1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 #include <sys/brt.h> 47 #include <sys/wmsum.h> 48 49 /* 50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 51 * calls that change the file system. Each itx has enough information to 52 * be able to replay them after a system crash, power loss, or 53 * equivalent failure mode. These are stored in memory until either: 54 * 55 * 1. they are committed to the pool by the DMU transaction group 56 * (txg), at which point they can be discarded; or 57 * 2. they are committed to the on-disk ZIL for the dataset being 58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 59 * requirement). 60 * 61 * In the event of a crash or power loss, the itxs contained by each 62 * dataset's on-disk ZIL will be replayed when that dataset is first 63 * instantiated (e.g. if the dataset is a normal filesystem, when it is 64 * first mounted). 65 * 66 * As hinted at above, there is one ZIL per dataset (both the in-memory 67 * representation, and the on-disk representation). The on-disk format 68 * consists of 3 parts: 69 * 70 * - a single, per-dataset, ZIL header; which points to a chain of 71 * - zero or more ZIL blocks; each of which contains 72 * - zero or more ZIL records 73 * 74 * A ZIL record holds the information necessary to replay a single 75 * system call transaction. A ZIL block can hold many ZIL records, and 76 * the blocks are chained together, similarly to a singly linked list. 77 * 78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 79 * block in the chain, and the ZIL header points to the first block in 80 * the chain. 81 * 82 * Note, there is not a fixed place in the pool to hold these ZIL 83 * blocks; they are dynamically allocated and freed as needed from the 84 * blocks available on the pool, though they can be preferentially 85 * allocated from a dedicated "log" vdev. 86 */ 87 88 /* 89 * This controls the amount of time that a ZIL block (lwb) will remain 90 * "open" when it isn't "full", and it has a thread waiting for it to be 91 * committed to stable storage. Please refer to the zil_commit_waiter() 92 * function (and the comments within it) for more details. 93 */ 94 static uint_t zfs_commit_timeout_pct = 10; 95 96 /* 97 * See zil.h for more information about these fields. 98 */ 99 static zil_kstat_values_t zil_stats = { 100 { "zil_commit_count", KSTAT_DATA_UINT64 }, 101 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 102 { "zil_itx_count", KSTAT_DATA_UINT64 }, 103 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 104 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 105 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 106 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 107 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 108 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 109 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 110 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 111 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 }, 112 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 }, 113 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 114 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 115 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 }, 116 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 }, 117 }; 118 119 static zil_sums_t zil_sums_global; 120 static kstat_t *zil_kstats_global; 121 122 /* 123 * Disable intent logging replay. This global ZIL switch affects all pools. 124 */ 125 int zil_replay_disable = 0; 126 127 /* 128 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 129 * the disk(s) by the ZIL after an LWB write has completed. Setting this 130 * will cause ZIL corruption on power loss if a volatile out-of-order 131 * write cache is enabled. 132 */ 133 static int zil_nocacheflush = 0; 134 135 /* 136 * Limit SLOG write size per commit executed with synchronous priority. 137 * Any writes above that will be executed with lower (asynchronous) priority 138 * to limit potential SLOG device abuse by single active ZIL writer. 139 */ 140 static uint64_t zil_slog_bulk = 64 * 1024 * 1024; 141 142 static kmem_cache_t *zil_lwb_cache; 143 static kmem_cache_t *zil_zcw_cache; 144 145 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx); 146 static itx_t *zil_itx_clone(itx_t *oitx); 147 148 static int 149 zil_bp_compare(const void *x1, const void *x2) 150 { 151 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 152 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 153 154 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 155 if (likely(cmp)) 156 return (cmp); 157 158 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 159 } 160 161 static void 162 zil_bp_tree_init(zilog_t *zilog) 163 { 164 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 165 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 166 } 167 168 static void 169 zil_bp_tree_fini(zilog_t *zilog) 170 { 171 avl_tree_t *t = &zilog->zl_bp_tree; 172 zil_bp_node_t *zn; 173 void *cookie = NULL; 174 175 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 176 kmem_free(zn, sizeof (zil_bp_node_t)); 177 178 avl_destroy(t); 179 } 180 181 int 182 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 183 { 184 avl_tree_t *t = &zilog->zl_bp_tree; 185 const dva_t *dva; 186 zil_bp_node_t *zn; 187 avl_index_t where; 188 189 if (BP_IS_EMBEDDED(bp)) 190 return (0); 191 192 dva = BP_IDENTITY(bp); 193 194 if (avl_find(t, dva, &where) != NULL) 195 return (SET_ERROR(EEXIST)); 196 197 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 198 zn->zn_dva = *dva; 199 avl_insert(t, zn, where); 200 201 return (0); 202 } 203 204 static zil_header_t * 205 zil_header_in_syncing_context(zilog_t *zilog) 206 { 207 return ((zil_header_t *)zilog->zl_header); 208 } 209 210 static void 211 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 212 { 213 zio_cksum_t *zc = &bp->blk_cksum; 214 215 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 216 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 217 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 218 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 219 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 220 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 221 } 222 223 static int 224 zil_kstats_global_update(kstat_t *ksp, int rw) 225 { 226 zil_kstat_values_t *zs = ksp->ks_data; 227 ASSERT3P(&zil_stats, ==, zs); 228 229 if (rw == KSTAT_WRITE) { 230 return (SET_ERROR(EACCES)); 231 } 232 233 zil_kstat_values_update(zs, &zil_sums_global); 234 235 return (0); 236 } 237 238 /* 239 * Read a log block and make sure it's valid. 240 */ 241 static int 242 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 243 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf) 244 { 245 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 246 arc_flags_t aflags = ARC_FLAG_WAIT; 247 zbookmark_phys_t zb; 248 int error; 249 250 if (zilog->zl_header->zh_claim_txg == 0) 251 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 252 253 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 254 zio_flags |= ZIO_FLAG_SPECULATIVE; 255 256 if (!decrypt) 257 zio_flags |= ZIO_FLAG_RAW; 258 259 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 260 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 261 262 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 263 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 264 265 if (error == 0) { 266 zio_cksum_t cksum = bp->blk_cksum; 267 268 /* 269 * Validate the checksummed log block. 270 * 271 * Sequence numbers should be... sequential. The checksum 272 * verifier for the next block should be bp's checksum plus 1. 273 * 274 * Also check the log chain linkage and size used. 275 */ 276 cksum.zc_word[ZIL_ZC_SEQ]++; 277 278 uint64_t size = BP_GET_LSIZE(bp); 279 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 280 zil_chain_t *zilc = (*abuf)->b_data; 281 char *lr = (char *)(zilc + 1); 282 283 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 284 sizeof (cksum)) || 285 zilc->zc_nused < sizeof (*zilc) || 286 zilc->zc_nused > size) { 287 error = SET_ERROR(ECKSUM); 288 } else { 289 *begin = lr; 290 *end = lr + zilc->zc_nused - sizeof (*zilc); 291 *nbp = zilc->zc_next_blk; 292 } 293 } else { 294 char *lr = (*abuf)->b_data; 295 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 296 297 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 298 sizeof (cksum)) || 299 (zilc->zc_nused > (size - sizeof (*zilc)))) { 300 error = SET_ERROR(ECKSUM); 301 } else { 302 *begin = lr; 303 *end = lr + zilc->zc_nused; 304 *nbp = zilc->zc_next_blk; 305 } 306 } 307 } 308 309 return (error); 310 } 311 312 /* 313 * Read a TX_WRITE log data block. 314 */ 315 static int 316 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 317 { 318 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 319 const blkptr_t *bp = &lr->lr_blkptr; 320 arc_flags_t aflags = ARC_FLAG_WAIT; 321 arc_buf_t *abuf = NULL; 322 zbookmark_phys_t zb; 323 int error; 324 325 if (BP_IS_HOLE(bp)) { 326 if (wbuf != NULL) 327 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 328 return (0); 329 } 330 331 if (zilog->zl_header->zh_claim_txg == 0) 332 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 333 334 /* 335 * If we are not using the resulting data, we are just checking that 336 * it hasn't been corrupted so we don't need to waste CPU time 337 * decompressing and decrypting it. 338 */ 339 if (wbuf == NULL) 340 zio_flags |= ZIO_FLAG_RAW; 341 342 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 343 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 344 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 345 346 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 347 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 348 349 if (error == 0) { 350 if (wbuf != NULL) 351 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); 352 arc_buf_destroy(abuf, &abuf); 353 } 354 355 return (error); 356 } 357 358 void 359 zil_sums_init(zil_sums_t *zs) 360 { 361 wmsum_init(&zs->zil_commit_count, 0); 362 wmsum_init(&zs->zil_commit_writer_count, 0); 363 wmsum_init(&zs->zil_itx_count, 0); 364 wmsum_init(&zs->zil_itx_indirect_count, 0); 365 wmsum_init(&zs->zil_itx_indirect_bytes, 0); 366 wmsum_init(&zs->zil_itx_copied_count, 0); 367 wmsum_init(&zs->zil_itx_copied_bytes, 0); 368 wmsum_init(&zs->zil_itx_needcopy_count, 0); 369 wmsum_init(&zs->zil_itx_needcopy_bytes, 0); 370 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); 371 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); 372 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0); 373 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0); 374 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); 375 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); 376 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0); 377 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0); 378 } 379 380 void 381 zil_sums_fini(zil_sums_t *zs) 382 { 383 wmsum_fini(&zs->zil_commit_count); 384 wmsum_fini(&zs->zil_commit_writer_count); 385 wmsum_fini(&zs->zil_itx_count); 386 wmsum_fini(&zs->zil_itx_indirect_count); 387 wmsum_fini(&zs->zil_itx_indirect_bytes); 388 wmsum_fini(&zs->zil_itx_copied_count); 389 wmsum_fini(&zs->zil_itx_copied_bytes); 390 wmsum_fini(&zs->zil_itx_needcopy_count); 391 wmsum_fini(&zs->zil_itx_needcopy_bytes); 392 wmsum_fini(&zs->zil_itx_metaslab_normal_count); 393 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); 394 wmsum_fini(&zs->zil_itx_metaslab_normal_write); 395 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc); 396 wmsum_fini(&zs->zil_itx_metaslab_slog_count); 397 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); 398 wmsum_fini(&zs->zil_itx_metaslab_slog_write); 399 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc); 400 } 401 402 void 403 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) 404 { 405 zs->zil_commit_count.value.ui64 = 406 wmsum_value(&zil_sums->zil_commit_count); 407 zs->zil_commit_writer_count.value.ui64 = 408 wmsum_value(&zil_sums->zil_commit_writer_count); 409 zs->zil_itx_count.value.ui64 = 410 wmsum_value(&zil_sums->zil_itx_count); 411 zs->zil_itx_indirect_count.value.ui64 = 412 wmsum_value(&zil_sums->zil_itx_indirect_count); 413 zs->zil_itx_indirect_bytes.value.ui64 = 414 wmsum_value(&zil_sums->zil_itx_indirect_bytes); 415 zs->zil_itx_copied_count.value.ui64 = 416 wmsum_value(&zil_sums->zil_itx_copied_count); 417 zs->zil_itx_copied_bytes.value.ui64 = 418 wmsum_value(&zil_sums->zil_itx_copied_bytes); 419 zs->zil_itx_needcopy_count.value.ui64 = 420 wmsum_value(&zil_sums->zil_itx_needcopy_count); 421 zs->zil_itx_needcopy_bytes.value.ui64 = 422 wmsum_value(&zil_sums->zil_itx_needcopy_bytes); 423 zs->zil_itx_metaslab_normal_count.value.ui64 = 424 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); 425 zs->zil_itx_metaslab_normal_bytes.value.ui64 = 426 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); 427 zs->zil_itx_metaslab_normal_write.value.ui64 = 428 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write); 429 zs->zil_itx_metaslab_normal_alloc.value.ui64 = 430 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc); 431 zs->zil_itx_metaslab_slog_count.value.ui64 = 432 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); 433 zs->zil_itx_metaslab_slog_bytes.value.ui64 = 434 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); 435 zs->zil_itx_metaslab_slog_write.value.ui64 = 436 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write); 437 zs->zil_itx_metaslab_slog_alloc.value.ui64 = 438 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc); 439 } 440 441 /* 442 * Parse the intent log, and call parse_func for each valid record within. 443 */ 444 int 445 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 446 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 447 boolean_t decrypt) 448 { 449 const zil_header_t *zh = zilog->zl_header; 450 boolean_t claimed = !!zh->zh_claim_txg; 451 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 452 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 453 uint64_t max_blk_seq = 0; 454 uint64_t max_lr_seq = 0; 455 uint64_t blk_count = 0; 456 uint64_t lr_count = 0; 457 blkptr_t blk, next_blk = {{{{0}}}}; 458 int error = 0; 459 460 /* 461 * Old logs didn't record the maximum zh_claim_lr_seq. 462 */ 463 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 464 claim_lr_seq = UINT64_MAX; 465 466 /* 467 * Starting at the block pointed to by zh_log we read the log chain. 468 * For each block in the chain we strongly check that block to 469 * ensure its validity. We stop when an invalid block is found. 470 * For each block pointer in the chain we call parse_blk_func(). 471 * For each record in each valid block we call parse_lr_func(). 472 * If the log has been claimed, stop if we encounter a sequence 473 * number greater than the highest claimed sequence number. 474 */ 475 zil_bp_tree_init(zilog); 476 477 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 478 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 479 int reclen; 480 char *lrp, *end; 481 arc_buf_t *abuf = NULL; 482 483 if (blk_seq > claim_blk_seq) 484 break; 485 486 error = parse_blk_func(zilog, &blk, arg, txg); 487 if (error != 0) 488 break; 489 ASSERT3U(max_blk_seq, <, blk_seq); 490 max_blk_seq = blk_seq; 491 blk_count++; 492 493 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 494 break; 495 496 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 497 &lrp, &end, &abuf); 498 if (error != 0) { 499 if (abuf) 500 arc_buf_destroy(abuf, &abuf); 501 if (claimed) { 502 char name[ZFS_MAX_DATASET_NAME_LEN]; 503 504 dmu_objset_name(zilog->zl_os, name); 505 506 cmn_err(CE_WARN, "ZFS read log block error %d, " 507 "dataset %s, seq 0x%llx\n", error, name, 508 (u_longlong_t)blk_seq); 509 } 510 break; 511 } 512 513 for (; lrp < end; lrp += reclen) { 514 lr_t *lr = (lr_t *)lrp; 515 reclen = lr->lrc_reclen; 516 ASSERT3U(reclen, >=, sizeof (lr_t)); 517 if (lr->lrc_seq > claim_lr_seq) { 518 arc_buf_destroy(abuf, &abuf); 519 goto done; 520 } 521 522 error = parse_lr_func(zilog, lr, arg, txg); 523 if (error != 0) { 524 arc_buf_destroy(abuf, &abuf); 525 goto done; 526 } 527 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 528 max_lr_seq = lr->lrc_seq; 529 lr_count++; 530 } 531 arc_buf_destroy(abuf, &abuf); 532 } 533 done: 534 zilog->zl_parse_error = error; 535 zilog->zl_parse_blk_seq = max_blk_seq; 536 zilog->zl_parse_lr_seq = max_lr_seq; 537 zilog->zl_parse_blk_count = blk_count; 538 zilog->zl_parse_lr_count = lr_count; 539 540 zil_bp_tree_fini(zilog); 541 542 return (error); 543 } 544 545 static int 546 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 547 uint64_t first_txg) 548 { 549 (void) tx; 550 ASSERT(!BP_IS_HOLE(bp)); 551 552 /* 553 * As we call this function from the context of a rewind to a 554 * checkpoint, each ZIL block whose txg is later than the txg 555 * that we rewind to is invalid. Thus, we return -1 so 556 * zil_parse() doesn't attempt to read it. 557 */ 558 if (bp->blk_birth >= first_txg) 559 return (-1); 560 561 if (zil_bp_tree_add(zilog, bp) != 0) 562 return (0); 563 564 zio_free(zilog->zl_spa, first_txg, bp); 565 return (0); 566 } 567 568 static int 569 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 570 uint64_t first_txg) 571 { 572 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 573 return (0); 574 } 575 576 static int 577 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 578 uint64_t first_txg) 579 { 580 /* 581 * Claim log block if not already committed and not already claimed. 582 * If tx == NULL, just verify that the block is claimable. 583 */ 584 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 585 zil_bp_tree_add(zilog, bp) != 0) 586 return (0); 587 588 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 589 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 590 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 591 } 592 593 static int 594 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) 595 { 596 lr_write_t *lr = (lr_write_t *)lrc; 597 int error; 598 599 ASSERT(lrc->lrc_txtype == TX_WRITE); 600 601 /* 602 * If the block is not readable, don't claim it. This can happen 603 * in normal operation when a log block is written to disk before 604 * some of the dmu_sync() blocks it points to. In this case, the 605 * transaction cannot have been committed to anyone (we would have 606 * waited for all writes to be stable first), so it is semantically 607 * correct to declare this the end of the log. 608 */ 609 if (lr->lr_blkptr.blk_birth >= first_txg) { 610 error = zil_read_log_data(zilog, lr, NULL); 611 if (error != 0) 612 return (error); 613 } 614 615 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 616 } 617 618 static int 619 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 620 { 621 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 622 const blkptr_t *bp; 623 spa_t *spa; 624 uint_t ii; 625 626 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 627 628 if (tx == NULL) { 629 return (0); 630 } 631 632 /* 633 * XXX: Do we need to byteswap lr? 634 */ 635 636 spa = zilog->zl_spa; 637 638 for (ii = 0; ii < lr->lr_nbps; ii++) { 639 bp = &lr->lr_bps[ii]; 640 641 /* 642 * When data in embedded into BP there is no need to create 643 * BRT entry as there is no data block. Just copy the BP as 644 * it contains the data. 645 */ 646 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 647 brt_pending_add(spa, bp, tx); 648 } 649 } 650 651 return (0); 652 } 653 654 static int 655 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 656 uint64_t first_txg) 657 { 658 659 switch (lrc->lrc_txtype) { 660 case TX_WRITE: 661 return (zil_claim_write(zilog, lrc, tx, first_txg)); 662 case TX_CLONE_RANGE: 663 return (zil_claim_clone_range(zilog, lrc, tx)); 664 default: 665 return (0); 666 } 667 } 668 669 static int 670 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 671 uint64_t claim_txg) 672 { 673 (void) claim_txg; 674 675 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 676 677 return (0); 678 } 679 680 static int 681 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) 682 { 683 lr_write_t *lr = (lr_write_t *)lrc; 684 blkptr_t *bp = &lr->lr_blkptr; 685 686 ASSERT(lrc->lrc_txtype == TX_WRITE); 687 688 /* 689 * If we previously claimed it, we need to free it. 690 */ 691 if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 692 !BP_IS_HOLE(bp)) { 693 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 694 } 695 696 return (0); 697 } 698 699 static int 700 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 701 { 702 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 703 const blkptr_t *bp; 704 spa_t *spa; 705 uint_t ii; 706 707 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 708 709 if (tx == NULL) { 710 return (0); 711 } 712 713 spa = zilog->zl_spa; 714 715 for (ii = 0; ii < lr->lr_nbps; ii++) { 716 bp = &lr->lr_bps[ii]; 717 718 if (!BP_IS_HOLE(bp)) { 719 zio_free(spa, dmu_tx_get_txg(tx), bp); 720 } 721 } 722 723 return (0); 724 } 725 726 static int 727 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 728 uint64_t claim_txg) 729 { 730 731 if (claim_txg == 0) { 732 return (0); 733 } 734 735 switch (lrc->lrc_txtype) { 736 case TX_WRITE: 737 return (zil_free_write(zilog, lrc, tx, claim_txg)); 738 case TX_CLONE_RANGE: 739 return (zil_free_clone_range(zilog, lrc, tx)); 740 default: 741 return (0); 742 } 743 } 744 745 static int 746 zil_lwb_vdev_compare(const void *x1, const void *x2) 747 { 748 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 749 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 750 751 return (TREE_CMP(v1, v2)); 752 } 753 754 /* 755 * Allocate a new lwb. We may already have a block pointer for it, in which 756 * case we get size and version from there. Or we may not yet, in which case 757 * we choose them here and later make the block allocation match. 758 */ 759 static lwb_t * 760 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog, 761 uint64_t txg, lwb_state_t state) 762 { 763 lwb_t *lwb; 764 765 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 766 lwb->lwb_zilog = zilog; 767 if (bp) { 768 lwb->lwb_blk = *bp; 769 lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2); 770 sz = BP_GET_LSIZE(bp); 771 } else { 772 BP_ZERO(&lwb->lwb_blk); 773 lwb->lwb_slim = (spa_version(zilog->zl_spa) >= 774 SPA_VERSION_SLIM_ZIL); 775 } 776 lwb->lwb_slog = slog; 777 lwb->lwb_error = 0; 778 if (lwb->lwb_slim) { 779 lwb->lwb_nmax = sz; 780 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t); 781 } else { 782 lwb->lwb_nmax = sz - sizeof (zil_chain_t); 783 lwb->lwb_nused = lwb->lwb_nfilled = 0; 784 } 785 lwb->lwb_sz = sz; 786 lwb->lwb_state = state; 787 lwb->lwb_buf = zio_buf_alloc(sz); 788 lwb->lwb_child_zio = NULL; 789 lwb->lwb_write_zio = NULL; 790 lwb->lwb_root_zio = NULL; 791 lwb->lwb_issued_timestamp = 0; 792 lwb->lwb_issued_txg = 0; 793 lwb->lwb_alloc_txg = txg; 794 lwb->lwb_max_txg = 0; 795 796 mutex_enter(&zilog->zl_lock); 797 list_insert_tail(&zilog->zl_lwb_list, lwb); 798 if (state != LWB_STATE_NEW) 799 zilog->zl_last_lwb_opened = lwb; 800 mutex_exit(&zilog->zl_lock); 801 802 return (lwb); 803 } 804 805 static void 806 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 807 { 808 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 809 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 810 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 811 ASSERT3P(lwb->lwb_child_zio, ==, NULL); 812 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 813 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 814 ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa)); 815 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 816 VERIFY(list_is_empty(&lwb->lwb_itxs)); 817 VERIFY(list_is_empty(&lwb->lwb_waiters)); 818 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 819 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 820 821 /* 822 * Clear the zilog's field to indicate this lwb is no longer 823 * valid, and prevent use-after-free errors. 824 */ 825 if (zilog->zl_last_lwb_opened == lwb) 826 zilog->zl_last_lwb_opened = NULL; 827 828 kmem_cache_free(zil_lwb_cache, lwb); 829 } 830 831 /* 832 * Called when we create in-memory log transactions so that we know 833 * to cleanup the itxs at the end of spa_sync(). 834 */ 835 static void 836 zilog_dirty(zilog_t *zilog, uint64_t txg) 837 { 838 dsl_pool_t *dp = zilog->zl_dmu_pool; 839 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 840 841 ASSERT(spa_writeable(zilog->zl_spa)); 842 843 if (ds->ds_is_snapshot) 844 panic("dirtying snapshot!"); 845 846 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 847 /* up the hold count until we can be written out */ 848 dmu_buf_add_ref(ds->ds_dbuf, zilog); 849 850 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 851 } 852 } 853 854 /* 855 * Determine if the zil is dirty in the specified txg. Callers wanting to 856 * ensure that the dirty state does not change must hold the itxg_lock for 857 * the specified txg. Holding the lock will ensure that the zil cannot be 858 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 859 * state. 860 */ 861 static boolean_t __maybe_unused 862 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 863 { 864 dsl_pool_t *dp = zilog->zl_dmu_pool; 865 866 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 867 return (B_TRUE); 868 return (B_FALSE); 869 } 870 871 /* 872 * Determine if the zil is dirty. The zil is considered dirty if it has 873 * any pending itx records that have not been cleaned by zil_clean(). 874 */ 875 static boolean_t 876 zilog_is_dirty(zilog_t *zilog) 877 { 878 dsl_pool_t *dp = zilog->zl_dmu_pool; 879 880 for (int t = 0; t < TXG_SIZE; t++) { 881 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 882 return (B_TRUE); 883 } 884 return (B_FALSE); 885 } 886 887 /* 888 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 889 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 890 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 891 * zil_commit. 892 */ 893 static void 894 zil_commit_activate_saxattr_feature(zilog_t *zilog) 895 { 896 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 897 uint64_t txg = 0; 898 dmu_tx_t *tx = NULL; 899 900 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 901 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 902 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { 903 tx = dmu_tx_create(zilog->zl_os); 904 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 905 dsl_dataset_dirty(ds, tx); 906 txg = dmu_tx_get_txg(tx); 907 908 mutex_enter(&ds->ds_lock); 909 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 910 (void *)B_TRUE; 911 mutex_exit(&ds->ds_lock); 912 dmu_tx_commit(tx); 913 txg_wait_synced(zilog->zl_dmu_pool, txg); 914 } 915 } 916 917 /* 918 * Create an on-disk intent log. 919 */ 920 static lwb_t * 921 zil_create(zilog_t *zilog) 922 { 923 const zil_header_t *zh = zilog->zl_header; 924 lwb_t *lwb = NULL; 925 uint64_t txg = 0; 926 dmu_tx_t *tx = NULL; 927 blkptr_t blk; 928 int error = 0; 929 boolean_t slog = FALSE; 930 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 931 932 933 /* 934 * Wait for any previous destroy to complete. 935 */ 936 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 937 938 ASSERT(zh->zh_claim_txg == 0); 939 ASSERT(zh->zh_replay_seq == 0); 940 941 blk = zh->zh_log; 942 943 /* 944 * Allocate an initial log block if: 945 * - there isn't one already 946 * - the existing block is the wrong endianness 947 */ 948 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 949 tx = dmu_tx_create(zilog->zl_os); 950 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 951 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 952 txg = dmu_tx_get_txg(tx); 953 954 if (!BP_IS_HOLE(&blk)) { 955 zio_free(zilog->zl_spa, txg, &blk); 956 BP_ZERO(&blk); 957 } 958 959 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 960 ZIL_MIN_BLKSZ, &slog); 961 if (error == 0) 962 zil_init_log_chain(zilog, &blk); 963 } 964 965 /* 966 * Allocate a log write block (lwb) for the first log block. 967 */ 968 if (error == 0) 969 lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW); 970 971 /* 972 * If we just allocated the first log block, commit our transaction 973 * and wait for zil_sync() to stuff the block pointer into zh_log. 974 * (zh is part of the MOS, so we cannot modify it in open context.) 975 */ 976 if (tx != NULL) { 977 /* 978 * If "zilsaxattr" feature is enabled on zpool, then activate 979 * it now when we're creating the ZIL chain. We can't wait with 980 * this until we write the first xattr log record because we 981 * need to wait for the feature activation to sync out. 982 */ 983 if (spa_feature_is_enabled(zilog->zl_spa, 984 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 985 DMU_OST_ZVOL) { 986 mutex_enter(&ds->ds_lock); 987 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 988 (void *)B_TRUE; 989 mutex_exit(&ds->ds_lock); 990 } 991 992 dmu_tx_commit(tx); 993 txg_wait_synced(zilog->zl_dmu_pool, txg); 994 } else { 995 /* 996 * This branch covers the case where we enable the feature on a 997 * zpool that has existing ZIL headers. 998 */ 999 zil_commit_activate_saxattr_feature(zilog); 1000 } 1001 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 1002 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 1003 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 1004 1005 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 1006 IMPLY(error == 0, lwb != NULL); 1007 1008 return (lwb); 1009 } 1010 1011 /* 1012 * In one tx, free all log blocks and clear the log header. If keep_first 1013 * is set, then we're replaying a log with no content. We want to keep the 1014 * first block, however, so that the first synchronous transaction doesn't 1015 * require a txg_wait_synced() in zil_create(). We don't need to 1016 * txg_wait_synced() here either when keep_first is set, because both 1017 * zil_create() and zil_destroy() will wait for any in-progress destroys 1018 * to complete. 1019 * Return B_TRUE if there were any entries to replay. 1020 */ 1021 boolean_t 1022 zil_destroy(zilog_t *zilog, boolean_t keep_first) 1023 { 1024 const zil_header_t *zh = zilog->zl_header; 1025 lwb_t *lwb; 1026 dmu_tx_t *tx; 1027 uint64_t txg; 1028 1029 /* 1030 * Wait for any previous destroy to complete. 1031 */ 1032 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1033 1034 zilog->zl_old_header = *zh; /* debugging aid */ 1035 1036 if (BP_IS_HOLE(&zh->zh_log)) 1037 return (B_FALSE); 1038 1039 tx = dmu_tx_create(zilog->zl_os); 1040 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1041 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1042 txg = dmu_tx_get_txg(tx); 1043 1044 mutex_enter(&zilog->zl_lock); 1045 1046 ASSERT3U(zilog->zl_destroy_txg, <, txg); 1047 zilog->zl_destroy_txg = txg; 1048 zilog->zl_keep_first = keep_first; 1049 1050 if (!list_is_empty(&zilog->zl_lwb_list)) { 1051 ASSERT(zh->zh_claim_txg == 0); 1052 VERIFY(!keep_first); 1053 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) { 1054 if (lwb->lwb_buf != NULL) 1055 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1056 if (!BP_IS_HOLE(&lwb->lwb_blk)) 1057 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 1058 zil_free_lwb(zilog, lwb); 1059 } 1060 } else if (!keep_first) { 1061 zil_destroy_sync(zilog, tx); 1062 } 1063 mutex_exit(&zilog->zl_lock); 1064 1065 dmu_tx_commit(tx); 1066 1067 return (B_TRUE); 1068 } 1069 1070 void 1071 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 1072 { 1073 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1074 (void) zil_parse(zilog, zil_free_log_block, 1075 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 1076 } 1077 1078 int 1079 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 1080 { 1081 dmu_tx_t *tx = txarg; 1082 zilog_t *zilog; 1083 uint64_t first_txg; 1084 zil_header_t *zh; 1085 objset_t *os; 1086 int error; 1087 1088 error = dmu_objset_own_obj(dp, ds->ds_object, 1089 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 1090 if (error != 0) { 1091 /* 1092 * EBUSY indicates that the objset is inconsistent, in which 1093 * case it can not have a ZIL. 1094 */ 1095 if (error != EBUSY) { 1096 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 1097 (unsigned long long)ds->ds_object, error); 1098 } 1099 1100 return (0); 1101 } 1102 1103 zilog = dmu_objset_zil(os); 1104 zh = zil_header_in_syncing_context(zilog); 1105 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 1106 first_txg = spa_min_claim_txg(zilog->zl_spa); 1107 1108 /* 1109 * If the spa_log_state is not set to be cleared, check whether 1110 * the current uberblock is a checkpoint one and if the current 1111 * header has been claimed before moving on. 1112 * 1113 * If the current uberblock is a checkpointed uberblock then 1114 * one of the following scenarios took place: 1115 * 1116 * 1] We are currently rewinding to the checkpoint of the pool. 1117 * 2] We crashed in the middle of a checkpoint rewind but we 1118 * did manage to write the checkpointed uberblock to the 1119 * vdev labels, so when we tried to import the pool again 1120 * the checkpointed uberblock was selected from the import 1121 * procedure. 1122 * 1123 * In both cases we want to zero out all the ZIL blocks, except 1124 * the ones that have been claimed at the time of the checkpoint 1125 * (their zh_claim_txg != 0). The reason is that these blocks 1126 * may be corrupted since we may have reused their locations on 1127 * disk after we took the checkpoint. 1128 * 1129 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 1130 * when we first figure out whether the current uberblock is 1131 * checkpointed or not. Unfortunately, that would discard all 1132 * the logs, including the ones that are claimed, and we would 1133 * leak space. 1134 */ 1135 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 1136 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1137 zh->zh_claim_txg == 0)) { 1138 if (!BP_IS_HOLE(&zh->zh_log)) { 1139 (void) zil_parse(zilog, zil_clear_log_block, 1140 zil_noop_log_record, tx, first_txg, B_FALSE); 1141 } 1142 BP_ZERO(&zh->zh_log); 1143 if (os->os_encrypted) 1144 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1145 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1146 dmu_objset_disown(os, B_FALSE, FTAG); 1147 return (0); 1148 } 1149 1150 /* 1151 * If we are not rewinding and opening the pool normally, then 1152 * the min_claim_txg should be equal to the first txg of the pool. 1153 */ 1154 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 1155 1156 /* 1157 * Claim all log blocks if we haven't already done so, and remember 1158 * the highest claimed sequence number. This ensures that if we can 1159 * read only part of the log now (e.g. due to a missing device), 1160 * but we can read the entire log later, we will not try to replay 1161 * or destroy beyond the last block we successfully claimed. 1162 */ 1163 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 1164 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 1165 (void) zil_parse(zilog, zil_claim_log_block, 1166 zil_claim_log_record, tx, first_txg, B_FALSE); 1167 zh->zh_claim_txg = first_txg; 1168 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 1169 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 1170 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 1171 zh->zh_flags |= ZIL_REPLAY_NEEDED; 1172 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 1173 if (os->os_encrypted) 1174 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1175 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1176 } 1177 1178 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 1179 dmu_objset_disown(os, B_FALSE, FTAG); 1180 return (0); 1181 } 1182 1183 /* 1184 * Check the log by walking the log chain. 1185 * Checksum errors are ok as they indicate the end of the chain. 1186 * Any other error (no device or read failure) returns an error. 1187 */ 1188 int 1189 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 1190 { 1191 (void) dp; 1192 zilog_t *zilog; 1193 objset_t *os; 1194 blkptr_t *bp; 1195 int error; 1196 1197 ASSERT(tx == NULL); 1198 1199 error = dmu_objset_from_ds(ds, &os); 1200 if (error != 0) { 1201 cmn_err(CE_WARN, "can't open objset %llu, error %d", 1202 (unsigned long long)ds->ds_object, error); 1203 return (0); 1204 } 1205 1206 zilog = dmu_objset_zil(os); 1207 bp = (blkptr_t *)&zilog->zl_header->zh_log; 1208 1209 if (!BP_IS_HOLE(bp)) { 1210 vdev_t *vd; 1211 boolean_t valid = B_TRUE; 1212 1213 /* 1214 * Check the first block and determine if it's on a log device 1215 * which may have been removed or faulted prior to loading this 1216 * pool. If so, there's no point in checking the rest of the 1217 * log as its content should have already been synced to the 1218 * pool. 1219 */ 1220 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1221 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1222 if (vd->vdev_islog && vdev_is_dead(vd)) 1223 valid = vdev_log_state_valid(vd); 1224 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1225 1226 if (!valid) 1227 return (0); 1228 1229 /* 1230 * Check whether the current uberblock is checkpointed (e.g. 1231 * we are rewinding) and whether the current header has been 1232 * claimed or not. If it hasn't then skip verifying it. We 1233 * do this because its ZIL blocks may be part of the pool's 1234 * state before the rewind, which is no longer valid. 1235 */ 1236 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1237 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1238 zh->zh_claim_txg == 0) 1239 return (0); 1240 } 1241 1242 /* 1243 * Because tx == NULL, zil_claim_log_block() will not actually claim 1244 * any blocks, but just determine whether it is possible to do so. 1245 * In addition to checking the log chain, zil_claim_log_block() 1246 * will invoke zio_claim() with a done func of spa_claim_notify(), 1247 * which will update spa_max_claim_txg. See spa_load() for details. 1248 */ 1249 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1250 zilog->zl_header->zh_claim_txg ? -1ULL : 1251 spa_min_claim_txg(os->os_spa), B_FALSE); 1252 1253 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1254 } 1255 1256 /* 1257 * When an itx is "skipped", this function is used to properly mark the 1258 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1259 * be skipped (and not committed to an lwb) for a variety of reasons, 1260 * one of them being that the itx was committed via spa_sync(), prior to 1261 * it being committed to an lwb; this can happen if a thread calling 1262 * zil_commit() is racing with spa_sync(). 1263 */ 1264 static void 1265 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1266 { 1267 mutex_enter(&zcw->zcw_lock); 1268 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1269 zcw->zcw_done = B_TRUE; 1270 cv_broadcast(&zcw->zcw_cv); 1271 mutex_exit(&zcw->zcw_lock); 1272 } 1273 1274 /* 1275 * This function is used when the given waiter is to be linked into an 1276 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1277 * At this point, the waiter will no longer be referenced by the itx, 1278 * and instead, will be referenced by the lwb. 1279 */ 1280 static void 1281 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1282 { 1283 /* 1284 * The lwb_waiters field of the lwb is protected by the zilog's 1285 * zl_issuer_lock while the lwb is open and zl_lock otherwise. 1286 * zl_issuer_lock also protects leaving the open state. 1287 * zcw_lwb setting is protected by zl_issuer_lock and state != 1288 * flush_done, which transition is protected by zl_lock. 1289 */ 1290 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock)); 1291 IMPLY(lwb->lwb_state != LWB_STATE_OPENED, 1292 MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1293 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW); 1294 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1295 1296 ASSERT(!list_link_active(&zcw->zcw_node)); 1297 list_insert_tail(&lwb->lwb_waiters, zcw); 1298 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1299 zcw->zcw_lwb = lwb; 1300 } 1301 1302 /* 1303 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1304 * block, and the given waiter must be linked to the "nolwb waiters" 1305 * list inside of zil_process_commit_list(). 1306 */ 1307 static void 1308 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1309 { 1310 ASSERT(!list_link_active(&zcw->zcw_node)); 1311 list_insert_tail(nolwb, zcw); 1312 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1313 } 1314 1315 void 1316 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1317 { 1318 avl_tree_t *t = &lwb->lwb_vdev_tree; 1319 avl_index_t where; 1320 zil_vdev_node_t *zv, zvsearch; 1321 int ndvas = BP_GET_NDVAS(bp); 1322 int i; 1323 1324 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1325 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1326 1327 if (zil_nocacheflush) 1328 return; 1329 1330 mutex_enter(&lwb->lwb_vdev_lock); 1331 for (i = 0; i < ndvas; i++) { 1332 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1333 if (avl_find(t, &zvsearch, &where) == NULL) { 1334 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1335 zv->zv_vdev = zvsearch.zv_vdev; 1336 avl_insert(t, zv, where); 1337 } 1338 } 1339 mutex_exit(&lwb->lwb_vdev_lock); 1340 } 1341 1342 static void 1343 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1344 { 1345 avl_tree_t *src = &lwb->lwb_vdev_tree; 1346 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1347 void *cookie = NULL; 1348 zil_vdev_node_t *zv; 1349 1350 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1351 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1352 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1353 1354 /* 1355 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1356 * not need the protection of lwb_vdev_lock (it will only be modified 1357 * while holding zilog->zl_lock) as its writes and those of its 1358 * children have all completed. The younger 'nlwb' may be waiting on 1359 * future writes to additional vdevs. 1360 */ 1361 mutex_enter(&nlwb->lwb_vdev_lock); 1362 /* 1363 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1364 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1365 */ 1366 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1367 avl_index_t where; 1368 1369 if (avl_find(dst, zv, &where) == NULL) { 1370 avl_insert(dst, zv, where); 1371 } else { 1372 kmem_free(zv, sizeof (*zv)); 1373 } 1374 } 1375 mutex_exit(&nlwb->lwb_vdev_lock); 1376 } 1377 1378 void 1379 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1380 { 1381 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1382 } 1383 1384 /* 1385 * This function is a called after all vdevs associated with a given lwb 1386 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1387 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1388 * all "previous" lwb's will have completed before this function is 1389 * called; i.e. this function is called for all previous lwbs before 1390 * it's called for "this" lwb (enforced via zio the dependencies 1391 * configured in zil_lwb_set_zio_dependency()). 1392 * 1393 * The intention is for this function to be called as soon as the 1394 * contents of an lwb are considered "stable" on disk, and will survive 1395 * any sudden loss of power. At this point, any threads waiting for the 1396 * lwb to reach this state are signalled, and the "waiter" structures 1397 * are marked "done". 1398 */ 1399 static void 1400 zil_lwb_flush_vdevs_done(zio_t *zio) 1401 { 1402 lwb_t *lwb = zio->io_private; 1403 zilog_t *zilog = lwb->lwb_zilog; 1404 zil_commit_waiter_t *zcw; 1405 itx_t *itx; 1406 1407 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1408 1409 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp; 1410 1411 mutex_enter(&zilog->zl_lock); 1412 1413 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8; 1414 1415 lwb->lwb_root_zio = NULL; 1416 1417 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1418 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1419 1420 if (zilog->zl_last_lwb_opened == lwb) { 1421 /* 1422 * Remember the highest committed log sequence number 1423 * for ztest. We only update this value when all the log 1424 * writes succeeded, because ztest wants to ASSERT that 1425 * it got the whole log chain. 1426 */ 1427 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1428 } 1429 1430 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL) 1431 zil_itx_destroy(itx); 1432 1433 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) { 1434 mutex_enter(&zcw->zcw_lock); 1435 1436 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1437 zcw->zcw_lwb = NULL; 1438 /* 1439 * We expect any ZIO errors from child ZIOs to have been 1440 * propagated "up" to this specific LWB's root ZIO, in 1441 * order for this error handling to work correctly. This 1442 * includes ZIO errors from either this LWB's write or 1443 * flush, as well as any errors from other dependent LWBs 1444 * (e.g. a root LWB ZIO that might be a child of this LWB). 1445 * 1446 * With that said, it's important to note that LWB flush 1447 * errors are not propagated up to the LWB root ZIO. 1448 * This is incorrect behavior, and results in VDEV flush 1449 * errors not being handled correctly here. See the 1450 * comment above the call to "zio_flush" for details. 1451 */ 1452 1453 zcw->zcw_zio_error = zio->io_error; 1454 1455 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1456 zcw->zcw_done = B_TRUE; 1457 cv_broadcast(&zcw->zcw_cv); 1458 1459 mutex_exit(&zcw->zcw_lock); 1460 } 1461 1462 uint64_t txg = lwb->lwb_issued_txg; 1463 1464 /* Once we drop the lock, lwb may be freed by zil_sync(). */ 1465 mutex_exit(&zilog->zl_lock); 1466 1467 mutex_enter(&zilog->zl_lwb_io_lock); 1468 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); 1469 zilog->zl_lwb_inflight[txg & TXG_MASK]--; 1470 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) 1471 cv_broadcast(&zilog->zl_lwb_io_cv); 1472 mutex_exit(&zilog->zl_lwb_io_lock); 1473 } 1474 1475 /* 1476 * Wait for the completion of all issued write/flush of that txg provided. 1477 * It guarantees zil_lwb_flush_vdevs_done() is called and returned. 1478 */ 1479 static void 1480 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) 1481 { 1482 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); 1483 1484 mutex_enter(&zilog->zl_lwb_io_lock); 1485 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) 1486 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); 1487 mutex_exit(&zilog->zl_lwb_io_lock); 1488 1489 #ifdef ZFS_DEBUG 1490 mutex_enter(&zilog->zl_lock); 1491 mutex_enter(&zilog->zl_lwb_io_lock); 1492 lwb_t *lwb = list_head(&zilog->zl_lwb_list); 1493 while (lwb != NULL) { 1494 if (lwb->lwb_issued_txg <= txg) { 1495 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); 1496 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); 1497 IMPLY(lwb->lwb_issued_txg > 0, 1498 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 1499 } 1500 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE || 1501 lwb->lwb_state == LWB_STATE_FLUSH_DONE, 1502 lwb->lwb_buf == NULL); 1503 lwb = list_next(&zilog->zl_lwb_list, lwb); 1504 } 1505 mutex_exit(&zilog->zl_lwb_io_lock); 1506 mutex_exit(&zilog->zl_lock); 1507 #endif 1508 } 1509 1510 /* 1511 * This is called when an lwb's write zio completes. The callback's 1512 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1513 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1514 * in writing out this specific lwb's data, and in the case that cache 1515 * flushes have been deferred, vdevs involved in writing the data for 1516 * previous lwbs. The writes corresponding to all the vdevs in the 1517 * lwb_vdev_tree will have completed by the time this is called, due to 1518 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1519 * which takes deferred flushes into account. The lwb will be "done" 1520 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1521 * completion callback for the lwb's root zio. 1522 */ 1523 static void 1524 zil_lwb_write_done(zio_t *zio) 1525 { 1526 lwb_t *lwb = zio->io_private; 1527 spa_t *spa = zio->io_spa; 1528 zilog_t *zilog = lwb->lwb_zilog; 1529 avl_tree_t *t = &lwb->lwb_vdev_tree; 1530 void *cookie = NULL; 1531 zil_vdev_node_t *zv; 1532 lwb_t *nlwb; 1533 1534 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1535 1536 abd_free(zio->io_abd); 1537 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1538 lwb->lwb_buf = NULL; 1539 1540 mutex_enter(&zilog->zl_lock); 1541 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1542 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1543 lwb->lwb_child_zio = NULL; 1544 lwb->lwb_write_zio = NULL; 1545 1546 /* 1547 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not 1548 * called for it yet, and when it will be, it won't be able to make 1549 * its write ZIO a parent this ZIO. In such case we can not defer 1550 * our flushes or below may be a race between the done callbacks. 1551 */ 1552 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1553 if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED) 1554 nlwb = NULL; 1555 mutex_exit(&zilog->zl_lock); 1556 1557 if (avl_numnodes(t) == 0) 1558 return; 1559 1560 /* 1561 * If there was an IO error, we're not going to call zio_flush() 1562 * on these vdevs, so we simply empty the tree and free the 1563 * nodes. We avoid calling zio_flush() since there isn't any 1564 * good reason for doing so, after the lwb block failed to be 1565 * written out. 1566 * 1567 * Additionally, we don't perform any further error handling at 1568 * this point (e.g. setting "zcw_zio_error" appropriately), as 1569 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1570 * we expect any error seen here, to have been propagated to 1571 * that function). 1572 */ 1573 if (zio->io_error != 0) { 1574 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1575 kmem_free(zv, sizeof (*zv)); 1576 return; 1577 } 1578 1579 /* 1580 * If this lwb does not have any threads waiting for it to 1581 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1582 * command to the vdevs written to by "this" lwb, and instead 1583 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1584 * command for those vdevs. Thus, we merge the vdev tree of 1585 * "this" lwb with the vdev tree of the "next" lwb in the list, 1586 * and assume the "next" lwb will handle flushing the vdevs (or 1587 * deferring the flush(s) again). 1588 * 1589 * This is a useful performance optimization, especially for 1590 * workloads with lots of async write activity and few sync 1591 * write and/or fsync activity, as it has the potential to 1592 * coalesce multiple flush commands to a vdev into one. 1593 */ 1594 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) { 1595 zil_lwb_flush_defer(lwb, nlwb); 1596 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1597 return; 1598 } 1599 1600 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1601 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1602 if (vd != NULL) { 1603 /* 1604 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1605 * always used within "zio_flush". This means, 1606 * any errors when flushing the vdev(s), will 1607 * (unfortunately) not be handled correctly, 1608 * since these "zio_flush" errors will not be 1609 * propagated up to "zil_lwb_flush_vdevs_done". 1610 */ 1611 zio_flush(lwb->lwb_root_zio, vd); 1612 } 1613 kmem_free(zv, sizeof (*zv)); 1614 } 1615 } 1616 1617 /* 1618 * Build the zio dependency chain, which is used to preserve the ordering of 1619 * lwb completions that is required by the semantics of the ZIL. Each new lwb 1620 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio 1621 * cannot complete until the previous lwb's zio completes. 1622 * 1623 * This is required by the semantics of zil_commit(): the commit waiters 1624 * attached to the lwbs will be woken in the lwb zio's completion callback, 1625 * so this zio dependency graph ensures the waiters are woken in the correct 1626 * order (the same order the lwbs were created). 1627 */ 1628 static void 1629 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1630 { 1631 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1632 1633 lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb); 1634 if (prev_lwb == NULL || 1635 prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE) 1636 return; 1637 1638 /* 1639 * If the previous lwb's write hasn't already completed, we also want 1640 * to order the completion of the lwb write zios (above, we only order 1641 * the completion of the lwb root zios). This is required because of 1642 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1643 * 1644 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous 1645 * lwb will rely on this lwb to flush the vdevs written to by that 1646 * previous lwb. Thus, we need to ensure this lwb doesn't issue the 1647 * flush until after the previous lwb's write completes. We ensure 1648 * this ordering by setting the zio parent/child relationship here. 1649 * 1650 * Without this relationship on the lwb's write zio, it's possible 1651 * for this lwb's write to complete prior to the previous lwb's write 1652 * completing; and thus, the vdevs for the previous lwb would be 1653 * flushed prior to that lwb's data being written to those vdevs (the 1654 * vdevs are flushed in the lwb write zio's completion handler, 1655 * zil_lwb_write_done()). 1656 */ 1657 if (prev_lwb->lwb_state == LWB_STATE_ISSUED) { 1658 ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL); 1659 zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio); 1660 } else { 1661 ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1662 } 1663 1664 ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL); 1665 zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio); 1666 } 1667 1668 1669 /* 1670 * This function's purpose is to "open" an lwb such that it is ready to 1671 * accept new itxs being committed to it. This function is idempotent; if 1672 * the passed in lwb has already been opened, it is essentially a no-op. 1673 */ 1674 static void 1675 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1676 { 1677 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1678 1679 if (lwb->lwb_state != LWB_STATE_NEW) { 1680 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1681 return; 1682 } 1683 1684 mutex_enter(&zilog->zl_lock); 1685 lwb->lwb_state = LWB_STATE_OPENED; 1686 zilog->zl_last_lwb_opened = lwb; 1687 mutex_exit(&zilog->zl_lock); 1688 } 1689 1690 /* 1691 * Define a limited set of intent log block sizes. 1692 * 1693 * These must be a multiple of 4KB. Note only the amount used (again 1694 * aligned to 4KB) actually gets written. However, we can't always just 1695 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1696 */ 1697 static const struct { 1698 uint64_t limit; 1699 uint64_t blksz; 1700 } zil_block_buckets[] = { 1701 { 4096, 4096 }, /* non TX_WRITE */ 1702 { 8192 + 4096, 8192 + 4096 }, /* database */ 1703 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ 1704 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ 1705 { 131072, 131072 }, /* < 128KB writes */ 1706 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ 1707 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ 1708 }; 1709 1710 /* 1711 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1712 * initialized. Otherwise this should not be used directly; see 1713 * zl_max_block_size instead. 1714 */ 1715 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1716 1717 /* 1718 * Close the log block for being issued and allocate the next one. 1719 * Has to be called under zl_issuer_lock to chain more lwbs. 1720 */ 1721 static lwb_t * 1722 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state) 1723 { 1724 int i; 1725 1726 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1727 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1728 lwb->lwb_state = LWB_STATE_CLOSED; 1729 1730 /* 1731 * If there was an allocation failure then returned NULL will trigger 1732 * zil_commit_writer_stall() at the caller. This is inherently racy, 1733 * since allocation may not have happened yet. 1734 */ 1735 if (lwb->lwb_error != 0) 1736 return (NULL); 1737 1738 /* 1739 * Log blocks are pre-allocated. Here we select the size of the next 1740 * block, based on size used in the last block. 1741 * - first find the smallest bucket that will fit the block from a 1742 * limited set of block sizes. This is because it's faster to write 1743 * blocks allocated from the same metaslab as they are adjacent or 1744 * close. 1745 * - next find the maximum from the new suggested size and an array of 1746 * previous sizes. This lessens a picket fence effect of wrongly 1747 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k 1748 * requests. 1749 * 1750 * Note we only write what is used, but we can't just allocate 1751 * the maximum block size because we can exhaust the available 1752 * pool log space. 1753 */ 1754 uint64_t zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1755 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) 1756 continue; 1757 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); 1758 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1759 for (i = 0; i < ZIL_PREV_BLKS; i++) 1760 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1761 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, 1762 uint64_t, zil_blksz, 1763 uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]); 1764 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1765 1766 return (zil_alloc_lwb(zilog, zil_blksz, NULL, 0, 0, state)); 1767 } 1768 1769 /* 1770 * Finalize previously closed block and issue the write zio. 1771 */ 1772 static void 1773 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1774 { 1775 spa_t *spa = zilog->zl_spa; 1776 zil_chain_t *zilc; 1777 boolean_t slog; 1778 zbookmark_phys_t zb; 1779 zio_priority_t prio; 1780 int error; 1781 1782 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED); 1783 1784 /* Actually fill the lwb with the data. */ 1785 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; 1786 itx = list_next(&lwb->lwb_itxs, itx)) 1787 zil_lwb_commit(zilog, lwb, itx); 1788 lwb->lwb_nused = lwb->lwb_nfilled; 1789 1790 lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb, 1791 ZIO_FLAG_CANFAIL); 1792 1793 /* 1794 * The lwb is now ready to be issued, but it can be only if it already 1795 * got its block pointer allocated or the allocation has failed. 1796 * Otherwise leave it as-is, relying on some other thread to issue it 1797 * after allocating its block pointer via calling zil_lwb_write_issue() 1798 * for the previous lwb(s) in the chain. 1799 */ 1800 mutex_enter(&zilog->zl_lock); 1801 lwb->lwb_state = LWB_STATE_READY; 1802 if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) { 1803 mutex_exit(&zilog->zl_lock); 1804 return; 1805 } 1806 mutex_exit(&zilog->zl_lock); 1807 1808 next_lwb: 1809 if (lwb->lwb_slim) 1810 zilc = (zil_chain_t *)lwb->lwb_buf; 1811 else 1812 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax); 1813 int wsz = lwb->lwb_sz; 1814 if (lwb->lwb_error == 0) { 1815 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz); 1816 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1817 prio = ZIO_PRIORITY_SYNC_WRITE; 1818 else 1819 prio = ZIO_PRIORITY_ASYNC_WRITE; 1820 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1821 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1822 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1823 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0, 1824 &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done, 1825 lwb, prio, ZIO_FLAG_CANFAIL, &zb); 1826 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1827 1828 if (lwb->lwb_slim) { 1829 /* For Slim ZIL only write what is used. */ 1830 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, 1831 int); 1832 ASSERT3S(wsz, <=, lwb->lwb_sz); 1833 zio_shrink(lwb->lwb_write_zio, wsz); 1834 wsz = lwb->lwb_write_zio->io_size; 1835 } 1836 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); 1837 zilc->zc_pad = 0; 1838 zilc->zc_nused = lwb->lwb_nused; 1839 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1840 } else { 1841 /* 1842 * We can't write the lwb if there was an allocation failure, 1843 * so create a null zio instead just to maintain dependencies. 1844 */ 1845 lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL, 1846 zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL); 1847 lwb->lwb_write_zio->io_error = lwb->lwb_error; 1848 } 1849 if (lwb->lwb_child_zio) 1850 zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio); 1851 1852 /* 1853 * Open transaction to allocate the next block pointer. 1854 */ 1855 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1856 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1857 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1858 uint64_t txg = dmu_tx_get_txg(tx); 1859 1860 /* 1861 * Allocate next the block pointer unless we are already in error. 1862 */ 1863 lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb); 1864 blkptr_t *bp = &zilc->zc_next_blk; 1865 BP_ZERO(bp); 1866 error = lwb->lwb_error; 1867 if (error == 0) { 1868 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz, 1869 &slog); 1870 } 1871 if (error == 0) { 1872 ASSERT3U(bp->blk_birth, ==, txg); 1873 BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 : 1874 ZIO_CHECKSUM_ZILOG); 1875 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1876 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1877 } 1878 1879 /* 1880 * Reduce TXG open time by incrementing inflight counter and committing 1881 * the transaciton. zil_sync() will wait for it to return to zero. 1882 */ 1883 mutex_enter(&zilog->zl_lwb_io_lock); 1884 lwb->lwb_issued_txg = txg; 1885 zilog->zl_lwb_inflight[txg & TXG_MASK]++; 1886 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); 1887 mutex_exit(&zilog->zl_lwb_io_lock); 1888 dmu_tx_commit(tx); 1889 1890 spa_config_enter(spa, SCL_STATE, lwb, RW_READER); 1891 1892 /* 1893 * We've completed all potentially blocking operations. Update the 1894 * nlwb and allow it proceed without possible lock order reversals. 1895 */ 1896 mutex_enter(&zilog->zl_lock); 1897 zil_lwb_set_zio_dependency(zilog, lwb); 1898 lwb->lwb_state = LWB_STATE_ISSUED; 1899 1900 if (nlwb) { 1901 nlwb->lwb_blk = *bp; 1902 nlwb->lwb_error = error; 1903 nlwb->lwb_slog = slog; 1904 nlwb->lwb_alloc_txg = txg; 1905 if (nlwb->lwb_state != LWB_STATE_READY) 1906 nlwb = NULL; 1907 } 1908 mutex_exit(&zilog->zl_lock); 1909 1910 if (lwb->lwb_slog) { 1911 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); 1912 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, 1913 lwb->lwb_nused); 1914 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write, 1915 wsz); 1916 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc, 1917 BP_GET_LSIZE(&lwb->lwb_blk)); 1918 } else { 1919 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); 1920 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, 1921 lwb->lwb_nused); 1922 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write, 1923 wsz); 1924 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc, 1925 BP_GET_LSIZE(&lwb->lwb_blk)); 1926 } 1927 lwb->lwb_issued_timestamp = gethrtime(); 1928 if (lwb->lwb_child_zio) 1929 zio_nowait(lwb->lwb_child_zio); 1930 zio_nowait(lwb->lwb_write_zio); 1931 zio_nowait(lwb->lwb_root_zio); 1932 1933 /* 1934 * If nlwb was ready when we gave it the block pointer, 1935 * it is on us to issue it and possibly following ones. 1936 */ 1937 lwb = nlwb; 1938 if (lwb) 1939 goto next_lwb; 1940 } 1941 1942 /* 1943 * Maximum amount of data that can be put into single log block. 1944 */ 1945 uint64_t 1946 zil_max_log_data(zilog_t *zilog, size_t hdrsize) 1947 { 1948 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize); 1949 } 1950 1951 /* 1952 * Maximum amount of log space we agree to waste to reduce number of 1953 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%). 1954 */ 1955 static inline uint64_t 1956 zil_max_waste_space(zilog_t *zilog) 1957 { 1958 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16); 1959 } 1960 1961 /* 1962 * Maximum amount of write data for WR_COPIED. For correctness, consumers 1963 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 1964 * maximum sized log block, because each WR_COPIED record must fit in a 1965 * single log block. Below that it is a tradeoff of additional memory copy 1966 * and possibly worse log space efficiency vs additional range lock/unlock. 1967 */ 1968 static uint_t zil_maxcopied = 7680; 1969 1970 uint64_t 1971 zil_max_copied_data(zilog_t *zilog) 1972 { 1973 uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 1974 return (MIN(max_data, zil_maxcopied)); 1975 } 1976 1977 /* 1978 * Estimate space needed in the lwb for the itx. Allocate more lwbs or 1979 * split the itx as needed, but don't touch the actual transaction data. 1980 * Has to be called under zl_issuer_lock to call zil_lwb_write_close() 1981 * to chain more lwbs. 1982 */ 1983 static lwb_t * 1984 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs) 1985 { 1986 itx_t *citx; 1987 lr_t *lr, *clr; 1988 lr_write_t *lrw; 1989 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data; 1990 1991 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1992 ASSERT3P(lwb, !=, NULL); 1993 ASSERT3P(lwb->lwb_buf, !=, NULL); 1994 1995 zil_lwb_write_open(zilog, lwb); 1996 1997 lr = &itx->itx_lr; 1998 lrw = (lr_write_t *)lr; 1999 2000 /* 2001 * A commit itx doesn't represent any on-disk state; instead 2002 * it's simply used as a place holder on the commit list, and 2003 * provides a mechanism for attaching a "commit waiter" onto the 2004 * correct lwb (such that the waiter can be signalled upon 2005 * completion of that lwb). Thus, we don't process this itx's 2006 * log record if it's a commit itx (these itx's don't have log 2007 * records), and instead link the itx's waiter onto the lwb's 2008 * list of waiters. 2009 * 2010 * For more details, see the comment above zil_commit(). 2011 */ 2012 if (lr->lrc_txtype == TX_COMMIT) { 2013 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 2014 list_insert_tail(&lwb->lwb_itxs, itx); 2015 return (lwb); 2016 } 2017 2018 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2019 dlen = P2ROUNDUP_TYPED( 2020 lrw->lr_length, sizeof (uint64_t), uint64_t); 2021 } else { 2022 dlen = 0; 2023 } 2024 reclen = lr->lrc_reclen; 2025 zilog->zl_cur_used += (reclen + dlen); 2026 2027 cont: 2028 /* 2029 * If this record won't fit in the current log block, start a new one. 2030 * For WR_NEED_COPY optimize layout for minimal number of chunks. 2031 */ 2032 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused; 2033 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 2034 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 2035 lwb_sp < zil_max_waste_space(zilog) && 2036 (dlen % max_log_data == 0 || 2037 lwb_sp < reclen + dlen % max_log_data))) { 2038 list_insert_tail(ilwbs, lwb); 2039 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED); 2040 if (lwb == NULL) 2041 return (NULL); 2042 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused; 2043 2044 /* 2045 * There must be enough space in the new, empty log block to 2046 * hold reclen. For WR_COPIED, we need to fit the whole 2047 * record in one block, and reclen is the header size + the 2048 * data size. For WR_NEED_COPY, we can create multiple 2049 * records, splitting the data into multiple blocks, so we 2050 * only need to fit one word of data per block; in this case 2051 * reclen is just the header size (no data). 2052 */ 2053 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 2054 } 2055 2056 dnow = MIN(dlen, lwb_sp - reclen); 2057 if (dlen > dnow) { 2058 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE); 2059 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY); 2060 citx = zil_itx_clone(itx); 2061 clr = &citx->itx_lr; 2062 lr_write_t *clrw = (lr_write_t *)clr; 2063 clrw->lr_length = dnow; 2064 lrw->lr_offset += dnow; 2065 lrw->lr_length -= dnow; 2066 } else { 2067 citx = itx; 2068 clr = lr; 2069 } 2070 2071 /* 2072 * We're actually making an entry, so update lrc_seq to be the 2073 * log record sequence number. Note that this is generally not 2074 * equal to the itx sequence number because not all transactions 2075 * are synchronous, and sometimes spa_sync() gets there first. 2076 */ 2077 clr->lrc_seq = ++zilog->zl_lr_seq; 2078 2079 lwb->lwb_nused += reclen + dnow; 2080 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax); 2081 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 2082 2083 zil_lwb_add_txg(lwb, lr->lrc_txg); 2084 list_insert_tail(&lwb->lwb_itxs, citx); 2085 2086 dlen -= dnow; 2087 if (dlen > 0) { 2088 zilog->zl_cur_used += reclen; 2089 goto cont; 2090 } 2091 2092 if (lr->lrc_txtype == TX_WRITE && 2093 lr->lrc_txg > spa_freeze_txg(zilog->zl_spa)) 2094 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg); 2095 2096 return (lwb); 2097 } 2098 2099 /* 2100 * Fill the actual transaction data into the lwb, following zil_lwb_assign(). 2101 * Does not require locking. 2102 */ 2103 static void 2104 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx) 2105 { 2106 lr_t *lr, *lrb; 2107 lr_write_t *lrw, *lrwb; 2108 char *lr_buf; 2109 uint64_t dlen, reclen; 2110 2111 lr = &itx->itx_lr; 2112 lrw = (lr_write_t *)lr; 2113 2114 if (lr->lrc_txtype == TX_COMMIT) 2115 return; 2116 2117 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2118 dlen = P2ROUNDUP_TYPED( 2119 lrw->lr_length, sizeof (uint64_t), uint64_t); 2120 } else { 2121 dlen = 0; 2122 } 2123 reclen = lr->lrc_reclen; 2124 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled); 2125 2126 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled; 2127 memcpy(lr_buf, lr, reclen); 2128 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */ 2129 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */ 2130 2131 ZIL_STAT_BUMP(zilog, zil_itx_count); 2132 2133 /* 2134 * If it's a write, fetch the data or get its blkptr as appropriate. 2135 */ 2136 if (lr->lrc_txtype == TX_WRITE) { 2137 if (itx->itx_wr_state == WR_COPIED) { 2138 ZIL_STAT_BUMP(zilog, zil_itx_copied_count); 2139 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, 2140 lrw->lr_length); 2141 } else { 2142 char *dbuf; 2143 int error; 2144 2145 if (itx->itx_wr_state == WR_NEED_COPY) { 2146 dbuf = lr_buf + reclen; 2147 lrb->lrc_reclen += dlen; 2148 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); 2149 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, 2150 dlen); 2151 } else { 2152 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 2153 dbuf = NULL; 2154 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); 2155 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, 2156 lrw->lr_length); 2157 if (lwb->lwb_child_zio == NULL) { 2158 lwb->lwb_child_zio = zio_null(NULL, 2159 zilog->zl_spa, NULL, NULL, NULL, 2160 ZIO_FLAG_CANFAIL); 2161 } 2162 } 2163 2164 /* 2165 * The "lwb_child_zio" we pass in will become a child of 2166 * "lwb_write_zio", when one is created, so one will be 2167 * a parent of any zio's created by the "zl_get_data". 2168 * This way "lwb_write_zio" will first wait for children 2169 * block pointers before own writing, and then for their 2170 * writing completion before the vdev cache flushing. 2171 */ 2172 error = zilog->zl_get_data(itx->itx_private, 2173 itx->itx_gen, lrwb, dbuf, lwb, 2174 lwb->lwb_child_zio); 2175 if (dbuf != NULL && error == 0) { 2176 /* Zero any padding bytes in the last block. */ 2177 memset((char *)dbuf + lrwb->lr_length, 0, 2178 dlen - lrwb->lr_length); 2179 } 2180 2181 /* 2182 * Typically, the only return values we should see from 2183 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or 2184 * EALREADY. However, it is also possible to see other 2185 * error values such as ENOSPC or EINVAL from 2186 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or 2187 * ENXIO as well as a multitude of others from the 2188 * block layer through dmu_buf_hold() -> dbuf_read() 2189 * -> zio_wait(), as well as through dmu_read() -> 2190 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() -> 2191 * zio_wait(). When these errors happen, we can assume 2192 * that neither an immediate write nor an indirect 2193 * write occurred, so we need to fall back to 2194 * txg_wait_synced(). This is unusual, so we print to 2195 * dmesg whenever one of these errors occurs. 2196 */ 2197 switch (error) { 2198 case 0: 2199 break; 2200 default: 2201 cmn_err(CE_WARN, "zil_lwb_commit() received " 2202 "unexpected error %d from ->zl_get_data()" 2203 ". Falling back to txg_wait_synced().", 2204 error); 2205 zfs_fallthrough; 2206 case EIO: 2207 txg_wait_synced(zilog->zl_dmu_pool, 2208 lr->lrc_txg); 2209 zfs_fallthrough; 2210 case ENOENT: 2211 zfs_fallthrough; 2212 case EEXIST: 2213 zfs_fallthrough; 2214 case EALREADY: 2215 return; 2216 } 2217 } 2218 } 2219 2220 lwb->lwb_nfilled += reclen + dlen; 2221 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused); 2222 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t))); 2223 } 2224 2225 itx_t * 2226 zil_itx_create(uint64_t txtype, size_t olrsize) 2227 { 2228 size_t itxsize, lrsize; 2229 itx_t *itx; 2230 2231 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 2232 itxsize = offsetof(itx_t, itx_lr) + lrsize; 2233 2234 itx = zio_data_buf_alloc(itxsize); 2235 itx->itx_lr.lrc_txtype = txtype; 2236 itx->itx_lr.lrc_reclen = lrsize; 2237 itx->itx_lr.lrc_seq = 0; /* defensive */ 2238 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); 2239 itx->itx_sync = B_TRUE; /* default is synchronous */ 2240 itx->itx_callback = NULL; 2241 itx->itx_callback_data = NULL; 2242 itx->itx_size = itxsize; 2243 2244 return (itx); 2245 } 2246 2247 static itx_t * 2248 zil_itx_clone(itx_t *oitx) 2249 { 2250 itx_t *itx = zio_data_buf_alloc(oitx->itx_size); 2251 memcpy(itx, oitx, oitx->itx_size); 2252 itx->itx_callback = NULL; 2253 itx->itx_callback_data = NULL; 2254 return (itx); 2255 } 2256 2257 void 2258 zil_itx_destroy(itx_t *itx) 2259 { 2260 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 2261 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2262 2263 if (itx->itx_callback != NULL) 2264 itx->itx_callback(itx->itx_callback_data); 2265 2266 zio_data_buf_free(itx, itx->itx_size); 2267 } 2268 2269 /* 2270 * Free up the sync and async itxs. The itxs_t has already been detached 2271 * so no locks are needed. 2272 */ 2273 static void 2274 zil_itxg_clean(void *arg) 2275 { 2276 itx_t *itx; 2277 list_t *list; 2278 avl_tree_t *t; 2279 void *cookie; 2280 itxs_t *itxs = arg; 2281 itx_async_node_t *ian; 2282 2283 list = &itxs->i_sync_list; 2284 while ((itx = list_remove_head(list)) != NULL) { 2285 /* 2286 * In the general case, commit itxs will not be found 2287 * here, as they'll be committed to an lwb via 2288 * zil_lwb_assign(), and free'd in that function. Having 2289 * said that, it is still possible for commit itxs to be 2290 * found here, due to the following race: 2291 * 2292 * - a thread calls zil_commit() which assigns the 2293 * commit itx to a per-txg i_sync_list 2294 * - zil_itxg_clean() is called (e.g. via spa_sync()) 2295 * while the waiter is still on the i_sync_list 2296 * 2297 * There's nothing to prevent syncing the txg while the 2298 * waiter is on the i_sync_list. This normally doesn't 2299 * happen because spa_sync() is slower than zil_commit(), 2300 * but if zil_commit() calls txg_wait_synced() (e.g. 2301 * because zil_create() or zil_commit_writer_stall() is 2302 * called) we will hit this case. 2303 */ 2304 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 2305 zil_commit_waiter_skip(itx->itx_private); 2306 2307 zil_itx_destroy(itx); 2308 } 2309 2310 cookie = NULL; 2311 t = &itxs->i_async_tree; 2312 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2313 list = &ian->ia_list; 2314 while ((itx = list_remove_head(list)) != NULL) { 2315 /* commit itxs should never be on the async lists. */ 2316 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2317 zil_itx_destroy(itx); 2318 } 2319 list_destroy(list); 2320 kmem_free(ian, sizeof (itx_async_node_t)); 2321 } 2322 avl_destroy(t); 2323 2324 kmem_free(itxs, sizeof (itxs_t)); 2325 } 2326 2327 static int 2328 zil_aitx_compare(const void *x1, const void *x2) 2329 { 2330 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 2331 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 2332 2333 return (TREE_CMP(o1, o2)); 2334 } 2335 2336 /* 2337 * Remove all async itx with the given oid. 2338 */ 2339 void 2340 zil_remove_async(zilog_t *zilog, uint64_t oid) 2341 { 2342 uint64_t otxg, txg; 2343 itx_async_node_t *ian; 2344 avl_tree_t *t; 2345 avl_index_t where; 2346 list_t clean_list; 2347 itx_t *itx; 2348 2349 ASSERT(oid != 0); 2350 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 2351 2352 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2353 otxg = ZILTEST_TXG; 2354 else 2355 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2356 2357 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2358 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2359 2360 mutex_enter(&itxg->itxg_lock); 2361 if (itxg->itxg_txg != txg) { 2362 mutex_exit(&itxg->itxg_lock); 2363 continue; 2364 } 2365 2366 /* 2367 * Locate the object node and append its list. 2368 */ 2369 t = &itxg->itxg_itxs->i_async_tree; 2370 ian = avl_find(t, &oid, &where); 2371 if (ian != NULL) 2372 list_move_tail(&clean_list, &ian->ia_list); 2373 mutex_exit(&itxg->itxg_lock); 2374 } 2375 while ((itx = list_remove_head(&clean_list)) != NULL) { 2376 /* commit itxs should never be on the async lists. */ 2377 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2378 zil_itx_destroy(itx); 2379 } 2380 list_destroy(&clean_list); 2381 } 2382 2383 void 2384 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2385 { 2386 uint64_t txg; 2387 itxg_t *itxg; 2388 itxs_t *itxs, *clean = NULL; 2389 2390 /* 2391 * Ensure the data of a renamed file is committed before the rename. 2392 */ 2393 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2394 zil_async_to_sync(zilog, itx->itx_oid); 2395 2396 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2397 txg = ZILTEST_TXG; 2398 else 2399 txg = dmu_tx_get_txg(tx); 2400 2401 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2402 mutex_enter(&itxg->itxg_lock); 2403 itxs = itxg->itxg_itxs; 2404 if (itxg->itxg_txg != txg) { 2405 if (itxs != NULL) { 2406 /* 2407 * The zil_clean callback hasn't got around to cleaning 2408 * this itxg. Save the itxs for release below. 2409 * This should be rare. 2410 */ 2411 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2412 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2413 clean = itxg->itxg_itxs; 2414 } 2415 itxg->itxg_txg = txg; 2416 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2417 KM_SLEEP); 2418 2419 list_create(&itxs->i_sync_list, sizeof (itx_t), 2420 offsetof(itx_t, itx_node)); 2421 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2422 sizeof (itx_async_node_t), 2423 offsetof(itx_async_node_t, ia_node)); 2424 } 2425 if (itx->itx_sync) { 2426 list_insert_tail(&itxs->i_sync_list, itx); 2427 } else { 2428 avl_tree_t *t = &itxs->i_async_tree; 2429 uint64_t foid = 2430 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2431 itx_async_node_t *ian; 2432 avl_index_t where; 2433 2434 ian = avl_find(t, &foid, &where); 2435 if (ian == NULL) { 2436 ian = kmem_alloc(sizeof (itx_async_node_t), 2437 KM_SLEEP); 2438 list_create(&ian->ia_list, sizeof (itx_t), 2439 offsetof(itx_t, itx_node)); 2440 ian->ia_foid = foid; 2441 avl_insert(t, ian, where); 2442 } 2443 list_insert_tail(&ian->ia_list, itx); 2444 } 2445 2446 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2447 2448 /* 2449 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2450 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2451 * need to be careful to always dirty the ZIL using the "real" 2452 * TXG (not itxg_txg) even when the SPA is frozen. 2453 */ 2454 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2455 mutex_exit(&itxg->itxg_lock); 2456 2457 /* Release the old itxs now we've dropped the lock */ 2458 if (clean != NULL) 2459 zil_itxg_clean(clean); 2460 } 2461 2462 /* 2463 * If there are any in-memory intent log transactions which have now been 2464 * synced then start up a taskq to free them. We should only do this after we 2465 * have written out the uberblocks (i.e. txg has been committed) so that 2466 * don't inadvertently clean out in-memory log records that would be required 2467 * by zil_commit(). 2468 */ 2469 void 2470 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2471 { 2472 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2473 itxs_t *clean_me; 2474 2475 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2476 2477 mutex_enter(&itxg->itxg_lock); 2478 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2479 mutex_exit(&itxg->itxg_lock); 2480 return; 2481 } 2482 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2483 ASSERT3U(itxg->itxg_txg, !=, 0); 2484 clean_me = itxg->itxg_itxs; 2485 itxg->itxg_itxs = NULL; 2486 itxg->itxg_txg = 0; 2487 mutex_exit(&itxg->itxg_lock); 2488 /* 2489 * Preferably start a task queue to free up the old itxs but 2490 * if taskq_dispatch can't allocate resources to do that then 2491 * free it in-line. This should be rare. Note, using TQ_SLEEP 2492 * created a bad performance problem. 2493 */ 2494 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2495 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2496 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2497 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2498 if (id == TASKQID_INVALID) 2499 zil_itxg_clean(clean_me); 2500 } 2501 2502 /* 2503 * This function will traverse the queue of itxs that need to be 2504 * committed, and move them onto the ZIL's zl_itx_commit_list. 2505 */ 2506 static uint64_t 2507 zil_get_commit_list(zilog_t *zilog) 2508 { 2509 uint64_t otxg, txg, wtxg = 0; 2510 list_t *commit_list = &zilog->zl_itx_commit_list; 2511 2512 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2513 2514 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2515 otxg = ZILTEST_TXG; 2516 else 2517 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2518 2519 /* 2520 * This is inherently racy, since there is nothing to prevent 2521 * the last synced txg from changing. That's okay since we'll 2522 * only commit things in the future. 2523 */ 2524 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2525 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2526 2527 mutex_enter(&itxg->itxg_lock); 2528 if (itxg->itxg_txg != txg) { 2529 mutex_exit(&itxg->itxg_lock); 2530 continue; 2531 } 2532 2533 /* 2534 * If we're adding itx records to the zl_itx_commit_list, 2535 * then the zil better be dirty in this "txg". We can assert 2536 * that here since we're holding the itxg_lock which will 2537 * prevent spa_sync from cleaning it. Once we add the itxs 2538 * to the zl_itx_commit_list we must commit it to disk even 2539 * if it's unnecessary (i.e. the txg was synced). 2540 */ 2541 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2542 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2543 list_t *sync_list = &itxg->itxg_itxs->i_sync_list; 2544 if (unlikely(zilog->zl_suspend > 0)) { 2545 /* 2546 * ZIL was just suspended, but we lost the race. 2547 * Allow all earlier itxs to be committed, but ask 2548 * caller to do txg_wait_synced(txg) for any new. 2549 */ 2550 if (!list_is_empty(sync_list)) 2551 wtxg = MAX(wtxg, txg); 2552 } else { 2553 list_move_tail(commit_list, sync_list); 2554 } 2555 2556 mutex_exit(&itxg->itxg_lock); 2557 } 2558 return (wtxg); 2559 } 2560 2561 /* 2562 * Move the async itxs for a specified object to commit into sync lists. 2563 */ 2564 void 2565 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2566 { 2567 uint64_t otxg, txg; 2568 itx_async_node_t *ian; 2569 avl_tree_t *t; 2570 avl_index_t where; 2571 2572 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2573 otxg = ZILTEST_TXG; 2574 else 2575 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2576 2577 /* 2578 * This is inherently racy, since there is nothing to prevent 2579 * the last synced txg from changing. 2580 */ 2581 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2582 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2583 2584 mutex_enter(&itxg->itxg_lock); 2585 if (itxg->itxg_txg != txg) { 2586 mutex_exit(&itxg->itxg_lock); 2587 continue; 2588 } 2589 2590 /* 2591 * If a foid is specified then find that node and append its 2592 * list. Otherwise walk the tree appending all the lists 2593 * to the sync list. We add to the end rather than the 2594 * beginning to ensure the create has happened. 2595 */ 2596 t = &itxg->itxg_itxs->i_async_tree; 2597 if (foid != 0) { 2598 ian = avl_find(t, &foid, &where); 2599 if (ian != NULL) { 2600 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2601 &ian->ia_list); 2602 } 2603 } else { 2604 void *cookie = NULL; 2605 2606 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2607 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2608 &ian->ia_list); 2609 list_destroy(&ian->ia_list); 2610 kmem_free(ian, sizeof (itx_async_node_t)); 2611 } 2612 } 2613 mutex_exit(&itxg->itxg_lock); 2614 } 2615 } 2616 2617 /* 2618 * This function will prune commit itxs that are at the head of the 2619 * commit list (it won't prune past the first non-commit itx), and 2620 * either: a) attach them to the last lwb that's still pending 2621 * completion, or b) skip them altogether. 2622 * 2623 * This is used as a performance optimization to prevent commit itxs 2624 * from generating new lwbs when it's unnecessary to do so. 2625 */ 2626 static void 2627 zil_prune_commit_list(zilog_t *zilog) 2628 { 2629 itx_t *itx; 2630 2631 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2632 2633 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2634 lr_t *lrc = &itx->itx_lr; 2635 if (lrc->lrc_txtype != TX_COMMIT) 2636 break; 2637 2638 mutex_enter(&zilog->zl_lock); 2639 2640 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2641 if (last_lwb == NULL || 2642 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2643 /* 2644 * All of the itxs this waiter was waiting on 2645 * must have already completed (or there were 2646 * never any itx's for it to wait on), so it's 2647 * safe to skip this waiter and mark it done. 2648 */ 2649 zil_commit_waiter_skip(itx->itx_private); 2650 } else { 2651 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2652 } 2653 2654 mutex_exit(&zilog->zl_lock); 2655 2656 list_remove(&zilog->zl_itx_commit_list, itx); 2657 zil_itx_destroy(itx); 2658 } 2659 2660 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2661 } 2662 2663 static void 2664 zil_commit_writer_stall(zilog_t *zilog) 2665 { 2666 /* 2667 * When zio_alloc_zil() fails to allocate the next lwb block on 2668 * disk, we must call txg_wait_synced() to ensure all of the 2669 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2670 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2671 * to zil_process_commit_list()) will have to call zil_create(), 2672 * and start a new ZIL chain. 2673 * 2674 * Since zil_alloc_zil() failed, the lwb that was previously 2675 * issued does not have a pointer to the "next" lwb on disk. 2676 * Thus, if another ZIL writer thread was to allocate the "next" 2677 * on-disk lwb, that block could be leaked in the event of a 2678 * crash (because the previous lwb on-disk would not point to 2679 * it). 2680 * 2681 * We must hold the zilog's zl_issuer_lock while we do this, to 2682 * ensure no new threads enter zil_process_commit_list() until 2683 * all lwb's in the zl_lwb_list have been synced and freed 2684 * (which is achieved via the txg_wait_synced() call). 2685 */ 2686 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2687 txg_wait_synced(zilog->zl_dmu_pool, 0); 2688 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2689 } 2690 2691 static void 2692 zil_burst_done(zilog_t *zilog) 2693 { 2694 if (!list_is_empty(&zilog->zl_itx_commit_list) || 2695 zilog->zl_cur_used == 0) 2696 return; 2697 2698 if (zilog->zl_parallel) 2699 zilog->zl_parallel--; 2700 2701 zilog->zl_cur_used = 0; 2702 } 2703 2704 /* 2705 * This function will traverse the commit list, creating new lwbs as 2706 * needed, and committing the itxs from the commit list to these newly 2707 * created lwbs. Additionally, as a new lwb is created, the previous 2708 * lwb will be issued to the zio layer to be written to disk. 2709 */ 2710 static void 2711 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs) 2712 { 2713 spa_t *spa = zilog->zl_spa; 2714 list_t nolwb_itxs; 2715 list_t nolwb_waiters; 2716 lwb_t *lwb, *plwb; 2717 itx_t *itx; 2718 2719 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2720 2721 /* 2722 * Return if there's nothing to commit before we dirty the fs by 2723 * calling zil_create(). 2724 */ 2725 if (list_is_empty(&zilog->zl_itx_commit_list)) 2726 return; 2727 2728 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2729 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2730 offsetof(zil_commit_waiter_t, zcw_node)); 2731 2732 lwb = list_tail(&zilog->zl_lwb_list); 2733 if (lwb == NULL) { 2734 lwb = zil_create(zilog); 2735 } else { 2736 /* 2737 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2738 * have already been created (zl_lwb_list not empty). 2739 */ 2740 zil_commit_activate_saxattr_feature(zilog); 2741 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 2742 lwb->lwb_state == LWB_STATE_OPENED); 2743 2744 /* 2745 * If the lwb is still opened, it means the workload is really 2746 * multi-threaded and we won the chance of write aggregation. 2747 * If it is not opened yet, but previous lwb is still not 2748 * flushed, it still means the workload is multi-threaded, but 2749 * there was too much time between the commits to aggregate, so 2750 * we try aggregation next times, but without too much hopes. 2751 */ 2752 if (lwb->lwb_state == LWB_STATE_OPENED) { 2753 zilog->zl_parallel = ZIL_BURSTS; 2754 } else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) 2755 != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) { 2756 zilog->zl_parallel = MAX(zilog->zl_parallel, 2757 ZIL_BURSTS / 2); 2758 } 2759 } 2760 2761 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) { 2762 lr_t *lrc = &itx->itx_lr; 2763 uint64_t txg = lrc->lrc_txg; 2764 2765 ASSERT3U(txg, !=, 0); 2766 2767 if (lrc->lrc_txtype == TX_COMMIT) { 2768 DTRACE_PROBE2(zil__process__commit__itx, 2769 zilog_t *, zilog, itx_t *, itx); 2770 } else { 2771 DTRACE_PROBE2(zil__process__normal__itx, 2772 zilog_t *, zilog, itx_t *, itx); 2773 } 2774 2775 boolean_t synced = txg <= spa_last_synced_txg(spa); 2776 boolean_t frozen = txg > spa_freeze_txg(spa); 2777 2778 /* 2779 * If the txg of this itx has already been synced out, then 2780 * we don't need to commit this itx to an lwb. This is 2781 * because the data of this itx will have already been 2782 * written to the main pool. This is inherently racy, and 2783 * it's still ok to commit an itx whose txg has already 2784 * been synced; this will result in a write that's 2785 * unnecessary, but will do no harm. 2786 * 2787 * With that said, we always want to commit TX_COMMIT itxs 2788 * to an lwb, regardless of whether or not that itx's txg 2789 * has been synced out. We do this to ensure any OPENED lwb 2790 * will always have at least one zil_commit_waiter_t linked 2791 * to the lwb. 2792 * 2793 * As a counter-example, if we skipped TX_COMMIT itx's 2794 * whose txg had already been synced, the following 2795 * situation could occur if we happened to be racing with 2796 * spa_sync: 2797 * 2798 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2799 * itx's txg is 10 and the last synced txg is 9. 2800 * 2. spa_sync finishes syncing out txg 10. 2801 * 3. We move to the next itx in the list, it's a TX_COMMIT 2802 * whose txg is 10, so we skip it rather than committing 2803 * it to the lwb used in (1). 2804 * 2805 * If the itx that is skipped in (3) is the last TX_COMMIT 2806 * itx in the commit list, than it's possible for the lwb 2807 * used in (1) to remain in the OPENED state indefinitely. 2808 * 2809 * To prevent the above scenario from occurring, ensuring 2810 * that once an lwb is OPENED it will transition to ISSUED 2811 * and eventually DONE, we always commit TX_COMMIT itx's to 2812 * an lwb here, even if that itx's txg has already been 2813 * synced. 2814 * 2815 * Finally, if the pool is frozen, we _always_ commit the 2816 * itx. The point of freezing the pool is to prevent data 2817 * from being written to the main pool via spa_sync, and 2818 * instead rely solely on the ZIL to persistently store the 2819 * data; i.e. when the pool is frozen, the last synced txg 2820 * value can't be trusted. 2821 */ 2822 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2823 if (lwb != NULL) { 2824 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs); 2825 if (lwb == NULL) { 2826 list_insert_tail(&nolwb_itxs, itx); 2827 } else if ((zcw->zcw_lwb != NULL && 2828 zcw->zcw_lwb != lwb) || zcw->zcw_done) { 2829 /* 2830 * Our lwb is done, leave the rest of 2831 * itx list to somebody else who care. 2832 */ 2833 zilog->zl_parallel = ZIL_BURSTS; 2834 break; 2835 } 2836 } else { 2837 if (lrc->lrc_txtype == TX_COMMIT) { 2838 zil_commit_waiter_link_nolwb( 2839 itx->itx_private, &nolwb_waiters); 2840 } 2841 list_insert_tail(&nolwb_itxs, itx); 2842 } 2843 } else { 2844 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2845 zil_itx_destroy(itx); 2846 } 2847 } 2848 2849 if (lwb == NULL) { 2850 /* 2851 * This indicates zio_alloc_zil() failed to allocate the 2852 * "next" lwb on-disk. When this happens, we must stall 2853 * the ZIL write pipeline; see the comment within 2854 * zil_commit_writer_stall() for more details. 2855 */ 2856 while ((lwb = list_remove_head(ilwbs)) != NULL) 2857 zil_lwb_write_issue(zilog, lwb); 2858 zil_commit_writer_stall(zilog); 2859 2860 /* 2861 * Additionally, we have to signal and mark the "nolwb" 2862 * waiters as "done" here, since without an lwb, we 2863 * can't do this via zil_lwb_flush_vdevs_done() like 2864 * normal. 2865 */ 2866 zil_commit_waiter_t *zcw; 2867 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL) 2868 zil_commit_waiter_skip(zcw); 2869 2870 /* 2871 * And finally, we have to destroy the itx's that 2872 * couldn't be committed to an lwb; this will also call 2873 * the itx's callback if one exists for the itx. 2874 */ 2875 while ((itx = list_remove_head(&nolwb_itxs)) != NULL) 2876 zil_itx_destroy(itx); 2877 } else { 2878 ASSERT(list_is_empty(&nolwb_waiters)); 2879 ASSERT3P(lwb, !=, NULL); 2880 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 2881 lwb->lwb_state == LWB_STATE_OPENED); 2882 2883 /* 2884 * At this point, the ZIL block pointed at by the "lwb" 2885 * variable is in "new" or "opened" state. 2886 * 2887 * If it's "new", then no itxs have been committed to it, so 2888 * there's no point in issuing its zio (i.e. it's "empty"). 2889 * 2890 * If it's "opened", then it contains one or more itxs that 2891 * eventually need to be committed to stable storage. In 2892 * this case we intentionally do not issue the lwb's zio 2893 * to disk yet, and instead rely on one of the following 2894 * two mechanisms for issuing the zio: 2895 * 2896 * 1. Ideally, there will be more ZIL activity occurring on 2897 * the system, such that this function will be immediately 2898 * called again by different thread and this lwb will be 2899 * closed by zil_lwb_assign(). This way, the lwb will be 2900 * "full" when it is issued to disk, and we'll make use of 2901 * the lwb's size the best we can. 2902 * 2903 * 2. If there isn't sufficient ZIL activity occurring on 2904 * the system, zil_commit_waiter() will close it and issue 2905 * the zio. If this occurs, the lwb is not guaranteed 2906 * to be "full" by the time its zio is issued, and means 2907 * the size of the lwb was "too large" given the amount 2908 * of ZIL activity occurring on the system at that time. 2909 * 2910 * We do this for a couple of reasons: 2911 * 2912 * 1. To try and reduce the number of IOPs needed to 2913 * write the same number of itxs. If an lwb has space 2914 * available in its buffer for more itxs, and more itxs 2915 * will be committed relatively soon (relative to the 2916 * latency of performing a write), then it's beneficial 2917 * to wait for these "next" itxs. This way, more itxs 2918 * can be committed to stable storage with fewer writes. 2919 * 2920 * 2. To try and use the largest lwb block size that the 2921 * incoming rate of itxs can support. Again, this is to 2922 * try and pack as many itxs into as few lwbs as 2923 * possible, without significantly impacting the latency 2924 * of each individual itx. 2925 */ 2926 if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) { 2927 list_insert_tail(ilwbs, lwb); 2928 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW); 2929 zil_burst_done(zilog); 2930 if (lwb == NULL) { 2931 while ((lwb = list_remove_head(ilwbs)) != NULL) 2932 zil_lwb_write_issue(zilog, lwb); 2933 zil_commit_writer_stall(zilog); 2934 } 2935 } 2936 } 2937 } 2938 2939 /* 2940 * This function is responsible for ensuring the passed in commit waiter 2941 * (and associated commit itx) is committed to an lwb. If the waiter is 2942 * not already committed to an lwb, all itxs in the zilog's queue of 2943 * itxs will be processed. The assumption is the passed in waiter's 2944 * commit itx will found in the queue just like the other non-commit 2945 * itxs, such that when the entire queue is processed, the waiter will 2946 * have been committed to an lwb. 2947 * 2948 * The lwb associated with the passed in waiter is not guaranteed to 2949 * have been issued by the time this function completes. If the lwb is 2950 * not issued, we rely on future calls to zil_commit_writer() to issue 2951 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2952 */ 2953 static uint64_t 2954 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2955 { 2956 list_t ilwbs; 2957 lwb_t *lwb; 2958 uint64_t wtxg = 0; 2959 2960 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2961 ASSERT(spa_writeable(zilog->zl_spa)); 2962 2963 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node)); 2964 mutex_enter(&zilog->zl_issuer_lock); 2965 2966 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2967 /* 2968 * It's possible that, while we were waiting to acquire 2969 * the "zl_issuer_lock", another thread committed this 2970 * waiter to an lwb. If that occurs, we bail out early, 2971 * without processing any of the zilog's queue of itxs. 2972 * 2973 * On certain workloads and system configurations, the 2974 * "zl_issuer_lock" can become highly contended. In an 2975 * attempt to reduce this contention, we immediately drop 2976 * the lock if the waiter has already been processed. 2977 * 2978 * We've measured this optimization to reduce CPU spent 2979 * contending on this lock by up to 5%, using a system 2980 * with 32 CPUs, low latency storage (~50 usec writes), 2981 * and 1024 threads performing sync writes. 2982 */ 2983 goto out; 2984 } 2985 2986 ZIL_STAT_BUMP(zilog, zil_commit_writer_count); 2987 2988 wtxg = zil_get_commit_list(zilog); 2989 zil_prune_commit_list(zilog); 2990 zil_process_commit_list(zilog, zcw, &ilwbs); 2991 2992 out: 2993 mutex_exit(&zilog->zl_issuer_lock); 2994 while ((lwb = list_remove_head(&ilwbs)) != NULL) 2995 zil_lwb_write_issue(zilog, lwb); 2996 list_destroy(&ilwbs); 2997 return (wtxg); 2998 } 2999 3000 static void 3001 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 3002 { 3003 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3004 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3005 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 3006 3007 lwb_t *lwb = zcw->zcw_lwb; 3008 ASSERT3P(lwb, !=, NULL); 3009 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW); 3010 3011 /* 3012 * If the lwb has already been issued by another thread, we can 3013 * immediately return since there's no work to be done (the 3014 * point of this function is to issue the lwb). Additionally, we 3015 * do this prior to acquiring the zl_issuer_lock, to avoid 3016 * acquiring it when it's not necessary to do so. 3017 */ 3018 if (lwb->lwb_state != LWB_STATE_OPENED) 3019 return; 3020 3021 /* 3022 * In order to call zil_lwb_write_close() we must hold the 3023 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 3024 * since we're already holding the commit waiter's "zcw_lock", 3025 * and those two locks are acquired in the opposite order 3026 * elsewhere. 3027 */ 3028 mutex_exit(&zcw->zcw_lock); 3029 mutex_enter(&zilog->zl_issuer_lock); 3030 mutex_enter(&zcw->zcw_lock); 3031 3032 /* 3033 * Since we just dropped and re-acquired the commit waiter's 3034 * lock, we have to re-check to see if the waiter was marked 3035 * "done" during that process. If the waiter was marked "done", 3036 * the "lwb" pointer is no longer valid (it can be free'd after 3037 * the waiter is marked "done"), so without this check we could 3038 * wind up with a use-after-free error below. 3039 */ 3040 if (zcw->zcw_done) { 3041 mutex_exit(&zilog->zl_issuer_lock); 3042 return; 3043 } 3044 3045 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3046 3047 /* 3048 * We've already checked this above, but since we hadn't acquired 3049 * the zilog's zl_issuer_lock, we have to perform this check a 3050 * second time while holding the lock. 3051 * 3052 * We don't need to hold the zl_lock since the lwb cannot transition 3053 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb 3054 * _can_ transition from CLOSED to DONE, but it's OK to race with 3055 * that transition since we treat the lwb the same, whether it's in 3056 * the CLOSED, ISSUED or DONE states. 3057 * 3058 * The important thing, is we treat the lwb differently depending on 3059 * if it's OPENED or CLOSED, and block any other threads that might 3060 * attempt to close/issue this lwb. For that reason we hold the 3061 * zl_issuer_lock when checking the lwb_state; we must not call 3062 * zil_lwb_write_close() if the lwb had already been closed/issued. 3063 * 3064 * See the comment above the lwb_state_t structure definition for 3065 * more details on the lwb states, and locking requirements. 3066 */ 3067 if (lwb->lwb_state != LWB_STATE_OPENED) { 3068 mutex_exit(&zilog->zl_issuer_lock); 3069 return; 3070 } 3071 3072 /* 3073 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb 3074 * is still open. But we have to drop it to avoid a deadlock in case 3075 * callback of zio issued by zil_lwb_write_issue() try to get it, 3076 * while zil_lwb_write_issue() is blocked on attempt to issue next 3077 * lwb it found in LWB_STATE_READY state. 3078 */ 3079 mutex_exit(&zcw->zcw_lock); 3080 3081 /* 3082 * As described in the comments above zil_commit_waiter() and 3083 * zil_process_commit_list(), we need to issue this lwb's zio 3084 * since we've reached the commit waiter's timeout and it still 3085 * hasn't been issued. 3086 */ 3087 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW); 3088 3089 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED); 3090 3091 zil_burst_done(zilog); 3092 3093 if (nlwb == NULL) { 3094 /* 3095 * When zil_lwb_write_close() returns NULL, this 3096 * indicates zio_alloc_zil() failed to allocate the 3097 * "next" lwb on-disk. When this occurs, the ZIL write 3098 * pipeline must be stalled; see the comment within the 3099 * zil_commit_writer_stall() function for more details. 3100 */ 3101 zil_lwb_write_issue(zilog, lwb); 3102 zil_commit_writer_stall(zilog); 3103 mutex_exit(&zilog->zl_issuer_lock); 3104 } else { 3105 mutex_exit(&zilog->zl_issuer_lock); 3106 zil_lwb_write_issue(zilog, lwb); 3107 } 3108 mutex_enter(&zcw->zcw_lock); 3109 } 3110 3111 /* 3112 * This function is responsible for performing the following two tasks: 3113 * 3114 * 1. its primary responsibility is to block until the given "commit 3115 * waiter" is considered "done". 3116 * 3117 * 2. its secondary responsibility is to issue the zio for the lwb that 3118 * the given "commit waiter" is waiting on, if this function has 3119 * waited "long enough" and the lwb is still in the "open" state. 3120 * 3121 * Given a sufficient amount of itxs being generated and written using 3122 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign() 3123 * function. If this does not occur, this secondary responsibility will 3124 * ensure the lwb is issued even if there is not other synchronous 3125 * activity on the system. 3126 * 3127 * For more details, see zil_process_commit_list(); more specifically, 3128 * the comment at the bottom of that function. 3129 */ 3130 static void 3131 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 3132 { 3133 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 3134 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3135 ASSERT(spa_writeable(zilog->zl_spa)); 3136 3137 mutex_enter(&zcw->zcw_lock); 3138 3139 /* 3140 * The timeout is scaled based on the lwb latency to avoid 3141 * significantly impacting the latency of each individual itx. 3142 * For more details, see the comment at the bottom of the 3143 * zil_process_commit_list() function. 3144 */ 3145 int pct = MAX(zfs_commit_timeout_pct, 1); 3146 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 3147 hrtime_t wakeup = gethrtime() + sleep; 3148 boolean_t timedout = B_FALSE; 3149 3150 while (!zcw->zcw_done) { 3151 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3152 3153 lwb_t *lwb = zcw->zcw_lwb; 3154 3155 /* 3156 * Usually, the waiter will have a non-NULL lwb field here, 3157 * but it's possible for it to be NULL as a result of 3158 * zil_commit() racing with spa_sync(). 3159 * 3160 * When zil_clean() is called, it's possible for the itxg 3161 * list (which may be cleaned via a taskq) to contain 3162 * commit itxs. When this occurs, the commit waiters linked 3163 * off of these commit itxs will not be committed to an 3164 * lwb. Additionally, these commit waiters will not be 3165 * marked done until zil_commit_waiter_skip() is called via 3166 * zil_itxg_clean(). 3167 * 3168 * Thus, it's possible for this commit waiter (i.e. the 3169 * "zcw" variable) to be found in this "in between" state; 3170 * where it's "zcw_lwb" field is NULL, and it hasn't yet 3171 * been skipped, so it's "zcw_done" field is still B_FALSE. 3172 */ 3173 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW); 3174 3175 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 3176 ASSERT3B(timedout, ==, B_FALSE); 3177 3178 /* 3179 * If the lwb hasn't been issued yet, then we 3180 * need to wait with a timeout, in case this 3181 * function needs to issue the lwb after the 3182 * timeout is reached; responsibility (2) from 3183 * the comment above this function. 3184 */ 3185 int rc = cv_timedwait_hires(&zcw->zcw_cv, 3186 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 3187 CALLOUT_FLAG_ABSOLUTE); 3188 3189 if (rc != -1 || zcw->zcw_done) 3190 continue; 3191 3192 timedout = B_TRUE; 3193 zil_commit_waiter_timeout(zilog, zcw); 3194 3195 if (!zcw->zcw_done) { 3196 /* 3197 * If the commit waiter has already been 3198 * marked "done", it's possible for the 3199 * waiter's lwb structure to have already 3200 * been freed. Thus, we can only reliably 3201 * make these assertions if the waiter 3202 * isn't done. 3203 */ 3204 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3205 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3206 } 3207 } else { 3208 /* 3209 * If the lwb isn't open, then it must have already 3210 * been issued. In that case, there's no need to 3211 * use a timeout when waiting for the lwb to 3212 * complete. 3213 * 3214 * Additionally, if the lwb is NULL, the waiter 3215 * will soon be signaled and marked done via 3216 * zil_clean() and zil_itxg_clean(), so no timeout 3217 * is required. 3218 */ 3219 3220 IMPLY(lwb != NULL, 3221 lwb->lwb_state == LWB_STATE_CLOSED || 3222 lwb->lwb_state == LWB_STATE_READY || 3223 lwb->lwb_state == LWB_STATE_ISSUED || 3224 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3225 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 3226 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 3227 } 3228 } 3229 3230 mutex_exit(&zcw->zcw_lock); 3231 } 3232 3233 static zil_commit_waiter_t * 3234 zil_alloc_commit_waiter(void) 3235 { 3236 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 3237 3238 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 3239 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 3240 list_link_init(&zcw->zcw_node); 3241 zcw->zcw_lwb = NULL; 3242 zcw->zcw_done = B_FALSE; 3243 zcw->zcw_zio_error = 0; 3244 3245 return (zcw); 3246 } 3247 3248 static void 3249 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 3250 { 3251 ASSERT(!list_link_active(&zcw->zcw_node)); 3252 ASSERT3P(zcw->zcw_lwb, ==, NULL); 3253 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 3254 mutex_destroy(&zcw->zcw_lock); 3255 cv_destroy(&zcw->zcw_cv); 3256 kmem_cache_free(zil_zcw_cache, zcw); 3257 } 3258 3259 /* 3260 * This function is used to create a TX_COMMIT itx and assign it. This 3261 * way, it will be linked into the ZIL's list of synchronous itxs, and 3262 * then later committed to an lwb (or skipped) when 3263 * zil_process_commit_list() is called. 3264 */ 3265 static void 3266 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 3267 { 3268 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 3269 3270 /* 3271 * Since we are not going to create any new dirty data, and we 3272 * can even help with clearing the existing dirty data, we 3273 * should not be subject to the dirty data based delays. We 3274 * use TXG_NOTHROTTLE to bypass the delay mechanism. 3275 */ 3276 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 3277 3278 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 3279 itx->itx_sync = B_TRUE; 3280 itx->itx_private = zcw; 3281 3282 zil_itx_assign(zilog, itx, tx); 3283 3284 dmu_tx_commit(tx); 3285 } 3286 3287 /* 3288 * Commit ZFS Intent Log transactions (itxs) to stable storage. 3289 * 3290 * When writing ZIL transactions to the on-disk representation of the 3291 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 3292 * itxs can be committed to a single lwb. Once a lwb is written and 3293 * committed to stable storage (i.e. the lwb is written, and vdevs have 3294 * been flushed), each itx that was committed to that lwb is also 3295 * considered to be committed to stable storage. 3296 * 3297 * When an itx is committed to an lwb, the log record (lr_t) contained 3298 * by the itx is copied into the lwb's zio buffer, and once this buffer 3299 * is written to disk, it becomes an on-disk ZIL block. 3300 * 3301 * As itxs are generated, they're inserted into the ZIL's queue of 3302 * uncommitted itxs. The semantics of zil_commit() are such that it will 3303 * block until all itxs that were in the queue when it was called, are 3304 * committed to stable storage. 3305 * 3306 * If "foid" is zero, this means all "synchronous" and "asynchronous" 3307 * itxs, for all objects in the dataset, will be committed to stable 3308 * storage prior to zil_commit() returning. If "foid" is non-zero, all 3309 * "synchronous" itxs for all objects, but only "asynchronous" itxs 3310 * that correspond to the foid passed in, will be committed to stable 3311 * storage prior to zil_commit() returning. 3312 * 3313 * Generally speaking, when zil_commit() is called, the consumer doesn't 3314 * actually care about _all_ of the uncommitted itxs. Instead, they're 3315 * simply trying to waiting for a specific itx to be committed to disk, 3316 * but the interface(s) for interacting with the ZIL don't allow such 3317 * fine-grained communication. A better interface would allow a consumer 3318 * to create and assign an itx, and then pass a reference to this itx to 3319 * zil_commit(); such that zil_commit() would return as soon as that 3320 * specific itx was committed to disk (instead of waiting for _all_ 3321 * itxs to be committed). 3322 * 3323 * When a thread calls zil_commit() a special "commit itx" will be 3324 * generated, along with a corresponding "waiter" for this commit itx. 3325 * zil_commit() will wait on this waiter's CV, such that when the waiter 3326 * is marked done, and signaled, zil_commit() will return. 3327 * 3328 * This commit itx is inserted into the queue of uncommitted itxs. This 3329 * provides an easy mechanism for determining which itxs were in the 3330 * queue prior to zil_commit() having been called, and which itxs were 3331 * added after zil_commit() was called. 3332 * 3333 * The commit itx is special; it doesn't have any on-disk representation. 3334 * When a commit itx is "committed" to an lwb, the waiter associated 3335 * with it is linked onto the lwb's list of waiters. Then, when that lwb 3336 * completes, each waiter on the lwb's list is marked done and signaled 3337 * -- allowing the thread waiting on the waiter to return from zil_commit(). 3338 * 3339 * It's important to point out a few critical factors that allow us 3340 * to make use of the commit itxs, commit waiters, per-lwb lists of 3341 * commit waiters, and zio completion callbacks like we're doing: 3342 * 3343 * 1. The list of waiters for each lwb is traversed, and each commit 3344 * waiter is marked "done" and signaled, in the zio completion 3345 * callback of the lwb's zio[*]. 3346 * 3347 * * Actually, the waiters are signaled in the zio completion 3348 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 3349 * that are sent to the vdevs upon completion of the lwb zio. 3350 * 3351 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 3352 * itxs, the order in which they are inserted is preserved[*]; as 3353 * itxs are added to the queue, they are added to the tail of 3354 * in-memory linked lists. 3355 * 3356 * When committing the itxs to lwbs (to be written to disk), they 3357 * are committed in the same order in which the itxs were added to 3358 * the uncommitted queue's linked list(s); i.e. the linked list of 3359 * itxs to commit is traversed from head to tail, and each itx is 3360 * committed to an lwb in that order. 3361 * 3362 * * To clarify: 3363 * 3364 * - the order of "sync" itxs is preserved w.r.t. other 3365 * "sync" itxs, regardless of the corresponding objects. 3366 * - the order of "async" itxs is preserved w.r.t. other 3367 * "async" itxs corresponding to the same object. 3368 * - the order of "async" itxs is *not* preserved w.r.t. other 3369 * "async" itxs corresponding to different objects. 3370 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 3371 * versa) is *not* preserved, even for itxs that correspond 3372 * to the same object. 3373 * 3374 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 3375 * zil_get_commit_list(), and zil_process_commit_list(). 3376 * 3377 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 3378 * lwb cannot be considered committed to stable storage, until its 3379 * "previous" lwb is also committed to stable storage. This fact, 3380 * coupled with the fact described above, means that itxs are 3381 * committed in (roughly) the order in which they were generated. 3382 * This is essential because itxs are dependent on prior itxs. 3383 * Thus, we *must not* deem an itx as being committed to stable 3384 * storage, until *all* prior itxs have also been committed to 3385 * stable storage. 3386 * 3387 * To enforce this ordering of lwb zio's, while still leveraging as 3388 * much of the underlying storage performance as possible, we rely 3389 * on two fundamental concepts: 3390 * 3391 * 1. The creation and issuance of lwb zio's is protected by 3392 * the zilog's "zl_issuer_lock", which ensures only a single 3393 * thread is creating and/or issuing lwb's at a time 3394 * 2. The "previous" lwb is a child of the "current" lwb 3395 * (leveraging the zio parent-child dependency graph) 3396 * 3397 * By relying on this parent-child zio relationship, we can have 3398 * many lwb zio's concurrently issued to the underlying storage, 3399 * but the order in which they complete will be the same order in 3400 * which they were created. 3401 */ 3402 void 3403 zil_commit(zilog_t *zilog, uint64_t foid) 3404 { 3405 /* 3406 * We should never attempt to call zil_commit on a snapshot for 3407 * a couple of reasons: 3408 * 3409 * 1. A snapshot may never be modified, thus it cannot have any 3410 * in-flight itxs that would have modified the dataset. 3411 * 3412 * 2. By design, when zil_commit() is called, a commit itx will 3413 * be assigned to this zilog; as a result, the zilog will be 3414 * dirtied. We must not dirty the zilog of a snapshot; there's 3415 * checks in the code that enforce this invariant, and will 3416 * cause a panic if it's not upheld. 3417 */ 3418 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3419 3420 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3421 return; 3422 3423 if (!spa_writeable(zilog->zl_spa)) { 3424 /* 3425 * If the SPA is not writable, there should never be any 3426 * pending itxs waiting to be committed to disk. If that 3427 * weren't true, we'd skip writing those itxs out, and 3428 * would break the semantics of zil_commit(); thus, we're 3429 * verifying that truth before we return to the caller. 3430 */ 3431 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3432 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3433 for (int i = 0; i < TXG_SIZE; i++) 3434 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3435 return; 3436 } 3437 3438 /* 3439 * If the ZIL is suspended, we don't want to dirty it by calling 3440 * zil_commit_itx_assign() below, nor can we write out 3441 * lwbs like would be done in zil_commit_write(). Thus, we 3442 * simply rely on txg_wait_synced() to maintain the necessary 3443 * semantics, and avoid calling those functions altogether. 3444 */ 3445 if (zilog->zl_suspend > 0) { 3446 txg_wait_synced(zilog->zl_dmu_pool, 0); 3447 return; 3448 } 3449 3450 zil_commit_impl(zilog, foid); 3451 } 3452 3453 void 3454 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3455 { 3456 ZIL_STAT_BUMP(zilog, zil_commit_count); 3457 3458 /* 3459 * Move the "async" itxs for the specified foid to the "sync" 3460 * queues, such that they will be later committed (or skipped) 3461 * to an lwb when zil_process_commit_list() is called. 3462 * 3463 * Since these "async" itxs must be committed prior to this 3464 * call to zil_commit returning, we must perform this operation 3465 * before we call zil_commit_itx_assign(). 3466 */ 3467 zil_async_to_sync(zilog, foid); 3468 3469 /* 3470 * We allocate a new "waiter" structure which will initially be 3471 * linked to the commit itx using the itx's "itx_private" field. 3472 * Since the commit itx doesn't represent any on-disk state, 3473 * when it's committed to an lwb, rather than copying the its 3474 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3475 * added to the lwb's list of waiters. Then, when the lwb is 3476 * committed to stable storage, each waiter in the lwb's list of 3477 * waiters will be marked "done", and signalled. 3478 * 3479 * We must create the waiter and assign the commit itx prior to 3480 * calling zil_commit_writer(), or else our specific commit itx 3481 * is not guaranteed to be committed to an lwb prior to calling 3482 * zil_commit_waiter(). 3483 */ 3484 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3485 zil_commit_itx_assign(zilog, zcw); 3486 3487 uint64_t wtxg = zil_commit_writer(zilog, zcw); 3488 zil_commit_waiter(zilog, zcw); 3489 3490 if (zcw->zcw_zio_error != 0) { 3491 /* 3492 * If there was an error writing out the ZIL blocks that 3493 * this thread is waiting on, then we fallback to 3494 * relying on spa_sync() to write out the data this 3495 * thread is waiting on. Obviously this has performance 3496 * implications, but the expectation is for this to be 3497 * an exceptional case, and shouldn't occur often. 3498 */ 3499 DTRACE_PROBE2(zil__commit__io__error, 3500 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3501 txg_wait_synced(zilog->zl_dmu_pool, 0); 3502 } else if (wtxg != 0) { 3503 txg_wait_synced(zilog->zl_dmu_pool, wtxg); 3504 } 3505 3506 zil_free_commit_waiter(zcw); 3507 } 3508 3509 /* 3510 * Called in syncing context to free committed log blocks and update log header. 3511 */ 3512 void 3513 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3514 { 3515 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3516 uint64_t txg = dmu_tx_get_txg(tx); 3517 spa_t *spa = zilog->zl_spa; 3518 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3519 lwb_t *lwb; 3520 3521 /* 3522 * We don't zero out zl_destroy_txg, so make sure we don't try 3523 * to destroy it twice. 3524 */ 3525 if (spa_sync_pass(spa) != 1) 3526 return; 3527 3528 zil_lwb_flush_wait_all(zilog, txg); 3529 3530 mutex_enter(&zilog->zl_lock); 3531 3532 ASSERT(zilog->zl_stop_sync == 0); 3533 3534 if (*replayed_seq != 0) { 3535 ASSERT(zh->zh_replay_seq < *replayed_seq); 3536 zh->zh_replay_seq = *replayed_seq; 3537 *replayed_seq = 0; 3538 } 3539 3540 if (zilog->zl_destroy_txg == txg) { 3541 blkptr_t blk = zh->zh_log; 3542 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3543 3544 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3545 3546 memset(zh, 0, sizeof (zil_header_t)); 3547 memset(zilog->zl_replayed_seq, 0, 3548 sizeof (zilog->zl_replayed_seq)); 3549 3550 if (zilog->zl_keep_first) { 3551 /* 3552 * If this block was part of log chain that couldn't 3553 * be claimed because a device was missing during 3554 * zil_claim(), but that device later returns, 3555 * then this block could erroneously appear valid. 3556 * To guard against this, assign a new GUID to the new 3557 * log chain so it doesn't matter what blk points to. 3558 */ 3559 zil_init_log_chain(zilog, &blk); 3560 zh->zh_log = blk; 3561 } else { 3562 /* 3563 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3564 * records. So, deactivate the feature for this dataset. 3565 * We activate it again when we start a new ZIL chain. 3566 */ 3567 if (dsl_dataset_feature_is_active(ds, 3568 SPA_FEATURE_ZILSAXATTR)) 3569 dsl_dataset_deactivate_feature(ds, 3570 SPA_FEATURE_ZILSAXATTR, tx); 3571 } 3572 } 3573 3574 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3575 zh->zh_log = lwb->lwb_blk; 3576 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE || 3577 lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg) 3578 break; 3579 list_remove(&zilog->zl_lwb_list, lwb); 3580 if (!BP_IS_HOLE(&lwb->lwb_blk)) 3581 zio_free(spa, txg, &lwb->lwb_blk); 3582 zil_free_lwb(zilog, lwb); 3583 3584 /* 3585 * If we don't have anything left in the lwb list then 3586 * we've had an allocation failure and we need to zero 3587 * out the zil_header blkptr so that we don't end 3588 * up freeing the same block twice. 3589 */ 3590 if (list_is_empty(&zilog->zl_lwb_list)) 3591 BP_ZERO(&zh->zh_log); 3592 } 3593 3594 mutex_exit(&zilog->zl_lock); 3595 } 3596 3597 static int 3598 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3599 { 3600 (void) unused, (void) kmflag; 3601 lwb_t *lwb = vbuf; 3602 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3603 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3604 offsetof(zil_commit_waiter_t, zcw_node)); 3605 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3606 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3607 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3608 return (0); 3609 } 3610 3611 static void 3612 zil_lwb_dest(void *vbuf, void *unused) 3613 { 3614 (void) unused; 3615 lwb_t *lwb = vbuf; 3616 mutex_destroy(&lwb->lwb_vdev_lock); 3617 avl_destroy(&lwb->lwb_vdev_tree); 3618 list_destroy(&lwb->lwb_waiters); 3619 list_destroy(&lwb->lwb_itxs); 3620 } 3621 3622 void 3623 zil_init(void) 3624 { 3625 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3626 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3627 3628 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3629 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3630 3631 zil_sums_init(&zil_sums_global); 3632 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", 3633 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3634 KSTAT_FLAG_VIRTUAL); 3635 3636 if (zil_kstats_global != NULL) { 3637 zil_kstats_global->ks_data = &zil_stats; 3638 zil_kstats_global->ks_update = zil_kstats_global_update; 3639 zil_kstats_global->ks_private = NULL; 3640 kstat_install(zil_kstats_global); 3641 } 3642 } 3643 3644 void 3645 zil_fini(void) 3646 { 3647 kmem_cache_destroy(zil_zcw_cache); 3648 kmem_cache_destroy(zil_lwb_cache); 3649 3650 if (zil_kstats_global != NULL) { 3651 kstat_delete(zil_kstats_global); 3652 zil_kstats_global = NULL; 3653 } 3654 3655 zil_sums_fini(&zil_sums_global); 3656 } 3657 3658 void 3659 zil_set_sync(zilog_t *zilog, uint64_t sync) 3660 { 3661 zilog->zl_sync = sync; 3662 } 3663 3664 void 3665 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3666 { 3667 zilog->zl_logbias = logbias; 3668 } 3669 3670 zilog_t * 3671 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3672 { 3673 zilog_t *zilog; 3674 3675 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3676 3677 zilog->zl_header = zh_phys; 3678 zilog->zl_os = os; 3679 zilog->zl_spa = dmu_objset_spa(os); 3680 zilog->zl_dmu_pool = dmu_objset_pool(os); 3681 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3682 zilog->zl_logbias = dmu_objset_logbias(os); 3683 zilog->zl_sync = dmu_objset_syncprop(os); 3684 zilog->zl_dirty_max_txg = 0; 3685 zilog->zl_last_lwb_opened = NULL; 3686 zilog->zl_last_lwb_latency = 0; 3687 zilog->zl_max_block_size = zil_maxblocksize; 3688 3689 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3690 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3691 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); 3692 3693 for (int i = 0; i < TXG_SIZE; i++) { 3694 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3695 MUTEX_DEFAULT, NULL); 3696 } 3697 3698 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3699 offsetof(lwb_t, lwb_node)); 3700 3701 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3702 offsetof(itx_t, itx_node)); 3703 3704 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3705 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); 3706 3707 return (zilog); 3708 } 3709 3710 void 3711 zil_free(zilog_t *zilog) 3712 { 3713 int i; 3714 3715 zilog->zl_stop_sync = 1; 3716 3717 ASSERT0(zilog->zl_suspend); 3718 ASSERT0(zilog->zl_suspending); 3719 3720 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3721 list_destroy(&zilog->zl_lwb_list); 3722 3723 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3724 list_destroy(&zilog->zl_itx_commit_list); 3725 3726 for (i = 0; i < TXG_SIZE; i++) { 3727 /* 3728 * It's possible for an itx to be generated that doesn't dirty 3729 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3730 * callback to remove the entry. We remove those here. 3731 * 3732 * Also free up the ziltest itxs. 3733 */ 3734 if (zilog->zl_itxg[i].itxg_itxs) 3735 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3736 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3737 } 3738 3739 mutex_destroy(&zilog->zl_issuer_lock); 3740 mutex_destroy(&zilog->zl_lock); 3741 mutex_destroy(&zilog->zl_lwb_io_lock); 3742 3743 cv_destroy(&zilog->zl_cv_suspend); 3744 cv_destroy(&zilog->zl_lwb_io_cv); 3745 3746 kmem_free(zilog, sizeof (zilog_t)); 3747 } 3748 3749 /* 3750 * Open an intent log. 3751 */ 3752 zilog_t * 3753 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) 3754 { 3755 zilog_t *zilog = dmu_objset_zil(os); 3756 3757 ASSERT3P(zilog->zl_get_data, ==, NULL); 3758 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3759 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3760 3761 zilog->zl_get_data = get_data; 3762 zilog->zl_sums = zil_sums; 3763 3764 return (zilog); 3765 } 3766 3767 /* 3768 * Close an intent log. 3769 */ 3770 void 3771 zil_close(zilog_t *zilog) 3772 { 3773 lwb_t *lwb; 3774 uint64_t txg; 3775 3776 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3777 zil_commit(zilog, 0); 3778 } else { 3779 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3780 ASSERT0(zilog->zl_dirty_max_txg); 3781 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3782 } 3783 3784 mutex_enter(&zilog->zl_lock); 3785 txg = zilog->zl_dirty_max_txg; 3786 lwb = list_tail(&zilog->zl_lwb_list); 3787 if (lwb != NULL) { 3788 txg = MAX(txg, lwb->lwb_alloc_txg); 3789 txg = MAX(txg, lwb->lwb_max_txg); 3790 } 3791 mutex_exit(&zilog->zl_lock); 3792 3793 /* 3794 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends 3795 * on the time when the dmu_tx transaction is assigned in 3796 * zil_lwb_write_issue(). 3797 */ 3798 mutex_enter(&zilog->zl_lwb_io_lock); 3799 txg = MAX(zilog->zl_lwb_max_issued_txg, txg); 3800 mutex_exit(&zilog->zl_lwb_io_lock); 3801 3802 /* 3803 * We need to use txg_wait_synced() to wait until that txg is synced. 3804 * zil_sync() will guarantee all lwbs up to that txg have been 3805 * written out, flushed, and cleaned. 3806 */ 3807 if (txg != 0) 3808 txg_wait_synced(zilog->zl_dmu_pool, txg); 3809 3810 if (zilog_is_dirty(zilog)) 3811 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 3812 (u_longlong_t)txg); 3813 if (txg < spa_freeze_txg(zilog->zl_spa)) 3814 VERIFY(!zilog_is_dirty(zilog)); 3815 3816 zilog->zl_get_data = NULL; 3817 3818 /* 3819 * We should have only one lwb left on the list; remove it now. 3820 */ 3821 mutex_enter(&zilog->zl_lock); 3822 lwb = list_remove_head(&zilog->zl_lwb_list); 3823 if (lwb != NULL) { 3824 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3825 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW); 3826 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3827 zil_free_lwb(zilog, lwb); 3828 } 3829 mutex_exit(&zilog->zl_lock); 3830 } 3831 3832 static const char *suspend_tag = "zil suspending"; 3833 3834 /* 3835 * Suspend an intent log. While in suspended mode, we still honor 3836 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3837 * On old version pools, we suspend the log briefly when taking a 3838 * snapshot so that it will have an empty intent log. 3839 * 3840 * Long holds are not really intended to be used the way we do here -- 3841 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3842 * could fail. Therefore we take pains to only put a long hold if it is 3843 * actually necessary. Fortunately, it will only be necessary if the 3844 * objset is currently mounted (or the ZVOL equivalent). In that case it 3845 * will already have a long hold, so we are not really making things any worse. 3846 * 3847 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3848 * zvol_state_t), and use their mechanism to prevent their hold from being 3849 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3850 * very little gain. 3851 * 3852 * if cookiep == NULL, this does both the suspend & resume. 3853 * Otherwise, it returns with the dataset "long held", and the cookie 3854 * should be passed into zil_resume(). 3855 */ 3856 int 3857 zil_suspend(const char *osname, void **cookiep) 3858 { 3859 objset_t *os; 3860 zilog_t *zilog; 3861 const zil_header_t *zh; 3862 int error; 3863 3864 error = dmu_objset_hold(osname, suspend_tag, &os); 3865 if (error != 0) 3866 return (error); 3867 zilog = dmu_objset_zil(os); 3868 3869 mutex_enter(&zilog->zl_lock); 3870 zh = zilog->zl_header; 3871 3872 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3873 mutex_exit(&zilog->zl_lock); 3874 dmu_objset_rele(os, suspend_tag); 3875 return (SET_ERROR(EBUSY)); 3876 } 3877 3878 /* 3879 * Don't put a long hold in the cases where we can avoid it. This 3880 * is when there is no cookie so we are doing a suspend & resume 3881 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3882 * for the suspend because it's already suspended, or there's no ZIL. 3883 */ 3884 if (cookiep == NULL && !zilog->zl_suspending && 3885 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3886 mutex_exit(&zilog->zl_lock); 3887 dmu_objset_rele(os, suspend_tag); 3888 return (0); 3889 } 3890 3891 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3892 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3893 3894 zilog->zl_suspend++; 3895 3896 if (zilog->zl_suspend > 1) { 3897 /* 3898 * Someone else is already suspending it. 3899 * Just wait for them to finish. 3900 */ 3901 3902 while (zilog->zl_suspending) 3903 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3904 mutex_exit(&zilog->zl_lock); 3905 3906 if (cookiep == NULL) 3907 zil_resume(os); 3908 else 3909 *cookiep = os; 3910 return (0); 3911 } 3912 3913 /* 3914 * If there is no pointer to an on-disk block, this ZIL must not 3915 * be active (e.g. filesystem not mounted), so there's nothing 3916 * to clean up. 3917 */ 3918 if (BP_IS_HOLE(&zh->zh_log)) { 3919 ASSERT(cookiep != NULL); /* fast path already handled */ 3920 3921 *cookiep = os; 3922 mutex_exit(&zilog->zl_lock); 3923 return (0); 3924 } 3925 3926 /* 3927 * The ZIL has work to do. Ensure that the associated encryption 3928 * key will remain mapped while we are committing the log by 3929 * grabbing a reference to it. If the key isn't loaded we have no 3930 * choice but to return an error until the wrapping key is loaded. 3931 */ 3932 if (os->os_encrypted && 3933 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3934 zilog->zl_suspend--; 3935 mutex_exit(&zilog->zl_lock); 3936 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3937 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3938 return (SET_ERROR(EACCES)); 3939 } 3940 3941 zilog->zl_suspending = B_TRUE; 3942 mutex_exit(&zilog->zl_lock); 3943 3944 /* 3945 * We need to use zil_commit_impl to ensure we wait for all 3946 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed 3947 * to disk before proceeding. If we used zil_commit instead, it 3948 * would just call txg_wait_synced(), because zl_suspend is set. 3949 * txg_wait_synced() doesn't wait for these lwb's to be 3950 * LWB_STATE_FLUSH_DONE before returning. 3951 */ 3952 zil_commit_impl(zilog, 0); 3953 3954 /* 3955 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3956 * use txg_wait_synced() to ensure the data from the zilog has 3957 * migrated to the main pool before calling zil_destroy(). 3958 */ 3959 txg_wait_synced(zilog->zl_dmu_pool, 0); 3960 3961 zil_destroy(zilog, B_FALSE); 3962 3963 mutex_enter(&zilog->zl_lock); 3964 zilog->zl_suspending = B_FALSE; 3965 cv_broadcast(&zilog->zl_cv_suspend); 3966 mutex_exit(&zilog->zl_lock); 3967 3968 if (os->os_encrypted) 3969 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 3970 3971 if (cookiep == NULL) 3972 zil_resume(os); 3973 else 3974 *cookiep = os; 3975 return (0); 3976 } 3977 3978 void 3979 zil_resume(void *cookie) 3980 { 3981 objset_t *os = cookie; 3982 zilog_t *zilog = dmu_objset_zil(os); 3983 3984 mutex_enter(&zilog->zl_lock); 3985 ASSERT(zilog->zl_suspend != 0); 3986 zilog->zl_suspend--; 3987 mutex_exit(&zilog->zl_lock); 3988 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3989 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3990 } 3991 3992 typedef struct zil_replay_arg { 3993 zil_replay_func_t *const *zr_replay; 3994 void *zr_arg; 3995 boolean_t zr_byteswap; 3996 char *zr_lr; 3997 } zil_replay_arg_t; 3998 3999 static int 4000 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 4001 { 4002 char name[ZFS_MAX_DATASET_NAME_LEN]; 4003 4004 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 4005 4006 dmu_objset_name(zilog->zl_os, name); 4007 4008 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 4009 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 4010 (u_longlong_t)lr->lrc_seq, 4011 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 4012 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 4013 4014 return (error); 4015 } 4016 4017 static int 4018 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 4019 uint64_t claim_txg) 4020 { 4021 zil_replay_arg_t *zr = zra; 4022 const zil_header_t *zh = zilog->zl_header; 4023 uint64_t reclen = lr->lrc_reclen; 4024 uint64_t txtype = lr->lrc_txtype; 4025 int error = 0; 4026 4027 zilog->zl_replaying_seq = lr->lrc_seq; 4028 4029 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 4030 return (0); 4031 4032 if (lr->lrc_txg < claim_txg) /* already committed */ 4033 return (0); 4034 4035 /* Strip case-insensitive bit, still present in log record */ 4036 txtype &= ~TX_CI; 4037 4038 if (txtype == 0 || txtype >= TX_MAX_TYPE) 4039 return (zil_replay_error(zilog, lr, EINVAL)); 4040 4041 /* 4042 * If this record type can be logged out of order, the object 4043 * (lr_foid) may no longer exist. That's legitimate, not an error. 4044 */ 4045 if (TX_OOO(txtype)) { 4046 error = dmu_object_info(zilog->zl_os, 4047 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 4048 if (error == ENOENT || error == EEXIST) 4049 return (0); 4050 } 4051 4052 /* 4053 * Make a copy of the data so we can revise and extend it. 4054 */ 4055 memcpy(zr->zr_lr, lr, reclen); 4056 4057 /* 4058 * If this is a TX_WRITE with a blkptr, suck in the data. 4059 */ 4060 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 4061 error = zil_read_log_data(zilog, (lr_write_t *)lr, 4062 zr->zr_lr + reclen); 4063 if (error != 0) 4064 return (zil_replay_error(zilog, lr, error)); 4065 } 4066 4067 /* 4068 * The log block containing this lr may have been byteswapped 4069 * so that we can easily examine common fields like lrc_txtype. 4070 * However, the log is a mix of different record types, and only the 4071 * replay vectors know how to byteswap their records. Therefore, if 4072 * the lr was byteswapped, undo it before invoking the replay vector. 4073 */ 4074 if (zr->zr_byteswap) 4075 byteswap_uint64_array(zr->zr_lr, reclen); 4076 4077 /* 4078 * We must now do two things atomically: replay this log record, 4079 * and update the log header sequence number to reflect the fact that 4080 * we did so. At the end of each replay function the sequence number 4081 * is updated if we are in replay mode. 4082 */ 4083 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 4084 if (error != 0) { 4085 /* 4086 * The DMU's dnode layer doesn't see removes until the txg 4087 * commits, so a subsequent claim can spuriously fail with 4088 * EEXIST. So if we receive any error we try syncing out 4089 * any removes then retry the transaction. Note that we 4090 * specify B_FALSE for byteswap now, so we don't do it twice. 4091 */ 4092 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 4093 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 4094 if (error != 0) 4095 return (zil_replay_error(zilog, lr, error)); 4096 } 4097 return (0); 4098 } 4099 4100 static int 4101 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 4102 { 4103 (void) bp, (void) arg, (void) claim_txg; 4104 4105 zilog->zl_replay_blks++; 4106 4107 return (0); 4108 } 4109 4110 /* 4111 * If this dataset has a non-empty intent log, replay it and destroy it. 4112 * Return B_TRUE if there were any entries to replay. 4113 */ 4114 boolean_t 4115 zil_replay(objset_t *os, void *arg, 4116 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 4117 { 4118 zilog_t *zilog = dmu_objset_zil(os); 4119 const zil_header_t *zh = zilog->zl_header; 4120 zil_replay_arg_t zr; 4121 4122 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 4123 return (zil_destroy(zilog, B_TRUE)); 4124 } 4125 4126 zr.zr_replay = replay_func; 4127 zr.zr_arg = arg; 4128 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 4129 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 4130 4131 /* 4132 * Wait for in-progress removes to sync before starting replay. 4133 */ 4134 txg_wait_synced(zilog->zl_dmu_pool, 0); 4135 4136 zilog->zl_replay = B_TRUE; 4137 zilog->zl_replay_time = ddi_get_lbolt(); 4138 ASSERT(zilog->zl_replay_blks == 0); 4139 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 4140 zh->zh_claim_txg, B_TRUE); 4141 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 4142 4143 zil_destroy(zilog, B_FALSE); 4144 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 4145 zilog->zl_replay = B_FALSE; 4146 4147 return (B_TRUE); 4148 } 4149 4150 boolean_t 4151 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 4152 { 4153 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 4154 return (B_TRUE); 4155 4156 if (zilog->zl_replay) { 4157 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 4158 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 4159 zilog->zl_replaying_seq; 4160 return (B_TRUE); 4161 } 4162 4163 return (B_FALSE); 4164 } 4165 4166 int 4167 zil_reset(const char *osname, void *arg) 4168 { 4169 (void) arg; 4170 4171 int error = zil_suspend(osname, NULL); 4172 /* EACCES means crypto key not loaded */ 4173 if ((error == EACCES) || (error == EBUSY)) 4174 return (SET_ERROR(error)); 4175 if (error != 0) 4176 return (SET_ERROR(EEXIST)); 4177 return (0); 4178 } 4179 4180 EXPORT_SYMBOL(zil_alloc); 4181 EXPORT_SYMBOL(zil_free); 4182 EXPORT_SYMBOL(zil_open); 4183 EXPORT_SYMBOL(zil_close); 4184 EXPORT_SYMBOL(zil_replay); 4185 EXPORT_SYMBOL(zil_replaying); 4186 EXPORT_SYMBOL(zil_destroy); 4187 EXPORT_SYMBOL(zil_destroy_sync); 4188 EXPORT_SYMBOL(zil_itx_create); 4189 EXPORT_SYMBOL(zil_itx_destroy); 4190 EXPORT_SYMBOL(zil_itx_assign); 4191 EXPORT_SYMBOL(zil_commit); 4192 EXPORT_SYMBOL(zil_claim); 4193 EXPORT_SYMBOL(zil_check_log_chain); 4194 EXPORT_SYMBOL(zil_sync); 4195 EXPORT_SYMBOL(zil_clean); 4196 EXPORT_SYMBOL(zil_suspend); 4197 EXPORT_SYMBOL(zil_resume); 4198 EXPORT_SYMBOL(zil_lwb_add_block); 4199 EXPORT_SYMBOL(zil_bp_tree_add); 4200 EXPORT_SYMBOL(zil_set_sync); 4201 EXPORT_SYMBOL(zil_set_logbias); 4202 EXPORT_SYMBOL(zil_sums_init); 4203 EXPORT_SYMBOL(zil_sums_fini); 4204 EXPORT_SYMBOL(zil_kstat_values_update); 4205 4206 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, 4207 "ZIL block open timeout percentage"); 4208 4209 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 4210 "Disable intent logging replay"); 4211 4212 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 4213 "Disable ZIL cache flushes"); 4214 4215 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, 4216 "Limit in bytes slog sync writes per commit"); 4217 4218 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, 4219 "Limit in bytes of ZIL log block size"); 4220 4221 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW, 4222 "Limit in bytes WR_COPIED size"); 4223