1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 #include <sys/brt.h> 47 #include <sys/wmsum.h> 48 49 /* 50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 51 * calls that change the file system. Each itx has enough information to 52 * be able to replay them after a system crash, power loss, or 53 * equivalent failure mode. These are stored in memory until either: 54 * 55 * 1. they are committed to the pool by the DMU transaction group 56 * (txg), at which point they can be discarded; or 57 * 2. they are committed to the on-disk ZIL for the dataset being 58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 59 * requirement). 60 * 61 * In the event of a crash or power loss, the itxs contained by each 62 * dataset's on-disk ZIL will be replayed when that dataset is first 63 * instantiated (e.g. if the dataset is a normal filesystem, when it is 64 * first mounted). 65 * 66 * As hinted at above, there is one ZIL per dataset (both the in-memory 67 * representation, and the on-disk representation). The on-disk format 68 * consists of 3 parts: 69 * 70 * - a single, per-dataset, ZIL header; which points to a chain of 71 * - zero or more ZIL blocks; each of which contains 72 * - zero or more ZIL records 73 * 74 * A ZIL record holds the information necessary to replay a single 75 * system call transaction. A ZIL block can hold many ZIL records, and 76 * the blocks are chained together, similarly to a singly linked list. 77 * 78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 79 * block in the chain, and the ZIL header points to the first block in 80 * the chain. 81 * 82 * Note, there is not a fixed place in the pool to hold these ZIL 83 * blocks; they are dynamically allocated and freed as needed from the 84 * blocks available on the pool, though they can be preferentially 85 * allocated from a dedicated "log" vdev. 86 */ 87 88 /* 89 * This controls the amount of time that a ZIL block (lwb) will remain 90 * "open" when it isn't "full", and it has a thread waiting for it to be 91 * committed to stable storage. Please refer to the zil_commit_waiter() 92 * function (and the comments within it) for more details. 93 */ 94 static uint_t zfs_commit_timeout_pct = 5; 95 96 /* 97 * Minimal time we care to delay commit waiting for more ZIL records. 98 * At least FreeBSD kernel can't sleep for less than 2us at its best. 99 * So requests to sleep for less then 5us is a waste of CPU time with 100 * a risk of significant log latency increase due to oversleep. 101 */ 102 static uint64_t zil_min_commit_timeout = 5000; 103 104 /* 105 * See zil.h for more information about these fields. 106 */ 107 static zil_kstat_values_t zil_stats = { 108 { "zil_commit_count", KSTAT_DATA_UINT64 }, 109 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 110 { "zil_itx_count", KSTAT_DATA_UINT64 }, 111 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 112 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 113 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 114 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 115 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 116 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 117 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 118 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 119 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 120 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 121 }; 122 123 static zil_sums_t zil_sums_global; 124 static kstat_t *zil_kstats_global; 125 126 /* 127 * Disable intent logging replay. This global ZIL switch affects all pools. 128 */ 129 int zil_replay_disable = 0; 130 131 /* 132 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 133 * the disk(s) by the ZIL after an LWB write has completed. Setting this 134 * will cause ZIL corruption on power loss if a volatile out-of-order 135 * write cache is enabled. 136 */ 137 static int zil_nocacheflush = 0; 138 139 /* 140 * Limit SLOG write size per commit executed with synchronous priority. 141 * Any writes above that will be executed with lower (asynchronous) priority 142 * to limit potential SLOG device abuse by single active ZIL writer. 143 */ 144 static uint64_t zil_slog_bulk = 768 * 1024; 145 146 static kmem_cache_t *zil_lwb_cache; 147 static kmem_cache_t *zil_zcw_cache; 148 149 static int 150 zil_bp_compare(const void *x1, const void *x2) 151 { 152 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 153 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 154 155 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 156 if (likely(cmp)) 157 return (cmp); 158 159 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 160 } 161 162 static void 163 zil_bp_tree_init(zilog_t *zilog) 164 { 165 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 166 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 167 } 168 169 static void 170 zil_bp_tree_fini(zilog_t *zilog) 171 { 172 avl_tree_t *t = &zilog->zl_bp_tree; 173 zil_bp_node_t *zn; 174 void *cookie = NULL; 175 176 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 177 kmem_free(zn, sizeof (zil_bp_node_t)); 178 179 avl_destroy(t); 180 } 181 182 int 183 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 184 { 185 avl_tree_t *t = &zilog->zl_bp_tree; 186 const dva_t *dva; 187 zil_bp_node_t *zn; 188 avl_index_t where; 189 190 if (BP_IS_EMBEDDED(bp)) 191 return (0); 192 193 dva = BP_IDENTITY(bp); 194 195 if (avl_find(t, dva, &where) != NULL) 196 return (SET_ERROR(EEXIST)); 197 198 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 199 zn->zn_dva = *dva; 200 avl_insert(t, zn, where); 201 202 return (0); 203 } 204 205 static zil_header_t * 206 zil_header_in_syncing_context(zilog_t *zilog) 207 { 208 return ((zil_header_t *)zilog->zl_header); 209 } 210 211 static void 212 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 213 { 214 zio_cksum_t *zc = &bp->blk_cksum; 215 216 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 217 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 218 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 219 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 220 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 221 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 222 } 223 224 static int 225 zil_kstats_global_update(kstat_t *ksp, int rw) 226 { 227 zil_kstat_values_t *zs = ksp->ks_data; 228 ASSERT3P(&zil_stats, ==, zs); 229 230 if (rw == KSTAT_WRITE) { 231 return (SET_ERROR(EACCES)); 232 } 233 234 zil_kstat_values_update(zs, &zil_sums_global); 235 236 return (0); 237 } 238 239 /* 240 * Read a log block and make sure it's valid. 241 */ 242 static int 243 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 244 blkptr_t *nbp, void *dst, char **end) 245 { 246 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 247 arc_flags_t aflags = ARC_FLAG_WAIT; 248 arc_buf_t *abuf = NULL; 249 zbookmark_phys_t zb; 250 int error; 251 252 if (zilog->zl_header->zh_claim_txg == 0) 253 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 254 255 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 256 zio_flags |= ZIO_FLAG_SPECULATIVE; 257 258 if (!decrypt) 259 zio_flags |= ZIO_FLAG_RAW; 260 261 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 262 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 263 264 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 265 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 266 267 if (error == 0) { 268 zio_cksum_t cksum = bp->blk_cksum; 269 270 /* 271 * Validate the checksummed log block. 272 * 273 * Sequence numbers should be... sequential. The checksum 274 * verifier for the next block should be bp's checksum plus 1. 275 * 276 * Also check the log chain linkage and size used. 277 */ 278 cksum.zc_word[ZIL_ZC_SEQ]++; 279 280 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 281 zil_chain_t *zilc = abuf->b_data; 282 char *lr = (char *)(zilc + 1); 283 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 284 285 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 286 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 287 error = SET_ERROR(ECKSUM); 288 } else { 289 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); 290 memcpy(dst, lr, len); 291 *end = (char *)dst + len; 292 *nbp = zilc->zc_next_blk; 293 } 294 } else { 295 char *lr = abuf->b_data; 296 uint64_t size = BP_GET_LSIZE(bp); 297 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 298 299 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 300 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 301 (zilc->zc_nused > (size - sizeof (*zilc)))) { 302 error = SET_ERROR(ECKSUM); 303 } else { 304 ASSERT3U(zilc->zc_nused, <=, 305 SPA_OLD_MAXBLOCKSIZE); 306 memcpy(dst, lr, zilc->zc_nused); 307 *end = (char *)dst + zilc->zc_nused; 308 *nbp = zilc->zc_next_blk; 309 } 310 } 311 312 arc_buf_destroy(abuf, &abuf); 313 } 314 315 return (error); 316 } 317 318 /* 319 * Read a TX_WRITE log data block. 320 */ 321 static int 322 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 323 { 324 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 325 const blkptr_t *bp = &lr->lr_blkptr; 326 arc_flags_t aflags = ARC_FLAG_WAIT; 327 arc_buf_t *abuf = NULL; 328 zbookmark_phys_t zb; 329 int error; 330 331 if (BP_IS_HOLE(bp)) { 332 if (wbuf != NULL) 333 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 334 return (0); 335 } 336 337 if (zilog->zl_header->zh_claim_txg == 0) 338 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 339 340 /* 341 * If we are not using the resulting data, we are just checking that 342 * it hasn't been corrupted so we don't need to waste CPU time 343 * decompressing and decrypting it. 344 */ 345 if (wbuf == NULL) 346 zio_flags |= ZIO_FLAG_RAW; 347 348 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 349 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 350 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 351 352 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 353 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 354 355 if (error == 0) { 356 if (wbuf != NULL) 357 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); 358 arc_buf_destroy(abuf, &abuf); 359 } 360 361 return (error); 362 } 363 364 void 365 zil_sums_init(zil_sums_t *zs) 366 { 367 wmsum_init(&zs->zil_commit_count, 0); 368 wmsum_init(&zs->zil_commit_writer_count, 0); 369 wmsum_init(&zs->zil_itx_count, 0); 370 wmsum_init(&zs->zil_itx_indirect_count, 0); 371 wmsum_init(&zs->zil_itx_indirect_bytes, 0); 372 wmsum_init(&zs->zil_itx_copied_count, 0); 373 wmsum_init(&zs->zil_itx_copied_bytes, 0); 374 wmsum_init(&zs->zil_itx_needcopy_count, 0); 375 wmsum_init(&zs->zil_itx_needcopy_bytes, 0); 376 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); 377 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); 378 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); 379 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); 380 } 381 382 void 383 zil_sums_fini(zil_sums_t *zs) 384 { 385 wmsum_fini(&zs->zil_commit_count); 386 wmsum_fini(&zs->zil_commit_writer_count); 387 wmsum_fini(&zs->zil_itx_count); 388 wmsum_fini(&zs->zil_itx_indirect_count); 389 wmsum_fini(&zs->zil_itx_indirect_bytes); 390 wmsum_fini(&zs->zil_itx_copied_count); 391 wmsum_fini(&zs->zil_itx_copied_bytes); 392 wmsum_fini(&zs->zil_itx_needcopy_count); 393 wmsum_fini(&zs->zil_itx_needcopy_bytes); 394 wmsum_fini(&zs->zil_itx_metaslab_normal_count); 395 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); 396 wmsum_fini(&zs->zil_itx_metaslab_slog_count); 397 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); 398 } 399 400 void 401 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) 402 { 403 zs->zil_commit_count.value.ui64 = 404 wmsum_value(&zil_sums->zil_commit_count); 405 zs->zil_commit_writer_count.value.ui64 = 406 wmsum_value(&zil_sums->zil_commit_writer_count); 407 zs->zil_itx_count.value.ui64 = 408 wmsum_value(&zil_sums->zil_itx_count); 409 zs->zil_itx_indirect_count.value.ui64 = 410 wmsum_value(&zil_sums->zil_itx_indirect_count); 411 zs->zil_itx_indirect_bytes.value.ui64 = 412 wmsum_value(&zil_sums->zil_itx_indirect_bytes); 413 zs->zil_itx_copied_count.value.ui64 = 414 wmsum_value(&zil_sums->zil_itx_copied_count); 415 zs->zil_itx_copied_bytes.value.ui64 = 416 wmsum_value(&zil_sums->zil_itx_copied_bytes); 417 zs->zil_itx_needcopy_count.value.ui64 = 418 wmsum_value(&zil_sums->zil_itx_needcopy_count); 419 zs->zil_itx_needcopy_bytes.value.ui64 = 420 wmsum_value(&zil_sums->zil_itx_needcopy_bytes); 421 zs->zil_itx_metaslab_normal_count.value.ui64 = 422 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); 423 zs->zil_itx_metaslab_normal_bytes.value.ui64 = 424 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); 425 zs->zil_itx_metaslab_slog_count.value.ui64 = 426 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); 427 zs->zil_itx_metaslab_slog_bytes.value.ui64 = 428 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); 429 } 430 431 /* 432 * Parse the intent log, and call parse_func for each valid record within. 433 */ 434 int 435 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 436 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 437 boolean_t decrypt) 438 { 439 const zil_header_t *zh = zilog->zl_header; 440 boolean_t claimed = !!zh->zh_claim_txg; 441 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 442 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 443 uint64_t max_blk_seq = 0; 444 uint64_t max_lr_seq = 0; 445 uint64_t blk_count = 0; 446 uint64_t lr_count = 0; 447 blkptr_t blk, next_blk = {{{{0}}}}; 448 char *lrbuf, *lrp; 449 int error = 0; 450 451 /* 452 * Old logs didn't record the maximum zh_claim_lr_seq. 453 */ 454 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 455 claim_lr_seq = UINT64_MAX; 456 457 /* 458 * Starting at the block pointed to by zh_log we read the log chain. 459 * For each block in the chain we strongly check that block to 460 * ensure its validity. We stop when an invalid block is found. 461 * For each block pointer in the chain we call parse_blk_func(). 462 * For each record in each valid block we call parse_lr_func(). 463 * If the log has been claimed, stop if we encounter a sequence 464 * number greater than the highest claimed sequence number. 465 */ 466 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); 467 zil_bp_tree_init(zilog); 468 469 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 470 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 471 int reclen; 472 char *end = NULL; 473 474 if (blk_seq > claim_blk_seq) 475 break; 476 477 error = parse_blk_func(zilog, &blk, arg, txg); 478 if (error != 0) 479 break; 480 ASSERT3U(max_blk_seq, <, blk_seq); 481 max_blk_seq = blk_seq; 482 blk_count++; 483 484 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 485 break; 486 487 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 488 lrbuf, &end); 489 if (error != 0) { 490 if (claimed) { 491 char name[ZFS_MAX_DATASET_NAME_LEN]; 492 493 dmu_objset_name(zilog->zl_os, name); 494 495 cmn_err(CE_WARN, "ZFS read log block error %d, " 496 "dataset %s, seq 0x%llx\n", error, name, 497 (u_longlong_t)blk_seq); 498 } 499 break; 500 } 501 502 for (lrp = lrbuf; lrp < end; lrp += reclen) { 503 lr_t *lr = (lr_t *)lrp; 504 reclen = lr->lrc_reclen; 505 ASSERT3U(reclen, >=, sizeof (lr_t)); 506 if (lr->lrc_seq > claim_lr_seq) 507 goto done; 508 509 error = parse_lr_func(zilog, lr, arg, txg); 510 if (error != 0) 511 goto done; 512 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 513 max_lr_seq = lr->lrc_seq; 514 lr_count++; 515 } 516 } 517 done: 518 zilog->zl_parse_error = error; 519 zilog->zl_parse_blk_seq = max_blk_seq; 520 zilog->zl_parse_lr_seq = max_lr_seq; 521 zilog->zl_parse_blk_count = blk_count; 522 zilog->zl_parse_lr_count = lr_count; 523 524 zil_bp_tree_fini(zilog); 525 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); 526 527 return (error); 528 } 529 530 static int 531 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 532 uint64_t first_txg) 533 { 534 (void) tx; 535 ASSERT(!BP_IS_HOLE(bp)); 536 537 /* 538 * As we call this function from the context of a rewind to a 539 * checkpoint, each ZIL block whose txg is later than the txg 540 * that we rewind to is invalid. Thus, we return -1 so 541 * zil_parse() doesn't attempt to read it. 542 */ 543 if (bp->blk_birth >= first_txg) 544 return (-1); 545 546 if (zil_bp_tree_add(zilog, bp) != 0) 547 return (0); 548 549 zio_free(zilog->zl_spa, first_txg, bp); 550 return (0); 551 } 552 553 static int 554 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 555 uint64_t first_txg) 556 { 557 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 558 return (0); 559 } 560 561 static int 562 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 563 uint64_t first_txg) 564 { 565 /* 566 * Claim log block if not already committed and not already claimed. 567 * If tx == NULL, just verify that the block is claimable. 568 */ 569 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 570 zil_bp_tree_add(zilog, bp) != 0) 571 return (0); 572 573 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 574 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 575 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 576 } 577 578 static int 579 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) 580 { 581 lr_write_t *lr = (lr_write_t *)lrc; 582 int error; 583 584 ASSERT(lrc->lrc_txtype == TX_WRITE); 585 586 /* 587 * If the block is not readable, don't claim it. This can happen 588 * in normal operation when a log block is written to disk before 589 * some of the dmu_sync() blocks it points to. In this case, the 590 * transaction cannot have been committed to anyone (we would have 591 * waited for all writes to be stable first), so it is semantically 592 * correct to declare this the end of the log. 593 */ 594 if (lr->lr_blkptr.blk_birth >= first_txg) { 595 error = zil_read_log_data(zilog, lr, NULL); 596 if (error != 0) 597 return (error); 598 } 599 600 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 601 } 602 603 static int 604 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 605 { 606 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 607 const blkptr_t *bp; 608 spa_t *spa; 609 uint_t ii; 610 611 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 612 613 if (tx == NULL) { 614 return (0); 615 } 616 617 /* 618 * XXX: Do we need to byteswap lr? 619 */ 620 621 spa = zilog->zl_spa; 622 623 for (ii = 0; ii < lr->lr_nbps; ii++) { 624 bp = &lr->lr_bps[ii]; 625 626 /* 627 * When data in embedded into BP there is no need to create 628 * BRT entry as there is no data block. Just copy the BP as 629 * it contains the data. 630 */ 631 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 632 brt_pending_add(spa, bp, tx); 633 } 634 } 635 636 return (0); 637 } 638 639 static int 640 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 641 uint64_t first_txg) 642 { 643 644 switch (lrc->lrc_txtype) { 645 case TX_WRITE: 646 return (zil_claim_write(zilog, lrc, tx, first_txg)); 647 case TX_CLONE_RANGE: 648 return (zil_claim_clone_range(zilog, lrc, tx)); 649 default: 650 return (0); 651 } 652 } 653 654 static int 655 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 656 uint64_t claim_txg) 657 { 658 (void) claim_txg; 659 660 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 661 662 return (0); 663 } 664 665 static int 666 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) 667 { 668 lr_write_t *lr = (lr_write_t *)lrc; 669 blkptr_t *bp = &lr->lr_blkptr; 670 671 ASSERT(lrc->lrc_txtype == TX_WRITE); 672 673 /* 674 * If we previously claimed it, we need to free it. 675 */ 676 if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 677 !BP_IS_HOLE(bp)) { 678 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 679 } 680 681 return (0); 682 } 683 684 static int 685 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 686 { 687 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 688 const blkptr_t *bp; 689 spa_t *spa; 690 uint_t ii; 691 692 ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); 693 694 if (tx == NULL) { 695 return (0); 696 } 697 698 spa = zilog->zl_spa; 699 700 for (ii = 0; ii < lr->lr_nbps; ii++) { 701 bp = &lr->lr_bps[ii]; 702 703 if (!BP_IS_HOLE(bp)) { 704 zio_free(spa, dmu_tx_get_txg(tx), bp); 705 } 706 } 707 708 return (0); 709 } 710 711 static int 712 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 713 uint64_t claim_txg) 714 { 715 716 if (claim_txg == 0) { 717 return (0); 718 } 719 720 switch (lrc->lrc_txtype) { 721 case TX_WRITE: 722 return (zil_free_write(zilog, lrc, tx, claim_txg)); 723 case TX_CLONE_RANGE: 724 return (zil_free_clone_range(zilog, lrc, tx)); 725 default: 726 return (0); 727 } 728 } 729 730 static int 731 zil_lwb_vdev_compare(const void *x1, const void *x2) 732 { 733 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 734 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 735 736 return (TREE_CMP(v1, v2)); 737 } 738 739 static lwb_t * 740 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg, 741 boolean_t fastwrite) 742 { 743 lwb_t *lwb; 744 745 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 746 lwb->lwb_zilog = zilog; 747 lwb->lwb_blk = *bp; 748 lwb->lwb_fastwrite = fastwrite; 749 lwb->lwb_slog = slog; 750 lwb->lwb_state = LWB_STATE_CLOSED; 751 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 752 lwb->lwb_max_txg = txg; 753 lwb->lwb_write_zio = NULL; 754 lwb->lwb_root_zio = NULL; 755 lwb->lwb_issued_timestamp = 0; 756 lwb->lwb_issued_txg = 0; 757 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 758 lwb->lwb_nused = sizeof (zil_chain_t); 759 lwb->lwb_sz = BP_GET_LSIZE(bp); 760 } else { 761 lwb->lwb_nused = 0; 762 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 763 } 764 765 mutex_enter(&zilog->zl_lock); 766 list_insert_tail(&zilog->zl_lwb_list, lwb); 767 mutex_exit(&zilog->zl_lock); 768 769 return (lwb); 770 } 771 772 static void 773 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 774 { 775 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 776 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 777 ASSERT(list_is_empty(&lwb->lwb_waiters)); 778 ASSERT(list_is_empty(&lwb->lwb_itxs)); 779 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 780 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 781 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 782 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 783 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || 784 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 785 786 /* 787 * Clear the zilog's field to indicate this lwb is no longer 788 * valid, and prevent use-after-free errors. 789 */ 790 if (zilog->zl_last_lwb_opened == lwb) 791 zilog->zl_last_lwb_opened = NULL; 792 793 kmem_cache_free(zil_lwb_cache, lwb); 794 } 795 796 /* 797 * Called when we create in-memory log transactions so that we know 798 * to cleanup the itxs at the end of spa_sync(). 799 */ 800 static void 801 zilog_dirty(zilog_t *zilog, uint64_t txg) 802 { 803 dsl_pool_t *dp = zilog->zl_dmu_pool; 804 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 805 806 ASSERT(spa_writeable(zilog->zl_spa)); 807 808 if (ds->ds_is_snapshot) 809 panic("dirtying snapshot!"); 810 811 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 812 /* up the hold count until we can be written out */ 813 dmu_buf_add_ref(ds->ds_dbuf, zilog); 814 815 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 816 } 817 } 818 819 /* 820 * Determine if the zil is dirty in the specified txg. Callers wanting to 821 * ensure that the dirty state does not change must hold the itxg_lock for 822 * the specified txg. Holding the lock will ensure that the zil cannot be 823 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 824 * state. 825 */ 826 static boolean_t __maybe_unused 827 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 828 { 829 dsl_pool_t *dp = zilog->zl_dmu_pool; 830 831 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 832 return (B_TRUE); 833 return (B_FALSE); 834 } 835 836 /* 837 * Determine if the zil is dirty. The zil is considered dirty if it has 838 * any pending itx records that have not been cleaned by zil_clean(). 839 */ 840 static boolean_t 841 zilog_is_dirty(zilog_t *zilog) 842 { 843 dsl_pool_t *dp = zilog->zl_dmu_pool; 844 845 for (int t = 0; t < TXG_SIZE; t++) { 846 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 847 return (B_TRUE); 848 } 849 return (B_FALSE); 850 } 851 852 /* 853 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 854 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 855 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 856 * zil_commit. 857 */ 858 static void 859 zil_commit_activate_saxattr_feature(zilog_t *zilog) 860 { 861 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 862 uint64_t txg = 0; 863 dmu_tx_t *tx = NULL; 864 865 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 866 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 867 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { 868 tx = dmu_tx_create(zilog->zl_os); 869 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 870 dsl_dataset_dirty(ds, tx); 871 txg = dmu_tx_get_txg(tx); 872 873 mutex_enter(&ds->ds_lock); 874 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 875 (void *)B_TRUE; 876 mutex_exit(&ds->ds_lock); 877 dmu_tx_commit(tx); 878 txg_wait_synced(zilog->zl_dmu_pool, txg); 879 } 880 } 881 882 /* 883 * Create an on-disk intent log. 884 */ 885 static lwb_t * 886 zil_create(zilog_t *zilog) 887 { 888 const zil_header_t *zh = zilog->zl_header; 889 lwb_t *lwb = NULL; 890 uint64_t txg = 0; 891 dmu_tx_t *tx = NULL; 892 blkptr_t blk; 893 int error = 0; 894 boolean_t fastwrite = FALSE; 895 boolean_t slog = FALSE; 896 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 897 898 899 /* 900 * Wait for any previous destroy to complete. 901 */ 902 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 903 904 ASSERT(zh->zh_claim_txg == 0); 905 ASSERT(zh->zh_replay_seq == 0); 906 907 blk = zh->zh_log; 908 909 /* 910 * Allocate an initial log block if: 911 * - there isn't one already 912 * - the existing block is the wrong endianness 913 */ 914 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 915 tx = dmu_tx_create(zilog->zl_os); 916 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 917 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 918 txg = dmu_tx_get_txg(tx); 919 920 if (!BP_IS_HOLE(&blk)) { 921 zio_free(zilog->zl_spa, txg, &blk); 922 BP_ZERO(&blk); 923 } 924 925 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 926 ZIL_MIN_BLKSZ, &slog); 927 fastwrite = TRUE; 928 929 if (error == 0) 930 zil_init_log_chain(zilog, &blk); 931 } 932 933 /* 934 * Allocate a log write block (lwb) for the first log block. 935 */ 936 if (error == 0) 937 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite); 938 939 /* 940 * If we just allocated the first log block, commit our transaction 941 * and wait for zil_sync() to stuff the block pointer into zh_log. 942 * (zh is part of the MOS, so we cannot modify it in open context.) 943 */ 944 if (tx != NULL) { 945 /* 946 * If "zilsaxattr" feature is enabled on zpool, then activate 947 * it now when we're creating the ZIL chain. We can't wait with 948 * this until we write the first xattr log record because we 949 * need to wait for the feature activation to sync out. 950 */ 951 if (spa_feature_is_enabled(zilog->zl_spa, 952 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 953 DMU_OST_ZVOL) { 954 mutex_enter(&ds->ds_lock); 955 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 956 (void *)B_TRUE; 957 mutex_exit(&ds->ds_lock); 958 } 959 960 dmu_tx_commit(tx); 961 txg_wait_synced(zilog->zl_dmu_pool, txg); 962 } else { 963 /* 964 * This branch covers the case where we enable the feature on a 965 * zpool that has existing ZIL headers. 966 */ 967 zil_commit_activate_saxattr_feature(zilog); 968 } 969 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 970 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 971 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 972 973 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 974 IMPLY(error == 0, lwb != NULL); 975 976 return (lwb); 977 } 978 979 /* 980 * In one tx, free all log blocks and clear the log header. If keep_first 981 * is set, then we're replaying a log with no content. We want to keep the 982 * first block, however, so that the first synchronous transaction doesn't 983 * require a txg_wait_synced() in zil_create(). We don't need to 984 * txg_wait_synced() here either when keep_first is set, because both 985 * zil_create() and zil_destroy() will wait for any in-progress destroys 986 * to complete. 987 * Return B_TRUE if there were any entries to replay. 988 */ 989 boolean_t 990 zil_destroy(zilog_t *zilog, boolean_t keep_first) 991 { 992 const zil_header_t *zh = zilog->zl_header; 993 lwb_t *lwb; 994 dmu_tx_t *tx; 995 uint64_t txg; 996 997 /* 998 * Wait for any previous destroy to complete. 999 */ 1000 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1001 1002 zilog->zl_old_header = *zh; /* debugging aid */ 1003 1004 if (BP_IS_HOLE(&zh->zh_log)) 1005 return (B_FALSE); 1006 1007 tx = dmu_tx_create(zilog->zl_os); 1008 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1009 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1010 txg = dmu_tx_get_txg(tx); 1011 1012 mutex_enter(&zilog->zl_lock); 1013 1014 ASSERT3U(zilog->zl_destroy_txg, <, txg); 1015 zilog->zl_destroy_txg = txg; 1016 zilog->zl_keep_first = keep_first; 1017 1018 if (!list_is_empty(&zilog->zl_lwb_list)) { 1019 ASSERT(zh->zh_claim_txg == 0); 1020 VERIFY(!keep_first); 1021 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) { 1022 if (lwb->lwb_fastwrite) 1023 metaslab_fastwrite_unmark(zilog->zl_spa, 1024 &lwb->lwb_blk); 1025 if (lwb->lwb_buf != NULL) 1026 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1027 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 1028 zil_free_lwb(zilog, lwb); 1029 } 1030 } else if (!keep_first) { 1031 zil_destroy_sync(zilog, tx); 1032 } 1033 mutex_exit(&zilog->zl_lock); 1034 1035 dmu_tx_commit(tx); 1036 1037 return (B_TRUE); 1038 } 1039 1040 void 1041 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 1042 { 1043 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1044 (void) zil_parse(zilog, zil_free_log_block, 1045 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 1046 } 1047 1048 int 1049 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 1050 { 1051 dmu_tx_t *tx = txarg; 1052 zilog_t *zilog; 1053 uint64_t first_txg; 1054 zil_header_t *zh; 1055 objset_t *os; 1056 int error; 1057 1058 error = dmu_objset_own_obj(dp, ds->ds_object, 1059 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 1060 if (error != 0) { 1061 /* 1062 * EBUSY indicates that the objset is inconsistent, in which 1063 * case it can not have a ZIL. 1064 */ 1065 if (error != EBUSY) { 1066 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 1067 (unsigned long long)ds->ds_object, error); 1068 } 1069 1070 return (0); 1071 } 1072 1073 zilog = dmu_objset_zil(os); 1074 zh = zil_header_in_syncing_context(zilog); 1075 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 1076 first_txg = spa_min_claim_txg(zilog->zl_spa); 1077 1078 /* 1079 * If the spa_log_state is not set to be cleared, check whether 1080 * the current uberblock is a checkpoint one and if the current 1081 * header has been claimed before moving on. 1082 * 1083 * If the current uberblock is a checkpointed uberblock then 1084 * one of the following scenarios took place: 1085 * 1086 * 1] We are currently rewinding to the checkpoint of the pool. 1087 * 2] We crashed in the middle of a checkpoint rewind but we 1088 * did manage to write the checkpointed uberblock to the 1089 * vdev labels, so when we tried to import the pool again 1090 * the checkpointed uberblock was selected from the import 1091 * procedure. 1092 * 1093 * In both cases we want to zero out all the ZIL blocks, except 1094 * the ones that have been claimed at the time of the checkpoint 1095 * (their zh_claim_txg != 0). The reason is that these blocks 1096 * may be corrupted since we may have reused their locations on 1097 * disk after we took the checkpoint. 1098 * 1099 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 1100 * when we first figure out whether the current uberblock is 1101 * checkpointed or not. Unfortunately, that would discard all 1102 * the logs, including the ones that are claimed, and we would 1103 * leak space. 1104 */ 1105 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 1106 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1107 zh->zh_claim_txg == 0)) { 1108 if (!BP_IS_HOLE(&zh->zh_log)) { 1109 (void) zil_parse(zilog, zil_clear_log_block, 1110 zil_noop_log_record, tx, first_txg, B_FALSE); 1111 } 1112 BP_ZERO(&zh->zh_log); 1113 if (os->os_encrypted) 1114 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1115 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1116 dmu_objset_disown(os, B_FALSE, FTAG); 1117 return (0); 1118 } 1119 1120 /* 1121 * If we are not rewinding and opening the pool normally, then 1122 * the min_claim_txg should be equal to the first txg of the pool. 1123 */ 1124 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 1125 1126 /* 1127 * Claim all log blocks if we haven't already done so, and remember 1128 * the highest claimed sequence number. This ensures that if we can 1129 * read only part of the log now (e.g. due to a missing device), 1130 * but we can read the entire log later, we will not try to replay 1131 * or destroy beyond the last block we successfully claimed. 1132 */ 1133 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 1134 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 1135 (void) zil_parse(zilog, zil_claim_log_block, 1136 zil_claim_log_record, tx, first_txg, B_FALSE); 1137 zh->zh_claim_txg = first_txg; 1138 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 1139 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 1140 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 1141 zh->zh_flags |= ZIL_REPLAY_NEEDED; 1142 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 1143 if (os->os_encrypted) 1144 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1145 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1146 } 1147 1148 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 1149 dmu_objset_disown(os, B_FALSE, FTAG); 1150 return (0); 1151 } 1152 1153 /* 1154 * Check the log by walking the log chain. 1155 * Checksum errors are ok as they indicate the end of the chain. 1156 * Any other error (no device or read failure) returns an error. 1157 */ 1158 int 1159 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 1160 { 1161 (void) dp; 1162 zilog_t *zilog; 1163 objset_t *os; 1164 blkptr_t *bp; 1165 int error; 1166 1167 ASSERT(tx == NULL); 1168 1169 error = dmu_objset_from_ds(ds, &os); 1170 if (error != 0) { 1171 cmn_err(CE_WARN, "can't open objset %llu, error %d", 1172 (unsigned long long)ds->ds_object, error); 1173 return (0); 1174 } 1175 1176 zilog = dmu_objset_zil(os); 1177 bp = (blkptr_t *)&zilog->zl_header->zh_log; 1178 1179 if (!BP_IS_HOLE(bp)) { 1180 vdev_t *vd; 1181 boolean_t valid = B_TRUE; 1182 1183 /* 1184 * Check the first block and determine if it's on a log device 1185 * which may have been removed or faulted prior to loading this 1186 * pool. If so, there's no point in checking the rest of the 1187 * log as its content should have already been synced to the 1188 * pool. 1189 */ 1190 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1191 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1192 if (vd->vdev_islog && vdev_is_dead(vd)) 1193 valid = vdev_log_state_valid(vd); 1194 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1195 1196 if (!valid) 1197 return (0); 1198 1199 /* 1200 * Check whether the current uberblock is checkpointed (e.g. 1201 * we are rewinding) and whether the current header has been 1202 * claimed or not. If it hasn't then skip verifying it. We 1203 * do this because its ZIL blocks may be part of the pool's 1204 * state before the rewind, which is no longer valid. 1205 */ 1206 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1207 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1208 zh->zh_claim_txg == 0) 1209 return (0); 1210 } 1211 1212 /* 1213 * Because tx == NULL, zil_claim_log_block() will not actually claim 1214 * any blocks, but just determine whether it is possible to do so. 1215 * In addition to checking the log chain, zil_claim_log_block() 1216 * will invoke zio_claim() with a done func of spa_claim_notify(), 1217 * which will update spa_max_claim_txg. See spa_load() for details. 1218 */ 1219 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1220 zilog->zl_header->zh_claim_txg ? -1ULL : 1221 spa_min_claim_txg(os->os_spa), B_FALSE); 1222 1223 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1224 } 1225 1226 /* 1227 * When an itx is "skipped", this function is used to properly mark the 1228 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1229 * be skipped (and not committed to an lwb) for a variety of reasons, 1230 * one of them being that the itx was committed via spa_sync(), prior to 1231 * it being committed to an lwb; this can happen if a thread calling 1232 * zil_commit() is racing with spa_sync(). 1233 */ 1234 static void 1235 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1236 { 1237 mutex_enter(&zcw->zcw_lock); 1238 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1239 zcw->zcw_done = B_TRUE; 1240 cv_broadcast(&zcw->zcw_cv); 1241 mutex_exit(&zcw->zcw_lock); 1242 } 1243 1244 /* 1245 * This function is used when the given waiter is to be linked into an 1246 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1247 * At this point, the waiter will no longer be referenced by the itx, 1248 * and instead, will be referenced by the lwb. 1249 */ 1250 static void 1251 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1252 { 1253 /* 1254 * The lwb_waiters field of the lwb is protected by the zilog's 1255 * zl_lock, thus it must be held when calling this function. 1256 */ 1257 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1258 1259 mutex_enter(&zcw->zcw_lock); 1260 ASSERT(!list_link_active(&zcw->zcw_node)); 1261 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1262 ASSERT3P(lwb, !=, NULL); 1263 ASSERT(lwb->lwb_state == LWB_STATE_OPENED || 1264 lwb->lwb_state == LWB_STATE_ISSUED || 1265 lwb->lwb_state == LWB_STATE_WRITE_DONE); 1266 1267 list_insert_tail(&lwb->lwb_waiters, zcw); 1268 zcw->zcw_lwb = lwb; 1269 mutex_exit(&zcw->zcw_lock); 1270 } 1271 1272 /* 1273 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1274 * block, and the given waiter must be linked to the "nolwb waiters" 1275 * list inside of zil_process_commit_list(). 1276 */ 1277 static void 1278 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1279 { 1280 mutex_enter(&zcw->zcw_lock); 1281 ASSERT(!list_link_active(&zcw->zcw_node)); 1282 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1283 list_insert_tail(nolwb, zcw); 1284 mutex_exit(&zcw->zcw_lock); 1285 } 1286 1287 void 1288 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1289 { 1290 avl_tree_t *t = &lwb->lwb_vdev_tree; 1291 avl_index_t where; 1292 zil_vdev_node_t *zv, zvsearch; 1293 int ndvas = BP_GET_NDVAS(bp); 1294 int i; 1295 1296 if (zil_nocacheflush) 1297 return; 1298 1299 mutex_enter(&lwb->lwb_vdev_lock); 1300 for (i = 0; i < ndvas; i++) { 1301 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1302 if (avl_find(t, &zvsearch, &where) == NULL) { 1303 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1304 zv->zv_vdev = zvsearch.zv_vdev; 1305 avl_insert(t, zv, where); 1306 } 1307 } 1308 mutex_exit(&lwb->lwb_vdev_lock); 1309 } 1310 1311 static void 1312 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1313 { 1314 avl_tree_t *src = &lwb->lwb_vdev_tree; 1315 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1316 void *cookie = NULL; 1317 zil_vdev_node_t *zv; 1318 1319 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1320 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1321 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1322 1323 /* 1324 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1325 * not need the protection of lwb_vdev_lock (it will only be modified 1326 * while holding zilog->zl_lock) as its writes and those of its 1327 * children have all completed. The younger 'nlwb' may be waiting on 1328 * future writes to additional vdevs. 1329 */ 1330 mutex_enter(&nlwb->lwb_vdev_lock); 1331 /* 1332 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1333 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1334 */ 1335 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1336 avl_index_t where; 1337 1338 if (avl_find(dst, zv, &where) == NULL) { 1339 avl_insert(dst, zv, where); 1340 } else { 1341 kmem_free(zv, sizeof (*zv)); 1342 } 1343 } 1344 mutex_exit(&nlwb->lwb_vdev_lock); 1345 } 1346 1347 void 1348 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1349 { 1350 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1351 } 1352 1353 /* 1354 * This function is a called after all vdevs associated with a given lwb 1355 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1356 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1357 * all "previous" lwb's will have completed before this function is 1358 * called; i.e. this function is called for all previous lwbs before 1359 * it's called for "this" lwb (enforced via zio the dependencies 1360 * configured in zil_lwb_set_zio_dependency()). 1361 * 1362 * The intention is for this function to be called as soon as the 1363 * contents of an lwb are considered "stable" on disk, and will survive 1364 * any sudden loss of power. At this point, any threads waiting for the 1365 * lwb to reach this state are signalled, and the "waiter" structures 1366 * are marked "done". 1367 */ 1368 static void 1369 zil_lwb_flush_vdevs_done(zio_t *zio) 1370 { 1371 lwb_t *lwb = zio->io_private; 1372 zilog_t *zilog = lwb->lwb_zilog; 1373 zil_commit_waiter_t *zcw; 1374 itx_t *itx; 1375 uint64_t txg; 1376 1377 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1378 1379 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp; 1380 1381 mutex_enter(&zilog->zl_lock); 1382 1383 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8; 1384 1385 lwb->lwb_root_zio = NULL; 1386 1387 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1388 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1389 1390 if (zilog->zl_last_lwb_opened == lwb) { 1391 /* 1392 * Remember the highest committed log sequence number 1393 * for ztest. We only update this value when all the log 1394 * writes succeeded, because ztest wants to ASSERT that 1395 * it got the whole log chain. 1396 */ 1397 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1398 } 1399 1400 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL) 1401 zil_itx_destroy(itx); 1402 1403 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) { 1404 mutex_enter(&zcw->zcw_lock); 1405 1406 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1407 zcw->zcw_lwb = NULL; 1408 /* 1409 * We expect any ZIO errors from child ZIOs to have been 1410 * propagated "up" to this specific LWB's root ZIO, in 1411 * order for this error handling to work correctly. This 1412 * includes ZIO errors from either this LWB's write or 1413 * flush, as well as any errors from other dependent LWBs 1414 * (e.g. a root LWB ZIO that might be a child of this LWB). 1415 * 1416 * With that said, it's important to note that LWB flush 1417 * errors are not propagated up to the LWB root ZIO. 1418 * This is incorrect behavior, and results in VDEV flush 1419 * errors not being handled correctly here. See the 1420 * comment above the call to "zio_flush" for details. 1421 */ 1422 1423 zcw->zcw_zio_error = zio->io_error; 1424 1425 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1426 zcw->zcw_done = B_TRUE; 1427 cv_broadcast(&zcw->zcw_cv); 1428 1429 mutex_exit(&zcw->zcw_lock); 1430 } 1431 1432 mutex_exit(&zilog->zl_lock); 1433 1434 mutex_enter(&zilog->zl_lwb_io_lock); 1435 txg = lwb->lwb_issued_txg; 1436 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); 1437 zilog->zl_lwb_inflight[txg & TXG_MASK]--; 1438 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) 1439 cv_broadcast(&zilog->zl_lwb_io_cv); 1440 mutex_exit(&zilog->zl_lwb_io_lock); 1441 } 1442 1443 /* 1444 * Wait for the completion of all issued write/flush of that txg provided. 1445 * It guarantees zil_lwb_flush_vdevs_done() is called and returned. 1446 */ 1447 static void 1448 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) 1449 { 1450 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); 1451 1452 mutex_enter(&zilog->zl_lwb_io_lock); 1453 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) 1454 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); 1455 mutex_exit(&zilog->zl_lwb_io_lock); 1456 1457 #ifdef ZFS_DEBUG 1458 mutex_enter(&zilog->zl_lock); 1459 mutex_enter(&zilog->zl_lwb_io_lock); 1460 lwb_t *lwb = list_head(&zilog->zl_lwb_list); 1461 while (lwb != NULL && lwb->lwb_max_txg <= txg) { 1462 if (lwb->lwb_issued_txg <= txg) { 1463 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); 1464 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); 1465 IMPLY(lwb->lwb_issued_txg > 0, 1466 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 1467 } 1468 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE || 1469 lwb->lwb_state == LWB_STATE_FLUSH_DONE, 1470 lwb->lwb_buf == NULL); 1471 lwb = list_next(&zilog->zl_lwb_list, lwb); 1472 } 1473 mutex_exit(&zilog->zl_lwb_io_lock); 1474 mutex_exit(&zilog->zl_lock); 1475 #endif 1476 } 1477 1478 /* 1479 * This is called when an lwb's write zio completes. The callback's 1480 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1481 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1482 * in writing out this specific lwb's data, and in the case that cache 1483 * flushes have been deferred, vdevs involved in writing the data for 1484 * previous lwbs. The writes corresponding to all the vdevs in the 1485 * lwb_vdev_tree will have completed by the time this is called, due to 1486 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1487 * which takes deferred flushes into account. The lwb will be "done" 1488 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1489 * completion callback for the lwb's root zio. 1490 */ 1491 static void 1492 zil_lwb_write_done(zio_t *zio) 1493 { 1494 lwb_t *lwb = zio->io_private; 1495 spa_t *spa = zio->io_spa; 1496 zilog_t *zilog = lwb->lwb_zilog; 1497 avl_tree_t *t = &lwb->lwb_vdev_tree; 1498 void *cookie = NULL; 1499 zil_vdev_node_t *zv; 1500 lwb_t *nlwb; 1501 1502 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1503 1504 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1505 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 1506 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 1507 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 1508 ASSERT(!BP_IS_GANG(zio->io_bp)); 1509 ASSERT(!BP_IS_HOLE(zio->io_bp)); 1510 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 1511 1512 abd_free(zio->io_abd); 1513 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1514 lwb->lwb_buf = NULL; 1515 1516 mutex_enter(&zilog->zl_lock); 1517 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1518 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1519 lwb->lwb_write_zio = NULL; 1520 lwb->lwb_fastwrite = FALSE; 1521 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1522 mutex_exit(&zilog->zl_lock); 1523 1524 if (avl_numnodes(t) == 0) 1525 return; 1526 1527 /* 1528 * If there was an IO error, we're not going to call zio_flush() 1529 * on these vdevs, so we simply empty the tree and free the 1530 * nodes. We avoid calling zio_flush() since there isn't any 1531 * good reason for doing so, after the lwb block failed to be 1532 * written out. 1533 * 1534 * Additionally, we don't perform any further error handling at 1535 * this point (e.g. setting "zcw_zio_error" appropriately), as 1536 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1537 * we expect any error seen here, to have been propagated to 1538 * that function). 1539 */ 1540 if (zio->io_error != 0) { 1541 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1542 kmem_free(zv, sizeof (*zv)); 1543 return; 1544 } 1545 1546 /* 1547 * If this lwb does not have any threads waiting for it to 1548 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1549 * command to the vdevs written to by "this" lwb, and instead 1550 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1551 * command for those vdevs. Thus, we merge the vdev tree of 1552 * "this" lwb with the vdev tree of the "next" lwb in the list, 1553 * and assume the "next" lwb will handle flushing the vdevs (or 1554 * deferring the flush(s) again). 1555 * 1556 * This is a useful performance optimization, especially for 1557 * workloads with lots of async write activity and few sync 1558 * write and/or fsync activity, as it has the potential to 1559 * coalesce multiple flush commands to a vdev into one. 1560 */ 1561 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) { 1562 zil_lwb_flush_defer(lwb, nlwb); 1563 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1564 return; 1565 } 1566 1567 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1568 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1569 if (vd != NULL && !vd->vdev_nowritecache) { 1570 /* 1571 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1572 * always used within "zio_flush". This means, 1573 * any errors when flushing the vdev(s), will 1574 * (unfortunately) not be handled correctly, 1575 * since these "zio_flush" errors will not be 1576 * propagated up to "zil_lwb_flush_vdevs_done". 1577 */ 1578 zio_flush(lwb->lwb_root_zio, vd); 1579 } 1580 kmem_free(zv, sizeof (*zv)); 1581 } 1582 } 1583 1584 static void 1585 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1586 { 1587 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; 1588 1589 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1590 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1591 1592 /* 1593 * The zilog's "zl_last_lwb_opened" field is used to build the 1594 * lwb/zio dependency chain, which is used to preserve the 1595 * ordering of lwb completions that is required by the semantics 1596 * of the ZIL. Each new lwb zio becomes a parent of the 1597 * "previous" lwb zio, such that the new lwb's zio cannot 1598 * complete until the "previous" lwb's zio completes. 1599 * 1600 * This is required by the semantics of zil_commit(); the commit 1601 * waiters attached to the lwbs will be woken in the lwb zio's 1602 * completion callback, so this zio dependency graph ensures the 1603 * waiters are woken in the correct order (the same order the 1604 * lwbs were created). 1605 */ 1606 if (last_lwb_opened != NULL && 1607 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { 1608 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1609 last_lwb_opened->lwb_state == LWB_STATE_ISSUED || 1610 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); 1611 1612 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); 1613 zio_add_child(lwb->lwb_root_zio, 1614 last_lwb_opened->lwb_root_zio); 1615 1616 /* 1617 * If the previous lwb's write hasn't already completed, 1618 * we also want to order the completion of the lwb write 1619 * zios (above, we only order the completion of the lwb 1620 * root zios). This is required because of how we can 1621 * defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1622 * 1623 * When the DKIOCFLUSHWRITECACHE commands are deferred, 1624 * the previous lwb will rely on this lwb to flush the 1625 * vdevs written to by that previous lwb. Thus, we need 1626 * to ensure this lwb doesn't issue the flush until 1627 * after the previous lwb's write completes. We ensure 1628 * this ordering by setting the zio parent/child 1629 * relationship here. 1630 * 1631 * Without this relationship on the lwb's write zio, 1632 * it's possible for this lwb's write to complete prior 1633 * to the previous lwb's write completing; and thus, the 1634 * vdevs for the previous lwb would be flushed prior to 1635 * that lwb's data being written to those vdevs (the 1636 * vdevs are flushed in the lwb write zio's completion 1637 * handler, zil_lwb_write_done()). 1638 */ 1639 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { 1640 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || 1641 last_lwb_opened->lwb_state == LWB_STATE_ISSUED); 1642 1643 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); 1644 zio_add_child(lwb->lwb_write_zio, 1645 last_lwb_opened->lwb_write_zio); 1646 } 1647 } 1648 } 1649 1650 1651 /* 1652 * This function's purpose is to "open" an lwb such that it is ready to 1653 * accept new itxs being committed to it. To do this, the lwb's zio 1654 * structures are created, and linked to the lwb. This function is 1655 * idempotent; if the passed in lwb has already been opened, this 1656 * function is essentially a no-op. 1657 */ 1658 static void 1659 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1660 { 1661 zbookmark_phys_t zb; 1662 zio_priority_t prio; 1663 1664 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1665 ASSERT3P(lwb, !=, NULL); 1666 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); 1667 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); 1668 1669 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1670 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1671 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1672 1673 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */ 1674 mutex_enter(&zilog->zl_lock); 1675 if (lwb->lwb_root_zio == NULL) { 1676 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, 1677 BP_GET_LSIZE(&lwb->lwb_blk)); 1678 1679 if (!lwb->lwb_fastwrite) { 1680 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk); 1681 lwb->lwb_fastwrite = 1; 1682 } 1683 1684 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1685 prio = ZIO_PRIORITY_SYNC_WRITE; 1686 else 1687 prio = ZIO_PRIORITY_ASYNC_WRITE; 1688 1689 lwb->lwb_root_zio = zio_root(zilog->zl_spa, 1690 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); 1691 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1692 1693 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, 1694 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, 1695 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, 1696 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb); 1697 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1698 1699 lwb->lwb_state = LWB_STATE_OPENED; 1700 1701 zil_lwb_set_zio_dependency(zilog, lwb); 1702 zilog->zl_last_lwb_opened = lwb; 1703 } 1704 mutex_exit(&zilog->zl_lock); 1705 1706 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1707 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1708 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1709 } 1710 1711 /* 1712 * Define a limited set of intent log block sizes. 1713 * 1714 * These must be a multiple of 4KB. Note only the amount used (again 1715 * aligned to 4KB) actually gets written. However, we can't always just 1716 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1717 */ 1718 static const struct { 1719 uint64_t limit; 1720 uint64_t blksz; 1721 } zil_block_buckets[] = { 1722 { 4096, 4096 }, /* non TX_WRITE */ 1723 { 8192 + 4096, 8192 + 4096 }, /* database */ 1724 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ 1725 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ 1726 { 131072, 131072 }, /* < 128KB writes */ 1727 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ 1728 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ 1729 }; 1730 1731 /* 1732 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1733 * initialized. Otherwise this should not be used directly; see 1734 * zl_max_block_size instead. 1735 */ 1736 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1737 1738 /* 1739 * Start a log block write and advance to the next log block. 1740 * Calls are serialized. 1741 */ 1742 static lwb_t * 1743 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1744 { 1745 lwb_t *nlwb = NULL; 1746 zil_chain_t *zilc; 1747 spa_t *spa = zilog->zl_spa; 1748 blkptr_t *bp; 1749 dmu_tx_t *tx; 1750 uint64_t txg; 1751 uint64_t zil_blksz, wsz; 1752 int i, error; 1753 boolean_t slog; 1754 1755 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1756 ASSERT3P(lwb->lwb_root_zio, !=, NULL); 1757 ASSERT3P(lwb->lwb_write_zio, !=, NULL); 1758 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1759 1760 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1761 zilc = (zil_chain_t *)lwb->lwb_buf; 1762 bp = &zilc->zc_next_blk; 1763 } else { 1764 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 1765 bp = &zilc->zc_next_blk; 1766 } 1767 1768 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 1769 1770 /* 1771 * Allocate the next block and save its address in this block 1772 * before writing it in order to establish the log chain. 1773 */ 1774 1775 tx = dmu_tx_create(zilog->zl_os); 1776 1777 /* 1778 * Since we are not going to create any new dirty data, and we 1779 * can even help with clearing the existing dirty data, we 1780 * should not be subject to the dirty data based delays. We 1781 * use TXG_NOTHROTTLE to bypass the delay mechanism. 1782 */ 1783 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1784 1785 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1786 txg = dmu_tx_get_txg(tx); 1787 1788 mutex_enter(&zilog->zl_lwb_io_lock); 1789 lwb->lwb_issued_txg = txg; 1790 zilog->zl_lwb_inflight[txg & TXG_MASK]++; 1791 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); 1792 mutex_exit(&zilog->zl_lwb_io_lock); 1793 1794 /* 1795 * Log blocks are pre-allocated. Here we select the size of the next 1796 * block, based on size used in the last block. 1797 * - first find the smallest bucket that will fit the block from a 1798 * limited set of block sizes. This is because it's faster to write 1799 * blocks allocated from the same metaslab as they are adjacent or 1800 * close. 1801 * - next find the maximum from the new suggested size and an array of 1802 * previous sizes. This lessens a picket fence effect of wrongly 1803 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k 1804 * requests. 1805 * 1806 * Note we only write what is used, but we can't just allocate 1807 * the maximum block size because we can exhaust the available 1808 * pool log space. 1809 */ 1810 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1811 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) 1812 continue; 1813 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); 1814 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1815 for (i = 0; i < ZIL_PREV_BLKS; i++) 1816 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1817 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1818 1819 BP_ZERO(bp); 1820 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog); 1821 if (slog) { 1822 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); 1823 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, 1824 lwb->lwb_nused); 1825 } else { 1826 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); 1827 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, 1828 lwb->lwb_nused); 1829 } 1830 if (error == 0) { 1831 ASSERT3U(bp->blk_birth, ==, txg); 1832 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1833 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1834 1835 /* 1836 * Allocate a new log write block (lwb). 1837 */ 1838 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE); 1839 } 1840 1841 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 1842 /* For Slim ZIL only write what is used. */ 1843 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1844 ASSERT3U(wsz, <=, lwb->lwb_sz); 1845 zio_shrink(lwb->lwb_write_zio, wsz); 1846 wsz = lwb->lwb_write_zio->io_size; 1847 1848 } else { 1849 wsz = lwb->lwb_sz; 1850 } 1851 1852 zilc->zc_pad = 0; 1853 zilc->zc_nused = lwb->lwb_nused; 1854 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1855 1856 /* 1857 * clear unused data for security 1858 */ 1859 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); 1860 1861 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); 1862 1863 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1864 lwb->lwb_issued_timestamp = gethrtime(); 1865 lwb->lwb_state = LWB_STATE_ISSUED; 1866 1867 zio_nowait(lwb->lwb_root_zio); 1868 zio_nowait(lwb->lwb_write_zio); 1869 1870 dmu_tx_commit(tx); 1871 1872 /* 1873 * If there was an allocation failure then nlwb will be null which 1874 * forces a txg_wait_synced(). 1875 */ 1876 return (nlwb); 1877 } 1878 1879 /* 1880 * Maximum amount of data that can be put into single log block. 1881 */ 1882 uint64_t 1883 zil_max_log_data(zilog_t *zilog, size_t hdrsize) 1884 { 1885 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize); 1886 } 1887 1888 /* 1889 * Maximum amount of log space we agree to waste to reduce number of 1890 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). 1891 */ 1892 static inline uint64_t 1893 zil_max_waste_space(zilog_t *zilog) 1894 { 1895 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 8); 1896 } 1897 1898 /* 1899 * Maximum amount of write data for WR_COPIED. For correctness, consumers 1900 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 1901 * maximum sized log block, because each WR_COPIED record must fit in a 1902 * single log block. For space efficiency, we want to fit two records into a 1903 * max-sized log block. 1904 */ 1905 uint64_t 1906 zil_max_copied_data(zilog_t *zilog) 1907 { 1908 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 - 1909 sizeof (lr_write_t)); 1910 } 1911 1912 static lwb_t * 1913 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1914 { 1915 lr_t *lrcb, *lrc; 1916 lr_write_t *lrwb, *lrw; 1917 char *lr_buf; 1918 uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data; 1919 1920 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1921 ASSERT3P(lwb, !=, NULL); 1922 ASSERT3P(lwb->lwb_buf, !=, NULL); 1923 1924 zil_lwb_write_open(zilog, lwb); 1925 1926 lrc = &itx->itx_lr; 1927 lrw = (lr_write_t *)lrc; 1928 1929 /* 1930 * A commit itx doesn't represent any on-disk state; instead 1931 * it's simply used as a place holder on the commit list, and 1932 * provides a mechanism for attaching a "commit waiter" onto the 1933 * correct lwb (such that the waiter can be signalled upon 1934 * completion of that lwb). Thus, we don't process this itx's 1935 * log record if it's a commit itx (these itx's don't have log 1936 * records), and instead link the itx's waiter onto the lwb's 1937 * list of waiters. 1938 * 1939 * For more details, see the comment above zil_commit(). 1940 */ 1941 if (lrc->lrc_txtype == TX_COMMIT) { 1942 mutex_enter(&zilog->zl_lock); 1943 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 1944 itx->itx_private = NULL; 1945 mutex_exit(&zilog->zl_lock); 1946 return (lwb); 1947 } 1948 1949 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 1950 dlen = P2ROUNDUP_TYPED( 1951 lrw->lr_length, sizeof (uint64_t), uint64_t); 1952 dpad = dlen - lrw->lr_length; 1953 } else { 1954 dlen = dpad = 0; 1955 } 1956 reclen = lrc->lrc_reclen; 1957 zilog->zl_cur_used += (reclen + dlen); 1958 txg = lrc->lrc_txg; 1959 1960 cont: 1961 /* 1962 * If this record won't fit in the current log block, start a new one. 1963 * For WR_NEED_COPY optimize layout for minimal number of chunks. 1964 */ 1965 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1966 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 1967 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 1968 lwb_sp < zil_max_waste_space(zilog) && 1969 (dlen % max_log_data == 0 || 1970 lwb_sp < reclen + dlen % max_log_data))) { 1971 lwb = zil_lwb_write_issue(zilog, lwb); 1972 if (lwb == NULL) 1973 return (NULL); 1974 zil_lwb_write_open(zilog, lwb); 1975 lwb_sp = lwb->lwb_sz - lwb->lwb_nused; 1976 1977 /* 1978 * There must be enough space in the new, empty log block to 1979 * hold reclen. For WR_COPIED, we need to fit the whole 1980 * record in one block, and reclen is the header size + the 1981 * data size. For WR_NEED_COPY, we can create multiple 1982 * records, splitting the data into multiple blocks, so we 1983 * only need to fit one word of data per block; in this case 1984 * reclen is just the header size (no data). 1985 */ 1986 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 1987 } 1988 1989 dnow = MIN(dlen, lwb_sp - reclen); 1990 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1991 memcpy(lr_buf, lrc, reclen); 1992 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ 1993 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ 1994 1995 ZIL_STAT_BUMP(zilog, zil_itx_count); 1996 1997 /* 1998 * If it's a write, fetch the data or get its blkptr as appropriate. 1999 */ 2000 if (lrc->lrc_txtype == TX_WRITE) { 2001 if (txg > spa_freeze_txg(zilog->zl_spa)) 2002 txg_wait_synced(zilog->zl_dmu_pool, txg); 2003 if (itx->itx_wr_state == WR_COPIED) { 2004 ZIL_STAT_BUMP(zilog, zil_itx_copied_count); 2005 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, 2006 lrw->lr_length); 2007 } else { 2008 char *dbuf; 2009 int error; 2010 2011 if (itx->itx_wr_state == WR_NEED_COPY) { 2012 dbuf = lr_buf + reclen; 2013 lrcb->lrc_reclen += dnow; 2014 if (lrwb->lr_length > dnow) 2015 lrwb->lr_length = dnow; 2016 lrw->lr_offset += dnow; 2017 lrw->lr_length -= dnow; 2018 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); 2019 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, 2020 dnow); 2021 } else { 2022 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 2023 dbuf = NULL; 2024 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); 2025 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, 2026 lrw->lr_length); 2027 } 2028 2029 /* 2030 * We pass in the "lwb_write_zio" rather than 2031 * "lwb_root_zio" so that the "lwb_write_zio" 2032 * becomes the parent of any zio's created by 2033 * the "zl_get_data" callback. The vdevs are 2034 * flushed after the "lwb_write_zio" completes, 2035 * so we want to make sure that completion 2036 * callback waits for these additional zio's, 2037 * such that the vdevs used by those zio's will 2038 * be included in the lwb's vdev tree, and those 2039 * vdevs will be properly flushed. If we passed 2040 * in "lwb_root_zio" here, then these additional 2041 * vdevs may not be flushed; e.g. if these zio's 2042 * completed after "lwb_write_zio" completed. 2043 */ 2044 error = zilog->zl_get_data(itx->itx_private, 2045 itx->itx_gen, lrwb, dbuf, lwb, 2046 lwb->lwb_write_zio); 2047 if (dbuf != NULL && error == 0 && dnow == dlen) 2048 /* Zero any padding bytes in the last block. */ 2049 memset((char *)dbuf + lrwb->lr_length, 0, dpad); 2050 2051 /* 2052 * Typically, the only return values we should see from 2053 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or 2054 * EALREADY. However, it is also possible to see other 2055 * error values such as ENOSPC or EINVAL from 2056 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or 2057 * ENXIO as well as a multitude of others from the 2058 * block layer through dmu_buf_hold() -> dbuf_read() 2059 * -> zio_wait(), as well as through dmu_read() -> 2060 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() -> 2061 * zio_wait(). When these errors happen, we can assume 2062 * that neither an immediate write nor an indirect 2063 * write occurred, so we need to fall back to 2064 * txg_wait_synced(). This is unusual, so we print to 2065 * dmesg whenever one of these errors occurs. 2066 */ 2067 switch (error) { 2068 case 0: 2069 break; 2070 default: 2071 cmn_err(CE_WARN, "zil_lwb_commit() received " 2072 "unexpected error %d from ->zl_get_data()" 2073 ". Falling back to txg_wait_synced().", 2074 error); 2075 zfs_fallthrough; 2076 case EIO: 2077 txg_wait_synced(zilog->zl_dmu_pool, txg); 2078 zfs_fallthrough; 2079 case ENOENT: 2080 zfs_fallthrough; 2081 case EEXIST: 2082 zfs_fallthrough; 2083 case EALREADY: 2084 return (lwb); 2085 } 2086 } 2087 } 2088 2089 /* 2090 * We're actually making an entry, so update lrc_seq to be the 2091 * log record sequence number. Note that this is generally not 2092 * equal to the itx sequence number because not all transactions 2093 * are synchronous, and sometimes spa_sync() gets there first. 2094 */ 2095 lrcb->lrc_seq = ++zilog->zl_lr_seq; 2096 lwb->lwb_nused += reclen + dnow; 2097 2098 zil_lwb_add_txg(lwb, txg); 2099 2100 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 2101 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 2102 2103 dlen -= dnow; 2104 if (dlen > 0) { 2105 zilog->zl_cur_used += reclen; 2106 goto cont; 2107 } 2108 2109 return (lwb); 2110 } 2111 2112 itx_t * 2113 zil_itx_create(uint64_t txtype, size_t olrsize) 2114 { 2115 size_t itxsize, lrsize; 2116 itx_t *itx; 2117 2118 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 2119 itxsize = offsetof(itx_t, itx_lr) + lrsize; 2120 2121 itx = zio_data_buf_alloc(itxsize); 2122 itx->itx_lr.lrc_txtype = txtype; 2123 itx->itx_lr.lrc_reclen = lrsize; 2124 itx->itx_lr.lrc_seq = 0; /* defensive */ 2125 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); 2126 itx->itx_sync = B_TRUE; /* default is synchronous */ 2127 itx->itx_callback = NULL; 2128 itx->itx_callback_data = NULL; 2129 itx->itx_size = itxsize; 2130 2131 return (itx); 2132 } 2133 2134 void 2135 zil_itx_destroy(itx_t *itx) 2136 { 2137 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 2138 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2139 2140 if (itx->itx_callback != NULL) 2141 itx->itx_callback(itx->itx_callback_data); 2142 2143 zio_data_buf_free(itx, itx->itx_size); 2144 } 2145 2146 /* 2147 * Free up the sync and async itxs. The itxs_t has already been detached 2148 * so no locks are needed. 2149 */ 2150 static void 2151 zil_itxg_clean(void *arg) 2152 { 2153 itx_t *itx; 2154 list_t *list; 2155 avl_tree_t *t; 2156 void *cookie; 2157 itxs_t *itxs = arg; 2158 itx_async_node_t *ian; 2159 2160 list = &itxs->i_sync_list; 2161 while ((itx = list_remove_head(list)) != NULL) { 2162 /* 2163 * In the general case, commit itxs will not be found 2164 * here, as they'll be committed to an lwb via 2165 * zil_lwb_commit(), and free'd in that function. Having 2166 * said that, it is still possible for commit itxs to be 2167 * found here, due to the following race: 2168 * 2169 * - a thread calls zil_commit() which assigns the 2170 * commit itx to a per-txg i_sync_list 2171 * - zil_itxg_clean() is called (e.g. via spa_sync()) 2172 * while the waiter is still on the i_sync_list 2173 * 2174 * There's nothing to prevent syncing the txg while the 2175 * waiter is on the i_sync_list. This normally doesn't 2176 * happen because spa_sync() is slower than zil_commit(), 2177 * but if zil_commit() calls txg_wait_synced() (e.g. 2178 * because zil_create() or zil_commit_writer_stall() is 2179 * called) we will hit this case. 2180 */ 2181 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 2182 zil_commit_waiter_skip(itx->itx_private); 2183 2184 zil_itx_destroy(itx); 2185 } 2186 2187 cookie = NULL; 2188 t = &itxs->i_async_tree; 2189 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2190 list = &ian->ia_list; 2191 while ((itx = list_remove_head(list)) != NULL) { 2192 /* commit itxs should never be on the async lists. */ 2193 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2194 zil_itx_destroy(itx); 2195 } 2196 list_destroy(list); 2197 kmem_free(ian, sizeof (itx_async_node_t)); 2198 } 2199 avl_destroy(t); 2200 2201 kmem_free(itxs, sizeof (itxs_t)); 2202 } 2203 2204 static int 2205 zil_aitx_compare(const void *x1, const void *x2) 2206 { 2207 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 2208 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 2209 2210 return (TREE_CMP(o1, o2)); 2211 } 2212 2213 /* 2214 * Remove all async itx with the given oid. 2215 */ 2216 void 2217 zil_remove_async(zilog_t *zilog, uint64_t oid) 2218 { 2219 uint64_t otxg, txg; 2220 itx_async_node_t *ian; 2221 avl_tree_t *t; 2222 avl_index_t where; 2223 list_t clean_list; 2224 itx_t *itx; 2225 2226 ASSERT(oid != 0); 2227 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 2228 2229 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2230 otxg = ZILTEST_TXG; 2231 else 2232 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2233 2234 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2235 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2236 2237 mutex_enter(&itxg->itxg_lock); 2238 if (itxg->itxg_txg != txg) { 2239 mutex_exit(&itxg->itxg_lock); 2240 continue; 2241 } 2242 2243 /* 2244 * Locate the object node and append its list. 2245 */ 2246 t = &itxg->itxg_itxs->i_async_tree; 2247 ian = avl_find(t, &oid, &where); 2248 if (ian != NULL) 2249 list_move_tail(&clean_list, &ian->ia_list); 2250 mutex_exit(&itxg->itxg_lock); 2251 } 2252 while ((itx = list_remove_head(&clean_list)) != NULL) { 2253 /* commit itxs should never be on the async lists. */ 2254 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2255 zil_itx_destroy(itx); 2256 } 2257 list_destroy(&clean_list); 2258 } 2259 2260 void 2261 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2262 { 2263 uint64_t txg; 2264 itxg_t *itxg; 2265 itxs_t *itxs, *clean = NULL; 2266 2267 /* 2268 * Ensure the data of a renamed file is committed before the rename. 2269 */ 2270 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2271 zil_async_to_sync(zilog, itx->itx_oid); 2272 2273 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2274 txg = ZILTEST_TXG; 2275 else 2276 txg = dmu_tx_get_txg(tx); 2277 2278 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2279 mutex_enter(&itxg->itxg_lock); 2280 itxs = itxg->itxg_itxs; 2281 if (itxg->itxg_txg != txg) { 2282 if (itxs != NULL) { 2283 /* 2284 * The zil_clean callback hasn't got around to cleaning 2285 * this itxg. Save the itxs for release below. 2286 * This should be rare. 2287 */ 2288 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2289 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2290 clean = itxg->itxg_itxs; 2291 } 2292 itxg->itxg_txg = txg; 2293 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2294 KM_SLEEP); 2295 2296 list_create(&itxs->i_sync_list, sizeof (itx_t), 2297 offsetof(itx_t, itx_node)); 2298 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2299 sizeof (itx_async_node_t), 2300 offsetof(itx_async_node_t, ia_node)); 2301 } 2302 if (itx->itx_sync) { 2303 list_insert_tail(&itxs->i_sync_list, itx); 2304 } else { 2305 avl_tree_t *t = &itxs->i_async_tree; 2306 uint64_t foid = 2307 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2308 itx_async_node_t *ian; 2309 avl_index_t where; 2310 2311 ian = avl_find(t, &foid, &where); 2312 if (ian == NULL) { 2313 ian = kmem_alloc(sizeof (itx_async_node_t), 2314 KM_SLEEP); 2315 list_create(&ian->ia_list, sizeof (itx_t), 2316 offsetof(itx_t, itx_node)); 2317 ian->ia_foid = foid; 2318 avl_insert(t, ian, where); 2319 } 2320 list_insert_tail(&ian->ia_list, itx); 2321 } 2322 2323 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2324 2325 /* 2326 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2327 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2328 * need to be careful to always dirty the ZIL using the "real" 2329 * TXG (not itxg_txg) even when the SPA is frozen. 2330 */ 2331 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2332 mutex_exit(&itxg->itxg_lock); 2333 2334 /* Release the old itxs now we've dropped the lock */ 2335 if (clean != NULL) 2336 zil_itxg_clean(clean); 2337 } 2338 2339 /* 2340 * If there are any in-memory intent log transactions which have now been 2341 * synced then start up a taskq to free them. We should only do this after we 2342 * have written out the uberblocks (i.e. txg has been committed) so that 2343 * don't inadvertently clean out in-memory log records that would be required 2344 * by zil_commit(). 2345 */ 2346 void 2347 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2348 { 2349 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2350 itxs_t *clean_me; 2351 2352 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2353 2354 mutex_enter(&itxg->itxg_lock); 2355 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2356 mutex_exit(&itxg->itxg_lock); 2357 return; 2358 } 2359 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2360 ASSERT3U(itxg->itxg_txg, !=, 0); 2361 clean_me = itxg->itxg_itxs; 2362 itxg->itxg_itxs = NULL; 2363 itxg->itxg_txg = 0; 2364 mutex_exit(&itxg->itxg_lock); 2365 /* 2366 * Preferably start a task queue to free up the old itxs but 2367 * if taskq_dispatch can't allocate resources to do that then 2368 * free it in-line. This should be rare. Note, using TQ_SLEEP 2369 * created a bad performance problem. 2370 */ 2371 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2372 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2373 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2374 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2375 if (id == TASKQID_INVALID) 2376 zil_itxg_clean(clean_me); 2377 } 2378 2379 /* 2380 * This function will traverse the queue of itxs that need to be 2381 * committed, and move them onto the ZIL's zl_itx_commit_list. 2382 */ 2383 static void 2384 zil_get_commit_list(zilog_t *zilog) 2385 { 2386 uint64_t otxg, txg; 2387 list_t *commit_list = &zilog->zl_itx_commit_list; 2388 2389 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2390 2391 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2392 otxg = ZILTEST_TXG; 2393 else 2394 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2395 2396 /* 2397 * This is inherently racy, since there is nothing to prevent 2398 * the last synced txg from changing. That's okay since we'll 2399 * only commit things in the future. 2400 */ 2401 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2402 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2403 2404 mutex_enter(&itxg->itxg_lock); 2405 if (itxg->itxg_txg != txg) { 2406 mutex_exit(&itxg->itxg_lock); 2407 continue; 2408 } 2409 2410 /* 2411 * If we're adding itx records to the zl_itx_commit_list, 2412 * then the zil better be dirty in this "txg". We can assert 2413 * that here since we're holding the itxg_lock which will 2414 * prevent spa_sync from cleaning it. Once we add the itxs 2415 * to the zl_itx_commit_list we must commit it to disk even 2416 * if it's unnecessary (i.e. the txg was synced). 2417 */ 2418 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2419 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2420 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 2421 2422 mutex_exit(&itxg->itxg_lock); 2423 } 2424 } 2425 2426 /* 2427 * Move the async itxs for a specified object to commit into sync lists. 2428 */ 2429 void 2430 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2431 { 2432 uint64_t otxg, txg; 2433 itx_async_node_t *ian; 2434 avl_tree_t *t; 2435 avl_index_t where; 2436 2437 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2438 otxg = ZILTEST_TXG; 2439 else 2440 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2441 2442 /* 2443 * This is inherently racy, since there is nothing to prevent 2444 * the last synced txg from changing. 2445 */ 2446 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2447 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2448 2449 mutex_enter(&itxg->itxg_lock); 2450 if (itxg->itxg_txg != txg) { 2451 mutex_exit(&itxg->itxg_lock); 2452 continue; 2453 } 2454 2455 /* 2456 * If a foid is specified then find that node and append its 2457 * list. Otherwise walk the tree appending all the lists 2458 * to the sync list. We add to the end rather than the 2459 * beginning to ensure the create has happened. 2460 */ 2461 t = &itxg->itxg_itxs->i_async_tree; 2462 if (foid != 0) { 2463 ian = avl_find(t, &foid, &where); 2464 if (ian != NULL) { 2465 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2466 &ian->ia_list); 2467 } 2468 } else { 2469 void *cookie = NULL; 2470 2471 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2472 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2473 &ian->ia_list); 2474 list_destroy(&ian->ia_list); 2475 kmem_free(ian, sizeof (itx_async_node_t)); 2476 } 2477 } 2478 mutex_exit(&itxg->itxg_lock); 2479 } 2480 } 2481 2482 /* 2483 * This function will prune commit itxs that are at the head of the 2484 * commit list (it won't prune past the first non-commit itx), and 2485 * either: a) attach them to the last lwb that's still pending 2486 * completion, or b) skip them altogether. 2487 * 2488 * This is used as a performance optimization to prevent commit itxs 2489 * from generating new lwbs when it's unnecessary to do so. 2490 */ 2491 static void 2492 zil_prune_commit_list(zilog_t *zilog) 2493 { 2494 itx_t *itx; 2495 2496 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2497 2498 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2499 lr_t *lrc = &itx->itx_lr; 2500 if (lrc->lrc_txtype != TX_COMMIT) 2501 break; 2502 2503 mutex_enter(&zilog->zl_lock); 2504 2505 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2506 if (last_lwb == NULL || 2507 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2508 /* 2509 * All of the itxs this waiter was waiting on 2510 * must have already completed (or there were 2511 * never any itx's for it to wait on), so it's 2512 * safe to skip this waiter and mark it done. 2513 */ 2514 zil_commit_waiter_skip(itx->itx_private); 2515 } else { 2516 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2517 itx->itx_private = NULL; 2518 } 2519 2520 mutex_exit(&zilog->zl_lock); 2521 2522 list_remove(&zilog->zl_itx_commit_list, itx); 2523 zil_itx_destroy(itx); 2524 } 2525 2526 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2527 } 2528 2529 static void 2530 zil_commit_writer_stall(zilog_t *zilog) 2531 { 2532 /* 2533 * When zio_alloc_zil() fails to allocate the next lwb block on 2534 * disk, we must call txg_wait_synced() to ensure all of the 2535 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2536 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2537 * to zil_process_commit_list()) will have to call zil_create(), 2538 * and start a new ZIL chain. 2539 * 2540 * Since zil_alloc_zil() failed, the lwb that was previously 2541 * issued does not have a pointer to the "next" lwb on disk. 2542 * Thus, if another ZIL writer thread was to allocate the "next" 2543 * on-disk lwb, that block could be leaked in the event of a 2544 * crash (because the previous lwb on-disk would not point to 2545 * it). 2546 * 2547 * We must hold the zilog's zl_issuer_lock while we do this, to 2548 * ensure no new threads enter zil_process_commit_list() until 2549 * all lwb's in the zl_lwb_list have been synced and freed 2550 * (which is achieved via the txg_wait_synced() call). 2551 */ 2552 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2553 txg_wait_synced(zilog->zl_dmu_pool, 0); 2554 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2555 } 2556 2557 /* 2558 * This function will traverse the commit list, creating new lwbs as 2559 * needed, and committing the itxs from the commit list to these newly 2560 * created lwbs. Additionally, as a new lwb is created, the previous 2561 * lwb will be issued to the zio layer to be written to disk. 2562 */ 2563 static void 2564 zil_process_commit_list(zilog_t *zilog) 2565 { 2566 spa_t *spa = zilog->zl_spa; 2567 list_t nolwb_itxs; 2568 list_t nolwb_waiters; 2569 lwb_t *lwb, *plwb; 2570 itx_t *itx; 2571 boolean_t first = B_TRUE; 2572 2573 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2574 2575 /* 2576 * Return if there's nothing to commit before we dirty the fs by 2577 * calling zil_create(). 2578 */ 2579 if (list_is_empty(&zilog->zl_itx_commit_list)) 2580 return; 2581 2582 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2583 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2584 offsetof(zil_commit_waiter_t, zcw_node)); 2585 2586 lwb = list_tail(&zilog->zl_lwb_list); 2587 if (lwb == NULL) { 2588 lwb = zil_create(zilog); 2589 } else { 2590 /* 2591 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2592 * have already been created (zl_lwb_list not empty). 2593 */ 2594 zil_commit_activate_saxattr_feature(zilog); 2595 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2596 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2597 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2598 first = (lwb->lwb_state != LWB_STATE_OPENED) && 2599 ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL || 2600 plwb->lwb_state == LWB_STATE_FLUSH_DONE); 2601 } 2602 2603 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) { 2604 lr_t *lrc = &itx->itx_lr; 2605 uint64_t txg = lrc->lrc_txg; 2606 2607 ASSERT3U(txg, !=, 0); 2608 2609 if (lrc->lrc_txtype == TX_COMMIT) { 2610 DTRACE_PROBE2(zil__process__commit__itx, 2611 zilog_t *, zilog, itx_t *, itx); 2612 } else { 2613 DTRACE_PROBE2(zil__process__normal__itx, 2614 zilog_t *, zilog, itx_t *, itx); 2615 } 2616 2617 boolean_t synced = txg <= spa_last_synced_txg(spa); 2618 boolean_t frozen = txg > spa_freeze_txg(spa); 2619 2620 /* 2621 * If the txg of this itx has already been synced out, then 2622 * we don't need to commit this itx to an lwb. This is 2623 * because the data of this itx will have already been 2624 * written to the main pool. This is inherently racy, and 2625 * it's still ok to commit an itx whose txg has already 2626 * been synced; this will result in a write that's 2627 * unnecessary, but will do no harm. 2628 * 2629 * With that said, we always want to commit TX_COMMIT itxs 2630 * to an lwb, regardless of whether or not that itx's txg 2631 * has been synced out. We do this to ensure any OPENED lwb 2632 * will always have at least one zil_commit_waiter_t linked 2633 * to the lwb. 2634 * 2635 * As a counter-example, if we skipped TX_COMMIT itx's 2636 * whose txg had already been synced, the following 2637 * situation could occur if we happened to be racing with 2638 * spa_sync: 2639 * 2640 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2641 * itx's txg is 10 and the last synced txg is 9. 2642 * 2. spa_sync finishes syncing out txg 10. 2643 * 3. We move to the next itx in the list, it's a TX_COMMIT 2644 * whose txg is 10, so we skip it rather than committing 2645 * it to the lwb used in (1). 2646 * 2647 * If the itx that is skipped in (3) is the last TX_COMMIT 2648 * itx in the commit list, than it's possible for the lwb 2649 * used in (1) to remain in the OPENED state indefinitely. 2650 * 2651 * To prevent the above scenario from occurring, ensuring 2652 * that once an lwb is OPENED it will transition to ISSUED 2653 * and eventually DONE, we always commit TX_COMMIT itx's to 2654 * an lwb here, even if that itx's txg has already been 2655 * synced. 2656 * 2657 * Finally, if the pool is frozen, we _always_ commit the 2658 * itx. The point of freezing the pool is to prevent data 2659 * from being written to the main pool via spa_sync, and 2660 * instead rely solely on the ZIL to persistently store the 2661 * data; i.e. when the pool is frozen, the last synced txg 2662 * value can't be trusted. 2663 */ 2664 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2665 if (lwb != NULL) { 2666 lwb = zil_lwb_commit(zilog, itx, lwb); 2667 2668 if (lwb == NULL) 2669 list_insert_tail(&nolwb_itxs, itx); 2670 else 2671 list_insert_tail(&lwb->lwb_itxs, itx); 2672 } else { 2673 if (lrc->lrc_txtype == TX_COMMIT) { 2674 zil_commit_waiter_link_nolwb( 2675 itx->itx_private, &nolwb_waiters); 2676 } 2677 2678 list_insert_tail(&nolwb_itxs, itx); 2679 } 2680 } else { 2681 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2682 zil_itx_destroy(itx); 2683 } 2684 } 2685 2686 if (lwb == NULL) { 2687 /* 2688 * This indicates zio_alloc_zil() failed to allocate the 2689 * "next" lwb on-disk. When this happens, we must stall 2690 * the ZIL write pipeline; see the comment within 2691 * zil_commit_writer_stall() for more details. 2692 */ 2693 zil_commit_writer_stall(zilog); 2694 2695 /* 2696 * Additionally, we have to signal and mark the "nolwb" 2697 * waiters as "done" here, since without an lwb, we 2698 * can't do this via zil_lwb_flush_vdevs_done() like 2699 * normal. 2700 */ 2701 zil_commit_waiter_t *zcw; 2702 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL) 2703 zil_commit_waiter_skip(zcw); 2704 2705 /* 2706 * And finally, we have to destroy the itx's that 2707 * couldn't be committed to an lwb; this will also call 2708 * the itx's callback if one exists for the itx. 2709 */ 2710 while ((itx = list_remove_head(&nolwb_itxs)) != NULL) 2711 zil_itx_destroy(itx); 2712 } else { 2713 ASSERT(list_is_empty(&nolwb_waiters)); 2714 ASSERT3P(lwb, !=, NULL); 2715 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 2716 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 2717 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 2718 2719 /* 2720 * At this point, the ZIL block pointed at by the "lwb" 2721 * variable is in one of the following states: "closed" 2722 * or "open". 2723 * 2724 * If it's "closed", then no itxs have been committed to 2725 * it, so there's no point in issuing its zio (i.e. it's 2726 * "empty"). 2727 * 2728 * If it's "open", then it contains one or more itxs that 2729 * eventually need to be committed to stable storage. In 2730 * this case we intentionally do not issue the lwb's zio 2731 * to disk yet, and instead rely on one of the following 2732 * two mechanisms for issuing the zio: 2733 * 2734 * 1. Ideally, there will be more ZIL activity occurring 2735 * on the system, such that this function will be 2736 * immediately called again (not necessarily by the same 2737 * thread) and this lwb's zio will be issued via 2738 * zil_lwb_commit(). This way, the lwb is guaranteed to 2739 * be "full" when it is issued to disk, and we'll make 2740 * use of the lwb's size the best we can. 2741 * 2742 * 2. If there isn't sufficient ZIL activity occurring on 2743 * the system, such that this lwb's zio isn't issued via 2744 * zil_lwb_commit(), zil_commit_waiter() will issue the 2745 * lwb's zio. If this occurs, the lwb is not guaranteed 2746 * to be "full" by the time its zio is issued, and means 2747 * the size of the lwb was "too large" given the amount 2748 * of ZIL activity occurring on the system at that time. 2749 * 2750 * We do this for a couple of reasons: 2751 * 2752 * 1. To try and reduce the number of IOPs needed to 2753 * write the same number of itxs. If an lwb has space 2754 * available in its buffer for more itxs, and more itxs 2755 * will be committed relatively soon (relative to the 2756 * latency of performing a write), then it's beneficial 2757 * to wait for these "next" itxs. This way, more itxs 2758 * can be committed to stable storage with fewer writes. 2759 * 2760 * 2. To try and use the largest lwb block size that the 2761 * incoming rate of itxs can support. Again, this is to 2762 * try and pack as many itxs into as few lwbs as 2763 * possible, without significantly impacting the latency 2764 * of each individual itx. 2765 * 2766 * If we had no already running or open LWBs, it can be 2767 * the workload is single-threaded. And if the ZIL write 2768 * latency is very small or if the LWB is almost full, it 2769 * may be cheaper to bypass the delay. 2770 */ 2771 if (lwb->lwb_state == LWB_STATE_OPENED && first) { 2772 hrtime_t sleep = zilog->zl_last_lwb_latency * 2773 zfs_commit_timeout_pct / 100; 2774 if (sleep < zil_min_commit_timeout || 2775 lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) { 2776 lwb = zil_lwb_write_issue(zilog, lwb); 2777 zilog->zl_cur_used = 0; 2778 if (lwb == NULL) 2779 zil_commit_writer_stall(zilog); 2780 } 2781 } 2782 } 2783 } 2784 2785 /* 2786 * This function is responsible for ensuring the passed in commit waiter 2787 * (and associated commit itx) is committed to an lwb. If the waiter is 2788 * not already committed to an lwb, all itxs in the zilog's queue of 2789 * itxs will be processed. The assumption is the passed in waiter's 2790 * commit itx will found in the queue just like the other non-commit 2791 * itxs, such that when the entire queue is processed, the waiter will 2792 * have been committed to an lwb. 2793 * 2794 * The lwb associated with the passed in waiter is not guaranteed to 2795 * have been issued by the time this function completes. If the lwb is 2796 * not issued, we rely on future calls to zil_commit_writer() to issue 2797 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2798 */ 2799 static void 2800 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2801 { 2802 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2803 ASSERT(spa_writeable(zilog->zl_spa)); 2804 2805 mutex_enter(&zilog->zl_issuer_lock); 2806 2807 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 2808 /* 2809 * It's possible that, while we were waiting to acquire 2810 * the "zl_issuer_lock", another thread committed this 2811 * waiter to an lwb. If that occurs, we bail out early, 2812 * without processing any of the zilog's queue of itxs. 2813 * 2814 * On certain workloads and system configurations, the 2815 * "zl_issuer_lock" can become highly contended. In an 2816 * attempt to reduce this contention, we immediately drop 2817 * the lock if the waiter has already been processed. 2818 * 2819 * We've measured this optimization to reduce CPU spent 2820 * contending on this lock by up to 5%, using a system 2821 * with 32 CPUs, low latency storage (~50 usec writes), 2822 * and 1024 threads performing sync writes. 2823 */ 2824 goto out; 2825 } 2826 2827 ZIL_STAT_BUMP(zilog, zil_commit_writer_count); 2828 2829 zil_get_commit_list(zilog); 2830 zil_prune_commit_list(zilog); 2831 zil_process_commit_list(zilog); 2832 2833 out: 2834 mutex_exit(&zilog->zl_issuer_lock); 2835 } 2836 2837 static void 2838 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 2839 { 2840 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2841 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2842 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 2843 2844 lwb_t *lwb = zcw->zcw_lwb; 2845 ASSERT3P(lwb, !=, NULL); 2846 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); 2847 2848 /* 2849 * If the lwb has already been issued by another thread, we can 2850 * immediately return since there's no work to be done (the 2851 * point of this function is to issue the lwb). Additionally, we 2852 * do this prior to acquiring the zl_issuer_lock, to avoid 2853 * acquiring it when it's not necessary to do so. 2854 */ 2855 if (lwb->lwb_state == LWB_STATE_ISSUED || 2856 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2857 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2858 return; 2859 2860 /* 2861 * In order to call zil_lwb_write_issue() we must hold the 2862 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 2863 * since we're already holding the commit waiter's "zcw_lock", 2864 * and those two locks are acquired in the opposite order 2865 * elsewhere. 2866 */ 2867 mutex_exit(&zcw->zcw_lock); 2868 mutex_enter(&zilog->zl_issuer_lock); 2869 mutex_enter(&zcw->zcw_lock); 2870 2871 /* 2872 * Since we just dropped and re-acquired the commit waiter's 2873 * lock, we have to re-check to see if the waiter was marked 2874 * "done" during that process. If the waiter was marked "done", 2875 * the "lwb" pointer is no longer valid (it can be free'd after 2876 * the waiter is marked "done"), so without this check we could 2877 * wind up with a use-after-free error below. 2878 */ 2879 if (zcw->zcw_done) 2880 goto out; 2881 2882 ASSERT3P(lwb, ==, zcw->zcw_lwb); 2883 2884 /* 2885 * We've already checked this above, but since we hadn't acquired 2886 * the zilog's zl_issuer_lock, we have to perform this check a 2887 * second time while holding the lock. 2888 * 2889 * We don't need to hold the zl_lock since the lwb cannot transition 2890 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb 2891 * _can_ transition from ISSUED to DONE, but it's OK to race with 2892 * that transition since we treat the lwb the same, whether it's in 2893 * the ISSUED or DONE states. 2894 * 2895 * The important thing, is we treat the lwb differently depending on 2896 * if it's ISSUED or OPENED, and block any other threads that might 2897 * attempt to issue this lwb. For that reason we hold the 2898 * zl_issuer_lock when checking the lwb_state; we must not call 2899 * zil_lwb_write_issue() if the lwb had already been issued. 2900 * 2901 * See the comment above the lwb_state_t structure definition for 2902 * more details on the lwb states, and locking requirements. 2903 */ 2904 if (lwb->lwb_state == LWB_STATE_ISSUED || 2905 lwb->lwb_state == LWB_STATE_WRITE_DONE || 2906 lwb->lwb_state == LWB_STATE_FLUSH_DONE) 2907 goto out; 2908 2909 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 2910 2911 /* 2912 * As described in the comments above zil_commit_waiter() and 2913 * zil_process_commit_list(), we need to issue this lwb's zio 2914 * since we've reached the commit waiter's timeout and it still 2915 * hasn't been issued. 2916 */ 2917 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); 2918 2919 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 2920 2921 /* 2922 * Since the lwb's zio hadn't been issued by the time this thread 2923 * reached its timeout, we reset the zilog's "zl_cur_used" field 2924 * to influence the zil block size selection algorithm. 2925 * 2926 * By having to issue the lwb's zio here, it means the size of the 2927 * lwb was too large, given the incoming throughput of itxs. By 2928 * setting "zl_cur_used" to zero, we communicate this fact to the 2929 * block size selection algorithm, so it can take this information 2930 * into account, and potentially select a smaller size for the 2931 * next lwb block that is allocated. 2932 */ 2933 zilog->zl_cur_used = 0; 2934 2935 if (nlwb == NULL) { 2936 /* 2937 * When zil_lwb_write_issue() returns NULL, this 2938 * indicates zio_alloc_zil() failed to allocate the 2939 * "next" lwb on-disk. When this occurs, the ZIL write 2940 * pipeline must be stalled; see the comment within the 2941 * zil_commit_writer_stall() function for more details. 2942 * 2943 * We must drop the commit waiter's lock prior to 2944 * calling zil_commit_writer_stall() or else we can wind 2945 * up with the following deadlock: 2946 * 2947 * - This thread is waiting for the txg to sync while 2948 * holding the waiter's lock; txg_wait_synced() is 2949 * used within txg_commit_writer_stall(). 2950 * 2951 * - The txg can't sync because it is waiting for this 2952 * lwb's zio callback to call dmu_tx_commit(). 2953 * 2954 * - The lwb's zio callback can't call dmu_tx_commit() 2955 * because it's blocked trying to acquire the waiter's 2956 * lock, which occurs prior to calling dmu_tx_commit() 2957 */ 2958 mutex_exit(&zcw->zcw_lock); 2959 zil_commit_writer_stall(zilog); 2960 mutex_enter(&zcw->zcw_lock); 2961 } 2962 2963 out: 2964 mutex_exit(&zilog->zl_issuer_lock); 2965 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 2966 } 2967 2968 /* 2969 * This function is responsible for performing the following two tasks: 2970 * 2971 * 1. its primary responsibility is to block until the given "commit 2972 * waiter" is considered "done". 2973 * 2974 * 2. its secondary responsibility is to issue the zio for the lwb that 2975 * the given "commit waiter" is waiting on, if this function has 2976 * waited "long enough" and the lwb is still in the "open" state. 2977 * 2978 * Given a sufficient amount of itxs being generated and written using 2979 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() 2980 * function. If this does not occur, this secondary responsibility will 2981 * ensure the lwb is issued even if there is not other synchronous 2982 * activity on the system. 2983 * 2984 * For more details, see zil_process_commit_list(); more specifically, 2985 * the comment at the bottom of that function. 2986 */ 2987 static void 2988 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 2989 { 2990 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2991 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 2992 ASSERT(spa_writeable(zilog->zl_spa)); 2993 2994 mutex_enter(&zcw->zcw_lock); 2995 2996 /* 2997 * The timeout is scaled based on the lwb latency to avoid 2998 * significantly impacting the latency of each individual itx. 2999 * For more details, see the comment at the bottom of the 3000 * zil_process_commit_list() function. 3001 */ 3002 int pct = MAX(zfs_commit_timeout_pct, 1); 3003 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 3004 hrtime_t wakeup = gethrtime() + sleep; 3005 boolean_t timedout = B_FALSE; 3006 3007 while (!zcw->zcw_done) { 3008 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3009 3010 lwb_t *lwb = zcw->zcw_lwb; 3011 3012 /* 3013 * Usually, the waiter will have a non-NULL lwb field here, 3014 * but it's possible for it to be NULL as a result of 3015 * zil_commit() racing with spa_sync(). 3016 * 3017 * When zil_clean() is called, it's possible for the itxg 3018 * list (which may be cleaned via a taskq) to contain 3019 * commit itxs. When this occurs, the commit waiters linked 3020 * off of these commit itxs will not be committed to an 3021 * lwb. Additionally, these commit waiters will not be 3022 * marked done until zil_commit_waiter_skip() is called via 3023 * zil_itxg_clean(). 3024 * 3025 * Thus, it's possible for this commit waiter (i.e. the 3026 * "zcw" variable) to be found in this "in between" state; 3027 * where it's "zcw_lwb" field is NULL, and it hasn't yet 3028 * been skipped, so it's "zcw_done" field is still B_FALSE. 3029 */ 3030 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); 3031 3032 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 3033 ASSERT3B(timedout, ==, B_FALSE); 3034 3035 /* 3036 * If the lwb hasn't been issued yet, then we 3037 * need to wait with a timeout, in case this 3038 * function needs to issue the lwb after the 3039 * timeout is reached; responsibility (2) from 3040 * the comment above this function. 3041 */ 3042 int rc = cv_timedwait_hires(&zcw->zcw_cv, 3043 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 3044 CALLOUT_FLAG_ABSOLUTE); 3045 3046 if (rc != -1 || zcw->zcw_done) 3047 continue; 3048 3049 timedout = B_TRUE; 3050 zil_commit_waiter_timeout(zilog, zcw); 3051 3052 if (!zcw->zcw_done) { 3053 /* 3054 * If the commit waiter has already been 3055 * marked "done", it's possible for the 3056 * waiter's lwb structure to have already 3057 * been freed. Thus, we can only reliably 3058 * make these assertions if the waiter 3059 * isn't done. 3060 */ 3061 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3062 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3063 } 3064 } else { 3065 /* 3066 * If the lwb isn't open, then it must have already 3067 * been issued. In that case, there's no need to 3068 * use a timeout when waiting for the lwb to 3069 * complete. 3070 * 3071 * Additionally, if the lwb is NULL, the waiter 3072 * will soon be signaled and marked done via 3073 * zil_clean() and zil_itxg_clean(), so no timeout 3074 * is required. 3075 */ 3076 3077 IMPLY(lwb != NULL, 3078 lwb->lwb_state == LWB_STATE_ISSUED || 3079 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3080 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 3081 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 3082 } 3083 } 3084 3085 mutex_exit(&zcw->zcw_lock); 3086 } 3087 3088 static zil_commit_waiter_t * 3089 zil_alloc_commit_waiter(void) 3090 { 3091 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 3092 3093 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 3094 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 3095 list_link_init(&zcw->zcw_node); 3096 zcw->zcw_lwb = NULL; 3097 zcw->zcw_done = B_FALSE; 3098 zcw->zcw_zio_error = 0; 3099 3100 return (zcw); 3101 } 3102 3103 static void 3104 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 3105 { 3106 ASSERT(!list_link_active(&zcw->zcw_node)); 3107 ASSERT3P(zcw->zcw_lwb, ==, NULL); 3108 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 3109 mutex_destroy(&zcw->zcw_lock); 3110 cv_destroy(&zcw->zcw_cv); 3111 kmem_cache_free(zil_zcw_cache, zcw); 3112 } 3113 3114 /* 3115 * This function is used to create a TX_COMMIT itx and assign it. This 3116 * way, it will be linked into the ZIL's list of synchronous itxs, and 3117 * then later committed to an lwb (or skipped) when 3118 * zil_process_commit_list() is called. 3119 */ 3120 static void 3121 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 3122 { 3123 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 3124 3125 /* 3126 * Since we are not going to create any new dirty data, and we 3127 * can even help with clearing the existing dirty data, we 3128 * should not be subject to the dirty data based delays. We 3129 * use TXG_NOTHROTTLE to bypass the delay mechanism. 3130 */ 3131 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 3132 3133 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 3134 itx->itx_sync = B_TRUE; 3135 itx->itx_private = zcw; 3136 3137 zil_itx_assign(zilog, itx, tx); 3138 3139 dmu_tx_commit(tx); 3140 } 3141 3142 /* 3143 * Commit ZFS Intent Log transactions (itxs) to stable storage. 3144 * 3145 * When writing ZIL transactions to the on-disk representation of the 3146 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 3147 * itxs can be committed to a single lwb. Once a lwb is written and 3148 * committed to stable storage (i.e. the lwb is written, and vdevs have 3149 * been flushed), each itx that was committed to that lwb is also 3150 * considered to be committed to stable storage. 3151 * 3152 * When an itx is committed to an lwb, the log record (lr_t) contained 3153 * by the itx is copied into the lwb's zio buffer, and once this buffer 3154 * is written to disk, it becomes an on-disk ZIL block. 3155 * 3156 * As itxs are generated, they're inserted into the ZIL's queue of 3157 * uncommitted itxs. The semantics of zil_commit() are such that it will 3158 * block until all itxs that were in the queue when it was called, are 3159 * committed to stable storage. 3160 * 3161 * If "foid" is zero, this means all "synchronous" and "asynchronous" 3162 * itxs, for all objects in the dataset, will be committed to stable 3163 * storage prior to zil_commit() returning. If "foid" is non-zero, all 3164 * "synchronous" itxs for all objects, but only "asynchronous" itxs 3165 * that correspond to the foid passed in, will be committed to stable 3166 * storage prior to zil_commit() returning. 3167 * 3168 * Generally speaking, when zil_commit() is called, the consumer doesn't 3169 * actually care about _all_ of the uncommitted itxs. Instead, they're 3170 * simply trying to waiting for a specific itx to be committed to disk, 3171 * but the interface(s) for interacting with the ZIL don't allow such 3172 * fine-grained communication. A better interface would allow a consumer 3173 * to create and assign an itx, and then pass a reference to this itx to 3174 * zil_commit(); such that zil_commit() would return as soon as that 3175 * specific itx was committed to disk (instead of waiting for _all_ 3176 * itxs to be committed). 3177 * 3178 * When a thread calls zil_commit() a special "commit itx" will be 3179 * generated, along with a corresponding "waiter" for this commit itx. 3180 * zil_commit() will wait on this waiter's CV, such that when the waiter 3181 * is marked done, and signaled, zil_commit() will return. 3182 * 3183 * This commit itx is inserted into the queue of uncommitted itxs. This 3184 * provides an easy mechanism for determining which itxs were in the 3185 * queue prior to zil_commit() having been called, and which itxs were 3186 * added after zil_commit() was called. 3187 * 3188 * The commit itx is special; it doesn't have any on-disk representation. 3189 * When a commit itx is "committed" to an lwb, the waiter associated 3190 * with it is linked onto the lwb's list of waiters. Then, when that lwb 3191 * completes, each waiter on the lwb's list is marked done and signaled 3192 * -- allowing the thread waiting on the waiter to return from zil_commit(). 3193 * 3194 * It's important to point out a few critical factors that allow us 3195 * to make use of the commit itxs, commit waiters, per-lwb lists of 3196 * commit waiters, and zio completion callbacks like we're doing: 3197 * 3198 * 1. The list of waiters for each lwb is traversed, and each commit 3199 * waiter is marked "done" and signaled, in the zio completion 3200 * callback of the lwb's zio[*]. 3201 * 3202 * * Actually, the waiters are signaled in the zio completion 3203 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 3204 * that are sent to the vdevs upon completion of the lwb zio. 3205 * 3206 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 3207 * itxs, the order in which they are inserted is preserved[*]; as 3208 * itxs are added to the queue, they are added to the tail of 3209 * in-memory linked lists. 3210 * 3211 * When committing the itxs to lwbs (to be written to disk), they 3212 * are committed in the same order in which the itxs were added to 3213 * the uncommitted queue's linked list(s); i.e. the linked list of 3214 * itxs to commit is traversed from head to tail, and each itx is 3215 * committed to an lwb in that order. 3216 * 3217 * * To clarify: 3218 * 3219 * - the order of "sync" itxs is preserved w.r.t. other 3220 * "sync" itxs, regardless of the corresponding objects. 3221 * - the order of "async" itxs is preserved w.r.t. other 3222 * "async" itxs corresponding to the same object. 3223 * - the order of "async" itxs is *not* preserved w.r.t. other 3224 * "async" itxs corresponding to different objects. 3225 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 3226 * versa) is *not* preserved, even for itxs that correspond 3227 * to the same object. 3228 * 3229 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 3230 * zil_get_commit_list(), and zil_process_commit_list(). 3231 * 3232 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 3233 * lwb cannot be considered committed to stable storage, until its 3234 * "previous" lwb is also committed to stable storage. This fact, 3235 * coupled with the fact described above, means that itxs are 3236 * committed in (roughly) the order in which they were generated. 3237 * This is essential because itxs are dependent on prior itxs. 3238 * Thus, we *must not* deem an itx as being committed to stable 3239 * storage, until *all* prior itxs have also been committed to 3240 * stable storage. 3241 * 3242 * To enforce this ordering of lwb zio's, while still leveraging as 3243 * much of the underlying storage performance as possible, we rely 3244 * on two fundamental concepts: 3245 * 3246 * 1. The creation and issuance of lwb zio's is protected by 3247 * the zilog's "zl_issuer_lock", which ensures only a single 3248 * thread is creating and/or issuing lwb's at a time 3249 * 2. The "previous" lwb is a child of the "current" lwb 3250 * (leveraging the zio parent-child dependency graph) 3251 * 3252 * By relying on this parent-child zio relationship, we can have 3253 * many lwb zio's concurrently issued to the underlying storage, 3254 * but the order in which they complete will be the same order in 3255 * which they were created. 3256 */ 3257 void 3258 zil_commit(zilog_t *zilog, uint64_t foid) 3259 { 3260 /* 3261 * We should never attempt to call zil_commit on a snapshot for 3262 * a couple of reasons: 3263 * 3264 * 1. A snapshot may never be modified, thus it cannot have any 3265 * in-flight itxs that would have modified the dataset. 3266 * 3267 * 2. By design, when zil_commit() is called, a commit itx will 3268 * be assigned to this zilog; as a result, the zilog will be 3269 * dirtied. We must not dirty the zilog of a snapshot; there's 3270 * checks in the code that enforce this invariant, and will 3271 * cause a panic if it's not upheld. 3272 */ 3273 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3274 3275 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3276 return; 3277 3278 if (!spa_writeable(zilog->zl_spa)) { 3279 /* 3280 * If the SPA is not writable, there should never be any 3281 * pending itxs waiting to be committed to disk. If that 3282 * weren't true, we'd skip writing those itxs out, and 3283 * would break the semantics of zil_commit(); thus, we're 3284 * verifying that truth before we return to the caller. 3285 */ 3286 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3287 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3288 for (int i = 0; i < TXG_SIZE; i++) 3289 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3290 return; 3291 } 3292 3293 /* 3294 * If the ZIL is suspended, we don't want to dirty it by calling 3295 * zil_commit_itx_assign() below, nor can we write out 3296 * lwbs like would be done in zil_commit_write(). Thus, we 3297 * simply rely on txg_wait_synced() to maintain the necessary 3298 * semantics, and avoid calling those functions altogether. 3299 */ 3300 if (zilog->zl_suspend > 0) { 3301 txg_wait_synced(zilog->zl_dmu_pool, 0); 3302 return; 3303 } 3304 3305 zil_commit_impl(zilog, foid); 3306 } 3307 3308 void 3309 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3310 { 3311 ZIL_STAT_BUMP(zilog, zil_commit_count); 3312 3313 /* 3314 * Move the "async" itxs for the specified foid to the "sync" 3315 * queues, such that they will be later committed (or skipped) 3316 * to an lwb when zil_process_commit_list() is called. 3317 * 3318 * Since these "async" itxs must be committed prior to this 3319 * call to zil_commit returning, we must perform this operation 3320 * before we call zil_commit_itx_assign(). 3321 */ 3322 zil_async_to_sync(zilog, foid); 3323 3324 /* 3325 * We allocate a new "waiter" structure which will initially be 3326 * linked to the commit itx using the itx's "itx_private" field. 3327 * Since the commit itx doesn't represent any on-disk state, 3328 * when it's committed to an lwb, rather than copying the its 3329 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3330 * added to the lwb's list of waiters. Then, when the lwb is 3331 * committed to stable storage, each waiter in the lwb's list of 3332 * waiters will be marked "done", and signalled. 3333 * 3334 * We must create the waiter and assign the commit itx prior to 3335 * calling zil_commit_writer(), or else our specific commit itx 3336 * is not guaranteed to be committed to an lwb prior to calling 3337 * zil_commit_waiter(). 3338 */ 3339 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3340 zil_commit_itx_assign(zilog, zcw); 3341 3342 zil_commit_writer(zilog, zcw); 3343 zil_commit_waiter(zilog, zcw); 3344 3345 if (zcw->zcw_zio_error != 0) { 3346 /* 3347 * If there was an error writing out the ZIL blocks that 3348 * this thread is waiting on, then we fallback to 3349 * relying on spa_sync() to write out the data this 3350 * thread is waiting on. Obviously this has performance 3351 * implications, but the expectation is for this to be 3352 * an exceptional case, and shouldn't occur often. 3353 */ 3354 DTRACE_PROBE2(zil__commit__io__error, 3355 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3356 txg_wait_synced(zilog->zl_dmu_pool, 0); 3357 } 3358 3359 zil_free_commit_waiter(zcw); 3360 } 3361 3362 /* 3363 * Called in syncing context to free committed log blocks and update log header. 3364 */ 3365 void 3366 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3367 { 3368 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3369 uint64_t txg = dmu_tx_get_txg(tx); 3370 spa_t *spa = zilog->zl_spa; 3371 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3372 lwb_t *lwb; 3373 3374 /* 3375 * We don't zero out zl_destroy_txg, so make sure we don't try 3376 * to destroy it twice. 3377 */ 3378 if (spa_sync_pass(spa) != 1) 3379 return; 3380 3381 zil_lwb_flush_wait_all(zilog, txg); 3382 3383 mutex_enter(&zilog->zl_lock); 3384 3385 ASSERT(zilog->zl_stop_sync == 0); 3386 3387 if (*replayed_seq != 0) { 3388 ASSERT(zh->zh_replay_seq < *replayed_seq); 3389 zh->zh_replay_seq = *replayed_seq; 3390 *replayed_seq = 0; 3391 } 3392 3393 if (zilog->zl_destroy_txg == txg) { 3394 blkptr_t blk = zh->zh_log; 3395 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3396 3397 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3398 3399 memset(zh, 0, sizeof (zil_header_t)); 3400 memset(zilog->zl_replayed_seq, 0, 3401 sizeof (zilog->zl_replayed_seq)); 3402 3403 if (zilog->zl_keep_first) { 3404 /* 3405 * If this block was part of log chain that couldn't 3406 * be claimed because a device was missing during 3407 * zil_claim(), but that device later returns, 3408 * then this block could erroneously appear valid. 3409 * To guard against this, assign a new GUID to the new 3410 * log chain so it doesn't matter what blk points to. 3411 */ 3412 zil_init_log_chain(zilog, &blk); 3413 zh->zh_log = blk; 3414 } else { 3415 /* 3416 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3417 * records. So, deactivate the feature for this dataset. 3418 * We activate it again when we start a new ZIL chain. 3419 */ 3420 if (dsl_dataset_feature_is_active(ds, 3421 SPA_FEATURE_ZILSAXATTR)) 3422 dsl_dataset_deactivate_feature(ds, 3423 SPA_FEATURE_ZILSAXATTR, tx); 3424 } 3425 } 3426 3427 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3428 zh->zh_log = lwb->lwb_blk; 3429 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE || 3430 lwb->lwb_max_txg > txg) 3431 break; 3432 list_remove(&zilog->zl_lwb_list, lwb); 3433 zio_free(spa, txg, &lwb->lwb_blk); 3434 zil_free_lwb(zilog, lwb); 3435 3436 /* 3437 * If we don't have anything left in the lwb list then 3438 * we've had an allocation failure and we need to zero 3439 * out the zil_header blkptr so that we don't end 3440 * up freeing the same block twice. 3441 */ 3442 if (list_is_empty(&zilog->zl_lwb_list)) 3443 BP_ZERO(&zh->zh_log); 3444 } 3445 3446 /* 3447 * Remove fastwrite on any blocks that have been pre-allocated for 3448 * the next commit. This prevents fastwrite counter pollution by 3449 * unused, long-lived LWBs. 3450 */ 3451 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) { 3452 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) { 3453 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3454 lwb->lwb_fastwrite = 0; 3455 } 3456 } 3457 3458 mutex_exit(&zilog->zl_lock); 3459 } 3460 3461 static int 3462 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3463 { 3464 (void) unused, (void) kmflag; 3465 lwb_t *lwb = vbuf; 3466 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3467 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3468 offsetof(zil_commit_waiter_t, zcw_node)); 3469 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3470 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3471 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3472 return (0); 3473 } 3474 3475 static void 3476 zil_lwb_dest(void *vbuf, void *unused) 3477 { 3478 (void) unused; 3479 lwb_t *lwb = vbuf; 3480 mutex_destroy(&lwb->lwb_vdev_lock); 3481 avl_destroy(&lwb->lwb_vdev_tree); 3482 list_destroy(&lwb->lwb_waiters); 3483 list_destroy(&lwb->lwb_itxs); 3484 } 3485 3486 void 3487 zil_init(void) 3488 { 3489 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3490 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3491 3492 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3493 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3494 3495 zil_sums_init(&zil_sums_global); 3496 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", 3497 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3498 KSTAT_FLAG_VIRTUAL); 3499 3500 if (zil_kstats_global != NULL) { 3501 zil_kstats_global->ks_data = &zil_stats; 3502 zil_kstats_global->ks_update = zil_kstats_global_update; 3503 zil_kstats_global->ks_private = NULL; 3504 kstat_install(zil_kstats_global); 3505 } 3506 } 3507 3508 void 3509 zil_fini(void) 3510 { 3511 kmem_cache_destroy(zil_zcw_cache); 3512 kmem_cache_destroy(zil_lwb_cache); 3513 3514 if (zil_kstats_global != NULL) { 3515 kstat_delete(zil_kstats_global); 3516 zil_kstats_global = NULL; 3517 } 3518 3519 zil_sums_fini(&zil_sums_global); 3520 } 3521 3522 void 3523 zil_set_sync(zilog_t *zilog, uint64_t sync) 3524 { 3525 zilog->zl_sync = sync; 3526 } 3527 3528 void 3529 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3530 { 3531 zilog->zl_logbias = logbias; 3532 } 3533 3534 zilog_t * 3535 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3536 { 3537 zilog_t *zilog; 3538 3539 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3540 3541 zilog->zl_header = zh_phys; 3542 zilog->zl_os = os; 3543 zilog->zl_spa = dmu_objset_spa(os); 3544 zilog->zl_dmu_pool = dmu_objset_pool(os); 3545 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3546 zilog->zl_logbias = dmu_objset_logbias(os); 3547 zilog->zl_sync = dmu_objset_syncprop(os); 3548 zilog->zl_dirty_max_txg = 0; 3549 zilog->zl_last_lwb_opened = NULL; 3550 zilog->zl_last_lwb_latency = 0; 3551 zilog->zl_max_block_size = zil_maxblocksize; 3552 3553 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3554 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3555 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); 3556 3557 for (int i = 0; i < TXG_SIZE; i++) { 3558 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3559 MUTEX_DEFAULT, NULL); 3560 } 3561 3562 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3563 offsetof(lwb_t, lwb_node)); 3564 3565 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3566 offsetof(itx_t, itx_node)); 3567 3568 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3569 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); 3570 3571 return (zilog); 3572 } 3573 3574 void 3575 zil_free(zilog_t *zilog) 3576 { 3577 int i; 3578 3579 zilog->zl_stop_sync = 1; 3580 3581 ASSERT0(zilog->zl_suspend); 3582 ASSERT0(zilog->zl_suspending); 3583 3584 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3585 list_destroy(&zilog->zl_lwb_list); 3586 3587 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3588 list_destroy(&zilog->zl_itx_commit_list); 3589 3590 for (i = 0; i < TXG_SIZE; i++) { 3591 /* 3592 * It's possible for an itx to be generated that doesn't dirty 3593 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3594 * callback to remove the entry. We remove those here. 3595 * 3596 * Also free up the ziltest itxs. 3597 */ 3598 if (zilog->zl_itxg[i].itxg_itxs) 3599 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3600 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3601 } 3602 3603 mutex_destroy(&zilog->zl_issuer_lock); 3604 mutex_destroy(&zilog->zl_lock); 3605 mutex_destroy(&zilog->zl_lwb_io_lock); 3606 3607 cv_destroy(&zilog->zl_cv_suspend); 3608 cv_destroy(&zilog->zl_lwb_io_cv); 3609 3610 kmem_free(zilog, sizeof (zilog_t)); 3611 } 3612 3613 /* 3614 * Open an intent log. 3615 */ 3616 zilog_t * 3617 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) 3618 { 3619 zilog_t *zilog = dmu_objset_zil(os); 3620 3621 ASSERT3P(zilog->zl_get_data, ==, NULL); 3622 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3623 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3624 3625 zilog->zl_get_data = get_data; 3626 zilog->zl_sums = zil_sums; 3627 3628 return (zilog); 3629 } 3630 3631 /* 3632 * Close an intent log. 3633 */ 3634 void 3635 zil_close(zilog_t *zilog) 3636 { 3637 lwb_t *lwb; 3638 uint64_t txg; 3639 3640 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3641 zil_commit(zilog, 0); 3642 } else { 3643 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3644 ASSERT0(zilog->zl_dirty_max_txg); 3645 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3646 } 3647 3648 mutex_enter(&zilog->zl_lock); 3649 lwb = list_tail(&zilog->zl_lwb_list); 3650 if (lwb == NULL) 3651 txg = zilog->zl_dirty_max_txg; 3652 else 3653 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); 3654 mutex_exit(&zilog->zl_lock); 3655 3656 /* 3657 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends 3658 * on the time when the dmu_tx transaction is assigned in 3659 * zil_lwb_write_issue(). 3660 */ 3661 mutex_enter(&zilog->zl_lwb_io_lock); 3662 txg = MAX(zilog->zl_lwb_max_issued_txg, txg); 3663 mutex_exit(&zilog->zl_lwb_io_lock); 3664 3665 /* 3666 * We need to use txg_wait_synced() to wait until that txg is synced. 3667 * zil_sync() will guarantee all lwbs up to that txg have been 3668 * written out, flushed, and cleaned. 3669 */ 3670 if (txg != 0) 3671 txg_wait_synced(zilog->zl_dmu_pool, txg); 3672 3673 if (zilog_is_dirty(zilog)) 3674 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 3675 (u_longlong_t)txg); 3676 if (txg < spa_freeze_txg(zilog->zl_spa)) 3677 VERIFY(!zilog_is_dirty(zilog)); 3678 3679 zilog->zl_get_data = NULL; 3680 3681 /* 3682 * We should have only one lwb left on the list; remove it now. 3683 */ 3684 mutex_enter(&zilog->zl_lock); 3685 lwb = list_remove_head(&zilog->zl_lwb_list); 3686 if (lwb != NULL) { 3687 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3688 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); 3689 3690 if (lwb->lwb_fastwrite) 3691 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); 3692 3693 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3694 zil_free_lwb(zilog, lwb); 3695 } 3696 mutex_exit(&zilog->zl_lock); 3697 } 3698 3699 static const char *suspend_tag = "zil suspending"; 3700 3701 /* 3702 * Suspend an intent log. While in suspended mode, we still honor 3703 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3704 * On old version pools, we suspend the log briefly when taking a 3705 * snapshot so that it will have an empty intent log. 3706 * 3707 * Long holds are not really intended to be used the way we do here -- 3708 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3709 * could fail. Therefore we take pains to only put a long hold if it is 3710 * actually necessary. Fortunately, it will only be necessary if the 3711 * objset is currently mounted (or the ZVOL equivalent). In that case it 3712 * will already have a long hold, so we are not really making things any worse. 3713 * 3714 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3715 * zvol_state_t), and use their mechanism to prevent their hold from being 3716 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3717 * very little gain. 3718 * 3719 * if cookiep == NULL, this does both the suspend & resume. 3720 * Otherwise, it returns with the dataset "long held", and the cookie 3721 * should be passed into zil_resume(). 3722 */ 3723 int 3724 zil_suspend(const char *osname, void **cookiep) 3725 { 3726 objset_t *os; 3727 zilog_t *zilog; 3728 const zil_header_t *zh; 3729 int error; 3730 3731 error = dmu_objset_hold(osname, suspend_tag, &os); 3732 if (error != 0) 3733 return (error); 3734 zilog = dmu_objset_zil(os); 3735 3736 mutex_enter(&zilog->zl_lock); 3737 zh = zilog->zl_header; 3738 3739 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3740 mutex_exit(&zilog->zl_lock); 3741 dmu_objset_rele(os, suspend_tag); 3742 return (SET_ERROR(EBUSY)); 3743 } 3744 3745 /* 3746 * Don't put a long hold in the cases where we can avoid it. This 3747 * is when there is no cookie so we are doing a suspend & resume 3748 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3749 * for the suspend because it's already suspended, or there's no ZIL. 3750 */ 3751 if (cookiep == NULL && !zilog->zl_suspending && 3752 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3753 mutex_exit(&zilog->zl_lock); 3754 dmu_objset_rele(os, suspend_tag); 3755 return (0); 3756 } 3757 3758 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3759 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3760 3761 zilog->zl_suspend++; 3762 3763 if (zilog->zl_suspend > 1) { 3764 /* 3765 * Someone else is already suspending it. 3766 * Just wait for them to finish. 3767 */ 3768 3769 while (zilog->zl_suspending) 3770 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3771 mutex_exit(&zilog->zl_lock); 3772 3773 if (cookiep == NULL) 3774 zil_resume(os); 3775 else 3776 *cookiep = os; 3777 return (0); 3778 } 3779 3780 /* 3781 * If there is no pointer to an on-disk block, this ZIL must not 3782 * be active (e.g. filesystem not mounted), so there's nothing 3783 * to clean up. 3784 */ 3785 if (BP_IS_HOLE(&zh->zh_log)) { 3786 ASSERT(cookiep != NULL); /* fast path already handled */ 3787 3788 *cookiep = os; 3789 mutex_exit(&zilog->zl_lock); 3790 return (0); 3791 } 3792 3793 /* 3794 * The ZIL has work to do. Ensure that the associated encryption 3795 * key will remain mapped while we are committing the log by 3796 * grabbing a reference to it. If the key isn't loaded we have no 3797 * choice but to return an error until the wrapping key is loaded. 3798 */ 3799 if (os->os_encrypted && 3800 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3801 zilog->zl_suspend--; 3802 mutex_exit(&zilog->zl_lock); 3803 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3804 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3805 return (SET_ERROR(EACCES)); 3806 } 3807 3808 zilog->zl_suspending = B_TRUE; 3809 mutex_exit(&zilog->zl_lock); 3810 3811 /* 3812 * We need to use zil_commit_impl to ensure we wait for all 3813 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed 3814 * to disk before proceeding. If we used zil_commit instead, it 3815 * would just call txg_wait_synced(), because zl_suspend is set. 3816 * txg_wait_synced() doesn't wait for these lwb's to be 3817 * LWB_STATE_FLUSH_DONE before returning. 3818 */ 3819 zil_commit_impl(zilog, 0); 3820 3821 /* 3822 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3823 * use txg_wait_synced() to ensure the data from the zilog has 3824 * migrated to the main pool before calling zil_destroy(). 3825 */ 3826 txg_wait_synced(zilog->zl_dmu_pool, 0); 3827 3828 zil_destroy(zilog, B_FALSE); 3829 3830 mutex_enter(&zilog->zl_lock); 3831 zilog->zl_suspending = B_FALSE; 3832 cv_broadcast(&zilog->zl_cv_suspend); 3833 mutex_exit(&zilog->zl_lock); 3834 3835 if (os->os_encrypted) 3836 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 3837 3838 if (cookiep == NULL) 3839 zil_resume(os); 3840 else 3841 *cookiep = os; 3842 return (0); 3843 } 3844 3845 void 3846 zil_resume(void *cookie) 3847 { 3848 objset_t *os = cookie; 3849 zilog_t *zilog = dmu_objset_zil(os); 3850 3851 mutex_enter(&zilog->zl_lock); 3852 ASSERT(zilog->zl_suspend != 0); 3853 zilog->zl_suspend--; 3854 mutex_exit(&zilog->zl_lock); 3855 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3856 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3857 } 3858 3859 typedef struct zil_replay_arg { 3860 zil_replay_func_t *const *zr_replay; 3861 void *zr_arg; 3862 boolean_t zr_byteswap; 3863 char *zr_lr; 3864 } zil_replay_arg_t; 3865 3866 static int 3867 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 3868 { 3869 char name[ZFS_MAX_DATASET_NAME_LEN]; 3870 3871 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 3872 3873 dmu_objset_name(zilog->zl_os, name); 3874 3875 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 3876 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 3877 (u_longlong_t)lr->lrc_seq, 3878 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 3879 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 3880 3881 return (error); 3882 } 3883 3884 static int 3885 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 3886 uint64_t claim_txg) 3887 { 3888 zil_replay_arg_t *zr = zra; 3889 const zil_header_t *zh = zilog->zl_header; 3890 uint64_t reclen = lr->lrc_reclen; 3891 uint64_t txtype = lr->lrc_txtype; 3892 int error = 0; 3893 3894 zilog->zl_replaying_seq = lr->lrc_seq; 3895 3896 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 3897 return (0); 3898 3899 if (lr->lrc_txg < claim_txg) /* already committed */ 3900 return (0); 3901 3902 /* Strip case-insensitive bit, still present in log record */ 3903 txtype &= ~TX_CI; 3904 3905 if (txtype == 0 || txtype >= TX_MAX_TYPE) 3906 return (zil_replay_error(zilog, lr, EINVAL)); 3907 3908 /* 3909 * If this record type can be logged out of order, the object 3910 * (lr_foid) may no longer exist. That's legitimate, not an error. 3911 */ 3912 if (TX_OOO(txtype)) { 3913 error = dmu_object_info(zilog->zl_os, 3914 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 3915 if (error == ENOENT || error == EEXIST) 3916 return (0); 3917 } 3918 3919 /* 3920 * Make a copy of the data so we can revise and extend it. 3921 */ 3922 memcpy(zr->zr_lr, lr, reclen); 3923 3924 /* 3925 * If this is a TX_WRITE with a blkptr, suck in the data. 3926 */ 3927 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 3928 error = zil_read_log_data(zilog, (lr_write_t *)lr, 3929 zr->zr_lr + reclen); 3930 if (error != 0) 3931 return (zil_replay_error(zilog, lr, error)); 3932 } 3933 3934 /* 3935 * The log block containing this lr may have been byteswapped 3936 * so that we can easily examine common fields like lrc_txtype. 3937 * However, the log is a mix of different record types, and only the 3938 * replay vectors know how to byteswap their records. Therefore, if 3939 * the lr was byteswapped, undo it before invoking the replay vector. 3940 */ 3941 if (zr->zr_byteswap) 3942 byteswap_uint64_array(zr->zr_lr, reclen); 3943 3944 /* 3945 * We must now do two things atomically: replay this log record, 3946 * and update the log header sequence number to reflect the fact that 3947 * we did so. At the end of each replay function the sequence number 3948 * is updated if we are in replay mode. 3949 */ 3950 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 3951 if (error != 0) { 3952 /* 3953 * The DMU's dnode layer doesn't see removes until the txg 3954 * commits, so a subsequent claim can spuriously fail with 3955 * EEXIST. So if we receive any error we try syncing out 3956 * any removes then retry the transaction. Note that we 3957 * specify B_FALSE for byteswap now, so we don't do it twice. 3958 */ 3959 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 3960 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 3961 if (error != 0) 3962 return (zil_replay_error(zilog, lr, error)); 3963 } 3964 return (0); 3965 } 3966 3967 static int 3968 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 3969 { 3970 (void) bp, (void) arg, (void) claim_txg; 3971 3972 zilog->zl_replay_blks++; 3973 3974 return (0); 3975 } 3976 3977 /* 3978 * If this dataset has a non-empty intent log, replay it and destroy it. 3979 * Return B_TRUE if there were any entries to replay. 3980 */ 3981 boolean_t 3982 zil_replay(objset_t *os, void *arg, 3983 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 3984 { 3985 zilog_t *zilog = dmu_objset_zil(os); 3986 const zil_header_t *zh = zilog->zl_header; 3987 zil_replay_arg_t zr; 3988 3989 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 3990 return (zil_destroy(zilog, B_TRUE)); 3991 } 3992 3993 zr.zr_replay = replay_func; 3994 zr.zr_arg = arg; 3995 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 3996 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 3997 3998 /* 3999 * Wait for in-progress removes to sync before starting replay. 4000 */ 4001 txg_wait_synced(zilog->zl_dmu_pool, 0); 4002 4003 zilog->zl_replay = B_TRUE; 4004 zilog->zl_replay_time = ddi_get_lbolt(); 4005 ASSERT(zilog->zl_replay_blks == 0); 4006 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 4007 zh->zh_claim_txg, B_TRUE); 4008 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 4009 4010 zil_destroy(zilog, B_FALSE); 4011 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 4012 zilog->zl_replay = B_FALSE; 4013 4014 return (B_TRUE); 4015 } 4016 4017 boolean_t 4018 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 4019 { 4020 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 4021 return (B_TRUE); 4022 4023 if (zilog->zl_replay) { 4024 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 4025 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 4026 zilog->zl_replaying_seq; 4027 return (B_TRUE); 4028 } 4029 4030 return (B_FALSE); 4031 } 4032 4033 int 4034 zil_reset(const char *osname, void *arg) 4035 { 4036 (void) arg; 4037 4038 int error = zil_suspend(osname, NULL); 4039 /* EACCES means crypto key not loaded */ 4040 if ((error == EACCES) || (error == EBUSY)) 4041 return (SET_ERROR(error)); 4042 if (error != 0) 4043 return (SET_ERROR(EEXIST)); 4044 return (0); 4045 } 4046 4047 EXPORT_SYMBOL(zil_alloc); 4048 EXPORT_SYMBOL(zil_free); 4049 EXPORT_SYMBOL(zil_open); 4050 EXPORT_SYMBOL(zil_close); 4051 EXPORT_SYMBOL(zil_replay); 4052 EXPORT_SYMBOL(zil_replaying); 4053 EXPORT_SYMBOL(zil_destroy); 4054 EXPORT_SYMBOL(zil_destroy_sync); 4055 EXPORT_SYMBOL(zil_itx_create); 4056 EXPORT_SYMBOL(zil_itx_destroy); 4057 EXPORT_SYMBOL(zil_itx_assign); 4058 EXPORT_SYMBOL(zil_commit); 4059 EXPORT_SYMBOL(zil_claim); 4060 EXPORT_SYMBOL(zil_check_log_chain); 4061 EXPORT_SYMBOL(zil_sync); 4062 EXPORT_SYMBOL(zil_clean); 4063 EXPORT_SYMBOL(zil_suspend); 4064 EXPORT_SYMBOL(zil_resume); 4065 EXPORT_SYMBOL(zil_lwb_add_block); 4066 EXPORT_SYMBOL(zil_bp_tree_add); 4067 EXPORT_SYMBOL(zil_set_sync); 4068 EXPORT_SYMBOL(zil_set_logbias); 4069 EXPORT_SYMBOL(zil_sums_init); 4070 EXPORT_SYMBOL(zil_sums_fini); 4071 EXPORT_SYMBOL(zil_kstat_values_update); 4072 4073 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, 4074 "ZIL block open timeout percentage"); 4075 4076 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW, 4077 "Minimum delay we care for ZIL block commit"); 4078 4079 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 4080 "Disable intent logging replay"); 4081 4082 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 4083 "Disable ZIL cache flushes"); 4084 4085 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, 4086 "Limit in bytes slog sync writes per commit"); 4087 4088 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, 4089 "Limit in bytes of ZIL log block size"); 4090