex_enter(&itxg->itxg_lock);
2528 		if (itxg->itxg_txg != txg) {
2529 			mutex_exit(&itxg->itxg_lock);
2530 			continue;
2531 		}
2532 
2533 		/*
2534 		 * If we're adding itx records to the zl_itx_commit_list,
2535 		 * then the zil better be dirty in this "txg". We can assert
2536 		 * that here since we're holding the itxg_lock which will
2537 		 * prevent spa_sync from cleaning it. Once we add the itxs
2538 		 * to the zl_itx_commit_list we must commit it to disk even
2539 		 * if it's unnecessary (i.e. the txg was synced).
2540 		 */
2541 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2542 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2543 		list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2544 		if (unlikely(zilog->zl_suspend > 0)) {
2545 			/*
2546 			 * ZIL was just suspended, but we lost the race.
2547 			 * Allow all earlier itxs to be committed, but ask
2548 			 * caller to do txg_wait_synced(txg) for any new.
2549 			 */
2550 			if (!list_is_empty(sync_list))
2551 				wtxg = MAX(wtxg, txg);
2552 		} else {
2553 			list_move_tail(commit_list, sync_list);
2554 		}
2555 
2556 		mutex_exit(&itxg->itxg_lock);
2557 	}
2558 	return (wtxg);
2559 }
2560 
2561 /*
2562  * Move the async itxs for a specified object to commit into sync lists.
2563  */
2564 void
2565 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2566 {
2567 	uint64_t otxg, txg;
2568 	itx_async_node_t *ian;
2569 	avl_tree_t *t;
2570 	avl_index_t where;
2571 
2572 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2573 		otxg = ZILTEST_TXG;
2574 	else
2575 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2576 
2577 	/*
2578 	 * This is inherently racy, since there is nothing to prevent
2579 	 * the last synced txg from changing.
2580 	 */
2581 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2582 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2583 
2584 		mutex_enter(&itxg->itxg_lock);
2585 		if (itxg->itxg_txg != txg) {
2586 			mutex_exit(&itxg->itxg_lock);
2587 			continue;
2588 		}
2589 
2590 		/*
2591 		 * If a foid is specified then find that node and append its
2592 		 * list. Otherwise walk the tree appending all the lists
2593 		 * to the sync list. We add to the end rather than the
2594 		 * beginning to ensure the create has happened.
2595 		 */
2596 		t = &itxg->itxg_itxs->i_async_tree;
2597 		if (foid != 0) {
2598 			ian = avl_find(t, &foid, &where);
2599 			if (ian != NULL) {
2600 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2601 				    &ian->ia_list);
2602 			}
2603 		} else {
2604 			void *cookie = NULL;
2605 
2606 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2607 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2608 				    &ian->ia_list);
2609 				list_destroy(&ian->ia_list);
2610 				kmem_free(ian, sizeof (itx_async_node_t));
2611 			}
2612 		}
2613 		mutex_exit(&itxg->itxg_lock);
2614 	}
2615 }
2616 
2617 /*
2618  * This function will prune commit itxs that are at the head of the
2619  * commit list (it won't prune past the first non-commit itx), and
2620  * either: a) attach them to the last lwb that's still pending
2621  * completion, or b) skip them altogether.
2622  *
2623  * This is used as a performance optimization to prevent commit itxs
2624  * from generating new lwbs when it's unnecessary to do so.
2625  */
2626 static void
2627 zil_prune_commit_list(zilog_t *zilog)
2628 {
2629 	itx_t *itx;
2630 
2631 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2632 
2633 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2634 		lr_t *lrc = &itx->itx_lr;
2635 		if (lrc->lrc_txtype != TX_COMMIT)
2636 			break;
2637 
2638 		mutex_enter(&zilog->zl_lock);
2639 
2640 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2641 		if (last_lwb == NULL ||
2642 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2643 			/*
2644 			 * All of the itxs this waiter was waiting on
2645 			 * must have already completed (or there were
2646 			 * never any itx's for it to wait on), so it's
2647 			 * safe to skip this waiter and mark it done.
2648 			 */
2649 			zil_commit_waiter_skip(itx->itx_private);
2650 		} else {
2651 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2652 		}
2653 
2654 		mutex_exit(&zilog->zl_lock);
2655 
2656 		list_remove(&zilog->zl_itx_commit_list, itx);
2657 		zil_itx_destroy(itx);
2658 	}
2659 
2660 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2661 }
2662 
2663 static void
2664 zil_commit_writer_stall(zilog_t *zilog)
2665 {
2666 	/*
2667 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2668 	 * disk, we must call txg_wait_synced() to ensure all of the
2669 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2670 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2671 	 * to zil_process_commit_list()) will have to call zil_create(),
2672 	 * and start a new ZIL chain.
2673 	 *
2674 	 * Since zil_alloc_zil() failed, the lwb that was previously
2675 	 * issued does not have a pointer to the "next" lwb on disk.
2676 	 * Thus, if another ZIL writer thread was to allocate the "next"
2677 	 * on-disk lwb, that block could be leaked in the event of a
2678 	 * crash (because the previous lwb on-disk would not point to
2679 	 * it).
2680 	 *
2681 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2682 	 * ensure no new threads enter zil_process_commit_list() until
2683 	 * all lwb's in the zl_lwb_list have been synced and freed
2684 	 * (which is achieved via the txg_wait_synced() call).
2685 	 */
2686 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2687 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2688 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2689 }
2690 
2691 static void
2692 zil_burst_done(zilog_t *zilog)
2693 {
2694 	if (!list_is_empty(&zilog->zl_itx_commit_list) ||
2695 	    zilog->zl_cur_used == 0)
2696 		return;
2697 
2698 	if (zilog->zl_parallel)
2699 		zilog->zl_parallel--;
2700 
2701 	zilog->zl_cur_used = 0;
2702 }
2703 
2704 /*
2705  * This function will traverse the commit list, creating new lwbs as
2706  * needed, and committing the itxs from the commit list to these newly
2707  * created lwbs. Additionally, as a new lwb is created, the previous
2708  * lwb will be issued to the zio layer to be written to disk.
2709  */
2710 static void
2711 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2712 {
2713 	spa_t *spa = zilog->zl_spa;
2714 	list_t nolwb_itxs;
2715 	list_t nolwb_waiters;
2716 	lwb_t *lwb, *plwb;
2717 	itx_t *itx;
2718 
2719 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2720 
2721 	/*
2722 	 * Return if there's nothing to commit before we dirty the fs by
2723 	 * calling zil_create().
2724 	 */
2725 	if (list_is_empty(&zilog->zl_itx_commit_list))
2726 		return;
2727 
2728 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2729 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2730 	    offsetof(zil_commit_waiter_t, zcw_node));
2731 
2732 	lwb = list_tail(&zilog->zl_lwb_list);
2733 	if (lwb == NULL) {
2734 		lwb = zil_create(zilog);
2735 	} else {
2736 		/*
2737 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2738 		 * have already been created (zl_lwb_list not empty).
2739 		 */
2740 		zil_commit_activate_saxattr_feature(zilog);
2741 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2742 		    lwb->lwb_state == LWB_STATE_OPENED);
2743 
2744 		/*
2745 		 * If the lwb is still opened, it means the workload is really
2746 		 * multi-threaded and we won the chance of write aggregation.
2747 		 * If it is not opened yet, but previous lwb is still not
2748 		 * flushed, it still means the workload is multi-threaded, but
2749 		 * there was too much time between the commits to aggregate, so
2750 		 * we try aggregation next times, but without too much hopes.
2751 		 */
2752 		if (lwb->lwb_state == LWB_STATE_OPENED) {
2753 			zilog->zl_parallel = ZIL_BURSTS;
2754 		} else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
2755 		    != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
2756 			zilog->zl_parallel = MAX(zilog->zl_parallel,
2757 			    ZIL_BURSTS / 2);
2758 		}
2759 	}
2760 
2761 	while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2762 		lr_t *lrc = &itx->itx_lr;
2763 		uint64_t txg = lrc->lrc_txg;
2764 
2765 		ASSERT3U(txg, !=, 0);
2766 
2767 		if (lrc->lrc_txtype == TX_COMMIT) {
2768 			DTRACE_PROBE2(zil__process__commit__itx,
2769 			    zilog_t *, zilog, itx_t *, itx);
2770 		} else {
2771 			DTRACE_PROBE2(zil__process__normal__itx,
2772 			    zilog_t *, zilog, itx_t *, itx);
2773 		}
2774 
2775 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2776 		boolean_t frozen = txg > spa_freeze_txg(spa);
2777 
2778 		/*
2779 		 * If the txg of this itx has already been synced out, then
2780 		 * we don't need to commit this itx to an lwb. This is
2781 		 * because the data of this itx will have already been
2782 		 * written to the main pool. This is inherently racy, and
2783 		 * it's still ok to commit an itx whose txg has already
2784 		 * been synced; this will result in a write that's
2785 		 * unnecessary, but will do no harm.
2786 		 *
2787 		 * With that said, we always want to commit TX_COMMIT itxs
2788 		 * to an lwb, regardless of whether or not that itx's txg
2789 		 * has been synced out. We do this to ensure any OPENED lwb
2790 		 * will always have at least one zil_commit_waiter_t linked
2791 		 * to the lwb.
2792 		 *
2793 		 * As a counter-example, if we skipped TX_COMMIT itx's
2794 		 * whose txg had already been synced, the following
2795 		 * situation could occur if we happened to be racing with
2796 		 * spa_sync:
2797 		 *
2798 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2799 		 *    itx's txg is 10 and the last synced txg is 9.
2800 		 * 2. spa_sync finishes syncing out txg 10.
2801 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2802 		 *    whose txg is 10, so we skip it rather than committing
2803 		 *    it to the lwb used in (1).
2804 		 *
2805 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2806 		 * itx in the commit list, than it's possible for the lwb
2807 		 * used in (1) to remain in the OPENED state indefinitely.
2808 		 *
2809 		 * To prevent the above scenario from occurring, ensuring
2810 		 * that once an lwb is OPENED it will transition to ISSUED
2811 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2812 		 * an lwb here, even if that itx's txg has already been
2813 		 * synced.
2814 		 *
2815 		 * Finally, if the pool is frozen, we _always_ commit the
2816 		 * itx.  The point of freezing the pool is to prevent data
2817 		 * from being written to the main pool via spa_sync, and
2818 		 * instead rely solely on the ZIL to persistently store the
2819 		 * data; i.e.  when the pool is frozen, the last synced txg
2820 		 * value can't be trusted.
2821 		 */
2822 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2823 			if (lwb != NULL) {
2824 				lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
2825 				if (lwb == NULL) {
2826 					list_insert_tail(&nolwb_itxs, itx);
2827 				} else if ((zcw->zcw_lwb != NULL &&
2828 				    zcw->zcw_lwb != lwb) || zcw->zcw_done) {
2829 					/*
2830 					 * Our lwb is done, leave the rest of
2831 					 * itx list to somebody else who care.
2832 					 */
2833 					zilog->zl_parallel = ZIL_BURSTS;
2834 					break;
2835 				}
2836 			} else {
2837 				if (lrc->lrc_txtype == TX_COMMIT) {
2838 					zil_commit_waiter_link_nolwb(
2839 					    itx->itx_private, &nolwb_waiters);
2840 				}
2841 				list_insert_tail(&nolwb_itxs, itx);
2842 			}
2843 		} else {
2844 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2845 			zil_itx_destroy(itx);
2846 		}
2847 	}
2848 
2849 	if (lwb == NULL) {
2850 		/*
2851 		 * This indicates zio_alloc_zil() failed to allocate the
2852 		 * "next" lwb on-disk. When this happens, we must stall
2853 		 * the ZIL write pipeline; see the comment within
2854 		 * zil_commit_writer_stall() for more details.
2855 		 */
2856 		while ((lwb = list_remove_head(ilwbs)) != NULL)
2857 			zil_lwb_write_issue(zilog, lwb);
2858 		zil_commit_writer_stall(zilog);
2859 
2860 		/*
2861 		 * Additionally, we have to signal and mark the "nolwb"
2862 		 * waiters as "done" here, since without an lwb, we
2863 		 * can't do this via zil_lwb_flush_vdevs_done() like
2864 		 * normal.
2865 		 */
2866 		zil_commit_waiter_t *zcw;
2867 		while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
2868 			zil_commit_waiter_skip(zcw);
2869 
2870 		/*
2871 		 * And finally, we have to destroy the itx's that
2872 		 * couldn't be committed to an lwb; this will also call
2873 		 * the itx's callback if one exists for the itx.
2874 		 */
2875 		while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
2876 			zil_itx_destroy(itx);
2877 	} else {
2878 		ASSERT(list_is_empty(&nolwb_waiters));
2879 		ASSERT3P(lwb, !=, NULL);
2880 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2881 		    lwb->lwb_state == LWB_STATE_OPENED);
2882 
2883 		/*
2884 		 * At this point, the ZIL block pointed at by the "lwb"
2885 		 * variable is in "new" or "opened" state.
2886 		 *
2887 		 * If it's "new", then no itxs have been committed to it, so
2888 		 * there's no point in issuing its zio (i.e. it's "empty").
2889 		 *
2890 		 * If it's "opened", then it contains one or more itxs that
2891 		 * eventually need to be committed to stable storage. In
2892 		 * this case we intentionally do not issue the lwb's zio
2893 		 * to disk yet, and instead rely on one of the following
2894 		 * two mechanisms for issuing the zio:
2895 		 *
2896 		 * 1. Ideally, there will be more ZIL activity occurring on
2897 		 * the system, such that this function will be immediately
2898 		 * called again by different thread and this lwb will be
2899 		 * closed by zil_lwb_assign().  This way, the lwb will be
2900 		 * "full" when it is issued to disk, and we'll make use of
2901 		 * the lwb's size the best we can.
2902 		 *
2903 		 * 2. If there isn't sufficient ZIL activity occurring on
2904 		 * the system, zil_commit_waiter() will close it and issue
2905 		 * the zio.  If this occurs, the lwb is not guaranteed
2906 		 * to be "full" by the time its zio is issued, and means
2907 		 * the size of the lwb was "too large" given the amount
2908 		 * of ZIL activity occurring on the system at that time.
2909 		 *
2910 		 * We do this for a couple of reasons:
2911 		 *
2912 		 * 1. To try and reduce the number of IOPs needed to
2913 		 * write the same number of itxs. If an lwb has space
2914 		 * available in its buffer for more itxs, and more itxs
2915 		 * will be committed relatively soon (relative to the
2916 		 * latency of performing a write), then it's beneficial
2917 		 * to wait for these "next" itxs. This way, more itxs
2918 		 * can be committed to stable storage with fewer writes.
2919 		 *
2920 		 * 2. To try and use the largest lwb block size that the
2921 		 * incoming rate of itxs can support. Again, this is to
2922 		 * try and pack as many itxs into as few lwbs as
2923 		 * possible, without significantly impacting the latency
2924 		 * of each individual itx.
2925 		 */
2926 		if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
2927 			list_insert_tail(ilwbs, lwb);
2928 			lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
2929 			zil_burst_done(zilog);
2930 			if (lwb == NULL) {
2931 				while ((lwb = list_remove_head(ilwbs)) != NULL)
2932 					zil_lwb_write_issue(zilog, lwb);
2933 				zil_commit_writer_stall(zilog);
2934 			}
2935 		}
2936 	}
2937 }
2938 
2939 /*
2940  * This function is responsible for ensuring the passed in commit waiter
2941  * (and associated commit itx) is committed to an lwb. If the waiter is
2942  * not already committed to an lwb, all itxs in the zilog's queue of
2943  * itxs will be processed. The assumption is the passed in waiter's
2944  * commit itx will found in the queue just like the other non-commit
2945  * itxs, such that when the entire queue is processed, the waiter will
2946  * have been committed to an lwb.
2947  *
2948  * The lwb associated with the passed in waiter is not guaranteed to
2949  * have been issued by the time this function completes. If the lwb is
2950  * not issued, we rely on future calls to zil_commit_writer() to issue
2951  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2952  */
2953 static uint64_t
2954 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2955 {
2956 	list_t ilwbs;
2957 	lwb_t *lwb;
2958 	uint64_t wtxg = 0;
2959 
2960 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2961 	ASSERT(spa_writeable(zilog->zl_spa));
2962 
2963 	list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
2964 	mutex_enter(&zilog->zl_issuer_lock);
2965 
2966 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2967 		/*
2968 		 * It's possible that, while we were waiting to acquire
2969 		 * the "zl_issuer_lock", another thread committed this
2970 		 * waiter to an lwb. If that occurs, we bail out early,
2971 		 * without processing any of the zilog's queue of itxs.
2972 		 *
2973 		 * On certain workloads and system configurations, the
2974 		 * "zl_issuer_lock" can become highly contended. In an
2975 		 * attempt to reduce this contention, we immediately drop
2976 		 * the lock if the waiter has already been processed.
2977 		 *
2978 		 * We've measured this optimization to reduce CPU spent
2979 		 * contending on this lock by up to 5%, using a system
2980 		 * with 32 CPUs, low latency storage (~50 usec writes),
2981 		 * and 1024 threads performing sync writes.
2982 		 */
2983 		goto out;
2984 	}
2985 
2986 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
2987 
2988 	wtxg = zil_get_commit_list(zilog);
2989 	zil_prune_commit_list(zilog);
2990 	zil_process_commit_list(zilog, zcw, &ilwbs);
2991 
2992 out:
2993 	mutex_exit(&zilog->zl_issuer_lock);
2994 	while ((lwb = list_remove_head(&ilwbs)) != NULL)
2995 		zil_lwb_write_issue(zilog, lwb);
2996 	list_destroy(&ilwbs);
2997 	return (wtxg);
2998 }
2999 
3000 static void
3001 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3002 {
3003 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3004 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3005 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3006 
3007 	lwb_t *lwb = zcw->zcw_lwb;
3008 	ASSERT3P(lwb, !=, NULL);
3009 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3010 
3011 	/*
3012 	 * If the lwb has already been issued by another thread, we can
3013 	 * immediately return since there's no work to be done (the
3014 	 * point of this function is to issue the lwb). Additionally, we
3015 	 * do this prior to acquiring the zl_issuer_lock, to avoid
3016 	 * acquiring it when it's not necessary to do so.
3017 	 */
3018 	if (lwb->lwb_state != LWB_STATE_OPENED)
3019 		return;
3020 
3021 	/*
3022 	 * In order to call zil_lwb_write_close() we must hold the
3023 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3024 	 * since we're already holding the commit waiter's "zcw_lock",
3025 	 * and those two locks are acquired in the opposite order
3026 	 * elsewhere.
3027 	 */
3028 	mutex_exit(&zcw->zcw_lock);
3029 	mutex_enter(&zilog->zl_issuer_lock);
3030 	mutex_enter(&zcw->zcw_lock);
3031 
3032 	/*
3033 	 * Since we just dropped and re-acquired the commit waiter's
3034 	 * lock, we have to re-check to see if the waiter was marked
3035 	 * "done" during that process. If the waiter was marked "done",
3036 	 * the "lwb" pointer is no longer valid (it can be free'd after
3037 	 * the waiter is marked "done"), so without this check we could
3038 	 * wind up with a use-after-free error below.
3039 	 */
3040 	if (zcw->zcw_done) {
3041 		mutex_exit(&zilog->zl_issuer_lock);
3042 		return;
3043 	}
3044 
3045 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
3046 
3047 	/*
3048 	 * We've already checked this above, but since we hadn't acquired
3049 	 * the zilog's zl_issuer_lock, we have to perform this check a
3050 	 * second time while holding the lock.
3051 	 *
3052 	 * We don't need to hold the zl_lock since the lwb cannot transition
3053 	 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3054 	 * _can_ transition from CLOSED to DONE, but it's OK to race with
3055 	 * that transition since we treat the lwb the same, whether it's in
3056 	 * the CLOSED, ISSUED or DONE states.
3057 	 *
3058 	 * The important thing, is we treat the lwb differently depending on
3059 	 * if it's OPENED or CLOSED, and block any other threads that might
3060 	 * attempt to close/issue this lwb. For that reason we hold the
3061 	 * zl_issuer_lock when checking the lwb_state; we must not call
3062 	 * zil_lwb_write_close() if the lwb had already been closed/issued.
3063 	 *
3064 	 * See the comment above the lwb_state_t structure definition for
3065 	 * more details on the lwb states, and locking requirements.
3066 	 */
3067 	if (lwb->lwb_state != LWB_STATE_OPENED) {
3068 		mutex_exit(&zilog->zl_issuer_lock);
3069 		return;
3070 	}
3071 
3072 	/*
3073 	 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3074 	 * is still open.  But we have to drop it to avoid a deadlock in case
3075 	 * callback of zio issued by zil_lwb_write_issue() try to get it,
3076 	 * while zil_lwb_write_issue() is blocked on attempt to issue next
3077 	 * lwb it found in LWB_STATE_READY state.
3078 	 */
3079 	mutex_exit(&zcw->zcw_lock);
3080 
3081 	/*
3082 	 * As described in the comments above zil_commit_waiter() and
3083 	 * zil_process_commit_list(), we need to issue this lwb's zio
3084 	 * since we've reached the commit waiter's timeout and it still
3085 	 * hasn't been issued.
3086 	 */
3087 	lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3088 
3089 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3090 
3091 	zil_burst_done(zilog);
3092 
3093 	if (nlwb == NULL) {
3094 		/*
3095 		 * When zil_lwb_write_close() returns NULL, this
3096 		 * indicates zio_alloc_zil() failed to allocate the
3097 		 * "next" lwb on-disk. When this occurs, the ZIL write
3098 		 * pipeline must be stalled; see the comment within the
3099 		 * zil_commit_writer_stall() function for more details.
3100 		 */
3101 		zil_lwb_write_issue(zilog, lwb);
3102 		zil_commit_writer_stall(zilog);
3103 		mutex_exit(&zilog->zl_issuer_lock);
3104 	} else {
3105 		mutex_exit(&zilog->zl_issuer_lock);
3106 		zil_lwb_write_issue(zilog, lwb);
3107 	}
3108 	mutex_enter(&zcw->zcw_lock);
3109 }
3110 
3111 /*
3112  * This function is responsible for performing the following two tasks:
3113  *
3114  * 1. its primary responsibility is to block until the given "commit
3115  *    waiter" is considered "done".
3116  *
3117  * 2. its secondary responsibility is to issue the zio for the lwb that
3118  *    the given "commit waiter" is waiting on, if this function has
3119  *    waited "long enough" and the lwb is still in the "open" state.
3120  *
3121  * Given a sufficient amount of itxs being generated and written using
3122  * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3123  * function. If this does not occur, this secondary responsibility will
3124  * ensure the lwb is issued even if there is not other synchronous
3125  * activity on the system.
3126  *
3127  * For more details, see zil_process_commit_list(); more specifically,
3128  * the comment at the bottom of that function.
3129  */
3130 static void
3131 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3132 {
3133 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3134 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3135 	ASSERT(spa_writeable(zilog->zl_spa));
3136 
3137 	mutex_enter(&zcw->zcw_lock);
3138 
3139 	/*
3140 	 * The timeout is scaled based on the lwb latency to avoid
3141 	 * significantly impacting the latency of each individual itx.
3142 	 * For more details, see the comment at the bottom of the
3143 	 * zil_process_commit_list() function.
3144 	 */
3145 	int pct = MAX(zfs_commit_timeout_pct, 1);
3146 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3147 	hrtime_t wakeup = gethrtime() + sleep;
3148 	boolean_t timedout = B_FALSE;
3149 
3150 	while (!zcw->zcw_done) {
3151 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3152 
3153 		lwb_t *lwb = zcw->zcw_lwb;
3154 
3155 		/*
3156 		 * Usually, the waiter will have a non-NULL lwb field here,
3157 		 * but it's possible for it to be NULL as a result of
3158 		 * zil_commit() racing with spa_sync().
3159 		 *
3160 		 * When zil_clean() is called, it's possible for the itxg
3161 		 * list (which may be cleaned via a taskq) to contain
3162 		 * commit itxs. When this occurs, the commit waiters linked
3163 		 * off of these commit itxs will not be committed to an
3164 		 * lwb.  Additionally, these commit waiters will not be
3165 		 * marked done until zil_commit_waiter_skip() is called via
3166 		 * zil_itxg_clean().
3167 		 *
3168 		 * Thus, it's possible for this commit waiter (i.e. the
3169 		 * "zcw" variable) to be found in this "in between" state;
3170 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3171 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
3172 		 */
3173 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3174 
3175 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3176 			ASSERT3B(timedout, ==, B_FALSE);
3177 
3178 			/*
3179 			 * If the lwb hasn't been issued yet, then we
3180 			 * need to wait with a timeout, in case this
3181 			 * function needs to issue the lwb after the
3182 			 * timeout is reached; responsibility (2) from
3183 			 * the comment above this function.
3184 			 */
3185 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
3186 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3187 			    CALLOUT_FLAG_ABSOLUTE);
3188 
3189 			if (rc != -1 || zcw->zcw_done)
3190 				continue;
3191 
3192 			timedout = B_TRUE;
3193 			zil_commit_waiter_timeout(zilog, zcw);
3194 
3195 			if (!zcw->zcw_done) {
3196 				/*
3197 				 * If the commit waiter has already been
3198 				 * marked "done", it's possible for the
3199 				 * waiter's lwb structure to have already
3200 				 * been freed.  Thus, we can only reliably
3201 				 * make these assertions if the waiter
3202 				 * isn't done.
3203 				 */
3204 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
3205 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3206 			}
3207 		} else {
3208 			/*
3209 			 * If the lwb isn't open, then it must have already
3210 			 * been issued. In that case, there's no need to
3211 			 * use a timeout when waiting for the lwb to
3212 			 * complete.
3213 			 *
3214 			 * Additionally, if the lwb is NULL, the waiter
3215 			 * will soon be signaled and marked done via
3216 			 * zil_clean() and zil_itxg_clean(), so no timeout
3217 			 * is required.
3218 			 */
3219 
3220 			IMPLY(lwb != NULL,
3221 			    lwb->lwb_state == LWB_STATE_CLOSED ||
3222 			    lwb->lwb_state == LWB_STATE_READY ||
3223 			    lwb->lwb_state == LWB_STATE_ISSUED ||
3224 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3225 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3226 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3227 		}
3228 	}
3229 
3230 	mutex_exit(&zcw->zcw_lock);
3231 }
3232 
3233 static zil_commit_waiter_t *
3234 zil_alloc_commit_waiter(void)
3235 {
3236 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3237 
3238 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3239 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3240 	list_link_init(&zcw->zcw_node);
3241 	zcw->zcw_lwb = NULL;
3242 	zcw->zcw_done = B_FALSE;
3243 	zcw->zcw_zio_error = 0;
3244 
3245 	return (zcw);
3246 }
3247 
3248 static void
3249 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3250 {
3251 	ASSERT(!list_link_active(&zcw->zcw_node));
3252 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
3253 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3254 	mutex_destroy(&zcw->zcw_lock);
3255 	cv_destroy(&zcw->zcw_cv);
3256 	kmem_cache_free(zil_zcw_cache, zcw);
3257 }
3258 
3259 /*
3260  * This function is used to create a TX_COMMIT itx and assign it. This
3261  * way, it will be linked into the ZIL's list of synchronous itxs, and
3262  * then later committed to an lwb (or skipped) when
3263  * zil_process_commit_list() is called.
3264  */
3265 static void
3266 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3267 {
3268 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3269 
3270 	/*
3271 	 * Since we are not going to create any new dirty data, and we
3272 	 * can even help with clearing the existing dirty data, we
3273 	 * should not be subject to the dirty data based delays. We
3274 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3275 	 */
3276 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
3277 
3278 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3279 	itx->itx_sync = B_TRUE;
3280 	itx->itx_private = zcw;
3281 
3282 	zil_itx_assign(zilog, itx, tx);
3283 
3284 	dmu_tx_commit(tx);
3285 }
3286 
3287 /*
3288  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3289  *
3290  * When writing ZIL transactions to the on-disk representation of the
3291  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3292  * itxs can be committed to a single lwb. Once a lwb is written and
3293  * committed to stable storage (i.e. the lwb is written, and vdevs have
3294  * been flushed), each itx that was committed to that lwb is also
3295  * considered to be committed to stable storage.
3296  *
3297  * When an itx is committed to an lwb, the log record (lr_t) contained
3298  * by the itx is copied into the lwb's zio buffer, and once this buffer
3299  * is written to disk, it becomes an on-disk ZIL block.
3300  *
3301  * As itxs are generated, they're inserted into the ZIL's queue of
3302  * uncommitted itxs. The semantics of zil_commit() are such that it will
3303  * block until all itxs that were in the queue when it was called, are
3304  * committed to stable storage.
3305  *
3306  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3307  * itxs, for all objects in the dataset, will be committed to stable
3308  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3309  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3310  * that correspond to the foid passed in, will be committed to stable
3311  * storage prior to zil_commit() returning.
3312  *
3313  * Generally speaking, when zil_commit() is called, the consumer doesn't
3314  * actually care about _all_ of the uncommitted itxs. Instead, they're
3315  * simply trying to waiting for a specific itx to be committed to disk,
3316  * but the interface(s) for interacting with the ZIL don't allow such
3317  * fine-grained communication. A better interface would allow a consumer
3318  * to create and assign an itx, and then pass a reference to this itx to
3319  * zil_commit(); such that zil_commit() would return as soon as that
3320  * specific itx was committed to disk (instead of waiting for _all_
3321  * itxs to be committed).
3322  *
3323  * When a thread calls zil_commit() a special "commit itx" will be
3324  * generated, along with a corresponding "waiter" for this commit itx.
3325  * zil_commit() will wait on this waiter's CV, such that when the waiter
3326  * is marked done, and signaled, zil_commit() will return.
3327  *
3328  * This commit itx is inserted into the queue of uncommitted itxs. This
3329  * provides an easy mechanism for determining which itxs were in the
3330  * queue prior to zil_commit() having been called, and which itxs were
3331  * added after zil_commit() was called.
3332  *
3333  * The commit itx is special; it doesn't have any on-disk representation.
3334  * When a commit itx is "committed" to an lwb, the waiter associated
3335  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3336  * completes, each waiter on the lwb's list is marked done and signaled
3337  * -- allowing the thread waiting on the waiter to return from zil_commit().
3338  *
3339  * It's important to point out a few critical factors that allow us
3340  * to make use of the commit itxs, commit waiters, per-lwb lists of
3341  * commit waiters, and zio completion callbacks like we're doing:
3342  *
3343  *   1. The list of waiters for each lwb is traversed, and each commit
3344  *      waiter is marked "done" and signaled, in the zio completion
3345  *      callback of the lwb's zio[*].
3346  *
3347  *      * Actually, the waiters are signaled in the zio completion
3348  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3349  *        that are sent to the vdevs upon completion of the lwb zio.
3350  *
3351  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3352  *      itxs, the order in which they are inserted is preserved[*]; as
3353  *      itxs are added to the queue, they are added to the tail of
3354  *      in-memory linked lists.
3355  *
3356  *      When committing the itxs to lwbs (to be written to disk), they
3357  *      are committed in the same order in which the itxs were added to
3358  *      the uncommitted queue's linked list(s); i.e. the linked list of
3359  *      itxs to commit is traversed from head to tail, and each itx is
3360  *      committed to an lwb in that order.
3361  *
3362  *      * To clarify:
3363  *
3364  *        - the order of "sync" itxs is preserved w.r.t. other
3365  *          "sync" itxs, regardless of the corresponding objects.
3366  *        - the order of "async" itxs is preserved w.r.t. other
3367  *          "async" itxs corresponding to the same object.
3368  *        - the order of "async" itxs is *not* preserved w.r.t. other
3369  *          "async" itxs corresponding to different objects.
3370  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3371  *          versa) is *not* preserved, even for itxs that correspond
3372  *          to the same object.
3373  *
3374  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3375  *      zil_get_commit_list(), and zil_process_commit_list().
3376  *
3377  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3378  *      lwb cannot be considered committed to stable storage, until its
3379  *      "previous" lwb is also committed to stable storage. This fact,
3380  *      coupled with the fact described above, means that itxs are
3381  *      committed in (roughly) the order in which they were generated.
3382  *      This is essential because itxs are dependent on prior itxs.
3383  *      Thus, we *must not* deem an itx as being committed to stable
3384  *      storage, until *all* prior itxs have also been committed to
3385  *      stable storage.
3386  *
3387  *      To enforce this ordering of lwb zio's, while still leveraging as
3388  *      much of the underlying storage performance as possible, we rely
3389  *      on two fundamental concepts:
3390  *
3391  *          1. The creation and issuance of lwb zio's is protected by
3392  *             the zilog's "zl_issuer_lock", which ensures only a single
3393  *             thread is creating and/or issuing lwb's at a time
3394  *          2. The "previous" lwb is a child of the "current" lwb
3395  *             (leveraging the zio parent-child dependency graph)
3396  *
3397  *      By relying on this parent-child zio relationship, we can have
3398  *      many lwb zio's concurrently issued to the underlying storage,
3399  *      but the order in which they complete will be the same order in
3400  *      which they were created.
3401  */
3402 void
3403 zil_commit(zilog_t *zilog, uint64_t foid)
3404 {
3405 	/*
3406 	 * We should never attempt to call zil_commit on a snapshot for
3407 	 * a couple of reasons:
3408 	 *
3409 	 * 1. A snapshot may never be modified, thus it cannot have any
3410 	 *    in-flight itxs that would have modified the dataset.
3411 	 *
3412 	 * 2. By design, when zil_commit() is called, a commit itx will
3413 	 *    be assigned to this zilog; as a result, the zilog will be
3414 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3415 	 *    checks in the code that enforce this invariant, and will
3416 	 *    cause a panic if it's not upheld.
3417 	 */
3418 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3419 
3420 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3421 		return;
3422 
3423 	if (!spa_writeable(zilog->zl_spa)) {
3424 		/*
3425 		 * If the SPA is not writable, there should never be any
3426 		 * pending itxs waiting to be committed to disk. If that
3427 		 * weren't true, we'd skip writing those itxs out, and
3428 		 * would break the semantics of zil_commit(); thus, we're
3429 		 * verifying that truth before we return to the caller.
3430 		 */
3431 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3432 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3433 		for (int i = 0; i < TXG_SIZE; i++)
3434 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3435 		return;
3436 	}
3437 
3438 	/*
3439 	 * If the ZIL is suspended, we don't want to dirty it by calling
3440 	 * zil_commit_itx_assign() below, nor can we write out
3441 	 * lwbs like would be done in zil_commit_write(). Thus, we
3442 	 * simply rely on txg_wait_synced() to maintain the necessary
3443 	 * semantics, and avoid calling those functions altogether.
3444 	 */
3445 	if (zilog->zl_suspend > 0) {
3446 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3447 		return;
3448 	}
3449 
3450 	zil_commit_impl(zilog, foid);
3451 }
3452 
3453 void
3454 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3455 {
3456 	ZIL_STAT_BUMP(zilog, zil_commit_count);
3457 
3458 	/*
3459 	 * Move the "async" itxs for the specified foid to the "sync"
3460 	 * queues, such that they will be later committed (or skipped)
3461 	 * to an lwb when zil_process_commit_list() is called.
3462 	 *
3463 	 * Since these "async" itxs must be committed prior to this
3464 	 * call to zil_commit returning, we must perform this operation
3465 	 * before we call zil_commit_itx_assign().
3466 	 */
3467 	zil_async_to_sync(zilog, foid);
3468 
3469 	/*
3470 	 * We allocate a new "waiter" structure which will initially be
3471 	 * linked to the commit itx using the itx's "itx_private" field.
3472 	 * Since the commit itx doesn't represent any on-disk state,
3473 	 * when it's committed to an lwb, rather than copying the its
3474 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3475 	 * added to the lwb's list of waiters. Then, when the lwb is
3476 	 * committed to stable storage, each waiter in the lwb's list of
3477 	 * waiters will be marked "done", and signalled.
3478 	 *
3479 	 * We must create the waiter and assign the commit itx prior to
3480 	 * calling zil_commit_writer(), or else our specific commit itx
3481 	 * is not guaranteed to be committed to an lwb prior to calling
3482 	 * zil_commit_waiter().
3483 	 */
3484 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3485 	zil_commit_itx_assign(zilog, zcw);
3486 
3487 	uint64_t wtxg = zil_commit_writer(zilog, zcw);
3488 	zil_commit_waiter(zilog, zcw);
3489 
3490 	if (zcw->zcw_zio_error != 0) {
3491 		/*
3492 		 * If there was an error writing out the ZIL blocks that
3493 		 * this thread is waiting on, then we fallback to
3494 		 * relying on spa_sync() to write out the data this
3495 		 * thread is waiting on. Obviously this has performance
3496 		 * implications, but the expectation is for this to be
3497 		 * an exceptional case, and shouldn't occur often.
3498 		 */
3499 		DTRACE_PROBE2(zil__commit__io__error,
3500 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3501 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3502 	} else if (wtxg != 0) {
3503 		txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3504 	}
3505 
3506 	zil_free_commit_waiter(zcw);
3507 }
3508 
3509 /*
3510  * Called in syncing context to free committed log blocks and update log header.
3511  */
3512 void
3513 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3514 {
3515 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3516 	uint64_t txg = dmu_tx_get_txg(tx);
3517 	spa_t *spa = zilog->zl_spa;
3518 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3519 	lwb_t *lwb;
3520 
3521 	/*
3522 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3523 	 * to destroy it twice.
3524 	 */
3525 	if (spa_sync_pass(spa) != 1)
3526 		return;
3527 
3528 	zil_lwb_flush_wait_all(zilog, txg);
3529 
3530 	mutex_enter(&zilog->zl_lock);
3531 
3532 	ASSERT(zilog->zl_stop_sync == 0);
3533 
3534 	if (*replayed_seq != 0) {
3535 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3536 		zh->zh_replay_seq = *replayed_seq;
3537 		*replayed_seq = 0;
3538 	}
3539 
3540 	if (zilog->zl_destroy_txg == txg) {
3541 		blkptr_t blk = zh->zh_log;
3542 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3543 
3544 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3545 
3546 		memset(zh, 0, sizeof (zil_header_t));
3547 		memset(zilog->zl_replayed_seq, 0,
3548 		    sizeof (zilog->zl_replayed_seq));
3549 
3550 		if (zilog->zl_keep_first) {
3551 			/*
3552 			 * If this block was part of log chain that couldn't
3553 			 * be claimed because a device was missing during
3554 			 * zil_claim(), but that device later returns,
3555 			 * then this block could erroneously appear valid.
3556 			 * To guard against this, assign a new GUID to the new
3557 			 * log chain so it doesn't matter what blk points to.
3558 			 */
3559 			zil_init_log_chain(zilog, &blk);
3560 			zh->zh_log = blk;
3561 		} else {
3562 			/*
3563 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3564 			 * records. So, deactivate the feature for this dataset.
3565 			 * We activate it again when we start a new ZIL chain.
3566 			 */
3567 			if (dsl_dataset_feature_is_active(ds,
3568 			    SPA_FEATURE_ZILSAXATTR))
3569 				dsl_dataset_deactivate_feature(ds,
3570 				    SPA_FEATURE_ZILSAXATTR, tx);
3571 		}
3572 	}
3573 
3574 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3575 		zh->zh_log = lwb->lwb_blk;
3576 		if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3577 		    lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
3578 			break;
3579 		list_remove(&zilog->zl_lwb_list, lwb);
3580 		if (!BP_IS_HOLE(&lwb->lwb_blk))
3581 			zio_free(spa, txg, &lwb->lwb_blk);
3582 		zil_free_lwb(zilog, lwb);
3583 
3584 		/*
3585 		 * If we don't have anything left in the lwb list then
3586 		 * we've had an allocation failure and we need to zero
3587 		 * out the zil_header blkptr so that we don't end
3588 		 * up freeing the same block twice.
3589 		 */
3590 		if (list_is_empty(&zilog->zl_lwb_list))
3591 			BP_ZERO(&zh->zh_log);
3592 	}
3593 
3594 	mutex_exit(&zilog->zl_lock);
3595 }
3596 
3597 static int
3598 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3599 {
3600 	(void) unused, (void) kmflag;
3601 	lwb_t *lwb = vbuf;
3602 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3603 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3604 	    offsetof(zil_commit_waiter_t, zcw_node));
3605 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3606 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3607 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3608 	return (0);
3609 }
3610 
3611 static void
3612 zil_lwb_dest(void *vbuf, void *unused)
3613 {
3614 	(void) unused;
3615 	lwb_t *lwb = vbuf;
3616 	mutex_destroy(&lwb->lwb_vdev_lock);
3617 	avl_destroy(&lwb->lwb_vdev_tree);
3618 	list_destroy(&lwb->lwb_waiters);
3619 	list_destroy(&lwb->lwb_itxs);
3620 }
3621 
3622 void
3623 zil_init(void)
3624 {
3625 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3626 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3627 
3628 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3629 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3630 
3631 	zil_sums_init(&zil_sums_global);
3632 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3633 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3634 	    KSTAT_FLAG_VIRTUAL);
3635 
3636 	if (zil_kstats_global != NULL) {
3637 		zil_kstats_global->ks_data = &zil_stats;
3638 		zil_kstats_global->ks_update = zil_kstats_global_update;
3639 		zil_kstats_global->ks_private = NULL;
3640 		kstat_install(zil_kstats_global);
3641 	}
3642 }
3643 
3644 void
3645 zil_fini(void)
3646 {
3647 	kmem_cache_destroy(zil_zcw_cache);
3648 	kmem_cache_destroy(zil_lwb_cache);
3649 
3650 	if (zil_kstats_global != NULL) {
3651 		kstat_delete(zil_kstats_global);
3652 		zil_kstats_global = NULL;
3653 	}
3654 
3655 	zil_sums_fini(&zil_sums_global);
3656 }
3657 
3658 void
3659 zil_set_sync(zilog_t *zilog, uint64_t sync)
3660 {
3661 	zilog->zl_sync = sync;
3662 }
3663 
3664 void
3665 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3666 {
3667 	zilog->zl_logbias = logbias;
3668 }
3669 
3670 zilog_t *
3671 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3672 {
3673 	zilog_t *zilog;
3674 
3675 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3676 
3677 	zilog->zl_header = zh_phys;
3678 	zilog->zl_os = os;
3679 	zilog->zl_spa = dmu_objset_spa(os);
3680 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3681 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3682 	zilog->zl_logbias = dmu_objset_logbias(os);
3683 	zilog->zl_sync = dmu_objset_syncprop(os);
3684 	zilog->zl_dirty_max_txg = 0;
3685 	zilog->zl_last_lwb_opened = NULL;
3686 	zilog->zl_last_lwb_latency = 0;
3687 	zilog->zl_max_block_size = zil_maxblocksize;
3688 
3689 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3690 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3691 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3692 
3693 	for (int i = 0; i < TXG_SIZE; i++) {
3694 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3695 		    MUTEX_DEFAULT, NULL);
3696 	}
3697 
3698 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3699 	    offsetof(lwb_t, lwb_node));
3700 
3701 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3702 	    offsetof(itx_t, itx_node));
3703 
3704 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3705 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3706 
3707 	return (zilog);
3708 }
3709 
3710 void
3711 zil_free(zilog_t *zilog)
3712 {
3713 	int i;
3714 
3715 	zilog->zl_stop_sync = 1;
3716 
3717 	ASSERT0(zilog->zl_suspend);
3718 	ASSERT0(zilog->zl_suspending);
3719 
3720 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3721 	list_destroy(&zilog->zl_lwb_list);
3722 
3723 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3724 	list_destroy(&zilog->zl_itx_commit_list);
3725 
3726 	for (i = 0; i < TXG_SIZE; i++) {
3727 		/*
3728 		 * It's possible for an itx to be generated that doesn't dirty
3729 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3730 		 * callback to remove the entry. We remove those here.
3731 		 *
3732 		 * Also free up the ziltest itxs.
3733 		 */
3734 		if (zilog->zl_itxg[i].itxg_itxs)
3735 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3736 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3737 	}
3738 
3739 	mutex_destroy(&zilog->zl_issuer_lock);
3740 	mutex_destroy(&zilog->zl_lock);
3741 	mutex_destroy(&zilog->zl_lwb_io_lock);
3742 
3743 	cv_destroy(&zilog->zl_cv_suspend);
3744 	cv_destroy(&zilog->zl_lwb_io_cv);
3745 
3746 	kmem_free(zilog, sizeof (zilog_t));
3747 }
3748 
3749 /*
3750  * Open an intent log.
3751  */
3752 zilog_t *
3753 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3754 {
3755 	zilog_t *zilog = dmu_objset_zil(os);
3756 
3757 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3758 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3759 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3760 
3761 	zilog->zl_get_data = get_data;
3762 	zilog->zl_sums = zil_sums;
3763 
3764 	return (zilog);
3765 }
3766 
3767 /*
3768  * Close an intent log.
3769  */
3770 void
3771 zil_close(zilog_t *zilog)
3772 {
3773 	lwb_t *lwb;
3774 	uint64_t txg;
3775 
3776 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3777 		zil_commit(zilog, 0);
3778 	} else {
3779 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3780 		ASSERT0(zilog->zl_dirty_max_txg);
3781 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3782 	}
3783 
3784 	mutex_enter(&zilog->zl_lock);
3785 	txg = zilog->zl_dirty_max_txg;
3786 	lwb = list_tail(&zilog->zl_lwb_list);
3787 	if (lwb != NULL) {
3788 		txg = MAX(txg, lwb->lwb_alloc_txg);
3789 		txg = MAX(txg, lwb->lwb_max_txg);
3790 	}
3791 	mutex_exit(&zilog->zl_lock);
3792 
3793 	/*
3794 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3795 	 * on the time when the dmu_tx transaction is assigned in
3796 	 * zil_lwb_write_issue().
3797 	 */
3798 	mutex_enter(&zilog->zl_lwb_io_lock);
3799 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3800 	mutex_exit(&zilog->zl_lwb_io_lock);
3801 
3802 	/*
3803 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3804 	 * zil_sync() will guarantee all lwbs up to that txg have been
3805 	 * written out, flushed, and cleaned.
3806 	 */
3807 	if (txg != 0)
3808 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3809 
3810 	if (zilog_is_dirty(zilog))
3811 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3812 		    (u_longlong_t)txg);
3813 	if (txg < spa_freeze_txg(zilog->zl_spa))
3814 		VERIFY(!zilog_is_dirty(zilog));
3815 
3816 	zilog->zl_get_data = NULL;
3817 
3818 	/*
3819 	 * We should have only one lwb left on the list; remove it now.
3820 	 */
3821 	mutex_enter(&zilog->zl_lock);
3822 	lwb = list_remove_head(&zilog->zl_lwb_list);
3823 	if (lwb != NULL) {
3824 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3825 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
3826 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3827 		zil_free_lwb(zilog, lwb);
3828 	}
3829 	mutex_exit(&zilog->zl_lock);
3830 }
3831 
3832 static const char *suspend_tag = "zil suspending";
3833 
3834 /*
3835  * Suspend an intent log.  While in suspended mode, we still honor
3836  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3837  * On old version pools, we suspend the log briefly when taking a
3838  * snapshot so that it will have an empty intent log.
3839  *
3840  * Long holds are not really intended to be used the way we do here --
3841  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3842  * could fail.  Therefore we take pains to only put a long hold if it is
3843  * actually necessary.  Fortunately, it will only be necessary if the
3844  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3845  * will already have a long hold, so we are not really making things any worse.
3846  *
3847  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3848  * zvol_state_t), and use their mechanism to prevent their hold from being
3849  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3850  * very little gain.
3851  *
3852  * if cookiep == NULL, this does both the suspend & resume.
3853  * Otherwise, it returns with the dataset "long held", and the cookie
3854  * should be passed into zil_resume().
3855  */
3856 int
3857 zil_suspend(const char *osname, void **cookiep)
3858 {
3859 	objset_t *os;
3860 	zilog_t *zilog;
3861 	const zil_header_t *zh;
3862 	int error;
3863 
3864 	error = dmu_objset_hold(osname, suspend_tag, &os);
3865 	if (error != 0)
3866 		return (error);
3867 	zilog = dmu_objset_zil(os);
3868 
3869 	mutex_enter(&zilog->zl_lock);
3870 	zh = zilog->zl_header;
3871 
3872 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3873 		mutex_exit(&zilog->zl_lock);
3874 		dmu_objset_rele(os, suspend_tag);
3875 		return (SET_ERROR(EBUSY));
3876 	}
3877 
3878 	/*
3879 	 * Don't put a long hold in the cases where we can avoid it.  This
3880 	 * is when there is no cookie so we are doing a suspend & resume
3881 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3882 	 * for the suspend because it's already suspended, or there's no ZIL.
3883 	 */
3884 	if (cookiep == NULL && !zilog->zl_suspending &&
3885 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3886 		mutex_exit(&zilog->zl_lock);
3887 		dmu_objset_rele(os, suspend_tag);
3888 		return (0);
3889 	}
3890 
3891 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3892 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3893 
3894 	zilog->zl_suspend++;
3895 
3896 	if (zilog->zl_suspend > 1) {
3897 		/*
3898 		 * Someone else is already suspending it.
3899 		 * Just wait for them to finish.
3900 		 */
3901 
3902 		while (zilog->zl_suspending)
3903 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3904 		mutex_exit(&zilog->zl_lock);
3905 
3906 		if (cookiep == NULL)
3907 			zil_resume(os);
3908 		else
3909 			*cookiep = os;
3910 		return (0);
3911 	}
3912 
3913 	/*
3914 	 * If there is no pointer to an on-disk block, this ZIL must not
3915 	 * be active (e.g. filesystem not mounted), so there's nothing
3916 	 * to clean up.
3917 	 */
3918 	if (BP_IS_HOLE(&zh->zh_log)) {
3919 		ASSERT(cookiep != NULL); /* fast path already handled */
3920 
3921 		*cookiep = os;
3922 		mutex_exit(&zilog->zl_lock);
3923 		return (0);
3924 	}
3925 
3926 	/*
3927 	 * The ZIL has work to do. Ensure that the associated encryption
3928 	 * key will remain mapped while we are committing the log by
3929 	 * grabbing a reference to it. If the key isn't loaded we have no
3930 	 * choice but to return an error until the wrapping key is loaded.
3931 	 */
3932 	if (os->os_encrypted &&
3933 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3934 		zilog->zl_suspend--;
3935 		mutex_exit(&zilog->zl_lock);
3936 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3937 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3938 		return (SET_ERROR(EACCES));
3939 	}
3940 
3941 	zilog->zl_suspending = B_TRUE;
3942 	mutex_exit(&zilog->zl_lock);
3943 
3944 	/*
3945 	 * We need to use zil_commit_impl to ensure we wait for all
3946 	 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
3947 	 * to disk before proceeding. If we used zil_commit instead, it
3948 	 * would just call txg_wait_synced(), because zl_suspend is set.
3949 	 * txg_wait_synced() doesn't wait for these lwb's to be
3950 	 * LWB_STATE_FLUSH_DONE before returning.
3951 	 */
3952 	zil_commit_impl(zilog, 0);
3953 
3954 	/*
3955 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3956 	 * use txg_wait_synced() to ensure the data from the zilog has
3957 	 * migrated to the main pool before calling zil_destroy().
3958 	 */
3959 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3960 
3961 	zil_destroy(zilog, B_FALSE);
3962 
3963 	mutex_enter(&zilog->zl_lock);
3964 	zilog->zl_suspending = B_FALSE;
3965 	cv_broadcast(&zilog->zl_cv_suspend);
3966 	mutex_exit(&zilog->zl_lock);
3967 
3968 	if (os->os_encrypted)
3969 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3970 
3971 	if (cookiep == NULL)
3972 		zil_resume(os);
3973 	else
3974 		*cookiep = os;
3975 	return (0);
3976 }
3977 
3978 void
3979 zil_resume(void *cookie)
3980 {
3981 	objset_t *os = cookie;
3982 	zilog_t *zilog = dmu_objset_zil(os);
3983 
3984 	mutex_enter(&zilog->zl_lock);
3985 	ASSERT(zilog->zl_suspend != 0);
3986 	zilog->zl_suspend--;
3987 	mutex_exit(&zilog->zl_lock);
3988 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3989 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3990 }
3991 
3992 typedef struct zil_replay_arg {
3993 	zil_replay_func_t *const *zr_replay;
3994 	void		*zr_arg;
3995 	boolean_t	zr_byteswap;
3996 	char		*zr_lr;
3997 } zil_replay_arg_t;
3998 
3999 static int
4000 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4001 {
4002 	char name[ZFS_MAX_DATASET_NAME_LEN];
4003 
4004 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
4005 
4006 	dmu_objset_name(zilog->zl_os, name);
4007 
4008 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4009 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4010 	    (u_longlong_t)lr->lrc_seq,
4011 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4012 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
4013 
4014 	return (error);
4015 }
4016 
4017 static int
4018 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4019     uint64_t claim_txg)
4020 {
4021 	zil_replay_arg_t *zr = zra;
4022 	const zil_header_t *zh = zilog->zl_header;
4023 	uint64_t reclen = lr->lrc_reclen;
4024 	uint64_t txtype = lr->lrc_txtype;
4025 	int error = 0;
4026 
4027 	zilog->zl_replaying_seq = lr->lrc_seq;
4028 
4029 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
4030 		return (0);
4031 
4032 	if (lr->lrc_txg < claim_txg)		/* already committed */
4033 		return (0);
4034 
4035 	/* Strip case-insensitive bit, still present in log record */
4036 	txtype &= ~TX_CI;
4037 
4038 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
4039 		return (zil_replay_error(zilog, lr, EINVAL));
4040 
4041 	/*
4042 	 * If this record type can be logged out of order, the object
4043 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
4044 	 */
4045 	if (TX_OOO(txtype)) {
4046 		error = dmu_object_info(zilog->zl_os,
4047 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4048 		if (error == ENOENT || error == EEXIST)
4049 			return (0);
4050 	}
4051 
4052 	/*
4053 	 * Make a copy of the data so we can revise and extend it.
4054 	 */
4055 	memcpy(zr->zr_lr, lr, reclen);
4056 
4057 	/*
4058 	 * If this is a TX_WRITE with a blkptr, suck in the data.
4059 	 */
4060 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4061 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
4062 		    zr->zr_lr + reclen);
4063 		if (error != 0)
4064 			return (zil_replay_error(zilog, lr, error));
4065 	}
4066 
4067 	/*
4068 	 * The log block containing this lr may have been byteswapped
4069 	 * so that we can easily examine common fields like lrc_txtype.
4070 	 * However, the log is a mix of different record types, and only the
4071 	 * replay vectors know how to byteswap their records.  Therefore, if
4072 	 * the lr was byteswapped, undo it before invoking the replay vector.
4073 	 */
4074 	if (zr->zr_byteswap)
4075 		byteswap_uint64_array(zr->zr_lr, reclen);
4076 
4077 	/*
4078 	 * We must now do two things atomically: replay this log record,
4079 	 * and update the log header sequence number to reflect the fact that
4080 	 * we did so. At the end of each replay function the sequence number
4081 	 * is updated if we are in replay mode.
4082 	 */
4083 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4084 	if (error != 0) {
4085 		/*
4086 		 * The DMU's dnode layer doesn't see removes until the txg
4087 		 * commits, so a subsequent claim can spuriously fail with
4088 		 * EEXIST. So if we receive any error we try syncing out
4089 		 * any removes then retry the transaction.  Note that we
4090 		 * specify B_FALSE for byteswap now, so we don't do it twice.
4091 		 */
4092 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4093 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4094 		if (error != 0)
4095 			return (zil_replay_error(zilog, lr, error));
4096 	}
4097 	return (0);
4098 }
4099 
4100 static int
4101 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4102 {
4103 	(void) bp, (void) arg, (void) claim_txg;
4104 
4105 	zilog->zl_replay_blks++;
4106 
4107 	return (0);
4108 }
4109 
4110 /*
4111  * If this dataset has a non-empty intent log, replay it and destroy it.
4112  * Return B_TRUE if there were any entries to replay.
4113  */
4114 boolean_t
4115 zil_replay(objset_t *os, void *arg,
4116     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4117 {
4118 	zilog_t *zilog = dmu_objset_zil(os);
4119 	const zil_header_t *zh = zilog->zl_header;
4120 	zil_replay_arg_t zr;
4121 
4122 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4123 		return (zil_destroy(zilog, B_TRUE));
4124 	}
4125 
4126 	zr.zr_replay = replay_func;
4127 	zr.zr_arg = arg;
4128 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4129 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4130 
4131 	/*
4132 	 * Wait for in-progress removes to sync before starting replay.
4133 	 */
4134 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4135 
4136 	zilog->zl_replay = B_TRUE;
4137 	zilog->zl_replay_time = ddi_get_lbolt();
4138 	ASSERT(zilog->zl_replay_blks == 0);
4139 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4140 	    zh->zh_claim_txg, B_TRUE);
4141 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4142 
4143 	zil_destroy(zilog, B_FALSE);
4144 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4145 	zilog->zl_replay = B_FALSE;
4146 
4147 	return (B_TRUE);
4148 }
4149 
4150 boolean_t
4151 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4152 {
4153 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4154 		return (B_TRUE);
4155 
4156 	if (zilog->zl_replay) {
4157 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4158 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4159 		    zilog->zl_replaying_seq;
4160 		return (B_TRUE);
4161 	}
4162 
4163 	return (B_FALSE);
4164 }
4165 
4166 int
4167 zil_reset(const char *osname, void *arg)
4168 {
4169 	(void) arg;
4170 
4171 	int error = zil_suspend(osname, NULL);
4172 	/* EACCES means crypto key not loaded */
4173 	if ((error == EACCES) || (error == EBUSY))
4174 		return (SET_ERROR(error));
4175 	if (error != 0)
4176 		return (SET_ERROR(EEXIST));
4177 	return (0);
4178 }
4179 
4180 EXPORT_SYMBOL(zil_alloc);
4181 EXPORT_SYMBOL(zil_free);
4182 EXPORT_SYMBOL(zil_open);
4183 EXPORT_SYMBOL(zil_close);
4184 EXPORT_SYMBOL(zil_replay);
4185 EXPORT_SYMBOL(zil_replaying);
4186 EXPORT_SYMBOL(zil_destroy);
4187 EXPORT_SYMBOL(zil_destroy_sync);
4188 EXPORT_SYMBOL(zil_itx_create);
4189 EXPORT_SYMBOL(zil_itx_destroy);
4190 EXPORT_SYMBOL(zil_itx_assign);
4191 EXPORT_SYMBOL(zil_commit);
4192 EXPORT_SYMBOL(zil_claim);
4193 EXPORT_SYMBOL(zil_check_log_chain);
4194 EXPORT_SYMBOL(zil_sync);
4195 EXPORT_SYMBOL(zil_clean);
4196 EXPORT_SYMBOL(zil_suspend);
4197 EXPORT_SYMBOL(zil_resume);
4198 EXPORT_SYMBOL(zil_lwb_add_block);
4199 EXPORT_SYMBOL(zil_bp_tree_add);
4200 EXPORT_SYMBOL(zil_set_sync);
4201 EXPORT_SYMBOL(zil_set_logbias);
4202 EXPORT_SYMBOL(zil_sums_init);
4203 EXPORT_SYMBOL(zil_sums_fini);
4204 EXPORT_SYMBOL(zil_kstat_values_update);
4205 
4206 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4207 	"ZIL block open timeout percentage");
4208 
4209 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4210 	"Disable intent logging replay");
4211 
4212 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4213 	"Disable ZIL cache flushes");
4214 
4215 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4216 	"Limit in bytes slog sync writes per commit");
4217 
4218 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4219 	"Limit in bytes of ZIL log block size");
4220 
4221 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4222 	"Limit in bytes WR_COPIED size");
4223