xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/brt.h>
47 #include <sys/wmsum.h>
48 
49 /*
50  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51  * calls that change the file system. Each itx has enough information to
52  * be able to replay them after a system crash, power loss, or
53  * equivalent failure mode. These are stored in memory until either:
54  *
55  *   1. they are committed to the pool by the DMU transaction group
56  *      (txg), at which point they can be discarded; or
57  *   2. they are committed to the on-disk ZIL for the dataset being
58  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
59  *      requirement).
60  *
61  * In the event of a crash or power loss, the itxs contained by each
62  * dataset's on-disk ZIL will be replayed when that dataset is first
63  * instantiated (e.g. if the dataset is a normal filesystem, when it is
64  * first mounted).
65  *
66  * As hinted at above, there is one ZIL per dataset (both the in-memory
67  * representation, and the on-disk representation). The on-disk format
68  * consists of 3 parts:
69  *
70  * 	- a single, per-dataset, ZIL header; which points to a chain of
71  * 	- zero or more ZIL blocks; each of which contains
72  * 	- zero or more ZIL records
73  *
74  * A ZIL record holds the information necessary to replay a single
75  * system call transaction. A ZIL block can hold many ZIL records, and
76  * the blocks are chained together, similarly to a singly linked list.
77  *
78  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79  * block in the chain, and the ZIL header points to the first block in
80  * the chain.
81  *
82  * Note, there is not a fixed place in the pool to hold these ZIL
83  * blocks; they are dynamically allocated and freed as needed from the
84  * blocks available on the pool, though they can be preferentially
85  * allocated from a dedicated "log" vdev.
86  */
87 
88 /*
89  * This controls the amount of time that a ZIL block (lwb) will remain
90  * "open" when it isn't "full", and it has a thread waiting for it to be
91  * committed to stable storage. Please refer to the zil_commit_waiter()
92  * function (and the comments within it) for more details.
93  */
94 static uint_t zfs_commit_timeout_pct = 10;
95 
96 /*
97  * See zil.h for more information about these fields.
98  */
99 static zil_kstat_values_t zil_stats = {
100 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
103 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
108 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
111 	{ "zil_itx_metaslab_normal_write",	KSTAT_DATA_UINT64 },
112 	{ "zil_itx_metaslab_normal_alloc",	KSTAT_DATA_UINT64 },
113 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
114 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
115 	{ "zil_itx_metaslab_slog_write",	KSTAT_DATA_UINT64 },
116 	{ "zil_itx_metaslab_slog_alloc",	KSTAT_DATA_UINT64 },
117 };
118 
119 static zil_sums_t zil_sums_global;
120 static kstat_t *zil_kstats_global;
121 
122 /*
123  * Disable intent logging replay.  This global ZIL switch affects all pools.
124  */
125 int zil_replay_disable = 0;
126 
127 /*
128  * Disable the flush commands that are normally sent to the disk(s) by the ZIL
129  * after an LWB write has completed. Setting this will cause ZIL corruption on
130  * power loss if a volatile out-of-order write cache is enabled.
131  */
132 static int zil_nocacheflush = 0;
133 
134 /*
135  * Limit SLOG write size per commit executed with synchronous priority.
136  * Any writes above that will be executed with lower (asynchronous) priority
137  * to limit potential SLOG device abuse by single active ZIL writer.
138  */
139 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
140 
141 static kmem_cache_t *zil_lwb_cache;
142 static kmem_cache_t *zil_zcw_cache;
143 
144 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
145 static itx_t *zil_itx_clone(itx_t *oitx);
146 static uint64_t zil_max_waste_space(zilog_t *zilog);
147 
148 static int
149 zil_bp_compare(const void *x1, const void *x2)
150 {
151 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
152 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
153 
154 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
155 	if (likely(cmp))
156 		return (cmp);
157 
158 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
159 }
160 
161 static void
162 zil_bp_tree_init(zilog_t *zilog)
163 {
164 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
165 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
166 }
167 
168 static void
169 zil_bp_tree_fini(zilog_t *zilog)
170 {
171 	avl_tree_t *t = &zilog->zl_bp_tree;
172 	zil_bp_node_t *zn;
173 	void *cookie = NULL;
174 
175 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
176 		kmem_free(zn, sizeof (zil_bp_node_t));
177 
178 	avl_destroy(t);
179 }
180 
181 int
182 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
183 {
184 	avl_tree_t *t = &zilog->zl_bp_tree;
185 	const dva_t *dva;
186 	zil_bp_node_t *zn;
187 	avl_index_t where;
188 
189 	if (BP_IS_EMBEDDED(bp))
190 		return (0);
191 
192 	dva = BP_IDENTITY(bp);
193 
194 	if (avl_find(t, dva, &where) != NULL)
195 		return (SET_ERROR(EEXIST));
196 
197 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
198 	zn->zn_dva = *dva;
199 	avl_insert(t, zn, where);
200 
201 	return (0);
202 }
203 
204 static zil_header_t *
205 zil_header_in_syncing_context(zilog_t *zilog)
206 {
207 	return ((zil_header_t *)zilog->zl_header);
208 }
209 
210 static void
211 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
212 {
213 	zio_cksum_t *zc = &bp->blk_cksum;
214 
215 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
216 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
217 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
218 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
219 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
220 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
221 }
222 
223 static int
224 zil_kstats_global_update(kstat_t *ksp, int rw)
225 {
226 	zil_kstat_values_t *zs = ksp->ks_data;
227 	ASSERT3P(&zil_stats, ==, zs);
228 
229 	if (rw == KSTAT_WRITE) {
230 		return (SET_ERROR(EACCES));
231 	}
232 
233 	zil_kstat_values_update(zs, &zil_sums_global);
234 
235 	return (0);
236 }
237 
238 /*
239  * Read a log block and make sure it's valid.
240  */
241 static int
242 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
243     blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
244 {
245 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
246 	arc_flags_t aflags = ARC_FLAG_WAIT;
247 	zbookmark_phys_t zb;
248 	int error;
249 
250 	if (zilog->zl_header->zh_claim_txg == 0)
251 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
252 
253 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
254 		zio_flags |= ZIO_FLAG_SPECULATIVE;
255 
256 	if (!decrypt)
257 		zio_flags |= ZIO_FLAG_RAW;
258 
259 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
260 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
261 
262 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
263 	    abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
264 
265 	if (error == 0) {
266 		zio_cksum_t cksum = bp->blk_cksum;
267 
268 		/*
269 		 * Validate the checksummed log block.
270 		 *
271 		 * Sequence numbers should be... sequential.  The checksum
272 		 * verifier for the next block should be bp's checksum plus 1.
273 		 *
274 		 * Also check the log chain linkage and size used.
275 		 */
276 		cksum.zc_word[ZIL_ZC_SEQ]++;
277 
278 		uint64_t size = BP_GET_LSIZE(bp);
279 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
280 			zil_chain_t *zilc = (*abuf)->b_data;
281 			char *lr = (char *)(zilc + 1);
282 
283 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
284 			    sizeof (cksum)) ||
285 			    zilc->zc_nused < sizeof (*zilc) ||
286 			    zilc->zc_nused > size) {
287 				error = SET_ERROR(ECKSUM);
288 			} else {
289 				*begin = lr;
290 				*end = lr + zilc->zc_nused - sizeof (*zilc);
291 				*nbp = zilc->zc_next_blk;
292 			}
293 		} else {
294 			char *lr = (*abuf)->b_data;
295 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
296 
297 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
298 			    sizeof (cksum)) ||
299 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
300 				error = SET_ERROR(ECKSUM);
301 			} else {
302 				*begin = lr;
303 				*end = lr + zilc->zc_nused;
304 				*nbp = zilc->zc_next_blk;
305 			}
306 		}
307 	}
308 
309 	return (error);
310 }
311 
312 /*
313  * Read a TX_WRITE log data block.
314  */
315 static int
316 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
317 {
318 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
319 	const blkptr_t *bp = &lr->lr_blkptr;
320 	arc_flags_t aflags = ARC_FLAG_WAIT;
321 	arc_buf_t *abuf = NULL;
322 	zbookmark_phys_t zb;
323 	int error;
324 
325 	if (BP_IS_HOLE(bp)) {
326 		if (wbuf != NULL)
327 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
328 		return (0);
329 	}
330 
331 	if (zilog->zl_header->zh_claim_txg == 0)
332 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
333 
334 	/*
335 	 * If we are not using the resulting data, we are just checking that
336 	 * it hasn't been corrupted so we don't need to waste CPU time
337 	 * decompressing and decrypting it.
338 	 */
339 	if (wbuf == NULL)
340 		zio_flags |= ZIO_FLAG_RAW;
341 
342 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
343 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
344 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
345 
346 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
347 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
348 
349 	if (error == 0) {
350 		if (wbuf != NULL)
351 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
352 		arc_buf_destroy(abuf, &abuf);
353 	}
354 
355 	return (error);
356 }
357 
358 void
359 zil_sums_init(zil_sums_t *zs)
360 {
361 	wmsum_init(&zs->zil_commit_count, 0);
362 	wmsum_init(&zs->zil_commit_writer_count, 0);
363 	wmsum_init(&zs->zil_itx_count, 0);
364 	wmsum_init(&zs->zil_itx_indirect_count, 0);
365 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
366 	wmsum_init(&zs->zil_itx_copied_count, 0);
367 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
368 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
369 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
370 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
371 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
372 	wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
373 	wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
374 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
375 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
376 	wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
377 	wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
378 }
379 
380 void
381 zil_sums_fini(zil_sums_t *zs)
382 {
383 	wmsum_fini(&zs->zil_commit_count);
384 	wmsum_fini(&zs->zil_commit_writer_count);
385 	wmsum_fini(&zs->zil_itx_count);
386 	wmsum_fini(&zs->zil_itx_indirect_count);
387 	wmsum_fini(&zs->zil_itx_indirect_bytes);
388 	wmsum_fini(&zs->zil_itx_copied_count);
389 	wmsum_fini(&zs->zil_itx_copied_bytes);
390 	wmsum_fini(&zs->zil_itx_needcopy_count);
391 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
392 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
393 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
394 	wmsum_fini(&zs->zil_itx_metaslab_normal_write);
395 	wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
396 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
397 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
398 	wmsum_fini(&zs->zil_itx_metaslab_slog_write);
399 	wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
400 }
401 
402 void
403 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
404 {
405 	zs->zil_commit_count.value.ui64 =
406 	    wmsum_value(&zil_sums->zil_commit_count);
407 	zs->zil_commit_writer_count.value.ui64 =
408 	    wmsum_value(&zil_sums->zil_commit_writer_count);
409 	zs->zil_itx_count.value.ui64 =
410 	    wmsum_value(&zil_sums->zil_itx_count);
411 	zs->zil_itx_indirect_count.value.ui64 =
412 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
413 	zs->zil_itx_indirect_bytes.value.ui64 =
414 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
415 	zs->zil_itx_copied_count.value.ui64 =
416 	    wmsum_value(&zil_sums->zil_itx_copied_count);
417 	zs->zil_itx_copied_bytes.value.ui64 =
418 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
419 	zs->zil_itx_needcopy_count.value.ui64 =
420 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
421 	zs->zil_itx_needcopy_bytes.value.ui64 =
422 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
423 	zs->zil_itx_metaslab_normal_count.value.ui64 =
424 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
425 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
426 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
427 	zs->zil_itx_metaslab_normal_write.value.ui64 =
428 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
429 	zs->zil_itx_metaslab_normal_alloc.value.ui64 =
430 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
431 	zs->zil_itx_metaslab_slog_count.value.ui64 =
432 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
433 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
434 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
435 	zs->zil_itx_metaslab_slog_write.value.ui64 =
436 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
437 	zs->zil_itx_metaslab_slog_alloc.value.ui64 =
438 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
439 }
440 
441 /*
442  * Parse the intent log, and call parse_func for each valid record within.
443  */
444 int
445 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
446     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
447     boolean_t decrypt)
448 {
449 	const zil_header_t *zh = zilog->zl_header;
450 	boolean_t claimed = !!zh->zh_claim_txg;
451 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
452 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
453 	uint64_t max_blk_seq = 0;
454 	uint64_t max_lr_seq = 0;
455 	uint64_t blk_count = 0;
456 	uint64_t lr_count = 0;
457 	blkptr_t blk, next_blk = {{{{0}}}};
458 	int error = 0;
459 
460 	/*
461 	 * Old logs didn't record the maximum zh_claim_lr_seq.
462 	 */
463 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
464 		claim_lr_seq = UINT64_MAX;
465 
466 	/*
467 	 * Starting at the block pointed to by zh_log we read the log chain.
468 	 * For each block in the chain we strongly check that block to
469 	 * ensure its validity.  We stop when an invalid block is found.
470 	 * For each block pointer in the chain we call parse_blk_func().
471 	 * For each record in each valid block we call parse_lr_func().
472 	 * If the log has been claimed, stop if we encounter a sequence
473 	 * number greater than the highest claimed sequence number.
474 	 */
475 	zil_bp_tree_init(zilog);
476 
477 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
478 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
479 		int reclen;
480 		char *lrp, *end;
481 		arc_buf_t *abuf = NULL;
482 
483 		if (blk_seq > claim_blk_seq)
484 			break;
485 
486 		error = parse_blk_func(zilog, &blk, arg, txg);
487 		if (error != 0)
488 			break;
489 		ASSERT3U(max_blk_seq, <, blk_seq);
490 		max_blk_seq = blk_seq;
491 		blk_count++;
492 
493 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
494 			break;
495 
496 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
497 		    &lrp, &end, &abuf);
498 		if (error != 0) {
499 			if (abuf)
500 				arc_buf_destroy(abuf, &abuf);
501 			if (claimed) {
502 				char name[ZFS_MAX_DATASET_NAME_LEN];
503 
504 				dmu_objset_name(zilog->zl_os, name);
505 
506 				cmn_err(CE_WARN, "ZFS read log block error %d, "
507 				    "dataset %s, seq 0x%llx\n", error, name,
508 				    (u_longlong_t)blk_seq);
509 			}
510 			break;
511 		}
512 
513 		for (; lrp < end; lrp += reclen) {
514 			lr_t *lr = (lr_t *)lrp;
515 			reclen = lr->lrc_reclen;
516 			ASSERT3U(reclen, >=, sizeof (lr_t));
517 			ASSERT3U(reclen, <=, end - lrp);
518 			if (lr->lrc_seq > claim_lr_seq) {
519 				arc_buf_destroy(abuf, &abuf);
520 				goto done;
521 			}
522 
523 			error = parse_lr_func(zilog, lr, arg, txg);
524 			if (error != 0) {
525 				arc_buf_destroy(abuf, &abuf);
526 				goto done;
527 			}
528 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
529 			max_lr_seq = lr->lrc_seq;
530 			lr_count++;
531 		}
532 		arc_buf_destroy(abuf, &abuf);
533 	}
534 done:
535 	zilog->zl_parse_error = error;
536 	zilog->zl_parse_blk_seq = max_blk_seq;
537 	zilog->zl_parse_lr_seq = max_lr_seq;
538 	zilog->zl_parse_blk_count = blk_count;
539 	zilog->zl_parse_lr_count = lr_count;
540 
541 	zil_bp_tree_fini(zilog);
542 
543 	return (error);
544 }
545 
546 static int
547 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
548     uint64_t first_txg)
549 {
550 	(void) tx;
551 	ASSERT(!BP_IS_HOLE(bp));
552 
553 	/*
554 	 * As we call this function from the context of a rewind to a
555 	 * checkpoint, each ZIL block whose txg is later than the txg
556 	 * that we rewind to is invalid. Thus, we return -1 so
557 	 * zil_parse() doesn't attempt to read it.
558 	 */
559 	if (BP_GET_LOGICAL_BIRTH(bp) >= first_txg)
560 		return (-1);
561 
562 	if (zil_bp_tree_add(zilog, bp) != 0)
563 		return (0);
564 
565 	zio_free(zilog->zl_spa, first_txg, bp);
566 	return (0);
567 }
568 
569 static int
570 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
571     uint64_t first_txg)
572 {
573 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
574 	return (0);
575 }
576 
577 static int
578 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
579     uint64_t first_txg)
580 {
581 	/*
582 	 * Claim log block if not already committed and not already claimed.
583 	 * If tx == NULL, just verify that the block is claimable.
584 	 */
585 	if (BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) < first_txg ||
586 	    zil_bp_tree_add(zilog, bp) != 0)
587 		return (0);
588 
589 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
590 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
591 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
592 }
593 
594 static int
595 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
596 {
597 	lr_write_t *lr = (lr_write_t *)lrc;
598 	int error;
599 
600 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
601 
602 	/*
603 	 * If the block is not readable, don't claim it.  This can happen
604 	 * in normal operation when a log block is written to disk before
605 	 * some of the dmu_sync() blocks it points to.  In this case, the
606 	 * transaction cannot have been committed to anyone (we would have
607 	 * waited for all writes to be stable first), so it is semantically
608 	 * correct to declare this the end of the log.
609 	 */
610 	if (BP_GET_LOGICAL_BIRTH(&lr->lr_blkptr) >= first_txg) {
611 		error = zil_read_log_data(zilog, lr, NULL);
612 		if (error != 0)
613 			return (error);
614 	}
615 
616 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
617 }
618 
619 static int
620 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx,
621     uint64_t first_txg)
622 {
623 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
624 	const blkptr_t *bp;
625 	spa_t *spa = zilog->zl_spa;
626 	uint_t ii;
627 
628 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
629 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
630 	    lr_bps[lr->lr_nbps]));
631 
632 	if (tx == NULL) {
633 		return (0);
634 	}
635 
636 	/*
637 	 * XXX: Do we need to byteswap lr?
638 	 */
639 
640 	for (ii = 0; ii < lr->lr_nbps; ii++) {
641 		bp = &lr->lr_bps[ii];
642 
643 		/*
644 		 * When data is embedded into the BP there is no need to create
645 		 * BRT entry as there is no data block.  Just copy the BP as it
646 		 * contains the data.
647 		 */
648 		if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
649 			continue;
650 
651 		/*
652 		 * We can not handle block pointers from the future, since they
653 		 * are not yet allocated.  It should not normally happen, but
654 		 * just in case lets be safe and just stop here now instead of
655 		 * corrupting the pool.
656 		 */
657 		if (BP_GET_BIRTH(bp) >= first_txg)
658 			return (SET_ERROR(ENOENT));
659 
660 		/*
661 		 * Assert the block is really allocated before we reference it.
662 		 */
663 		metaslab_check_free(spa, bp);
664 	}
665 
666 	for (ii = 0; ii < lr->lr_nbps; ii++) {
667 		bp = &lr->lr_bps[ii];
668 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp))
669 			brt_pending_add(spa, bp, tx);
670 	}
671 
672 	return (0);
673 }
674 
675 static int
676 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
677     uint64_t first_txg)
678 {
679 
680 	switch (lrc->lrc_txtype) {
681 	case TX_WRITE:
682 		return (zil_claim_write(zilog, lrc, tx, first_txg));
683 	case TX_CLONE_RANGE:
684 		return (zil_claim_clone_range(zilog, lrc, tx, first_txg));
685 	default:
686 		return (0);
687 	}
688 }
689 
690 static int
691 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
692     uint64_t claim_txg)
693 {
694 	(void) claim_txg;
695 
696 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
697 
698 	return (0);
699 }
700 
701 static int
702 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
703 {
704 	lr_write_t *lr = (lr_write_t *)lrc;
705 	blkptr_t *bp = &lr->lr_blkptr;
706 
707 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
708 
709 	/*
710 	 * If we previously claimed it, we need to free it.
711 	 */
712 	if (BP_GET_LOGICAL_BIRTH(bp) >= claim_txg &&
713 	    zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) {
714 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
715 	}
716 
717 	return (0);
718 }
719 
720 static int
721 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
722 {
723 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
724 	const blkptr_t *bp;
725 	spa_t *spa;
726 	uint_t ii;
727 
728 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
729 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
730 	    lr_bps[lr->lr_nbps]));
731 
732 	if (tx == NULL) {
733 		return (0);
734 	}
735 
736 	spa = zilog->zl_spa;
737 
738 	for (ii = 0; ii < lr->lr_nbps; ii++) {
739 		bp = &lr->lr_bps[ii];
740 
741 		if (!BP_IS_HOLE(bp)) {
742 			zio_free(spa, dmu_tx_get_txg(tx), bp);
743 		}
744 	}
745 
746 	return (0);
747 }
748 
749 static int
750 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
751     uint64_t claim_txg)
752 {
753 
754 	if (claim_txg == 0) {
755 		return (0);
756 	}
757 
758 	switch (lrc->lrc_txtype) {
759 	case TX_WRITE:
760 		return (zil_free_write(zilog, lrc, tx, claim_txg));
761 	case TX_CLONE_RANGE:
762 		return (zil_free_clone_range(zilog, lrc, tx));
763 	default:
764 		return (0);
765 	}
766 }
767 
768 static int
769 zil_lwb_vdev_compare(const void *x1, const void *x2)
770 {
771 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
772 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
773 
774 	return (TREE_CMP(v1, v2));
775 }
776 
777 /*
778  * Allocate a new lwb.  We may already have a block pointer for it, in which
779  * case we get size and version from there.  Or we may not yet, in which case
780  * we choose them here and later make the block allocation match.
781  */
782 static lwb_t *
783 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
784     uint64_t txg, lwb_state_t state)
785 {
786 	lwb_t *lwb;
787 
788 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
789 	lwb->lwb_zilog = zilog;
790 	if (bp) {
791 		lwb->lwb_blk = *bp;
792 		lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
793 		sz = BP_GET_LSIZE(bp);
794 	} else {
795 		BP_ZERO(&lwb->lwb_blk);
796 		lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
797 		    SPA_VERSION_SLIM_ZIL);
798 	}
799 	lwb->lwb_slog = slog;
800 	lwb->lwb_error = 0;
801 	if (lwb->lwb_slim) {
802 		lwb->lwb_nmax = sz;
803 		lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
804 	} else {
805 		lwb->lwb_nmax = sz - sizeof (zil_chain_t);
806 		lwb->lwb_nused = lwb->lwb_nfilled = 0;
807 	}
808 	lwb->lwb_sz = sz;
809 	lwb->lwb_state = state;
810 	lwb->lwb_buf = zio_buf_alloc(sz);
811 	lwb->lwb_child_zio = NULL;
812 	lwb->lwb_write_zio = NULL;
813 	lwb->lwb_root_zio = NULL;
814 	lwb->lwb_issued_timestamp = 0;
815 	lwb->lwb_issued_txg = 0;
816 	lwb->lwb_alloc_txg = txg;
817 	lwb->lwb_max_txg = 0;
818 
819 	mutex_enter(&zilog->zl_lock);
820 	list_insert_tail(&zilog->zl_lwb_list, lwb);
821 	if (state != LWB_STATE_NEW)
822 		zilog->zl_last_lwb_opened = lwb;
823 	mutex_exit(&zilog->zl_lock);
824 
825 	return (lwb);
826 }
827 
828 static void
829 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
830 {
831 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
832 	ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
833 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
834 	ASSERT3P(lwb->lwb_child_zio, ==, NULL);
835 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
836 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
837 	ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
838 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
839 	VERIFY(list_is_empty(&lwb->lwb_itxs));
840 	VERIFY(list_is_empty(&lwb->lwb_waiters));
841 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
842 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
843 
844 	/*
845 	 * Clear the zilog's field to indicate this lwb is no longer
846 	 * valid, and prevent use-after-free errors.
847 	 */
848 	if (zilog->zl_last_lwb_opened == lwb)
849 		zilog->zl_last_lwb_opened = NULL;
850 
851 	kmem_cache_free(zil_lwb_cache, lwb);
852 }
853 
854 /*
855  * Called when we create in-memory log transactions so that we know
856  * to cleanup the itxs at the end of spa_sync().
857  */
858 static void
859 zilog_dirty(zilog_t *zilog, uint64_t txg)
860 {
861 	dsl_pool_t *dp = zilog->zl_dmu_pool;
862 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
863 
864 	ASSERT(spa_writeable(zilog->zl_spa));
865 
866 	if (ds->ds_is_snapshot)
867 		panic("dirtying snapshot!");
868 
869 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
870 		/* up the hold count until we can be written out */
871 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
872 
873 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
874 	}
875 }
876 
877 /*
878  * Determine if the zil is dirty in the specified txg. Callers wanting to
879  * ensure that the dirty state does not change must hold the itxg_lock for
880  * the specified txg. Holding the lock will ensure that the zil cannot be
881  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
882  * state.
883  */
884 static boolean_t __maybe_unused
885 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
886 {
887 	dsl_pool_t *dp = zilog->zl_dmu_pool;
888 
889 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
890 		return (B_TRUE);
891 	return (B_FALSE);
892 }
893 
894 /*
895  * Determine if the zil is dirty. The zil is considered dirty if it has
896  * any pending itx records that have not been cleaned by zil_clean().
897  */
898 static boolean_t
899 zilog_is_dirty(zilog_t *zilog)
900 {
901 	dsl_pool_t *dp = zilog->zl_dmu_pool;
902 
903 	for (int t = 0; t < TXG_SIZE; t++) {
904 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
905 			return (B_TRUE);
906 	}
907 	return (B_FALSE);
908 }
909 
910 /*
911  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
912  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
913  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
914  * zil_commit.
915  */
916 static void
917 zil_commit_activate_saxattr_feature(zilog_t *zilog)
918 {
919 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
920 	uint64_t txg = 0;
921 	dmu_tx_t *tx = NULL;
922 
923 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
924 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
925 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
926 		tx = dmu_tx_create(zilog->zl_os);
927 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
928 		dsl_dataset_dirty(ds, tx);
929 		txg = dmu_tx_get_txg(tx);
930 
931 		mutex_enter(&ds->ds_lock);
932 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
933 		    (void *)B_TRUE;
934 		mutex_exit(&ds->ds_lock);
935 		dmu_tx_commit(tx);
936 		txg_wait_synced(zilog->zl_dmu_pool, txg);
937 	}
938 }
939 
940 /*
941  * Create an on-disk intent log.
942  */
943 static lwb_t *
944 zil_create(zilog_t *zilog)
945 {
946 	const zil_header_t *zh = zilog->zl_header;
947 	lwb_t *lwb = NULL;
948 	uint64_t txg = 0;
949 	dmu_tx_t *tx = NULL;
950 	blkptr_t blk;
951 	int error = 0;
952 	boolean_t slog = FALSE;
953 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
954 
955 
956 	/*
957 	 * Wait for any previous destroy to complete.
958 	 */
959 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
960 
961 	ASSERT(zh->zh_claim_txg == 0);
962 	ASSERT(zh->zh_replay_seq == 0);
963 
964 	blk = zh->zh_log;
965 
966 	/*
967 	 * Allocate an initial log block if:
968 	 *    - there isn't one already
969 	 *    - the existing block is the wrong endianness
970 	 */
971 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
972 		tx = dmu_tx_create(zilog->zl_os);
973 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
974 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
975 		txg = dmu_tx_get_txg(tx);
976 
977 		if (!BP_IS_HOLE(&blk)) {
978 			zio_free(zilog->zl_spa, txg, &blk);
979 			BP_ZERO(&blk);
980 		}
981 
982 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
983 		    ZIL_MIN_BLKSZ, &slog);
984 		if (error == 0)
985 			zil_init_log_chain(zilog, &blk);
986 	}
987 
988 	/*
989 	 * Allocate a log write block (lwb) for the first log block.
990 	 */
991 	if (error == 0)
992 		lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
993 
994 	/*
995 	 * If we just allocated the first log block, commit our transaction
996 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
997 	 * (zh is part of the MOS, so we cannot modify it in open context.)
998 	 */
999 	if (tx != NULL) {
1000 		/*
1001 		 * If "zilsaxattr" feature is enabled on zpool, then activate
1002 		 * it now when we're creating the ZIL chain. We can't wait with
1003 		 * this until we write the first xattr log record because we
1004 		 * need to wait for the feature activation to sync out.
1005 		 */
1006 		if (spa_feature_is_enabled(zilog->zl_spa,
1007 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
1008 		    DMU_OST_ZVOL) {
1009 			mutex_enter(&ds->ds_lock);
1010 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
1011 			    (void *)B_TRUE;
1012 			mutex_exit(&ds->ds_lock);
1013 		}
1014 
1015 		dmu_tx_commit(tx);
1016 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1017 	} else {
1018 		/*
1019 		 * This branch covers the case where we enable the feature on a
1020 		 * zpool that has existing ZIL headers.
1021 		 */
1022 		zil_commit_activate_saxattr_feature(zilog);
1023 	}
1024 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1025 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1026 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1027 
1028 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1029 	IMPLY(error == 0, lwb != NULL);
1030 
1031 	return (lwb);
1032 }
1033 
1034 /*
1035  * In one tx, free all log blocks and clear the log header. If keep_first
1036  * is set, then we're replaying a log with no content. We want to keep the
1037  * first block, however, so that the first synchronous transaction doesn't
1038  * require a txg_wait_synced() in zil_create(). We don't need to
1039  * txg_wait_synced() here either when keep_first is set, because both
1040  * zil_create() and zil_destroy() will wait for any in-progress destroys
1041  * to complete.
1042  * Return B_TRUE if there were any entries to replay.
1043  */
1044 boolean_t
1045 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1046 {
1047 	const zil_header_t *zh = zilog->zl_header;
1048 	lwb_t *lwb;
1049 	dmu_tx_t *tx;
1050 	uint64_t txg;
1051 
1052 	/*
1053 	 * Wait for any previous destroy to complete.
1054 	 */
1055 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1056 
1057 	zilog->zl_old_header = *zh;		/* debugging aid */
1058 
1059 	if (BP_IS_HOLE(&zh->zh_log))
1060 		return (B_FALSE);
1061 
1062 	tx = dmu_tx_create(zilog->zl_os);
1063 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1064 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1065 	txg = dmu_tx_get_txg(tx);
1066 
1067 	mutex_enter(&zilog->zl_lock);
1068 
1069 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
1070 	zilog->zl_destroy_txg = txg;
1071 	zilog->zl_keep_first = keep_first;
1072 
1073 	if (!list_is_empty(&zilog->zl_lwb_list)) {
1074 		ASSERT(zh->zh_claim_txg == 0);
1075 		VERIFY(!keep_first);
1076 		while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1077 			if (lwb->lwb_buf != NULL)
1078 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1079 			if (!BP_IS_HOLE(&lwb->lwb_blk))
1080 				zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1081 			zil_free_lwb(zilog, lwb);
1082 		}
1083 	} else if (!keep_first) {
1084 		zil_destroy_sync(zilog, tx);
1085 	}
1086 	mutex_exit(&zilog->zl_lock);
1087 
1088 	dmu_tx_commit(tx);
1089 
1090 	return (B_TRUE);
1091 }
1092 
1093 void
1094 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1095 {
1096 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1097 	(void) zil_parse(zilog, zil_free_log_block,
1098 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1099 }
1100 
1101 int
1102 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1103 {
1104 	dmu_tx_t *tx = txarg;
1105 	zilog_t *zilog;
1106 	uint64_t first_txg;
1107 	zil_header_t *zh;
1108 	objset_t *os;
1109 	int error;
1110 
1111 	error = dmu_objset_own_obj(dp, ds->ds_object,
1112 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1113 	if (error != 0) {
1114 		/*
1115 		 * EBUSY indicates that the objset is inconsistent, in which
1116 		 * case it can not have a ZIL.
1117 		 */
1118 		if (error != EBUSY) {
1119 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1120 			    (unsigned long long)ds->ds_object, error);
1121 		}
1122 
1123 		return (0);
1124 	}
1125 
1126 	zilog = dmu_objset_zil(os);
1127 	zh = zil_header_in_syncing_context(zilog);
1128 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1129 	first_txg = spa_min_claim_txg(zilog->zl_spa);
1130 
1131 	/*
1132 	 * If the spa_log_state is not set to be cleared, check whether
1133 	 * the current uberblock is a checkpoint one and if the current
1134 	 * header has been claimed before moving on.
1135 	 *
1136 	 * If the current uberblock is a checkpointed uberblock then
1137 	 * one of the following scenarios took place:
1138 	 *
1139 	 * 1] We are currently rewinding to the checkpoint of the pool.
1140 	 * 2] We crashed in the middle of a checkpoint rewind but we
1141 	 *    did manage to write the checkpointed uberblock to the
1142 	 *    vdev labels, so when we tried to import the pool again
1143 	 *    the checkpointed uberblock was selected from the import
1144 	 *    procedure.
1145 	 *
1146 	 * In both cases we want to zero out all the ZIL blocks, except
1147 	 * the ones that have been claimed at the time of the checkpoint
1148 	 * (their zh_claim_txg != 0). The reason is that these blocks
1149 	 * may be corrupted since we may have reused their locations on
1150 	 * disk after we took the checkpoint.
1151 	 *
1152 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1153 	 * when we first figure out whether the current uberblock is
1154 	 * checkpointed or not. Unfortunately, that would discard all
1155 	 * the logs, including the ones that are claimed, and we would
1156 	 * leak space.
1157 	 */
1158 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1159 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1160 	    zh->zh_claim_txg == 0)) {
1161 		if (!BP_IS_HOLE(&zh->zh_log)) {
1162 			(void) zil_parse(zilog, zil_clear_log_block,
1163 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1164 		}
1165 		BP_ZERO(&zh->zh_log);
1166 		if (os->os_encrypted)
1167 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1168 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1169 		dmu_objset_disown(os, B_FALSE, FTAG);
1170 		return (0);
1171 	}
1172 
1173 	/*
1174 	 * If we are not rewinding and opening the pool normally, then
1175 	 * the min_claim_txg should be equal to the first txg of the pool.
1176 	 */
1177 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1178 
1179 	/*
1180 	 * Claim all log blocks if we haven't already done so, and remember
1181 	 * the highest claimed sequence number.  This ensures that if we can
1182 	 * read only part of the log now (e.g. due to a missing device),
1183 	 * but we can read the entire log later, we will not try to replay
1184 	 * or destroy beyond the last block we successfully claimed.
1185 	 */
1186 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1187 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1188 		(void) zil_parse(zilog, zil_claim_log_block,
1189 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1190 		zh->zh_claim_txg = first_txg;
1191 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1192 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1193 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1194 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1195 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1196 		if (os->os_encrypted)
1197 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1198 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1199 	}
1200 
1201 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1202 	dmu_objset_disown(os, B_FALSE, FTAG);
1203 	return (0);
1204 }
1205 
1206 /*
1207  * Check the log by walking the log chain.
1208  * Checksum errors are ok as they indicate the end of the chain.
1209  * Any other error (no device or read failure) returns an error.
1210  */
1211 int
1212 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1213 {
1214 	(void) dp;
1215 	zilog_t *zilog;
1216 	objset_t *os;
1217 	blkptr_t *bp;
1218 	int error;
1219 
1220 	ASSERT(tx == NULL);
1221 
1222 	error = dmu_objset_from_ds(ds, &os);
1223 	if (error != 0) {
1224 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1225 		    (unsigned long long)ds->ds_object, error);
1226 		return (0);
1227 	}
1228 
1229 	zilog = dmu_objset_zil(os);
1230 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1231 
1232 	if (!BP_IS_HOLE(bp)) {
1233 		vdev_t *vd;
1234 		boolean_t valid = B_TRUE;
1235 
1236 		/*
1237 		 * Check the first block and determine if it's on a log device
1238 		 * which may have been removed or faulted prior to loading this
1239 		 * pool.  If so, there's no point in checking the rest of the
1240 		 * log as its content should have already been synced to the
1241 		 * pool.
1242 		 */
1243 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1244 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1245 		if (vd->vdev_islog && vdev_is_dead(vd))
1246 			valid = vdev_log_state_valid(vd);
1247 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1248 
1249 		if (!valid)
1250 			return (0);
1251 
1252 		/*
1253 		 * Check whether the current uberblock is checkpointed (e.g.
1254 		 * we are rewinding) and whether the current header has been
1255 		 * claimed or not. If it hasn't then skip verifying it. We
1256 		 * do this because its ZIL blocks may be part of the pool's
1257 		 * state before the rewind, which is no longer valid.
1258 		 */
1259 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1260 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1261 		    zh->zh_claim_txg == 0)
1262 			return (0);
1263 	}
1264 
1265 	/*
1266 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1267 	 * any blocks, but just determine whether it is possible to do so.
1268 	 * In addition to checking the log chain, zil_claim_log_block()
1269 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1270 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1271 	 */
1272 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1273 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1274 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1275 
1276 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1277 }
1278 
1279 /*
1280  * When an itx is "skipped", this function is used to properly mark the
1281  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1282  * be skipped (and not committed to an lwb) for a variety of reasons,
1283  * one of them being that the itx was committed via spa_sync(), prior to
1284  * it being committed to an lwb; this can happen if a thread calling
1285  * zil_commit() is racing with spa_sync().
1286  */
1287 static void
1288 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1289 {
1290 	mutex_enter(&zcw->zcw_lock);
1291 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1292 	zcw->zcw_done = B_TRUE;
1293 	cv_broadcast(&zcw->zcw_cv);
1294 	mutex_exit(&zcw->zcw_lock);
1295 }
1296 
1297 /*
1298  * This function is used when the given waiter is to be linked into an
1299  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1300  * At this point, the waiter will no longer be referenced by the itx,
1301  * and instead, will be referenced by the lwb.
1302  */
1303 static void
1304 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1305 {
1306 	/*
1307 	 * The lwb_waiters field of the lwb is protected by the zilog's
1308 	 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1309 	 * zl_issuer_lock also protects leaving the open state.
1310 	 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1311 	 * flush_done, which transition is protected by zl_lock.
1312 	 */
1313 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1314 	IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1315 	    MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1316 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1317 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1318 
1319 	ASSERT(!list_link_active(&zcw->zcw_node));
1320 	list_insert_tail(&lwb->lwb_waiters, zcw);
1321 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1322 	zcw->zcw_lwb = lwb;
1323 }
1324 
1325 /*
1326  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1327  * block, and the given waiter must be linked to the "nolwb waiters"
1328  * list inside of zil_process_commit_list().
1329  */
1330 static void
1331 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1332 {
1333 	ASSERT(!list_link_active(&zcw->zcw_node));
1334 	list_insert_tail(nolwb, zcw);
1335 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1336 }
1337 
1338 void
1339 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1340 {
1341 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1342 	avl_index_t where;
1343 	zil_vdev_node_t *zv, zvsearch;
1344 	int ndvas = BP_GET_NDVAS(bp);
1345 	int i;
1346 
1347 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1348 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1349 
1350 	if (zil_nocacheflush)
1351 		return;
1352 
1353 	mutex_enter(&lwb->lwb_vdev_lock);
1354 	for (i = 0; i < ndvas; i++) {
1355 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1356 		if (avl_find(t, &zvsearch, &where) == NULL) {
1357 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1358 			zv->zv_vdev = zvsearch.zv_vdev;
1359 			avl_insert(t, zv, where);
1360 		}
1361 	}
1362 	mutex_exit(&lwb->lwb_vdev_lock);
1363 }
1364 
1365 static void
1366 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1367 {
1368 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1369 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1370 	void *cookie = NULL;
1371 	zil_vdev_node_t *zv;
1372 
1373 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1374 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1375 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1376 
1377 	/*
1378 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1379 	 * not need the protection of lwb_vdev_lock (it will only be modified
1380 	 * while holding zilog->zl_lock) as its writes and those of its
1381 	 * children have all completed.  The younger 'nlwb' may be waiting on
1382 	 * future writes to additional vdevs.
1383 	 */
1384 	mutex_enter(&nlwb->lwb_vdev_lock);
1385 	/*
1386 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1387 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1388 	 */
1389 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1390 		avl_index_t where;
1391 
1392 		if (avl_find(dst, zv, &where) == NULL) {
1393 			avl_insert(dst, zv, where);
1394 		} else {
1395 			kmem_free(zv, sizeof (*zv));
1396 		}
1397 	}
1398 	mutex_exit(&nlwb->lwb_vdev_lock);
1399 }
1400 
1401 void
1402 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1403 {
1404 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1405 }
1406 
1407 /*
1408  * This function is a called after all vdevs associated with a given lwb write
1409  * have completed their flush command; or as soon as the lwb write completes,
1410  * if "zil_nocacheflush" is set. Further, all "previous" lwb's will have
1411  * completed before this function is called; i.e. this function is called for
1412  * all previous lwbs before it's called for "this" lwb (enforced via zio the
1413  * dependencies configured in zil_lwb_set_zio_dependency()).
1414  *
1415  * The intention is for this function to be called as soon as the contents of
1416  * an lwb are considered "stable" on disk, and will survive any sudden loss of
1417  * power. At this point, any threads waiting for the lwb to reach this state
1418  * are signalled, and the "waiter" structures are marked "done".
1419  */
1420 static void
1421 zil_lwb_flush_vdevs_done(zio_t *zio)
1422 {
1423 	lwb_t *lwb = zio->io_private;
1424 	zilog_t *zilog = lwb->lwb_zilog;
1425 	zil_commit_waiter_t *zcw;
1426 	itx_t *itx;
1427 
1428 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1429 
1430 	hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1431 
1432 	mutex_enter(&zilog->zl_lock);
1433 
1434 	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1435 
1436 	lwb->lwb_root_zio = NULL;
1437 
1438 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1439 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1440 
1441 	if (zilog->zl_last_lwb_opened == lwb) {
1442 		/*
1443 		 * Remember the highest committed log sequence number
1444 		 * for ztest. We only update this value when all the log
1445 		 * writes succeeded, because ztest wants to ASSERT that
1446 		 * it got the whole log chain.
1447 		 */
1448 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1449 	}
1450 
1451 	while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1452 		zil_itx_destroy(itx);
1453 
1454 	while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1455 		mutex_enter(&zcw->zcw_lock);
1456 
1457 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1458 		zcw->zcw_lwb = NULL;
1459 		/*
1460 		 * We expect any ZIO errors from child ZIOs to have been
1461 		 * propagated "up" to this specific LWB's root ZIO, in
1462 		 * order for this error handling to work correctly. This
1463 		 * includes ZIO errors from either this LWB's write or
1464 		 * flush, as well as any errors from other dependent LWBs
1465 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1466 		 *
1467 		 * With that said, it's important to note that LWB flush
1468 		 * errors are not propagated up to the LWB root ZIO.
1469 		 * This is incorrect behavior, and results in VDEV flush
1470 		 * errors not being handled correctly here. See the
1471 		 * comment above the call to "zio_flush" for details.
1472 		 */
1473 
1474 		zcw->zcw_zio_error = zio->io_error;
1475 
1476 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1477 		zcw->zcw_done = B_TRUE;
1478 		cv_broadcast(&zcw->zcw_cv);
1479 
1480 		mutex_exit(&zcw->zcw_lock);
1481 	}
1482 
1483 	uint64_t txg = lwb->lwb_issued_txg;
1484 
1485 	/* Once we drop the lock, lwb may be freed by zil_sync(). */
1486 	mutex_exit(&zilog->zl_lock);
1487 
1488 	mutex_enter(&zilog->zl_lwb_io_lock);
1489 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1490 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1491 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1492 		cv_broadcast(&zilog->zl_lwb_io_cv);
1493 	mutex_exit(&zilog->zl_lwb_io_lock);
1494 }
1495 
1496 /*
1497  * Wait for the completion of all issued write/flush of that txg provided.
1498  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1499  */
1500 static void
1501 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1502 {
1503 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1504 
1505 	mutex_enter(&zilog->zl_lwb_io_lock);
1506 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1507 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1508 	mutex_exit(&zilog->zl_lwb_io_lock);
1509 
1510 #ifdef ZFS_DEBUG
1511 	mutex_enter(&zilog->zl_lock);
1512 	mutex_enter(&zilog->zl_lwb_io_lock);
1513 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1514 	while (lwb != NULL) {
1515 		if (lwb->lwb_issued_txg <= txg) {
1516 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1517 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1518 			IMPLY(lwb->lwb_issued_txg > 0,
1519 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1520 		}
1521 		IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1522 		    lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1523 		    lwb->lwb_buf == NULL);
1524 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1525 	}
1526 	mutex_exit(&zilog->zl_lwb_io_lock);
1527 	mutex_exit(&zilog->zl_lock);
1528 #endif
1529 }
1530 
1531 /*
1532  * This is called when an lwb's write zio completes. The callback's purpose is
1533  * to issue the flush commands for the vdevs in the lwb's lwb_vdev_tree. The
1534  * tree will contain the vdevs involved in writing out this specific lwb's
1535  * data, and in the case that cache flushes have been deferred, vdevs involved
1536  * in writing the data for previous lwbs. The writes corresponding to all the
1537  * vdevs in the lwb_vdev_tree will have completed by the time this is called,
1538  * due to the zio dependencies configured in zil_lwb_set_zio_dependency(),
1539  * which takes deferred flushes into account. The lwb will be "done" once
1540  * zil_lwb_flush_vdevs_done() is called, which occurs in the zio completion
1541  * callback for the lwb's root zio.
1542  */
1543 static void
1544 zil_lwb_write_done(zio_t *zio)
1545 {
1546 	lwb_t *lwb = zio->io_private;
1547 	spa_t *spa = zio->io_spa;
1548 	zilog_t *zilog = lwb->lwb_zilog;
1549 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1550 	void *cookie = NULL;
1551 	zil_vdev_node_t *zv;
1552 	lwb_t *nlwb;
1553 
1554 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1555 
1556 	abd_free(zio->io_abd);
1557 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1558 	lwb->lwb_buf = NULL;
1559 
1560 	mutex_enter(&zilog->zl_lock);
1561 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1562 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1563 	lwb->lwb_child_zio = NULL;
1564 	lwb->lwb_write_zio = NULL;
1565 
1566 	/*
1567 	 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1568 	 * called for it yet, and when it will be, it won't be able to make
1569 	 * its write ZIO a parent this ZIO.  In such case we can not defer
1570 	 * our flushes or below may be a race between the done callbacks.
1571 	 */
1572 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1573 	if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1574 		nlwb = NULL;
1575 	mutex_exit(&zilog->zl_lock);
1576 
1577 	if (avl_numnodes(t) == 0)
1578 		return;
1579 
1580 	/*
1581 	 * If there was an IO error, we're not going to call zio_flush()
1582 	 * on these vdevs, so we simply empty the tree and free the
1583 	 * nodes. We avoid calling zio_flush() since there isn't any
1584 	 * good reason for doing so, after the lwb block failed to be
1585 	 * written out.
1586 	 *
1587 	 * Additionally, we don't perform any further error handling at
1588 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1589 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1590 	 * we expect any error seen here, to have been propagated to
1591 	 * that function).
1592 	 */
1593 	if (zio->io_error != 0) {
1594 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1595 			kmem_free(zv, sizeof (*zv));
1596 		return;
1597 	}
1598 
1599 	/*
1600 	 * If this lwb does not have any threads waiting for it to complete, we
1601 	 * want to defer issuing the flush command to the vdevs written to by
1602 	 * "this" lwb, and instead rely on the "next" lwb to handle the flush
1603 	 * command for those vdevs. Thus, we merge the vdev tree of "this" lwb
1604 	 * with the vdev tree of the "next" lwb in the list, and assume the
1605 	 * "next" lwb will handle flushing the vdevs (or deferring the flush(s)
1606 	 * again).
1607 	 *
1608 	 * This is a useful performance optimization, especially for workloads
1609 	 * with lots of async write activity and few sync write and/or fsync
1610 	 * activity, as it has the potential to coalesce multiple flush
1611 	 * commands to a vdev into one.
1612 	 */
1613 	if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1614 		zil_lwb_flush_defer(lwb, nlwb);
1615 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1616 		return;
1617 	}
1618 
1619 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1620 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1621 		if (vd != NULL) {
1622 			/*
1623 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1624 			 * always used within "zio_flush". This means,
1625 			 * any errors when flushing the vdev(s), will
1626 			 * (unfortunately) not be handled correctly,
1627 			 * since these "zio_flush" errors will not be
1628 			 * propagated up to "zil_lwb_flush_vdevs_done".
1629 			 */
1630 			zio_flush(lwb->lwb_root_zio, vd);
1631 		}
1632 		kmem_free(zv, sizeof (*zv));
1633 	}
1634 }
1635 
1636 /*
1637  * Build the zio dependency chain, which is used to preserve the ordering of
1638  * lwb completions that is required by the semantics of the ZIL. Each new lwb
1639  * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1640  * cannot complete until the previous lwb's zio completes.
1641  *
1642  * This is required by the semantics of zil_commit(): the commit waiters
1643  * attached to the lwbs will be woken in the lwb zio's completion callback,
1644  * so this zio dependency graph ensures the waiters are woken in the correct
1645  * order (the same order the lwbs were created).
1646  */
1647 static void
1648 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1649 {
1650 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1651 
1652 	lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1653 	if (prev_lwb == NULL ||
1654 	    prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1655 		return;
1656 
1657 	/*
1658 	 * If the previous lwb's write hasn't already completed, we also want
1659 	 * to order the completion of the lwb write zios (above, we only order
1660 	 * the completion of the lwb root zios). This is required because of
1661 	 * how we can defer the flush commands for each lwb.
1662 	 *
1663 	 * When the flush commands are deferred, the previous lwb will rely on
1664 	 * this lwb to flush the vdevs written to by that previous lwb. Thus,
1665 	 * we need to ensure this lwb doesn't issue the flush until after the
1666 	 * previous lwb's write completes. We ensure this ordering by setting
1667 	 * the zio parent/child relationship here.
1668 	 *
1669 	 * Without this relationship on the lwb's write zio, it's possible for
1670 	 * this lwb's write to complete prior to the previous lwb's write
1671 	 * completing; and thus, the vdevs for the previous lwb would be
1672 	 * flushed prior to that lwb's data being written to those vdevs (the
1673 	 * vdevs are flushed in the lwb write zio's completion handler,
1674 	 * zil_lwb_write_done()).
1675 	 */
1676 	if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1677 		ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1678 		zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
1679 	} else {
1680 		ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1681 	}
1682 
1683 	ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1684 	zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1685 }
1686 
1687 
1688 /*
1689  * This function's purpose is to "open" an lwb such that it is ready to
1690  * accept new itxs being committed to it. This function is idempotent; if
1691  * the passed in lwb has already been opened, it is essentially a no-op.
1692  */
1693 static void
1694 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1695 {
1696 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1697 
1698 	if (lwb->lwb_state != LWB_STATE_NEW) {
1699 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1700 		return;
1701 	}
1702 
1703 	mutex_enter(&zilog->zl_lock);
1704 	lwb->lwb_state = LWB_STATE_OPENED;
1705 	zilog->zl_last_lwb_opened = lwb;
1706 	mutex_exit(&zilog->zl_lock);
1707 }
1708 
1709 /*
1710  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1711  * initialized.  Otherwise this should not be used directly; see
1712  * zl_max_block_size instead.
1713  */
1714 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1715 
1716 /*
1717  * Plan splitting of the provided burst size between several blocks.
1718  */
1719 static uint_t
1720 zil_lwb_plan(zilog_t *zilog, uint64_t size, uint_t *minsize)
1721 {
1722 	uint_t md = zilog->zl_max_block_size - sizeof (zil_chain_t);
1723 
1724 	if (size <= md) {
1725 		/*
1726 		 * Small bursts are written as-is in one block.
1727 		 */
1728 		*minsize = size;
1729 		return (size);
1730 	} else if (size > 8 * md) {
1731 		/*
1732 		 * Big bursts use maximum blocks.  The first block size
1733 		 * is hard to predict, but it does not really matter.
1734 		 */
1735 		*minsize = 0;
1736 		return (md);
1737 	}
1738 
1739 	/*
1740 	 * Medium bursts try to divide evenly to better utilize several SLOG
1741 	 * VDEVs.  The first block size we predict assuming the worst case of
1742 	 * maxing out others.  Fall back to using maximum blocks if due to
1743 	 * large records or wasted space we can not predict anything better.
1744 	 */
1745 	uint_t s = size;
1746 	uint_t n = DIV_ROUND_UP(s, md - sizeof (lr_write_t));
1747 	uint_t chunk = DIV_ROUND_UP(s, n);
1748 	uint_t waste = zil_max_waste_space(zilog);
1749 	waste = MAX(waste, zilog->zl_cur_max);
1750 	if (chunk <= md - waste) {
1751 		*minsize = MAX(s - (md - waste) * (n - 1), waste);
1752 		return (chunk);
1753 	} else {
1754 		*minsize = 0;
1755 		return (md);
1756 	}
1757 }
1758 
1759 /*
1760  * Try to predict next block size based on previous history.  Make prediction
1761  * sufficient for 7 of 8 previous bursts.  Don't try to save if the saving is
1762  * less then 50%, extra writes may cost more, but we don't want single spike
1763  * to badly affect our predictions.
1764  */
1765 static uint_t
1766 zil_lwb_predict(zilog_t *zilog)
1767 {
1768 	uint_t m, o;
1769 
1770 	/* If we are in the middle of a burst, take it into account also. */
1771 	if (zilog->zl_cur_size > 0) {
1772 		o = zil_lwb_plan(zilog, zilog->zl_cur_size, &m);
1773 	} else {
1774 		o = UINT_MAX;
1775 		m = 0;
1776 	}
1777 
1778 	/* Find minimum optimal size.  We don't need to go below that. */
1779 	for (int i = 0; i < ZIL_BURSTS; i++)
1780 		o = MIN(o, zilog->zl_prev_opt[i]);
1781 
1782 	/* Find two biggest minimal first block sizes above the optimal. */
1783 	uint_t m1 = MAX(m, o), m2 = o;
1784 	for (int i = 0; i < ZIL_BURSTS; i++) {
1785 		m = zilog->zl_prev_min[i];
1786 		if (m >= m1) {
1787 			m2 = m1;
1788 			m1 = m;
1789 		} else if (m > m2) {
1790 			m2 = m;
1791 		}
1792 	}
1793 
1794 	/*
1795 	 * If second minimum size gives 50% saving -- use it.  It may cost us
1796 	 * one additional write later, but the space saving is just too big.
1797 	 */
1798 	return ((m1 < m2 * 2) ? m1 : m2);
1799 }
1800 
1801 /*
1802  * Close the log block for being issued and allocate the next one.
1803  * Has to be called under zl_issuer_lock to chain more lwbs.
1804  */
1805 static lwb_t *
1806 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
1807 {
1808 	uint64_t blksz, plan, plan2;
1809 
1810 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1811 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1812 	lwb->lwb_state = LWB_STATE_CLOSED;
1813 
1814 	/*
1815 	 * If there was an allocation failure then returned NULL will trigger
1816 	 * zil_commit_writer_stall() at the caller.  This is inherently racy,
1817 	 * since allocation may not have happened yet.
1818 	 */
1819 	if (lwb->lwb_error != 0)
1820 		return (NULL);
1821 
1822 	/*
1823 	 * Log blocks are pre-allocated.  Here we select the size of the next
1824 	 * block, based on what's left of this burst and the previous history.
1825 	 * While we try to only write used part of the block, we can't just
1826 	 * always allocate the maximum block size because we can exhaust all
1827 	 * available pool log space, so we try to be reasonable.
1828 	 */
1829 	if (zilog->zl_cur_left > 0) {
1830 		/*
1831 		 * We are in the middle of a burst and know how much is left.
1832 		 * But if workload is multi-threaded there may be more soon.
1833 		 * Try to predict what can it be and plan for the worst case.
1834 		 */
1835 		uint_t m;
1836 		plan = zil_lwb_plan(zilog, zilog->zl_cur_left, &m);
1837 		if (zilog->zl_parallel) {
1838 			plan2 = zil_lwb_plan(zilog, zilog->zl_cur_left +
1839 			    zil_lwb_predict(zilog), &m);
1840 			if (plan < plan2)
1841 				plan = plan2;
1842 		}
1843 	} else {
1844 		/*
1845 		 * The previous burst is done and we can only predict what
1846 		 * will come next.
1847 		 */
1848 		plan = zil_lwb_predict(zilog);
1849 	}
1850 	blksz = plan + sizeof (zil_chain_t);
1851 	blksz = P2ROUNDUP_TYPED(blksz, ZIL_MIN_BLKSZ, uint64_t);
1852 	blksz = MIN(blksz, zilog->zl_max_block_size);
1853 	DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, uint64_t, blksz,
1854 	    uint64_t, plan);
1855 
1856 	return (zil_alloc_lwb(zilog, blksz, NULL, 0, 0, state));
1857 }
1858 
1859 /*
1860  * Finalize previously closed block and issue the write zio.
1861  */
1862 static void
1863 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1864 {
1865 	spa_t *spa = zilog->zl_spa;
1866 	zil_chain_t *zilc;
1867 	boolean_t slog;
1868 	zbookmark_phys_t zb;
1869 	zio_priority_t prio;
1870 	int error;
1871 
1872 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1873 
1874 	/* Actually fill the lwb with the data. */
1875 	for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1876 	    itx = list_next(&lwb->lwb_itxs, itx))
1877 		zil_lwb_commit(zilog, lwb, itx);
1878 	lwb->lwb_nused = lwb->lwb_nfilled;
1879 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
1880 
1881 	lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1882 	    ZIO_FLAG_CANFAIL);
1883 
1884 	/*
1885 	 * The lwb is now ready to be issued, but it can be only if it already
1886 	 * got its block pointer allocated or the allocation has failed.
1887 	 * Otherwise leave it as-is, relying on some other thread to issue it
1888 	 * after allocating its block pointer via calling zil_lwb_write_issue()
1889 	 * for the previous lwb(s) in the chain.
1890 	 */
1891 	mutex_enter(&zilog->zl_lock);
1892 	lwb->lwb_state = LWB_STATE_READY;
1893 	if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1894 		mutex_exit(&zilog->zl_lock);
1895 		return;
1896 	}
1897 	mutex_exit(&zilog->zl_lock);
1898 
1899 next_lwb:
1900 	if (lwb->lwb_slim)
1901 		zilc = (zil_chain_t *)lwb->lwb_buf;
1902 	else
1903 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1904 	int wsz = lwb->lwb_sz;
1905 	if (lwb->lwb_error == 0) {
1906 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1907 		if (!lwb->lwb_slog || zilog->zl_cur_size <= zil_slog_bulk)
1908 			prio = ZIO_PRIORITY_SYNC_WRITE;
1909 		else
1910 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1911 		SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1912 		    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1913 		    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1914 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1915 		    &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
1916 		    lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1917 		zil_lwb_add_block(lwb, &lwb->lwb_blk);
1918 
1919 		if (lwb->lwb_slim) {
1920 			/* For Slim ZIL only write what is used. */
1921 			wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1922 			    int);
1923 			ASSERT3S(wsz, <=, lwb->lwb_sz);
1924 			zio_shrink(lwb->lwb_write_zio, wsz);
1925 			wsz = lwb->lwb_write_zio->io_size;
1926 		}
1927 		memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1928 		zilc->zc_pad = 0;
1929 		zilc->zc_nused = lwb->lwb_nused;
1930 		zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1931 	} else {
1932 		/*
1933 		 * We can't write the lwb if there was an allocation failure,
1934 		 * so create a null zio instead just to maintain dependencies.
1935 		 */
1936 		lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
1937 		    zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
1938 		lwb->lwb_write_zio->io_error = lwb->lwb_error;
1939 	}
1940 	if (lwb->lwb_child_zio)
1941 		zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
1942 
1943 	/*
1944 	 * Open transaction to allocate the next block pointer.
1945 	 */
1946 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1947 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1948 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1949 	uint64_t txg = dmu_tx_get_txg(tx);
1950 
1951 	/*
1952 	 * Allocate next the block pointer unless we are already in error.
1953 	 */
1954 	lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
1955 	blkptr_t *bp = &zilc->zc_next_blk;
1956 	BP_ZERO(bp);
1957 	error = lwb->lwb_error;
1958 	if (error == 0) {
1959 		error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
1960 		    &slog);
1961 	}
1962 	if (error == 0) {
1963 		ASSERT3U(BP_GET_LOGICAL_BIRTH(bp), ==, txg);
1964 		BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
1965 		    ZIO_CHECKSUM_ZILOG);
1966 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1967 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1968 	}
1969 
1970 	/*
1971 	 * Reduce TXG open time by incrementing inflight counter and committing
1972 	 * the transaciton.  zil_sync() will wait for it to return to zero.
1973 	 */
1974 	mutex_enter(&zilog->zl_lwb_io_lock);
1975 	lwb->lwb_issued_txg = txg;
1976 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1977 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1978 	mutex_exit(&zilog->zl_lwb_io_lock);
1979 	dmu_tx_commit(tx);
1980 
1981 	spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
1982 
1983 	/*
1984 	 * We've completed all potentially blocking operations.  Update the
1985 	 * nlwb and allow it proceed without possible lock order reversals.
1986 	 */
1987 	mutex_enter(&zilog->zl_lock);
1988 	zil_lwb_set_zio_dependency(zilog, lwb);
1989 	lwb->lwb_state = LWB_STATE_ISSUED;
1990 
1991 	if (nlwb) {
1992 		nlwb->lwb_blk = *bp;
1993 		nlwb->lwb_error = error;
1994 		nlwb->lwb_slog = slog;
1995 		nlwb->lwb_alloc_txg = txg;
1996 		if (nlwb->lwb_state != LWB_STATE_READY)
1997 			nlwb = NULL;
1998 	}
1999 	mutex_exit(&zilog->zl_lock);
2000 
2001 	if (lwb->lwb_slog) {
2002 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
2003 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
2004 		    lwb->lwb_nused);
2005 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
2006 		    wsz);
2007 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
2008 		    BP_GET_LSIZE(&lwb->lwb_blk));
2009 	} else {
2010 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
2011 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
2012 		    lwb->lwb_nused);
2013 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
2014 		    wsz);
2015 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
2016 		    BP_GET_LSIZE(&lwb->lwb_blk));
2017 	}
2018 	lwb->lwb_issued_timestamp = gethrtime();
2019 	if (lwb->lwb_child_zio)
2020 		zio_nowait(lwb->lwb_child_zio);
2021 	zio_nowait(lwb->lwb_write_zio);
2022 	zio_nowait(lwb->lwb_root_zio);
2023 
2024 	/*
2025 	 * If nlwb was ready when we gave it the block pointer,
2026 	 * it is on us to issue it and possibly following ones.
2027 	 */
2028 	lwb = nlwb;
2029 	if (lwb)
2030 		goto next_lwb;
2031 }
2032 
2033 /*
2034  * Maximum amount of data that can be put into single log block.
2035  */
2036 uint64_t
2037 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
2038 {
2039 	return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
2040 }
2041 
2042 /*
2043  * Maximum amount of log space we agree to waste to reduce number of
2044  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
2045  */
2046 static inline uint64_t
2047 zil_max_waste_space(zilog_t *zilog)
2048 {
2049 	return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
2050 }
2051 
2052 /*
2053  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
2054  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
2055  * maximum sized log block, because each WR_COPIED record must fit in a
2056  * single log block.  Below that it is a tradeoff of additional memory copy
2057  * and possibly worse log space efficiency vs additional range lock/unlock.
2058  */
2059 static uint_t zil_maxcopied = 7680;
2060 
2061 uint64_t
2062 zil_max_copied_data(zilog_t *zilog)
2063 {
2064 	uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2065 	return (MIN(max_data, zil_maxcopied));
2066 }
2067 
2068 static uint64_t
2069 zil_itx_record_size(itx_t *itx)
2070 {
2071 	lr_t *lr = &itx->itx_lr;
2072 
2073 	if (lr->lrc_txtype == TX_COMMIT)
2074 		return (0);
2075 	ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2076 	return (lr->lrc_reclen);
2077 }
2078 
2079 static uint64_t
2080 zil_itx_data_size(itx_t *itx)
2081 {
2082 	lr_t *lr = &itx->itx_lr;
2083 	lr_write_t *lrw = (lr_write_t *)lr;
2084 
2085 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2086 		ASSERT3U(lr->lrc_reclen, ==, sizeof (lr_write_t));
2087 		return (P2ROUNDUP_TYPED(lrw->lr_length, sizeof (uint64_t),
2088 		    uint64_t));
2089 	}
2090 	return (0);
2091 }
2092 
2093 static uint64_t
2094 zil_itx_full_size(itx_t *itx)
2095 {
2096 	lr_t *lr = &itx->itx_lr;
2097 
2098 	if (lr->lrc_txtype == TX_COMMIT)
2099 		return (0);
2100 	ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2101 	return (lr->lrc_reclen + zil_itx_data_size(itx));
2102 }
2103 
2104 /*
2105  * Estimate space needed in the lwb for the itx.  Allocate more lwbs or
2106  * split the itx as needed, but don't touch the actual transaction data.
2107  * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2108  * to chain more lwbs.
2109  */
2110 static lwb_t *
2111 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
2112 {
2113 	itx_t *citx;
2114 	lr_t *lr, *clr;
2115 	lr_write_t *lrw;
2116 	uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
2117 
2118 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2119 	ASSERT3P(lwb, !=, NULL);
2120 	ASSERT3P(lwb->lwb_buf, !=, NULL);
2121 
2122 	zil_lwb_write_open(zilog, lwb);
2123 
2124 	lr = &itx->itx_lr;
2125 	lrw = (lr_write_t *)lr;
2126 
2127 	/*
2128 	 * A commit itx doesn't represent any on-disk state; instead
2129 	 * it's simply used as a place holder on the commit list, and
2130 	 * provides a mechanism for attaching a "commit waiter" onto the
2131 	 * correct lwb (such that the waiter can be signalled upon
2132 	 * completion of that lwb). Thus, we don't process this itx's
2133 	 * log record if it's a commit itx (these itx's don't have log
2134 	 * records), and instead link the itx's waiter onto the lwb's
2135 	 * list of waiters.
2136 	 *
2137 	 * For more details, see the comment above zil_commit().
2138 	 */
2139 	if (lr->lrc_txtype == TX_COMMIT) {
2140 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2141 		list_insert_tail(&lwb->lwb_itxs, itx);
2142 		return (lwb);
2143 	}
2144 
2145 	reclen = lr->lrc_reclen;
2146 	ASSERT3U(reclen, >=, sizeof (lr_t));
2147 	ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
2148 	dlen = zil_itx_data_size(itx);
2149 
2150 cont:
2151 	/*
2152 	 * If this record won't fit in the current log block, start a new one.
2153 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2154 	 */
2155 	lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2156 	max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2157 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2158 	    lwb_sp < zil_max_waste_space(zilog) &&
2159 	    (dlen % max_log_data == 0 ||
2160 	    lwb_sp < reclen + dlen % max_log_data))) {
2161 		list_insert_tail(ilwbs, lwb);
2162 		lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
2163 		if (lwb == NULL)
2164 			return (NULL);
2165 		lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2166 	}
2167 
2168 	/*
2169 	 * There must be enough space in the log block to hold reclen.
2170 	 * For WR_COPIED, we need to fit the whole record in one block,
2171 	 * and reclen is the write record header size + the data size.
2172 	 * For WR_NEED_COPY, we can create multiple records, splitting
2173 	 * the data into multiple blocks, so we only need to fit one
2174 	 * word of data per block; in this case reclen is just the header
2175 	 * size (no data).
2176 	 */
2177 	ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2178 
2179 	dnow = MIN(dlen, lwb_sp - reclen);
2180 	if (dlen > dnow) {
2181 		ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2182 		ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2183 		citx = zil_itx_clone(itx);
2184 		clr = &citx->itx_lr;
2185 		lr_write_t *clrw = (lr_write_t *)clr;
2186 		clrw->lr_length = dnow;
2187 		lrw->lr_offset += dnow;
2188 		lrw->lr_length -= dnow;
2189 		zilog->zl_cur_left -= dnow;
2190 	} else {
2191 		citx = itx;
2192 		clr = lr;
2193 	}
2194 
2195 	/*
2196 	 * We're actually making an entry, so update lrc_seq to be the
2197 	 * log record sequence number.  Note that this is generally not
2198 	 * equal to the itx sequence number because not all transactions
2199 	 * are synchronous, and sometimes spa_sync() gets there first.
2200 	 */
2201 	clr->lrc_seq = ++zilog->zl_lr_seq;
2202 
2203 	lwb->lwb_nused += reclen + dnow;
2204 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2205 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2206 
2207 	zil_lwb_add_txg(lwb, lr->lrc_txg);
2208 	list_insert_tail(&lwb->lwb_itxs, citx);
2209 
2210 	dlen -= dnow;
2211 	if (dlen > 0)
2212 		goto cont;
2213 
2214 	if (lr->lrc_txtype == TX_WRITE &&
2215 	    lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2216 		txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2217 
2218 	return (lwb);
2219 }
2220 
2221 /*
2222  * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2223  * Does not require locking.
2224  */
2225 static void
2226 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2227 {
2228 	lr_t *lr, *lrb;
2229 	lr_write_t *lrw, *lrwb;
2230 	char *lr_buf;
2231 	uint64_t dlen, reclen;
2232 
2233 	lr = &itx->itx_lr;
2234 	lrw = (lr_write_t *)lr;
2235 
2236 	if (lr->lrc_txtype == TX_COMMIT)
2237 		return;
2238 
2239 	reclen = lr->lrc_reclen;
2240 	dlen = zil_itx_data_size(itx);
2241 	ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2242 
2243 	lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2244 	memcpy(lr_buf, lr, reclen);
2245 	lrb = (lr_t *)lr_buf;		/* Like lr, but inside lwb. */
2246 	lrwb = (lr_write_t *)lrb;	/* Like lrw, but inside lwb. */
2247 
2248 	ZIL_STAT_BUMP(zilog, zil_itx_count);
2249 
2250 	/*
2251 	 * If it's a write, fetch the data or get its blkptr as appropriate.
2252 	 */
2253 	if (lr->lrc_txtype == TX_WRITE) {
2254 		if (itx->itx_wr_state == WR_COPIED) {
2255 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2256 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2257 			    lrw->lr_length);
2258 		} else {
2259 			char *dbuf;
2260 			int error;
2261 
2262 			if (itx->itx_wr_state == WR_NEED_COPY) {
2263 				dbuf = lr_buf + reclen;
2264 				lrb->lrc_reclen += dlen;
2265 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2266 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2267 				    dlen);
2268 			} else {
2269 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2270 				dbuf = NULL;
2271 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2272 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2273 				    lrw->lr_length);
2274 				if (lwb->lwb_child_zio == NULL) {
2275 					lwb->lwb_child_zio = zio_null(NULL,
2276 					    zilog->zl_spa, NULL, NULL, NULL,
2277 					    ZIO_FLAG_CANFAIL);
2278 				}
2279 			}
2280 
2281 			/*
2282 			 * The "lwb_child_zio" we pass in will become a child of
2283 			 * "lwb_write_zio", when one is created, so one will be
2284 			 * a parent of any zio's created by the "zl_get_data".
2285 			 * This way "lwb_write_zio" will first wait for children
2286 			 * block pointers before own writing, and then for their
2287 			 * writing completion before the vdev cache flushing.
2288 			 */
2289 			error = zilog->zl_get_data(itx->itx_private,
2290 			    itx->itx_gen, lrwb, dbuf, lwb,
2291 			    lwb->lwb_child_zio);
2292 			if (dbuf != NULL && error == 0) {
2293 				/* Zero any padding bytes in the last block. */
2294 				memset((char *)dbuf + lrwb->lr_length, 0,
2295 				    dlen - lrwb->lr_length);
2296 			}
2297 
2298 			/*
2299 			 * Typically, the only return values we should see from
2300 			 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2301 			 *  EALREADY. However, it is also possible to see other
2302 			 *  error values such as ENOSPC or EINVAL from
2303 			 *  dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2304 			 *  ENXIO as well as a multitude of others from the
2305 			 *  block layer through dmu_buf_hold() -> dbuf_read()
2306 			 *  -> zio_wait(), as well as through dmu_read() ->
2307 			 *  dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2308 			 *  zio_wait(). When these errors happen, we can assume
2309 			 *  that neither an immediate write nor an indirect
2310 			 *  write occurred, so we need to fall back to
2311 			 *  txg_wait_synced(). This is unusual, so we print to
2312 			 *  dmesg whenever one of these errors occurs.
2313 			 */
2314 			switch (error) {
2315 			case 0:
2316 				break;
2317 			default:
2318 				cmn_err(CE_WARN, "zil_lwb_commit() received "
2319 				    "unexpected error %d from ->zl_get_data()"
2320 				    ". Falling back to txg_wait_synced().",
2321 				    error);
2322 				zfs_fallthrough;
2323 			case EIO:
2324 				txg_wait_synced(zilog->zl_dmu_pool,
2325 				    lr->lrc_txg);
2326 				zfs_fallthrough;
2327 			case ENOENT:
2328 				zfs_fallthrough;
2329 			case EEXIST:
2330 				zfs_fallthrough;
2331 			case EALREADY:
2332 				return;
2333 			}
2334 		}
2335 	}
2336 
2337 	lwb->lwb_nfilled += reclen + dlen;
2338 	ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2339 	ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2340 }
2341 
2342 itx_t *
2343 zil_itx_create(uint64_t txtype, size_t olrsize)
2344 {
2345 	size_t itxsize, lrsize;
2346 	itx_t *itx;
2347 
2348 	ASSERT3U(olrsize, >=, sizeof (lr_t));
2349 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2350 	ASSERT3U(lrsize, >=, olrsize);
2351 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2352 
2353 	itx = zio_data_buf_alloc(itxsize);
2354 	itx->itx_lr.lrc_txtype = txtype;
2355 	itx->itx_lr.lrc_reclen = lrsize;
2356 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2357 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2358 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2359 	itx->itx_callback = NULL;
2360 	itx->itx_callback_data = NULL;
2361 	itx->itx_size = itxsize;
2362 
2363 	return (itx);
2364 }
2365 
2366 static itx_t *
2367 zil_itx_clone(itx_t *oitx)
2368 {
2369 	ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
2370 	ASSERT3U(oitx->itx_size, ==,
2371 	    offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);
2372 
2373 	itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2374 	memcpy(itx, oitx, oitx->itx_size);
2375 	itx->itx_callback = NULL;
2376 	itx->itx_callback_data = NULL;
2377 	return (itx);
2378 }
2379 
2380 void
2381 zil_itx_destroy(itx_t *itx)
2382 {
2383 	ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
2384 	ASSERT3U(itx->itx_lr.lrc_reclen, ==,
2385 	    itx->itx_size - offsetof(itx_t, itx_lr));
2386 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2387 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2388 
2389 	if (itx->itx_callback != NULL)
2390 		itx->itx_callback(itx->itx_callback_data);
2391 
2392 	zio_data_buf_free(itx, itx->itx_size);
2393 }
2394 
2395 /*
2396  * Free up the sync and async itxs. The itxs_t has already been detached
2397  * so no locks are needed.
2398  */
2399 static void
2400 zil_itxg_clean(void *arg)
2401 {
2402 	itx_t *itx;
2403 	list_t *list;
2404 	avl_tree_t *t;
2405 	void *cookie;
2406 	itxs_t *itxs = arg;
2407 	itx_async_node_t *ian;
2408 
2409 	list = &itxs->i_sync_list;
2410 	while ((itx = list_remove_head(list)) != NULL) {
2411 		/*
2412 		 * In the general case, commit itxs will not be found
2413 		 * here, as they'll be committed to an lwb via
2414 		 * zil_lwb_assign(), and free'd in that function. Having
2415 		 * said that, it is still possible for commit itxs to be
2416 		 * found here, due to the following race:
2417 		 *
2418 		 *	- a thread calls zil_commit() which assigns the
2419 		 *	  commit itx to a per-txg i_sync_list
2420 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2421 		 *	  while the waiter is still on the i_sync_list
2422 		 *
2423 		 * There's nothing to prevent syncing the txg while the
2424 		 * waiter is on the i_sync_list. This normally doesn't
2425 		 * happen because spa_sync() is slower than zil_commit(),
2426 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2427 		 * because zil_create() or zil_commit_writer_stall() is
2428 		 * called) we will hit this case.
2429 		 */
2430 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2431 			zil_commit_waiter_skip(itx->itx_private);
2432 
2433 		zil_itx_destroy(itx);
2434 	}
2435 
2436 	cookie = NULL;
2437 	t = &itxs->i_async_tree;
2438 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2439 		list = &ian->ia_list;
2440 		while ((itx = list_remove_head(list)) != NULL) {
2441 			/* commit itxs should never be on the async lists. */
2442 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2443 			zil_itx_destroy(itx);
2444 		}
2445 		list_destroy(list);
2446 		kmem_free(ian, sizeof (itx_async_node_t));
2447 	}
2448 	avl_destroy(t);
2449 
2450 	kmem_free(itxs, sizeof (itxs_t));
2451 }
2452 
2453 static int
2454 zil_aitx_compare(const void *x1, const void *x2)
2455 {
2456 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2457 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2458 
2459 	return (TREE_CMP(o1, o2));
2460 }
2461 
2462 /*
2463  * Remove all async itx with the given oid.
2464  */
2465 void
2466 zil_remove_async(zilog_t *zilog, uint64_t oid)
2467 {
2468 	uint64_t otxg, txg;
2469 	itx_async_node_t *ian, ian_search;
2470 	avl_tree_t *t;
2471 	avl_index_t where;
2472 	list_t clean_list;
2473 	itx_t *itx;
2474 
2475 	ASSERT(oid != 0);
2476 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2477 
2478 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2479 		otxg = ZILTEST_TXG;
2480 	else
2481 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2482 
2483 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2484 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2485 
2486 		mutex_enter(&itxg->itxg_lock);
2487 		if (itxg->itxg_txg != txg) {
2488 			mutex_exit(&itxg->itxg_lock);
2489 			continue;
2490 		}
2491 
2492 		/*
2493 		 * Locate the object node and append its list.
2494 		 */
2495 		t = &itxg->itxg_itxs->i_async_tree;
2496 		ian_search.ia_foid = oid;
2497 		ian = avl_find(t, &ian_search, &where);
2498 		if (ian != NULL)
2499 			list_move_tail(&clean_list, &ian->ia_list);
2500 		mutex_exit(&itxg->itxg_lock);
2501 	}
2502 	while ((itx = list_remove_head(&clean_list)) != NULL) {
2503 		/* commit itxs should never be on the async lists. */
2504 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2505 		zil_itx_destroy(itx);
2506 	}
2507 	list_destroy(&clean_list);
2508 }
2509 
2510 void
2511 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2512 {
2513 	uint64_t txg;
2514 	itxg_t *itxg;
2515 	itxs_t *itxs, *clean = NULL;
2516 
2517 	/*
2518 	 * Ensure the data of a renamed file is committed before the rename.
2519 	 */
2520 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2521 		zil_async_to_sync(zilog, itx->itx_oid);
2522 
2523 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2524 		txg = ZILTEST_TXG;
2525 	else
2526 		txg = dmu_tx_get_txg(tx);
2527 
2528 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2529 	mutex_enter(&itxg->itxg_lock);
2530 	itxs = itxg->itxg_itxs;
2531 	if (itxg->itxg_txg != txg) {
2532 		if (itxs != NULL) {
2533 			/*
2534 			 * The zil_clean callback hasn't got around to cleaning
2535 			 * this itxg. Save the itxs for release below.
2536 			 * This should be rare.
2537 			 */
2538 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2539 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2540 			clean = itxg->itxg_itxs;
2541 		}
2542 		itxg->itxg_txg = txg;
2543 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2544 		    KM_SLEEP);
2545 
2546 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2547 		    offsetof(itx_t, itx_node));
2548 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2549 		    sizeof (itx_async_node_t),
2550 		    offsetof(itx_async_node_t, ia_node));
2551 	}
2552 	if (itx->itx_sync) {
2553 		list_insert_tail(&itxs->i_sync_list, itx);
2554 	} else {
2555 		avl_tree_t *t = &itxs->i_async_tree;
2556 		uint64_t foid =
2557 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2558 		itx_async_node_t *ian;
2559 		avl_index_t where;
2560 
2561 		ian = avl_find(t, &foid, &where);
2562 		if (ian == NULL) {
2563 			ian = kmem_alloc(sizeof (itx_async_node_t),
2564 			    KM_SLEEP);
2565 			list_create(&ian->ia_list, sizeof (itx_t),
2566 			    offsetof(itx_t, itx_node));
2567 			ian->ia_foid = foid;
2568 			avl_insert(t, ian, where);
2569 		}
2570 		list_insert_tail(&ian->ia_list, itx);
2571 	}
2572 
2573 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2574 
2575 	/*
2576 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2577 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2578 	 * need to be careful to always dirty the ZIL using the "real"
2579 	 * TXG (not itxg_txg) even when the SPA is frozen.
2580 	 */
2581 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2582 	mutex_exit(&itxg->itxg_lock);
2583 
2584 	/* Release the old itxs now we've dropped the lock */
2585 	if (clean != NULL)
2586 		zil_itxg_clean(clean);
2587 }
2588 
2589 /*
2590  * If there are any in-memory intent log transactions which have now been
2591  * synced then start up a taskq to free them. We should only do this after we
2592  * have written out the uberblocks (i.e. txg has been committed) so that
2593  * don't inadvertently clean out in-memory log records that would be required
2594  * by zil_commit().
2595  */
2596 void
2597 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2598 {
2599 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2600 	itxs_t *clean_me;
2601 
2602 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2603 
2604 	mutex_enter(&itxg->itxg_lock);
2605 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2606 		mutex_exit(&itxg->itxg_lock);
2607 		return;
2608 	}
2609 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2610 	ASSERT3U(itxg->itxg_txg, !=, 0);
2611 	clean_me = itxg->itxg_itxs;
2612 	itxg->itxg_itxs = NULL;
2613 	itxg->itxg_txg = 0;
2614 	mutex_exit(&itxg->itxg_lock);
2615 	/*
2616 	 * Preferably start a task queue to free up the old itxs but
2617 	 * if taskq_dispatch can't allocate resources to do that then
2618 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2619 	 * created a bad performance problem.
2620 	 */
2621 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2622 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2623 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2624 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2625 	if (id == TASKQID_INVALID)
2626 		zil_itxg_clean(clean_me);
2627 }
2628 
2629 /*
2630  * This function will traverse the queue of itxs that need to be
2631  * committed, and move them onto the ZIL's zl_itx_commit_list.
2632  */
2633 static uint64_t
2634 zil_get_commit_list(zilog_t *zilog)
2635 {
2636 	uint64_t otxg, txg, wtxg = 0;
2637 	list_t *commit_list = &zilog->zl_itx_commit_list;
2638 
2639 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2640 
2641 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2642 		otxg = ZILTEST_TXG;
2643 	else
2644 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2645 
2646 	/*
2647 	 * This is inherently racy, since there is nothing to prevent
2648 	 * the last synced txg from changing. That's okay since we'll
2649 	 * only commit things in the future.
2650 	 */
2651 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2652 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2653 
2654 		mutex_enter(&itxg->itxg_lock);
2655 		if (itxg->itxg_txg != txg) {
2656 			mutex_exit(&itxg->itxg_lock);
2657 			continue;
2658 		}
2659 
2660 		/*
2661 		 * If we're adding itx records to the zl_itx_commit_list,
2662 		 * then the zil better be dirty in this "txg". We can assert
2663 		 * that here since we're holding the itxg_lock which will
2664 		 * prevent spa_sync from cleaning it. Once we add the itxs
2665 		 * to the zl_itx_commit_list we must commit it to disk even
2666 		 * if it's unnecessary (i.e. the txg was synced).
2667 		 */
2668 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2669 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2670 		list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2671 		itx_t *itx = NULL;
2672 		if (unlikely(zilog->zl_suspend > 0)) {
2673 			/*
2674 			 * ZIL was just suspended, but we lost the race.
2675 			 * Allow all earlier itxs to be committed, but ask
2676 			 * caller to do txg_wait_synced(txg) for any new.
2677 			 */
2678 			if (!list_is_empty(sync_list))
2679 				wtxg = MAX(wtxg, txg);
2680 		} else {
2681 			itx = list_head(sync_list);
2682 			list_move_tail(commit_list, sync_list);
2683 		}
2684 
2685 		mutex_exit(&itxg->itxg_lock);
2686 
2687 		while (itx != NULL) {
2688 			uint64_t s = zil_itx_full_size(itx);
2689 			zilog->zl_cur_size += s;
2690 			zilog->zl_cur_left += s;
2691 			s = zil_itx_record_size(itx);
2692 			zilog->zl_cur_max = MAX(zilog->zl_cur_max, s);
2693 			itx = list_next(commit_list, itx);
2694 		}
2695 	}
2696 	return (wtxg);
2697 }
2698 
2699 /*
2700  * Move the async itxs for a specified object to commit into sync lists.
2701  */
2702 void
2703 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2704 {
2705 	uint64_t otxg, txg;
2706 	itx_async_node_t *ian, ian_search;
2707 	avl_tree_t *t;
2708 	avl_index_t where;
2709 
2710 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2711 		otxg = ZILTEST_TXG;
2712 	else
2713 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2714 
2715 	/*
2716 	 * This is inherently racy, since there is nothing to prevent
2717 	 * the last synced txg from changing.
2718 	 */
2719 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2720 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2721 
2722 		mutex_enter(&itxg->itxg_lock);
2723 		if (itxg->itxg_txg != txg) {
2724 			mutex_exit(&itxg->itxg_lock);
2725 			continue;
2726 		}
2727 
2728 		/*
2729 		 * If a foid is specified then find that node and append its
2730 		 * list. Otherwise walk the tree appending all the lists
2731 		 * to the sync list. We add to the end rather than the
2732 		 * beginning to ensure the create has happened.
2733 		 */
2734 		t = &itxg->itxg_itxs->i_async_tree;
2735 		if (foid != 0) {
2736 			ian_search.ia_foid = foid;
2737 			ian = avl_find(t, &ian_search, &where);
2738 			if (ian != NULL) {
2739 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2740 				    &ian->ia_list);
2741 			}
2742 		} else {
2743 			void *cookie = NULL;
2744 
2745 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2746 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2747 				    &ian->ia_list);
2748 				list_destroy(&ian->ia_list);
2749 				kmem_free(ian, sizeof (itx_async_node_t));
2750 			}
2751 		}
2752 		mutex_exit(&itxg->itxg_lock);
2753 	}
2754 }
2755 
2756 /*
2757  * This function will prune commit itxs that are at the head of the
2758  * commit list (it won't prune past the first non-commit itx), and
2759  * either: a) attach them to the last lwb that's still pending
2760  * completion, or b) skip them altogether.
2761  *
2762  * This is used as a performance optimization to prevent commit itxs
2763  * from generating new lwbs when it's unnecessary to do so.
2764  */
2765 static void
2766 zil_prune_commit_list(zilog_t *zilog)
2767 {
2768 	itx_t *itx;
2769 
2770 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2771 
2772 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2773 		lr_t *lrc = &itx->itx_lr;
2774 		if (lrc->lrc_txtype != TX_COMMIT)
2775 			break;
2776 
2777 		mutex_enter(&zilog->zl_lock);
2778 
2779 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2780 		if (last_lwb == NULL ||
2781 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2782 			/*
2783 			 * All of the itxs this waiter was waiting on
2784 			 * must have already completed (or there were
2785 			 * never any itx's for it to wait on), so it's
2786 			 * safe to skip this waiter and mark it done.
2787 			 */
2788 			zil_commit_waiter_skip(itx->itx_private);
2789 		} else {
2790 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2791 		}
2792 
2793 		mutex_exit(&zilog->zl_lock);
2794 
2795 		list_remove(&zilog->zl_itx_commit_list, itx);
2796 		zil_itx_destroy(itx);
2797 	}
2798 
2799 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2800 }
2801 
2802 static void
2803 zil_commit_writer_stall(zilog_t *zilog)
2804 {
2805 	/*
2806 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2807 	 * disk, we must call txg_wait_synced() to ensure all of the
2808 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2809 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2810 	 * to zil_process_commit_list()) will have to call zil_create(),
2811 	 * and start a new ZIL chain.
2812 	 *
2813 	 * Since zil_alloc_zil() failed, the lwb that was previously
2814 	 * issued does not have a pointer to the "next" lwb on disk.
2815 	 * Thus, if another ZIL writer thread was to allocate the "next"
2816 	 * on-disk lwb, that block could be leaked in the event of a
2817 	 * crash (because the previous lwb on-disk would not point to
2818 	 * it).
2819 	 *
2820 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2821 	 * ensure no new threads enter zil_process_commit_list() until
2822 	 * all lwb's in the zl_lwb_list have been synced and freed
2823 	 * (which is achieved via the txg_wait_synced() call).
2824 	 */
2825 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2826 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2827 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2828 }
2829 
2830 static void
2831 zil_burst_done(zilog_t *zilog)
2832 {
2833 	if (!list_is_empty(&zilog->zl_itx_commit_list) ||
2834 	    zilog->zl_cur_size == 0)
2835 		return;
2836 
2837 	if (zilog->zl_parallel)
2838 		zilog->zl_parallel--;
2839 
2840 	uint_t r = (zilog->zl_prev_rotor + 1) & (ZIL_BURSTS - 1);
2841 	zilog->zl_prev_rotor = r;
2842 	zilog->zl_prev_opt[r] = zil_lwb_plan(zilog, zilog->zl_cur_size,
2843 	    &zilog->zl_prev_min[r]);
2844 
2845 	zilog->zl_cur_size = 0;
2846 	zilog->zl_cur_max = 0;
2847 	zilog->zl_cur_left = 0;
2848 }
2849 
2850 /*
2851  * This function will traverse the commit list, creating new lwbs as
2852  * needed, and committing the itxs from the commit list to these newly
2853  * created lwbs. Additionally, as a new lwb is created, the previous
2854  * lwb will be issued to the zio layer to be written to disk.
2855  */
2856 static void
2857 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2858 {
2859 	spa_t *spa = zilog->zl_spa;
2860 	list_t nolwb_itxs;
2861 	list_t nolwb_waiters;
2862 	lwb_t *lwb, *plwb;
2863 	itx_t *itx;
2864 
2865 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2866 
2867 	/*
2868 	 * Return if there's nothing to commit before we dirty the fs by
2869 	 * calling zil_create().
2870 	 */
2871 	if (list_is_empty(&zilog->zl_itx_commit_list))
2872 		return;
2873 
2874 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2875 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2876 	    offsetof(zil_commit_waiter_t, zcw_node));
2877 
2878 	lwb = list_tail(&zilog->zl_lwb_list);
2879 	if (lwb == NULL) {
2880 		lwb = zil_create(zilog);
2881 	} else {
2882 		/*
2883 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2884 		 * have already been created (zl_lwb_list not empty).
2885 		 */
2886 		zil_commit_activate_saxattr_feature(zilog);
2887 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2888 		    lwb->lwb_state == LWB_STATE_OPENED);
2889 
2890 		/*
2891 		 * If the lwb is still opened, it means the workload is really
2892 		 * multi-threaded and we won the chance of write aggregation.
2893 		 * If it is not opened yet, but previous lwb is still not
2894 		 * flushed, it still means the workload is multi-threaded, but
2895 		 * there was too much time between the commits to aggregate, so
2896 		 * we try aggregation next times, but without too much hopes.
2897 		 */
2898 		if (lwb->lwb_state == LWB_STATE_OPENED) {
2899 			zilog->zl_parallel = ZIL_BURSTS;
2900 		} else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
2901 		    != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
2902 			zilog->zl_parallel = MAX(zilog->zl_parallel,
2903 			    ZIL_BURSTS / 2);
2904 		}
2905 	}
2906 
2907 	while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2908 		lr_t *lrc = &itx->itx_lr;
2909 		uint64_t txg = lrc->lrc_txg;
2910 
2911 		ASSERT3U(txg, !=, 0);
2912 
2913 		if (lrc->lrc_txtype == TX_COMMIT) {
2914 			DTRACE_PROBE2(zil__process__commit__itx,
2915 			    zilog_t *, zilog, itx_t *, itx);
2916 		} else {
2917 			DTRACE_PROBE2(zil__process__normal__itx,
2918 			    zilog_t *, zilog, itx_t *, itx);
2919 		}
2920 
2921 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2922 		boolean_t frozen = txg > spa_freeze_txg(spa);
2923 
2924 		/*
2925 		 * If the txg of this itx has already been synced out, then
2926 		 * we don't need to commit this itx to an lwb. This is
2927 		 * because the data of this itx will have already been
2928 		 * written to the main pool. This is inherently racy, and
2929 		 * it's still ok to commit an itx whose txg has already
2930 		 * been synced; this will result in a write that's
2931 		 * unnecessary, but will do no harm.
2932 		 *
2933 		 * With that said, we always want to commit TX_COMMIT itxs
2934 		 * to an lwb, regardless of whether or not that itx's txg
2935 		 * has been synced out. We do this to ensure any OPENED lwb
2936 		 * will always have at least one zil_commit_waiter_t linked
2937 		 * to the lwb.
2938 		 *
2939 		 * As a counter-example, if we skipped TX_COMMIT itx's
2940 		 * whose txg had already been synced, the following
2941 		 * situation could occur if we happened to be racing with
2942 		 * spa_sync:
2943 		 *
2944 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2945 		 *    itx's txg is 10 and the last synced txg is 9.
2946 		 * 2. spa_sync finishes syncing out txg 10.
2947 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2948 		 *    whose txg is 10, so we skip it rather than committing
2949 		 *    it to the lwb used in (1).
2950 		 *
2951 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2952 		 * itx in the commit list, than it's possible for the lwb
2953 		 * used in (1) to remain in the OPENED state indefinitely.
2954 		 *
2955 		 * To prevent the above scenario from occurring, ensuring
2956 		 * that once an lwb is OPENED it will transition to ISSUED
2957 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2958 		 * an lwb here, even if that itx's txg has already been
2959 		 * synced.
2960 		 *
2961 		 * Finally, if the pool is frozen, we _always_ commit the
2962 		 * itx.  The point of freezing the pool is to prevent data
2963 		 * from being written to the main pool via spa_sync, and
2964 		 * instead rely solely on the ZIL to persistently store the
2965 		 * data; i.e.  when the pool is frozen, the last synced txg
2966 		 * value can't be trusted.
2967 		 */
2968 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2969 			if (lwb != NULL) {
2970 				lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
2971 				if (lwb == NULL) {
2972 					list_insert_tail(&nolwb_itxs, itx);
2973 				} else if ((zcw->zcw_lwb != NULL &&
2974 				    zcw->zcw_lwb != lwb) || zcw->zcw_done) {
2975 					/*
2976 					 * Our lwb is done, leave the rest of
2977 					 * itx list to somebody else who care.
2978 					 */
2979 					zilog->zl_parallel = ZIL_BURSTS;
2980 					zilog->zl_cur_left -=
2981 					    zil_itx_full_size(itx);
2982 					break;
2983 				}
2984 			} else {
2985 				if (lrc->lrc_txtype == TX_COMMIT) {
2986 					zil_commit_waiter_link_nolwb(
2987 					    itx->itx_private, &nolwb_waiters);
2988 				}
2989 				list_insert_tail(&nolwb_itxs, itx);
2990 			}
2991 			zilog->zl_cur_left -= zil_itx_full_size(itx);
2992 		} else {
2993 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2994 			zilog->zl_cur_left -= zil_itx_full_size(itx);
2995 			zil_itx_destroy(itx);
2996 		}
2997 	}
2998 
2999 	if (lwb == NULL) {
3000 		/*
3001 		 * This indicates zio_alloc_zil() failed to allocate the
3002 		 * "next" lwb on-disk. When this happens, we must stall
3003 		 * the ZIL write pipeline; see the comment within
3004 		 * zil_commit_writer_stall() for more details.
3005 		 */
3006 		while ((lwb = list_remove_head(ilwbs)) != NULL)
3007 			zil_lwb_write_issue(zilog, lwb);
3008 		zil_commit_writer_stall(zilog);
3009 
3010 		/*
3011 		 * Additionally, we have to signal and mark the "nolwb"
3012 		 * waiters as "done" here, since without an lwb, we
3013 		 * can't do this via zil_lwb_flush_vdevs_done() like
3014 		 * normal.
3015 		 */
3016 		zil_commit_waiter_t *zcw;
3017 		while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
3018 			zil_commit_waiter_skip(zcw);
3019 
3020 		/*
3021 		 * And finally, we have to destroy the itx's that
3022 		 * couldn't be committed to an lwb; this will also call
3023 		 * the itx's callback if one exists for the itx.
3024 		 */
3025 		while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
3026 			zil_itx_destroy(itx);
3027 	} else {
3028 		ASSERT(list_is_empty(&nolwb_waiters));
3029 		ASSERT3P(lwb, !=, NULL);
3030 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
3031 		    lwb->lwb_state == LWB_STATE_OPENED);
3032 
3033 		/*
3034 		 * At this point, the ZIL block pointed at by the "lwb"
3035 		 * variable is in "new" or "opened" state.
3036 		 *
3037 		 * If it's "new", then no itxs have been committed to it, so
3038 		 * there's no point in issuing its zio (i.e. it's "empty").
3039 		 *
3040 		 * If it's "opened", then it contains one or more itxs that
3041 		 * eventually need to be committed to stable storage. In
3042 		 * this case we intentionally do not issue the lwb's zio
3043 		 * to disk yet, and instead rely on one of the following
3044 		 * two mechanisms for issuing the zio:
3045 		 *
3046 		 * 1. Ideally, there will be more ZIL activity occurring on
3047 		 * the system, such that this function will be immediately
3048 		 * called again by different thread and this lwb will be
3049 		 * closed by zil_lwb_assign().  This way, the lwb will be
3050 		 * "full" when it is issued to disk, and we'll make use of
3051 		 * the lwb's size the best we can.
3052 		 *
3053 		 * 2. If there isn't sufficient ZIL activity occurring on
3054 		 * the system, zil_commit_waiter() will close it and issue
3055 		 * the zio.  If this occurs, the lwb is not guaranteed
3056 		 * to be "full" by the time its zio is issued, and means
3057 		 * the size of the lwb was "too large" given the amount
3058 		 * of ZIL activity occurring on the system at that time.
3059 		 *
3060 		 * We do this for a couple of reasons:
3061 		 *
3062 		 * 1. To try and reduce the number of IOPs needed to
3063 		 * write the same number of itxs. If an lwb has space
3064 		 * available in its buffer for more itxs, and more itxs
3065 		 * will be committed relatively soon (relative to the
3066 		 * latency of performing a write), then it's beneficial
3067 		 * to wait for these "next" itxs. This way, more itxs
3068 		 * can be committed to stable storage with fewer writes.
3069 		 *
3070 		 * 2. To try and use the largest lwb block size that the
3071 		 * incoming rate of itxs can support. Again, this is to
3072 		 * try and pack as many itxs into as few lwbs as
3073 		 * possible, without significantly impacting the latency
3074 		 * of each individual itx.
3075 		 */
3076 		if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
3077 			zil_burst_done(zilog);
3078 			list_insert_tail(ilwbs, lwb);
3079 			lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3080 			if (lwb == NULL) {
3081 				while ((lwb = list_remove_head(ilwbs)) != NULL)
3082 					zil_lwb_write_issue(zilog, lwb);
3083 				zil_commit_writer_stall(zilog);
3084 			}
3085 		}
3086 	}
3087 }
3088 
3089 /*
3090  * This function is responsible for ensuring the passed in commit waiter
3091  * (and associated commit itx) is committed to an lwb. If the waiter is
3092  * not already committed to an lwb, all itxs in the zilog's queue of
3093  * itxs will be processed. The assumption is the passed in waiter's
3094  * commit itx will found in the queue just like the other non-commit
3095  * itxs, such that when the entire queue is processed, the waiter will
3096  * have been committed to an lwb.
3097  *
3098  * The lwb associated with the passed in waiter is not guaranteed to
3099  * have been issued by the time this function completes. If the lwb is
3100  * not issued, we rely on future calls to zil_commit_writer() to issue
3101  * the lwb, or the timeout mechanism found in zil_commit_waiter().
3102  */
3103 static uint64_t
3104 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
3105 {
3106 	list_t ilwbs;
3107 	lwb_t *lwb;
3108 	uint64_t wtxg = 0;
3109 
3110 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3111 	ASSERT(spa_writeable(zilog->zl_spa));
3112 
3113 	list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
3114 	mutex_enter(&zilog->zl_issuer_lock);
3115 
3116 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
3117 		/*
3118 		 * It's possible that, while we were waiting to acquire
3119 		 * the "zl_issuer_lock", another thread committed this
3120 		 * waiter to an lwb. If that occurs, we bail out early,
3121 		 * without processing any of the zilog's queue of itxs.
3122 		 *
3123 		 * On certain workloads and system configurations, the
3124 		 * "zl_issuer_lock" can become highly contended. In an
3125 		 * attempt to reduce this contention, we immediately drop
3126 		 * the lock if the waiter has already been processed.
3127 		 *
3128 		 * We've measured this optimization to reduce CPU spent
3129 		 * contending on this lock by up to 5%, using a system
3130 		 * with 32 CPUs, low latency storage (~50 usec writes),
3131 		 * and 1024 threads performing sync writes.
3132 		 */
3133 		goto out;
3134 	}
3135 
3136 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3137 
3138 	wtxg = zil_get_commit_list(zilog);
3139 	zil_prune_commit_list(zilog);
3140 	zil_process_commit_list(zilog, zcw, &ilwbs);
3141 
3142 out:
3143 	mutex_exit(&zilog->zl_issuer_lock);
3144 	while ((lwb = list_remove_head(&ilwbs)) != NULL)
3145 		zil_lwb_write_issue(zilog, lwb);
3146 	list_destroy(&ilwbs);
3147 	return (wtxg);
3148 }
3149 
3150 static void
3151 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3152 {
3153 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3154 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3155 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3156 
3157 	lwb_t *lwb = zcw->zcw_lwb;
3158 	ASSERT3P(lwb, !=, NULL);
3159 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3160 
3161 	/*
3162 	 * If the lwb has already been issued by another thread, we can
3163 	 * immediately return since there's no work to be done (the
3164 	 * point of this function is to issue the lwb). Additionally, we
3165 	 * do this prior to acquiring the zl_issuer_lock, to avoid
3166 	 * acquiring it when it's not necessary to do so.
3167 	 */
3168 	if (lwb->lwb_state != LWB_STATE_OPENED)
3169 		return;
3170 
3171 	/*
3172 	 * In order to call zil_lwb_write_close() we must hold the
3173 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3174 	 * since we're already holding the commit waiter's "zcw_lock",
3175 	 * and those two locks are acquired in the opposite order
3176 	 * elsewhere.
3177 	 */
3178 	mutex_exit(&zcw->zcw_lock);
3179 	mutex_enter(&zilog->zl_issuer_lock);
3180 	mutex_enter(&zcw->zcw_lock);
3181 
3182 	/*
3183 	 * Since we just dropped and re-acquired the commit waiter's
3184 	 * lock, we have to re-check to see if the waiter was marked
3185 	 * "done" during that process. If the waiter was marked "done",
3186 	 * the "lwb" pointer is no longer valid (it can be free'd after
3187 	 * the waiter is marked "done"), so without this check we could
3188 	 * wind up with a use-after-free error below.
3189 	 */
3190 	if (zcw->zcw_done) {
3191 		mutex_exit(&zilog->zl_issuer_lock);
3192 		return;
3193 	}
3194 
3195 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
3196 
3197 	/*
3198 	 * We've already checked this above, but since we hadn't acquired
3199 	 * the zilog's zl_issuer_lock, we have to perform this check a
3200 	 * second time while holding the lock.
3201 	 *
3202 	 * We don't need to hold the zl_lock since the lwb cannot transition
3203 	 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3204 	 * _can_ transition from CLOSED to DONE, but it's OK to race with
3205 	 * that transition since we treat the lwb the same, whether it's in
3206 	 * the CLOSED, ISSUED or DONE states.
3207 	 *
3208 	 * The important thing, is we treat the lwb differently depending on
3209 	 * if it's OPENED or CLOSED, and block any other threads that might
3210 	 * attempt to close/issue this lwb. For that reason we hold the
3211 	 * zl_issuer_lock when checking the lwb_state; we must not call
3212 	 * zil_lwb_write_close() if the lwb had already been closed/issued.
3213 	 *
3214 	 * See the comment above the lwb_state_t structure definition for
3215 	 * more details on the lwb states, and locking requirements.
3216 	 */
3217 	if (lwb->lwb_state != LWB_STATE_OPENED) {
3218 		mutex_exit(&zilog->zl_issuer_lock);
3219 		return;
3220 	}
3221 
3222 	/*
3223 	 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3224 	 * is still open.  But we have to drop it to avoid a deadlock in case
3225 	 * callback of zio issued by zil_lwb_write_issue() try to get it,
3226 	 * while zil_lwb_write_issue() is blocked on attempt to issue next
3227 	 * lwb it found in LWB_STATE_READY state.
3228 	 */
3229 	mutex_exit(&zcw->zcw_lock);
3230 
3231 	/*
3232 	 * As described in the comments above zil_commit_waiter() and
3233 	 * zil_process_commit_list(), we need to issue this lwb's zio
3234 	 * since we've reached the commit waiter's timeout and it still
3235 	 * hasn't been issued.
3236 	 */
3237 	zil_burst_done(zilog);
3238 	lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3239 
3240 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3241 
3242 	if (nlwb == NULL) {
3243 		/*
3244 		 * When zil_lwb_write_close() returns NULL, this
3245 		 * indicates zio_alloc_zil() failed to allocate the
3246 		 * "next" lwb on-disk. When this occurs, the ZIL write
3247 		 * pipeline must be stalled; see the comment within the
3248 		 * zil_commit_writer_stall() function for more details.
3249 		 */
3250 		zil_lwb_write_issue(zilog, lwb);
3251 		zil_commit_writer_stall(zilog);
3252 		mutex_exit(&zilog->zl_issuer_lock);
3253 	} else {
3254 		mutex_exit(&zilog->zl_issuer_lock);
3255 		zil_lwb_write_issue(zilog, lwb);
3256 	}
3257 	mutex_enter(&zcw->zcw_lock);
3258 }
3259 
3260 /*
3261  * This function is responsible for performing the following two tasks:
3262  *
3263  * 1. its primary responsibility is to block until the given "commit
3264  *    waiter" is considered "done".
3265  *
3266  * 2. its secondary responsibility is to issue the zio for the lwb that
3267  *    the given "commit waiter" is waiting on, if this function has
3268  *    waited "long enough" and the lwb is still in the "open" state.
3269  *
3270  * Given a sufficient amount of itxs being generated and written using
3271  * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3272  * function. If this does not occur, this secondary responsibility will
3273  * ensure the lwb is issued even if there is not other synchronous
3274  * activity on the system.
3275  *
3276  * For more details, see zil_process_commit_list(); more specifically,
3277  * the comment at the bottom of that function.
3278  */
3279 static void
3280 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3281 {
3282 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3283 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3284 	ASSERT(spa_writeable(zilog->zl_spa));
3285 
3286 	mutex_enter(&zcw->zcw_lock);
3287 
3288 	/*
3289 	 * The timeout is scaled based on the lwb latency to avoid
3290 	 * significantly impacting the latency of each individual itx.
3291 	 * For more details, see the comment at the bottom of the
3292 	 * zil_process_commit_list() function.
3293 	 */
3294 	int pct = MAX(zfs_commit_timeout_pct, 1);
3295 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3296 	hrtime_t wakeup = gethrtime() + sleep;
3297 	boolean_t timedout = B_FALSE;
3298 
3299 	while (!zcw->zcw_done) {
3300 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3301 
3302 		lwb_t *lwb = zcw->zcw_lwb;
3303 
3304 		/*
3305 		 * Usually, the waiter will have a non-NULL lwb field here,
3306 		 * but it's possible for it to be NULL as a result of
3307 		 * zil_commit() racing with spa_sync().
3308 		 *
3309 		 * When zil_clean() is called, it's possible for the itxg
3310 		 * list (which may be cleaned via a taskq) to contain
3311 		 * commit itxs. When this occurs, the commit waiters linked
3312 		 * off of these commit itxs will not be committed to an
3313 		 * lwb.  Additionally, these commit waiters will not be
3314 		 * marked done until zil_commit_waiter_skip() is called via
3315 		 * zil_itxg_clean().
3316 		 *
3317 		 * Thus, it's possible for this commit waiter (i.e. the
3318 		 * "zcw" variable) to be found in this "in between" state;
3319 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3320 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
3321 		 */
3322 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3323 
3324 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3325 			ASSERT3B(timedout, ==, B_FALSE);
3326 
3327 			/*
3328 			 * If the lwb hasn't been issued yet, then we
3329 			 * need to wait with a timeout, in case this
3330 			 * function needs to issue the lwb after the
3331 			 * timeout is reached; responsibility (2) from
3332 			 * the comment above this function.
3333 			 */
3334 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
3335 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3336 			    CALLOUT_FLAG_ABSOLUTE);
3337 
3338 			if (rc != -1 || zcw->zcw_done)
3339 				continue;
3340 
3341 			timedout = B_TRUE;
3342 			zil_commit_waiter_timeout(zilog, zcw);
3343 
3344 			if (!zcw->zcw_done) {
3345 				/*
3346 				 * If the commit waiter has already been
3347 				 * marked "done", it's possible for the
3348 				 * waiter's lwb structure to have already
3349 				 * been freed.  Thus, we can only reliably
3350 				 * make these assertions if the waiter
3351 				 * isn't done.
3352 				 */
3353 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
3354 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3355 			}
3356 		} else {
3357 			/*
3358 			 * If the lwb isn't open, then it must have already
3359 			 * been issued. In that case, there's no need to
3360 			 * use a timeout when waiting for the lwb to
3361 			 * complete.
3362 			 *
3363 			 * Additionally, if the lwb is NULL, the waiter
3364 			 * will soon be signaled and marked done via
3365 			 * zil_clean() and zil_itxg_clean(), so no timeout
3366 			 * is required.
3367 			 */
3368 
3369 			IMPLY(lwb != NULL,
3370 			    lwb->lwb_state == LWB_STATE_CLOSED ||
3371 			    lwb->lwb_state == LWB_STATE_READY ||
3372 			    lwb->lwb_state == LWB_STATE_ISSUED ||
3373 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3374 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3375 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3376 		}
3377 	}
3378 
3379 	mutex_exit(&zcw->zcw_lock);
3380 }
3381 
3382 static zil_commit_waiter_t *
3383 zil_alloc_commit_waiter(void)
3384 {
3385 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3386 
3387 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3388 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3389 	list_link_init(&zcw->zcw_node);
3390 	zcw->zcw_lwb = NULL;
3391 	zcw->zcw_done = B_FALSE;
3392 	zcw->zcw_zio_error = 0;
3393 
3394 	return (zcw);
3395 }
3396 
3397 static void
3398 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3399 {
3400 	ASSERT(!list_link_active(&zcw->zcw_node));
3401 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
3402 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3403 	mutex_destroy(&zcw->zcw_lock);
3404 	cv_destroy(&zcw->zcw_cv);
3405 	kmem_cache_free(zil_zcw_cache, zcw);
3406 }
3407 
3408 /*
3409  * This function is used to create a TX_COMMIT itx and assign it. This
3410  * way, it will be linked into the ZIL's list of synchronous itxs, and
3411  * then later committed to an lwb (or skipped) when
3412  * zil_process_commit_list() is called.
3413  */
3414 static void
3415 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3416 {
3417 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3418 
3419 	/*
3420 	 * Since we are not going to create any new dirty data, and we
3421 	 * can even help with clearing the existing dirty data, we
3422 	 * should not be subject to the dirty data based delays. We
3423 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3424 	 */
3425 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
3426 
3427 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3428 	itx->itx_sync = B_TRUE;
3429 	itx->itx_private = zcw;
3430 
3431 	zil_itx_assign(zilog, itx, tx);
3432 
3433 	dmu_tx_commit(tx);
3434 }
3435 
3436 /*
3437  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3438  *
3439  * When writing ZIL transactions to the on-disk representation of the
3440  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3441  * itxs can be committed to a single lwb. Once a lwb is written and
3442  * committed to stable storage (i.e. the lwb is written, and vdevs have
3443  * been flushed), each itx that was committed to that lwb is also
3444  * considered to be committed to stable storage.
3445  *
3446  * When an itx is committed to an lwb, the log record (lr_t) contained
3447  * by the itx is copied into the lwb's zio buffer, and once this buffer
3448  * is written to disk, it becomes an on-disk ZIL block.
3449  *
3450  * As itxs are generated, they're inserted into the ZIL's queue of
3451  * uncommitted itxs. The semantics of zil_commit() are such that it will
3452  * block until all itxs that were in the queue when it was called, are
3453  * committed to stable storage.
3454  *
3455  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3456  * itxs, for all objects in the dataset, will be committed to stable
3457  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3458  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3459  * that correspond to the foid passed in, will be committed to stable
3460  * storage prior to zil_commit() returning.
3461  *
3462  * Generally speaking, when zil_commit() is called, the consumer doesn't
3463  * actually care about _all_ of the uncommitted itxs. Instead, they're
3464  * simply trying to waiting for a specific itx to be committed to disk,
3465  * but the interface(s) for interacting with the ZIL don't allow such
3466  * fine-grained communication. A better interface would allow a consumer
3467  * to create and assign an itx, and then pass a reference to this itx to
3468  * zil_commit(); such that zil_commit() would return as soon as that
3469  * specific itx was committed to disk (instead of waiting for _all_
3470  * itxs to be committed).
3471  *
3472  * When a thread calls zil_commit() a special "commit itx" will be
3473  * generated, along with a corresponding "waiter" for this commit itx.
3474  * zil_commit() will wait on this waiter's CV, such that when the waiter
3475  * is marked done, and signaled, zil_commit() will return.
3476  *
3477  * This commit itx is inserted into the queue of uncommitted itxs. This
3478  * provides an easy mechanism for determining which itxs were in the
3479  * queue prior to zil_commit() having been called, and which itxs were
3480  * added after zil_commit() was called.
3481  *
3482  * The commit itx is special; it doesn't have any on-disk representation.
3483  * When a commit itx is "committed" to an lwb, the waiter associated
3484  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3485  * completes, each waiter on the lwb's list is marked done and signaled
3486  * -- allowing the thread waiting on the waiter to return from zil_commit().
3487  *
3488  * It's important to point out a few critical factors that allow us
3489  * to make use of the commit itxs, commit waiters, per-lwb lists of
3490  * commit waiters, and zio completion callbacks like we're doing:
3491  *
3492  *   1. The list of waiters for each lwb is traversed, and each commit
3493  *      waiter is marked "done" and signaled, in the zio completion
3494  *      callback of the lwb's zio[*].
3495  *
3496  *      * Actually, the waiters are signaled in the zio completion
3497  *        callback of the root zio for the flush commands that are sent to
3498  *        the vdevs upon completion of the lwb zio.
3499  *
3500  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3501  *      itxs, the order in which they are inserted is preserved[*]; as
3502  *      itxs are added to the queue, they are added to the tail of
3503  *      in-memory linked lists.
3504  *
3505  *      When committing the itxs to lwbs (to be written to disk), they
3506  *      are committed in the same order in which the itxs were added to
3507  *      the uncommitted queue's linked list(s); i.e. the linked list of
3508  *      itxs to commit is traversed from head to tail, and each itx is
3509  *      committed to an lwb in that order.
3510  *
3511  *      * To clarify:
3512  *
3513  *        - the order of "sync" itxs is preserved w.r.t. other
3514  *          "sync" itxs, regardless of the corresponding objects.
3515  *        - the order of "async" itxs is preserved w.r.t. other
3516  *          "async" itxs corresponding to the same object.
3517  *        - the order of "async" itxs is *not* preserved w.r.t. other
3518  *          "async" itxs corresponding to different objects.
3519  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3520  *          versa) is *not* preserved, even for itxs that correspond
3521  *          to the same object.
3522  *
3523  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3524  *      zil_get_commit_list(), and zil_process_commit_list().
3525  *
3526  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3527  *      lwb cannot be considered committed to stable storage, until its
3528  *      "previous" lwb is also committed to stable storage. This fact,
3529  *      coupled with the fact described above, means that itxs are
3530  *      committed in (roughly) the order in which they were generated.
3531  *      This is essential because itxs are dependent on prior itxs.
3532  *      Thus, we *must not* deem an itx as being committed to stable
3533  *      storage, until *all* prior itxs have also been committed to
3534  *      stable storage.
3535  *
3536  *      To enforce this ordering of lwb zio's, while still leveraging as
3537  *      much of the underlying storage performance as possible, we rely
3538  *      on two fundamental concepts:
3539  *
3540  *          1. The creation and issuance of lwb zio's is protected by
3541  *             the zilog's "zl_issuer_lock", which ensures only a single
3542  *             thread is creating and/or issuing lwb's at a time
3543  *          2. The "previous" lwb is a child of the "current" lwb
3544  *             (leveraging the zio parent-child dependency graph)
3545  *
3546  *      By relying on this parent-child zio relationship, we can have
3547  *      many lwb zio's concurrently issued to the underlying storage,
3548  *      but the order in which they complete will be the same order in
3549  *      which they were created.
3550  */
3551 void
3552 zil_commit(zilog_t *zilog, uint64_t foid)
3553 {
3554 	/*
3555 	 * We should never attempt to call zil_commit on a snapshot for
3556 	 * a couple of reasons:
3557 	 *
3558 	 * 1. A snapshot may never be modified, thus it cannot have any
3559 	 *    in-flight itxs that would have modified the dataset.
3560 	 *
3561 	 * 2. By design, when zil_commit() is called, a commit itx will
3562 	 *    be assigned to this zilog; as a result, the zilog will be
3563 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3564 	 *    checks in the code that enforce this invariant, and will
3565 	 *    cause a panic if it's not upheld.
3566 	 */
3567 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3568 
3569 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3570 		return;
3571 
3572 	if (!spa_writeable(zilog->zl_spa)) {
3573 		/*
3574 		 * If the SPA is not writable, there should never be any
3575 		 * pending itxs waiting to be committed to disk. If that
3576 		 * weren't true, we'd skip writing those itxs out, and
3577 		 * would break the semantics of zil_commit(); thus, we're
3578 		 * verifying that truth before we return to the caller.
3579 		 */
3580 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3581 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3582 		for (int i = 0; i < TXG_SIZE; i++)
3583 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3584 		return;
3585 	}
3586 
3587 	/*
3588 	 * If the ZIL is suspended, we don't want to dirty it by calling
3589 	 * zil_commit_itx_assign() below, nor can we write out
3590 	 * lwbs like would be done in zil_commit_write(). Thus, we
3591 	 * simply rely on txg_wait_synced() to maintain the necessary
3592 	 * semantics, and avoid calling those functions altogether.
3593 	 */
3594 	if (zilog->zl_suspend > 0) {
3595 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3596 		return;
3597 	}
3598 
3599 	zil_commit_impl(zilog, foid);
3600 }
3601 
3602 void
3603 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3604 {
3605 	ZIL_STAT_BUMP(zilog, zil_commit_count);
3606 
3607 	/*
3608 	 * Move the "async" itxs for the specified foid to the "sync"
3609 	 * queues, such that they will be later committed (or skipped)
3610 	 * to an lwb when zil_process_commit_list() is called.
3611 	 *
3612 	 * Since these "async" itxs must be committed prior to this
3613 	 * call to zil_commit returning, we must perform this operation
3614 	 * before we call zil_commit_itx_assign().
3615 	 */
3616 	zil_async_to_sync(zilog, foid);
3617 
3618 	/*
3619 	 * We allocate a new "waiter" structure which will initially be
3620 	 * linked to the commit itx using the itx's "itx_private" field.
3621 	 * Since the commit itx doesn't represent any on-disk state,
3622 	 * when it's committed to an lwb, rather than copying the its
3623 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3624 	 * added to the lwb's list of waiters. Then, when the lwb is
3625 	 * committed to stable storage, each waiter in the lwb's list of
3626 	 * waiters will be marked "done", and signalled.
3627 	 *
3628 	 * We must create the waiter and assign the commit itx prior to
3629 	 * calling zil_commit_writer(), or else our specific commit itx
3630 	 * is not guaranteed to be committed to an lwb prior to calling
3631 	 * zil_commit_waiter().
3632 	 */
3633 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3634 	zil_commit_itx_assign(zilog, zcw);
3635 
3636 	uint64_t wtxg = zil_commit_writer(zilog, zcw);
3637 	zil_commit_waiter(zilog, zcw);
3638 
3639 	if (zcw->zcw_zio_error != 0) {
3640 		/*
3641 		 * If there was an error writing out the ZIL blocks that
3642 		 * this thread is waiting on, then we fallback to
3643 		 * relying on spa_sync() to write out the data this
3644 		 * thread is waiting on. Obviously this has performance
3645 		 * implications, but the expectation is for this to be
3646 		 * an exceptional case, and shouldn't occur often.
3647 		 */
3648 		DTRACE_PROBE2(zil__commit__io__error,
3649 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3650 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3651 	} else if (wtxg != 0) {
3652 		txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3653 	}
3654 
3655 	zil_free_commit_waiter(zcw);
3656 }
3657 
3658 /*
3659  * Called in syncing context to free committed log blocks and update log header.
3660  */
3661 void
3662 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3663 {
3664 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3665 	uint64_t txg = dmu_tx_get_txg(tx);
3666 	spa_t *spa = zilog->zl_spa;
3667 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3668 	lwb_t *lwb;
3669 
3670 	/*
3671 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3672 	 * to destroy it twice.
3673 	 */
3674 	if (spa_sync_pass(spa) != 1)
3675 		return;
3676 
3677 	zil_lwb_flush_wait_all(zilog, txg);
3678 
3679 	mutex_enter(&zilog->zl_lock);
3680 
3681 	ASSERT(zilog->zl_stop_sync == 0);
3682 
3683 	if (*replayed_seq != 0) {
3684 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3685 		zh->zh_replay_seq = *replayed_seq;
3686 		*replayed_seq = 0;
3687 	}
3688 
3689 	if (zilog->zl_destroy_txg == txg) {
3690 		blkptr_t blk = zh->zh_log;
3691 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3692 
3693 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3694 
3695 		memset(zh, 0, sizeof (zil_header_t));
3696 		memset(zilog->zl_replayed_seq, 0,
3697 		    sizeof (zilog->zl_replayed_seq));
3698 
3699 		if (zilog->zl_keep_first) {
3700 			/*
3701 			 * If this block was part of log chain that couldn't
3702 			 * be claimed because a device was missing during
3703 			 * zil_claim(), but that device later returns,
3704 			 * then this block could erroneously appear valid.
3705 			 * To guard against this, assign a new GUID to the new
3706 			 * log chain so it doesn't matter what blk points to.
3707 			 */
3708 			zil_init_log_chain(zilog, &blk);
3709 			zh->zh_log = blk;
3710 		} else {
3711 			/*
3712 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3713 			 * records. So, deactivate the feature for this dataset.
3714 			 * We activate it again when we start a new ZIL chain.
3715 			 */
3716 			if (dsl_dataset_feature_is_active(ds,
3717 			    SPA_FEATURE_ZILSAXATTR))
3718 				dsl_dataset_deactivate_feature(ds,
3719 				    SPA_FEATURE_ZILSAXATTR, tx);
3720 		}
3721 	}
3722 
3723 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3724 		zh->zh_log = lwb->lwb_blk;
3725 		if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3726 		    lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
3727 			break;
3728 		list_remove(&zilog->zl_lwb_list, lwb);
3729 		if (!BP_IS_HOLE(&lwb->lwb_blk))
3730 			zio_free(spa, txg, &lwb->lwb_blk);
3731 		zil_free_lwb(zilog, lwb);
3732 
3733 		/*
3734 		 * If we don't have anything left in the lwb list then
3735 		 * we've had an allocation failure and we need to zero
3736 		 * out the zil_header blkptr so that we don't end
3737 		 * up freeing the same block twice.
3738 		 */
3739 		if (list_is_empty(&zilog->zl_lwb_list))
3740 			BP_ZERO(&zh->zh_log);
3741 	}
3742 
3743 	mutex_exit(&zilog->zl_lock);
3744 }
3745 
3746 static int
3747 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3748 {
3749 	(void) unused, (void) kmflag;
3750 	lwb_t *lwb = vbuf;
3751 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3752 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3753 	    offsetof(zil_commit_waiter_t, zcw_node));
3754 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3755 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3756 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3757 	return (0);
3758 }
3759 
3760 static void
3761 zil_lwb_dest(void *vbuf, void *unused)
3762 {
3763 	(void) unused;
3764 	lwb_t *lwb = vbuf;
3765 	mutex_destroy(&lwb->lwb_vdev_lock);
3766 	avl_destroy(&lwb->lwb_vdev_tree);
3767 	list_destroy(&lwb->lwb_waiters);
3768 	list_destroy(&lwb->lwb_itxs);
3769 }
3770 
3771 void
3772 zil_init(void)
3773 {
3774 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3775 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3776 
3777 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3778 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3779 
3780 	zil_sums_init(&zil_sums_global);
3781 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3782 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3783 	    KSTAT_FLAG_VIRTUAL);
3784 
3785 	if (zil_kstats_global != NULL) {
3786 		zil_kstats_global->ks_data = &zil_stats;
3787 		zil_kstats_global->ks_update = zil_kstats_global_update;
3788 		zil_kstats_global->ks_private = NULL;
3789 		kstat_install(zil_kstats_global);
3790 	}
3791 }
3792 
3793 void
3794 zil_fini(void)
3795 {
3796 	kmem_cache_destroy(zil_zcw_cache);
3797 	kmem_cache_destroy(zil_lwb_cache);
3798 
3799 	if (zil_kstats_global != NULL) {
3800 		kstat_delete(zil_kstats_global);
3801 		zil_kstats_global = NULL;
3802 	}
3803 
3804 	zil_sums_fini(&zil_sums_global);
3805 }
3806 
3807 void
3808 zil_set_sync(zilog_t *zilog, uint64_t sync)
3809 {
3810 	zilog->zl_sync = sync;
3811 }
3812 
3813 void
3814 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3815 {
3816 	zilog->zl_logbias = logbias;
3817 }
3818 
3819 zilog_t *
3820 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3821 {
3822 	zilog_t *zilog;
3823 
3824 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3825 
3826 	zilog->zl_header = zh_phys;
3827 	zilog->zl_os = os;
3828 	zilog->zl_spa = dmu_objset_spa(os);
3829 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3830 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3831 	zilog->zl_logbias = dmu_objset_logbias(os);
3832 	zilog->zl_sync = dmu_objset_syncprop(os);
3833 	zilog->zl_dirty_max_txg = 0;
3834 	zilog->zl_last_lwb_opened = NULL;
3835 	zilog->zl_last_lwb_latency = 0;
3836 	zilog->zl_max_block_size = MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize,
3837 	    ZIL_MIN_BLKSZ, uint64_t), ZIL_MIN_BLKSZ),
3838 	    spa_maxblocksize(dmu_objset_spa(os)));
3839 
3840 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3841 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3842 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3843 
3844 	for (int i = 0; i < TXG_SIZE; i++) {
3845 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3846 		    MUTEX_DEFAULT, NULL);
3847 	}
3848 
3849 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3850 	    offsetof(lwb_t, lwb_node));
3851 
3852 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3853 	    offsetof(itx_t, itx_node));
3854 
3855 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3856 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3857 
3858 	for (int i = 0; i < ZIL_BURSTS; i++) {
3859 		zilog->zl_prev_opt[i] = zilog->zl_max_block_size -
3860 		    sizeof (zil_chain_t);
3861 	}
3862 
3863 	return (zilog);
3864 }
3865 
3866 void
3867 zil_free(zilog_t *zilog)
3868 {
3869 	int i;
3870 
3871 	zilog->zl_stop_sync = 1;
3872 
3873 	ASSERT0(zilog->zl_suspend);
3874 	ASSERT0(zilog->zl_suspending);
3875 
3876 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3877 	list_destroy(&zilog->zl_lwb_list);
3878 
3879 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3880 	list_destroy(&zilog->zl_itx_commit_list);
3881 
3882 	for (i = 0; i < TXG_SIZE; i++) {
3883 		/*
3884 		 * It's possible for an itx to be generated that doesn't dirty
3885 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3886 		 * callback to remove the entry. We remove those here.
3887 		 *
3888 		 * Also free up the ziltest itxs.
3889 		 */
3890 		if (zilog->zl_itxg[i].itxg_itxs)
3891 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3892 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3893 	}
3894 
3895 	mutex_destroy(&zilog->zl_issuer_lock);
3896 	mutex_destroy(&zilog->zl_lock);
3897 	mutex_destroy(&zilog->zl_lwb_io_lock);
3898 
3899 	cv_destroy(&zilog->zl_cv_suspend);
3900 	cv_destroy(&zilog->zl_lwb_io_cv);
3901 
3902 	kmem_free(zilog, sizeof (zilog_t));
3903 }
3904 
3905 /*
3906  * Open an intent log.
3907  */
3908 zilog_t *
3909 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3910 {
3911 	zilog_t *zilog = dmu_objset_zil(os);
3912 
3913 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3914 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3915 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3916 
3917 	zilog->zl_get_data = get_data;
3918 	zilog->zl_sums = zil_sums;
3919 
3920 	return (zilog);
3921 }
3922 
3923 /*
3924  * Close an intent log.
3925  */
3926 void
3927 zil_close(zilog_t *zilog)
3928 {
3929 	lwb_t *lwb;
3930 	uint64_t txg;
3931 
3932 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3933 		zil_commit(zilog, 0);
3934 	} else {
3935 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3936 		ASSERT0(zilog->zl_dirty_max_txg);
3937 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3938 	}
3939 
3940 	mutex_enter(&zilog->zl_lock);
3941 	txg = zilog->zl_dirty_max_txg;
3942 	lwb = list_tail(&zilog->zl_lwb_list);
3943 	if (lwb != NULL) {
3944 		txg = MAX(txg, lwb->lwb_alloc_txg);
3945 		txg = MAX(txg, lwb->lwb_max_txg);
3946 	}
3947 	mutex_exit(&zilog->zl_lock);
3948 
3949 	/*
3950 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3951 	 * on the time when the dmu_tx transaction is assigned in
3952 	 * zil_lwb_write_issue().
3953 	 */
3954 	mutex_enter(&zilog->zl_lwb_io_lock);
3955 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3956 	mutex_exit(&zilog->zl_lwb_io_lock);
3957 
3958 	/*
3959 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3960 	 * zil_sync() will guarantee all lwbs up to that txg have been
3961 	 * written out, flushed, and cleaned.
3962 	 */
3963 	if (txg != 0)
3964 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3965 
3966 	if (zilog_is_dirty(zilog))
3967 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3968 		    (u_longlong_t)txg);
3969 	if (txg < spa_freeze_txg(zilog->zl_spa))
3970 		VERIFY(!zilog_is_dirty(zilog));
3971 
3972 	zilog->zl_get_data = NULL;
3973 
3974 	/*
3975 	 * We should have only one lwb left on the list; remove it now.
3976 	 */
3977 	mutex_enter(&zilog->zl_lock);
3978 	lwb = list_remove_head(&zilog->zl_lwb_list);
3979 	if (lwb != NULL) {
3980 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3981 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
3982 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3983 		zil_free_lwb(zilog, lwb);
3984 	}
3985 	mutex_exit(&zilog->zl_lock);
3986 }
3987 
3988 static const char *suspend_tag = "zil suspending";
3989 
3990 /*
3991  * Suspend an intent log.  While in suspended mode, we still honor
3992  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3993  * On old version pools, we suspend the log briefly when taking a
3994  * snapshot so that it will have an empty intent log.
3995  *
3996  * Long holds are not really intended to be used the way we do here --
3997  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3998  * could fail.  Therefore we take pains to only put a long hold if it is
3999  * actually necessary.  Fortunately, it will only be necessary if the
4000  * objset is currently mounted (or the ZVOL equivalent).  In that case it
4001  * will already have a long hold, so we are not really making things any worse.
4002  *
4003  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
4004  * zvol_state_t), and use their mechanism to prevent their hold from being
4005  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
4006  * very little gain.
4007  *
4008  * if cookiep == NULL, this does both the suspend & resume.
4009  * Otherwise, it returns with the dataset "long held", and the cookie
4010  * should be passed into zil_resume().
4011  */
4012 int
4013 zil_suspend(const char *osname, void **cookiep)
4014 {
4015 	objset_t *os;
4016 	zilog_t *zilog;
4017 	const zil_header_t *zh;
4018 	int error;
4019 
4020 	error = dmu_objset_hold(osname, suspend_tag, &os);
4021 	if (error != 0)
4022 		return (error);
4023 	zilog = dmu_objset_zil(os);
4024 
4025 	mutex_enter(&zilog->zl_lock);
4026 	zh = zilog->zl_header;
4027 
4028 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
4029 		mutex_exit(&zilog->zl_lock);
4030 		dmu_objset_rele(os, suspend_tag);
4031 		return (SET_ERROR(EBUSY));
4032 	}
4033 
4034 	/*
4035 	 * Don't put a long hold in the cases where we can avoid it.  This
4036 	 * is when there is no cookie so we are doing a suspend & resume
4037 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
4038 	 * for the suspend because it's already suspended, or there's no ZIL.
4039 	 */
4040 	if (cookiep == NULL && !zilog->zl_suspending &&
4041 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
4042 		mutex_exit(&zilog->zl_lock);
4043 		dmu_objset_rele(os, suspend_tag);
4044 		return (0);
4045 	}
4046 
4047 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
4048 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
4049 
4050 	zilog->zl_suspend++;
4051 
4052 	if (zilog->zl_suspend > 1) {
4053 		/*
4054 		 * Someone else is already suspending it.
4055 		 * Just wait for them to finish.
4056 		 */
4057 
4058 		while (zilog->zl_suspending)
4059 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
4060 		mutex_exit(&zilog->zl_lock);
4061 
4062 		if (cookiep == NULL)
4063 			zil_resume(os);
4064 		else
4065 			*cookiep = os;
4066 		return (0);
4067 	}
4068 
4069 	/*
4070 	 * If there is no pointer to an on-disk block, this ZIL must not
4071 	 * be active (e.g. filesystem not mounted), so there's nothing
4072 	 * to clean up.
4073 	 */
4074 	if (BP_IS_HOLE(&zh->zh_log)) {
4075 		ASSERT(cookiep != NULL); /* fast path already handled */
4076 
4077 		*cookiep = os;
4078 		mutex_exit(&zilog->zl_lock);
4079 		return (0);
4080 	}
4081 
4082 	/*
4083 	 * The ZIL has work to do. Ensure that the associated encryption
4084 	 * key will remain mapped while we are committing the log by
4085 	 * grabbing a reference to it. If the key isn't loaded we have no
4086 	 * choice but to return an error until the wrapping key is loaded.
4087 	 */
4088 	if (os->os_encrypted &&
4089 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
4090 		zilog->zl_suspend--;
4091 		mutex_exit(&zilog->zl_lock);
4092 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4093 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4094 		return (SET_ERROR(EACCES));
4095 	}
4096 
4097 	zilog->zl_suspending = B_TRUE;
4098 	mutex_exit(&zilog->zl_lock);
4099 
4100 	/*
4101 	 * We need to use zil_commit_impl to ensure we wait for all
4102 	 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
4103 	 * to disk before proceeding. If we used zil_commit instead, it
4104 	 * would just call txg_wait_synced(), because zl_suspend is set.
4105 	 * txg_wait_synced() doesn't wait for these lwb's to be
4106 	 * LWB_STATE_FLUSH_DONE before returning.
4107 	 */
4108 	zil_commit_impl(zilog, 0);
4109 
4110 	/*
4111 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
4112 	 * use txg_wait_synced() to ensure the data from the zilog has
4113 	 * migrated to the main pool before calling zil_destroy().
4114 	 */
4115 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4116 
4117 	zil_destroy(zilog, B_FALSE);
4118 
4119 	mutex_enter(&zilog->zl_lock);
4120 	zilog->zl_suspending = B_FALSE;
4121 	cv_broadcast(&zilog->zl_cv_suspend);
4122 	mutex_exit(&zilog->zl_lock);
4123 
4124 	if (os->os_encrypted)
4125 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4126 
4127 	if (cookiep == NULL)
4128 		zil_resume(os);
4129 	else
4130 		*cookiep = os;
4131 	return (0);
4132 }
4133 
4134 void
4135 zil_resume(void *cookie)
4136 {
4137 	objset_t *os = cookie;
4138 	zilog_t *zilog = dmu_objset_zil(os);
4139 
4140 	mutex_enter(&zilog->zl_lock);
4141 	ASSERT(zilog->zl_suspend != 0);
4142 	zilog->zl_suspend--;
4143 	mutex_exit(&zilog->zl_lock);
4144 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4145 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4146 }
4147 
4148 typedef struct zil_replay_arg {
4149 	zil_replay_func_t *const *zr_replay;
4150 	void		*zr_arg;
4151 	boolean_t	zr_byteswap;
4152 	char		*zr_lr;
4153 } zil_replay_arg_t;
4154 
4155 static int
4156 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4157 {
4158 	char name[ZFS_MAX_DATASET_NAME_LEN];
4159 
4160 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
4161 
4162 	dmu_objset_name(zilog->zl_os, name);
4163 
4164 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4165 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4166 	    (u_longlong_t)lr->lrc_seq,
4167 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4168 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
4169 
4170 	return (error);
4171 }
4172 
4173 static int
4174 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4175     uint64_t claim_txg)
4176 {
4177 	zil_replay_arg_t *zr = zra;
4178 	const zil_header_t *zh = zilog->zl_header;
4179 	uint64_t reclen = lr->lrc_reclen;
4180 	uint64_t txtype = lr->lrc_txtype;
4181 	int error = 0;
4182 
4183 	zilog->zl_replaying_seq = lr->lrc_seq;
4184 
4185 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
4186 		return (0);
4187 
4188 	if (lr->lrc_txg < claim_txg)		/* already committed */
4189 		return (0);
4190 
4191 	/* Strip case-insensitive bit, still present in log record */
4192 	txtype &= ~TX_CI;
4193 
4194 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
4195 		return (zil_replay_error(zilog, lr, EINVAL));
4196 
4197 	/*
4198 	 * If this record type can be logged out of order, the object
4199 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
4200 	 */
4201 	if (TX_OOO(txtype)) {
4202 		error = dmu_object_info(zilog->zl_os,
4203 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4204 		if (error == ENOENT || error == EEXIST)
4205 			return (0);
4206 	}
4207 
4208 	/*
4209 	 * Make a copy of the data so we can revise and extend it.
4210 	 */
4211 	memcpy(zr->zr_lr, lr, reclen);
4212 
4213 	/*
4214 	 * If this is a TX_WRITE with a blkptr, suck in the data.
4215 	 */
4216 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4217 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
4218 		    zr->zr_lr + reclen);
4219 		if (error != 0)
4220 			return (zil_replay_error(zilog, lr, error));
4221 	}
4222 
4223 	/*
4224 	 * The log block containing this lr may have been byteswapped
4225 	 * so that we can easily examine common fields like lrc_txtype.
4226 	 * However, the log is a mix of different record types, and only the
4227 	 * replay vectors know how to byteswap their records.  Therefore, if
4228 	 * the lr was byteswapped, undo it before invoking the replay vector.
4229 	 */
4230 	if (zr->zr_byteswap)
4231 		byteswap_uint64_array(zr->zr_lr, reclen);
4232 
4233 	/*
4234 	 * We must now do two things atomically: replay this log record,
4235 	 * and update the log header sequence number to reflect the fact that
4236 	 * we did so. At the end of each replay function the sequence number
4237 	 * is updated if we are in replay mode.
4238 	 */
4239 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4240 	if (error != 0) {
4241 		/*
4242 		 * The DMU's dnode layer doesn't see removes until the txg
4243 		 * commits, so a subsequent claim can spuriously fail with
4244 		 * EEXIST. So if we receive any error we try syncing out
4245 		 * any removes then retry the transaction.  Note that we
4246 		 * specify B_FALSE for byteswap now, so we don't do it twice.
4247 		 */
4248 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4249 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4250 		if (error != 0)
4251 			return (zil_replay_error(zilog, lr, error));
4252 	}
4253 	return (0);
4254 }
4255 
4256 static int
4257 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4258 {
4259 	(void) bp, (void) arg, (void) claim_txg;
4260 
4261 	zilog->zl_replay_blks++;
4262 
4263 	return (0);
4264 }
4265 
4266 /*
4267  * If this dataset has a non-empty intent log, replay it and destroy it.
4268  * Return B_TRUE if there were any entries to replay.
4269  */
4270 boolean_t
4271 zil_replay(objset_t *os, void *arg,
4272     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4273 {
4274 	zilog_t *zilog = dmu_objset_zil(os);
4275 	const zil_header_t *zh = zilog->zl_header;
4276 	zil_replay_arg_t zr;
4277 
4278 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4279 		return (zil_destroy(zilog, B_TRUE));
4280 	}
4281 
4282 	zr.zr_replay = replay_func;
4283 	zr.zr_arg = arg;
4284 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4285 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4286 
4287 	/*
4288 	 * Wait for in-progress removes to sync before starting replay.
4289 	 */
4290 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4291 
4292 	zilog->zl_replay = B_TRUE;
4293 	zilog->zl_replay_time = ddi_get_lbolt();
4294 	ASSERT(zilog->zl_replay_blks == 0);
4295 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4296 	    zh->zh_claim_txg, B_TRUE);
4297 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4298 
4299 	zil_destroy(zilog, B_FALSE);
4300 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4301 	zilog->zl_replay = B_FALSE;
4302 
4303 	return (B_TRUE);
4304 }
4305 
4306 boolean_t
4307 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4308 {
4309 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4310 		return (B_TRUE);
4311 
4312 	if (zilog->zl_replay) {
4313 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4314 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4315 		    zilog->zl_replaying_seq;
4316 		return (B_TRUE);
4317 	}
4318 
4319 	return (B_FALSE);
4320 }
4321 
4322 int
4323 zil_reset(const char *osname, void *arg)
4324 {
4325 	(void) arg;
4326 
4327 	int error = zil_suspend(osname, NULL);
4328 	/* EACCES means crypto key not loaded */
4329 	if ((error == EACCES) || (error == EBUSY))
4330 		return (SET_ERROR(error));
4331 	if (error != 0)
4332 		return (SET_ERROR(EEXIST));
4333 	return (0);
4334 }
4335 
4336 EXPORT_SYMBOL(zil_alloc);
4337 EXPORT_SYMBOL(zil_free);
4338 EXPORT_SYMBOL(zil_open);
4339 EXPORT_SYMBOL(zil_close);
4340 EXPORT_SYMBOL(zil_replay);
4341 EXPORT_SYMBOL(zil_replaying);
4342 EXPORT_SYMBOL(zil_destroy);
4343 EXPORT_SYMBOL(zil_destroy_sync);
4344 EXPORT_SYMBOL(zil_itx_create);
4345 EXPORT_SYMBOL(zil_itx_destroy);
4346 EXPORT_SYMBOL(zil_itx_assign);
4347 EXPORT_SYMBOL(zil_commit);
4348 EXPORT_SYMBOL(zil_claim);
4349 EXPORT_SYMBOL(zil_check_log_chain);
4350 EXPORT_SYMBOL(zil_sync);
4351 EXPORT_SYMBOL(zil_clean);
4352 EXPORT_SYMBOL(zil_suspend);
4353 EXPORT_SYMBOL(zil_resume);
4354 EXPORT_SYMBOL(zil_lwb_add_block);
4355 EXPORT_SYMBOL(zil_bp_tree_add);
4356 EXPORT_SYMBOL(zil_set_sync);
4357 EXPORT_SYMBOL(zil_set_logbias);
4358 EXPORT_SYMBOL(zil_sums_init);
4359 EXPORT_SYMBOL(zil_sums_fini);
4360 EXPORT_SYMBOL(zil_kstat_values_update);
4361 
4362 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4363 	"ZIL block open timeout percentage");
4364 
4365 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4366 	"Disable intent logging replay");
4367 
4368 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4369 	"Disable ZIL cache flushes");
4370 
4371 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4372 	"Limit in bytes slog sync writes per commit");
4373 
4374 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4375 	"Limit in bytes of ZIL log block size");
4376 
4377 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4378 	"Limit in bytes WR_COPIED size");
4379