1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 #include <sys/brt.h> 47 #include <sys/wmsum.h> 48 49 /* 50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 51 * calls that change the file system. Each itx has enough information to 52 * be able to replay them after a system crash, power loss, or 53 * equivalent failure mode. These are stored in memory until either: 54 * 55 * 1. they are committed to the pool by the DMU transaction group 56 * (txg), at which point they can be discarded; or 57 * 2. they are committed to the on-disk ZIL for the dataset being 58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 59 * requirement). 60 * 61 * In the event of a crash or power loss, the itxs contained by each 62 * dataset's on-disk ZIL will be replayed when that dataset is first 63 * instantiated (e.g. if the dataset is a normal filesystem, when it is 64 * first mounted). 65 * 66 * As hinted at above, there is one ZIL per dataset (both the in-memory 67 * representation, and the on-disk representation). The on-disk format 68 * consists of 3 parts: 69 * 70 * - a single, per-dataset, ZIL header; which points to a chain of 71 * - zero or more ZIL blocks; each of which contains 72 * - zero or more ZIL records 73 * 74 * A ZIL record holds the information necessary to replay a single 75 * system call transaction. A ZIL block can hold many ZIL records, and 76 * the blocks are chained together, similarly to a singly linked list. 77 * 78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 79 * block in the chain, and the ZIL header points to the first block in 80 * the chain. 81 * 82 * Note, there is not a fixed place in the pool to hold these ZIL 83 * blocks; they are dynamically allocated and freed as needed from the 84 * blocks available on the pool, though they can be preferentially 85 * allocated from a dedicated "log" vdev. 86 */ 87 88 /* 89 * This controls the amount of time that a ZIL block (lwb) will remain 90 * "open" when it isn't "full", and it has a thread waiting for it to be 91 * committed to stable storage. Please refer to the zil_commit_waiter() 92 * function (and the comments within it) for more details. 93 */ 94 static uint_t zfs_commit_timeout_pct = 10; 95 96 /* 97 * See zil.h for more information about these fields. 98 */ 99 static zil_kstat_values_t zil_stats = { 100 { "zil_commit_count", KSTAT_DATA_UINT64 }, 101 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 102 { "zil_itx_count", KSTAT_DATA_UINT64 }, 103 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 104 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 105 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 106 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 107 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 108 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 109 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 110 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 111 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 }, 112 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 }, 113 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 114 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 115 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 }, 116 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 }, 117 }; 118 119 static zil_sums_t zil_sums_global; 120 static kstat_t *zil_kstats_global; 121 122 /* 123 * Disable intent logging replay. This global ZIL switch affects all pools. 124 */ 125 int zil_replay_disable = 0; 126 127 /* 128 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 129 * the disk(s) by the ZIL after an LWB write has completed. Setting this 130 * will cause ZIL corruption on power loss if a volatile out-of-order 131 * write cache is enabled. 132 */ 133 static int zil_nocacheflush = 0; 134 135 /* 136 * Limit SLOG write size per commit executed with synchronous priority. 137 * Any writes above that will be executed with lower (asynchronous) priority 138 * to limit potential SLOG device abuse by single active ZIL writer. 139 */ 140 static uint64_t zil_slog_bulk = 64 * 1024 * 1024; 141 142 static kmem_cache_t *zil_lwb_cache; 143 static kmem_cache_t *zil_zcw_cache; 144 145 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx); 146 static itx_t *zil_itx_clone(itx_t *oitx); 147 static uint64_t zil_max_waste_space(zilog_t *zilog); 148 149 static int 150 zil_bp_compare(const void *x1, const void *x2) 151 { 152 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 153 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 154 155 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 156 if (likely(cmp)) 157 return (cmp); 158 159 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 160 } 161 162 static void 163 zil_bp_tree_init(zilog_t *zilog) 164 { 165 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 166 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 167 } 168 169 static void 170 zil_bp_tree_fini(zilog_t *zilog) 171 { 172 avl_tree_t *t = &zilog->zl_bp_tree; 173 zil_bp_node_t *zn; 174 void *cookie = NULL; 175 176 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 177 kmem_free(zn, sizeof (zil_bp_node_t)); 178 179 avl_destroy(t); 180 } 181 182 int 183 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 184 { 185 avl_tree_t *t = &zilog->zl_bp_tree; 186 const dva_t *dva; 187 zil_bp_node_t *zn; 188 avl_index_t where; 189 190 if (BP_IS_EMBEDDED(bp)) 191 return (0); 192 193 dva = BP_IDENTITY(bp); 194 195 if (avl_find(t, dva, &where) != NULL) 196 return (SET_ERROR(EEXIST)); 197 198 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 199 zn->zn_dva = *dva; 200 avl_insert(t, zn, where); 201 202 return (0); 203 } 204 205 static zil_header_t * 206 zil_header_in_syncing_context(zilog_t *zilog) 207 { 208 return ((zil_header_t *)zilog->zl_header); 209 } 210 211 static void 212 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 213 { 214 zio_cksum_t *zc = &bp->blk_cksum; 215 216 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 217 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 218 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 219 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 220 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 221 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 222 } 223 224 static int 225 zil_kstats_global_update(kstat_t *ksp, int rw) 226 { 227 zil_kstat_values_t *zs = ksp->ks_data; 228 ASSERT3P(&zil_stats, ==, zs); 229 230 if (rw == KSTAT_WRITE) { 231 return (SET_ERROR(EACCES)); 232 } 233 234 zil_kstat_values_update(zs, &zil_sums_global); 235 236 return (0); 237 } 238 239 /* 240 * Read a log block and make sure it's valid. 241 */ 242 static int 243 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 244 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf) 245 { 246 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 247 arc_flags_t aflags = ARC_FLAG_WAIT; 248 zbookmark_phys_t zb; 249 int error; 250 251 if (zilog->zl_header->zh_claim_txg == 0) 252 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 253 254 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 255 zio_flags |= ZIO_FLAG_SPECULATIVE; 256 257 if (!decrypt) 258 zio_flags |= ZIO_FLAG_RAW; 259 260 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 261 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 262 263 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 264 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 265 266 if (error == 0) { 267 zio_cksum_t cksum = bp->blk_cksum; 268 269 /* 270 * Validate the checksummed log block. 271 * 272 * Sequence numbers should be... sequential. The checksum 273 * verifier for the next block should be bp's checksum plus 1. 274 * 275 * Also check the log chain linkage and size used. 276 */ 277 cksum.zc_word[ZIL_ZC_SEQ]++; 278 279 uint64_t size = BP_GET_LSIZE(bp); 280 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 281 zil_chain_t *zilc = (*abuf)->b_data; 282 char *lr = (char *)(zilc + 1); 283 284 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 285 sizeof (cksum)) || 286 zilc->zc_nused < sizeof (*zilc) || 287 zilc->zc_nused > size) { 288 error = SET_ERROR(ECKSUM); 289 } else { 290 *begin = lr; 291 *end = lr + zilc->zc_nused - sizeof (*zilc); 292 *nbp = zilc->zc_next_blk; 293 } 294 } else { 295 char *lr = (*abuf)->b_data; 296 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 297 298 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 299 sizeof (cksum)) || 300 (zilc->zc_nused > (size - sizeof (*zilc)))) { 301 error = SET_ERROR(ECKSUM); 302 } else { 303 *begin = lr; 304 *end = lr + zilc->zc_nused; 305 *nbp = zilc->zc_next_blk; 306 } 307 } 308 } 309 310 return (error); 311 } 312 313 /* 314 * Read a TX_WRITE log data block. 315 */ 316 static int 317 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 318 { 319 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 320 const blkptr_t *bp = &lr->lr_blkptr; 321 arc_flags_t aflags = ARC_FLAG_WAIT; 322 arc_buf_t *abuf = NULL; 323 zbookmark_phys_t zb; 324 int error; 325 326 if (BP_IS_HOLE(bp)) { 327 if (wbuf != NULL) 328 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 329 return (0); 330 } 331 332 if (zilog->zl_header->zh_claim_txg == 0) 333 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 334 335 /* 336 * If we are not using the resulting data, we are just checking that 337 * it hasn't been corrupted so we don't need to waste CPU time 338 * decompressing and decrypting it. 339 */ 340 if (wbuf == NULL) 341 zio_flags |= ZIO_FLAG_RAW; 342 343 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 344 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 345 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 346 347 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 348 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 349 350 if (error == 0) { 351 if (wbuf != NULL) 352 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); 353 arc_buf_destroy(abuf, &abuf); 354 } 355 356 return (error); 357 } 358 359 void 360 zil_sums_init(zil_sums_t *zs) 361 { 362 wmsum_init(&zs->zil_commit_count, 0); 363 wmsum_init(&zs->zil_commit_writer_count, 0); 364 wmsum_init(&zs->zil_itx_count, 0); 365 wmsum_init(&zs->zil_itx_indirect_count, 0); 366 wmsum_init(&zs->zil_itx_indirect_bytes, 0); 367 wmsum_init(&zs->zil_itx_copied_count, 0); 368 wmsum_init(&zs->zil_itx_copied_bytes, 0); 369 wmsum_init(&zs->zil_itx_needcopy_count, 0); 370 wmsum_init(&zs->zil_itx_needcopy_bytes, 0); 371 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); 372 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); 373 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0); 374 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0); 375 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); 376 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); 377 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0); 378 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0); 379 } 380 381 void 382 zil_sums_fini(zil_sums_t *zs) 383 { 384 wmsum_fini(&zs->zil_commit_count); 385 wmsum_fini(&zs->zil_commit_writer_count); 386 wmsum_fini(&zs->zil_itx_count); 387 wmsum_fini(&zs->zil_itx_indirect_count); 388 wmsum_fini(&zs->zil_itx_indirect_bytes); 389 wmsum_fini(&zs->zil_itx_copied_count); 390 wmsum_fini(&zs->zil_itx_copied_bytes); 391 wmsum_fini(&zs->zil_itx_needcopy_count); 392 wmsum_fini(&zs->zil_itx_needcopy_bytes); 393 wmsum_fini(&zs->zil_itx_metaslab_normal_count); 394 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); 395 wmsum_fini(&zs->zil_itx_metaslab_normal_write); 396 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc); 397 wmsum_fini(&zs->zil_itx_metaslab_slog_count); 398 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); 399 wmsum_fini(&zs->zil_itx_metaslab_slog_write); 400 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc); 401 } 402 403 void 404 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) 405 { 406 zs->zil_commit_count.value.ui64 = 407 wmsum_value(&zil_sums->zil_commit_count); 408 zs->zil_commit_writer_count.value.ui64 = 409 wmsum_value(&zil_sums->zil_commit_writer_count); 410 zs->zil_itx_count.value.ui64 = 411 wmsum_value(&zil_sums->zil_itx_count); 412 zs->zil_itx_indirect_count.value.ui64 = 413 wmsum_value(&zil_sums->zil_itx_indirect_count); 414 zs->zil_itx_indirect_bytes.value.ui64 = 415 wmsum_value(&zil_sums->zil_itx_indirect_bytes); 416 zs->zil_itx_copied_count.value.ui64 = 417 wmsum_value(&zil_sums->zil_itx_copied_count); 418 zs->zil_itx_copied_bytes.value.ui64 = 419 wmsum_value(&zil_sums->zil_itx_copied_bytes); 420 zs->zil_itx_needcopy_count.value.ui64 = 421 wmsum_value(&zil_sums->zil_itx_needcopy_count); 422 zs->zil_itx_needcopy_bytes.value.ui64 = 423 wmsum_value(&zil_sums->zil_itx_needcopy_bytes); 424 zs->zil_itx_metaslab_normal_count.value.ui64 = 425 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); 426 zs->zil_itx_metaslab_normal_bytes.value.ui64 = 427 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); 428 zs->zil_itx_metaslab_normal_write.value.ui64 = 429 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write); 430 zs->zil_itx_metaslab_normal_alloc.value.ui64 = 431 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc); 432 zs->zil_itx_metaslab_slog_count.value.ui64 = 433 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); 434 zs->zil_itx_metaslab_slog_bytes.value.ui64 = 435 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); 436 zs->zil_itx_metaslab_slog_write.value.ui64 = 437 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write); 438 zs->zil_itx_metaslab_slog_alloc.value.ui64 = 439 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc); 440 } 441 442 /* 443 * Parse the intent log, and call parse_func for each valid record within. 444 */ 445 int 446 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 447 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 448 boolean_t decrypt) 449 { 450 const zil_header_t *zh = zilog->zl_header; 451 boolean_t claimed = !!zh->zh_claim_txg; 452 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 453 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 454 uint64_t max_blk_seq = 0; 455 uint64_t max_lr_seq = 0; 456 uint64_t blk_count = 0; 457 uint64_t lr_count = 0; 458 blkptr_t blk, next_blk = {{{{0}}}}; 459 int error = 0; 460 461 /* 462 * Old logs didn't record the maximum zh_claim_lr_seq. 463 */ 464 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 465 claim_lr_seq = UINT64_MAX; 466 467 /* 468 * Starting at the block pointed to by zh_log we read the log chain. 469 * For each block in the chain we strongly check that block to 470 * ensure its validity. We stop when an invalid block is found. 471 * For each block pointer in the chain we call parse_blk_func(). 472 * For each record in each valid block we call parse_lr_func(). 473 * If the log has been claimed, stop if we encounter a sequence 474 * number greater than the highest claimed sequence number. 475 */ 476 zil_bp_tree_init(zilog); 477 478 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 479 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 480 int reclen; 481 char *lrp, *end; 482 arc_buf_t *abuf = NULL; 483 484 if (blk_seq > claim_blk_seq) 485 break; 486 487 error = parse_blk_func(zilog, &blk, arg, txg); 488 if (error != 0) 489 break; 490 ASSERT3U(max_blk_seq, <, blk_seq); 491 max_blk_seq = blk_seq; 492 blk_count++; 493 494 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 495 break; 496 497 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 498 &lrp, &end, &abuf); 499 if (error != 0) { 500 if (abuf) 501 arc_buf_destroy(abuf, &abuf); 502 if (claimed) { 503 char name[ZFS_MAX_DATASET_NAME_LEN]; 504 505 dmu_objset_name(zilog->zl_os, name); 506 507 cmn_err(CE_WARN, "ZFS read log block error %d, " 508 "dataset %s, seq 0x%llx\n", error, name, 509 (u_longlong_t)blk_seq); 510 } 511 break; 512 } 513 514 for (; lrp < end; lrp += reclen) { 515 lr_t *lr = (lr_t *)lrp; 516 reclen = lr->lrc_reclen; 517 ASSERT3U(reclen, >=, sizeof (lr_t)); 518 ASSERT3U(reclen, <=, end - lrp); 519 if (lr->lrc_seq > claim_lr_seq) { 520 arc_buf_destroy(abuf, &abuf); 521 goto done; 522 } 523 524 error = parse_lr_func(zilog, lr, arg, txg); 525 if (error != 0) { 526 arc_buf_destroy(abuf, &abuf); 527 goto done; 528 } 529 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 530 max_lr_seq = lr->lrc_seq; 531 lr_count++; 532 } 533 arc_buf_destroy(abuf, &abuf); 534 } 535 done: 536 zilog->zl_parse_error = error; 537 zilog->zl_parse_blk_seq = max_blk_seq; 538 zilog->zl_parse_lr_seq = max_lr_seq; 539 zilog->zl_parse_blk_count = blk_count; 540 zilog->zl_parse_lr_count = lr_count; 541 542 zil_bp_tree_fini(zilog); 543 544 return (error); 545 } 546 547 static int 548 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 549 uint64_t first_txg) 550 { 551 (void) tx; 552 ASSERT(!BP_IS_HOLE(bp)); 553 554 /* 555 * As we call this function from the context of a rewind to a 556 * checkpoint, each ZIL block whose txg is later than the txg 557 * that we rewind to is invalid. Thus, we return -1 so 558 * zil_parse() doesn't attempt to read it. 559 */ 560 if (BP_GET_LOGICAL_BIRTH(bp) >= first_txg) 561 return (-1); 562 563 if (zil_bp_tree_add(zilog, bp) != 0) 564 return (0); 565 566 zio_free(zilog->zl_spa, first_txg, bp); 567 return (0); 568 } 569 570 static int 571 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 572 uint64_t first_txg) 573 { 574 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 575 return (0); 576 } 577 578 static int 579 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 580 uint64_t first_txg) 581 { 582 /* 583 * Claim log block if not already committed and not already claimed. 584 * If tx == NULL, just verify that the block is claimable. 585 */ 586 if (BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) < first_txg || 587 zil_bp_tree_add(zilog, bp) != 0) 588 return (0); 589 590 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 591 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 592 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 593 } 594 595 static int 596 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) 597 { 598 lr_write_t *lr = (lr_write_t *)lrc; 599 int error; 600 601 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 602 603 /* 604 * If the block is not readable, don't claim it. This can happen 605 * in normal operation when a log block is written to disk before 606 * some of the dmu_sync() blocks it points to. In this case, the 607 * transaction cannot have been committed to anyone (we would have 608 * waited for all writes to be stable first), so it is semantically 609 * correct to declare this the end of the log. 610 */ 611 if (BP_GET_LOGICAL_BIRTH(&lr->lr_blkptr) >= first_txg) { 612 error = zil_read_log_data(zilog, lr, NULL); 613 if (error != 0) 614 return (error); 615 } 616 617 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 618 } 619 620 static int 621 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx, 622 uint64_t first_txg) 623 { 624 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 625 const blkptr_t *bp; 626 spa_t *spa = zilog->zl_spa; 627 uint_t ii; 628 629 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 630 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t, 631 lr_bps[lr->lr_nbps])); 632 633 if (tx == NULL) { 634 return (0); 635 } 636 637 /* 638 * XXX: Do we need to byteswap lr? 639 */ 640 641 for (ii = 0; ii < lr->lr_nbps; ii++) { 642 bp = &lr->lr_bps[ii]; 643 644 /* 645 * When data is embedded into the BP there is no need to create 646 * BRT entry as there is no data block. Just copy the BP as it 647 * contains the data. 648 */ 649 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 650 continue; 651 652 /* 653 * We can not handle block pointers from the future, since they 654 * are not yet allocated. It should not normally happen, but 655 * just in case lets be safe and just stop here now instead of 656 * corrupting the pool. 657 */ 658 if (BP_GET_BIRTH(bp) >= first_txg) 659 return (SET_ERROR(ENOENT)); 660 661 /* 662 * Assert the block is really allocated before we reference it. 663 */ 664 metaslab_check_free(spa, bp); 665 } 666 667 for (ii = 0; ii < lr->lr_nbps; ii++) { 668 bp = &lr->lr_bps[ii]; 669 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) 670 brt_pending_add(spa, bp, tx); 671 } 672 673 return (0); 674 } 675 676 static int 677 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 678 uint64_t first_txg) 679 { 680 681 switch (lrc->lrc_txtype) { 682 case TX_WRITE: 683 return (zil_claim_write(zilog, lrc, tx, first_txg)); 684 case TX_CLONE_RANGE: 685 return (zil_claim_clone_range(zilog, lrc, tx, first_txg)); 686 default: 687 return (0); 688 } 689 } 690 691 static int 692 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 693 uint64_t claim_txg) 694 { 695 (void) claim_txg; 696 697 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 698 699 return (0); 700 } 701 702 static int 703 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) 704 { 705 lr_write_t *lr = (lr_write_t *)lrc; 706 blkptr_t *bp = &lr->lr_blkptr; 707 708 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 709 710 /* 711 * If we previously claimed it, we need to free it. 712 */ 713 if (BP_GET_LOGICAL_BIRTH(bp) >= claim_txg && 714 zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) { 715 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 716 } 717 718 return (0); 719 } 720 721 static int 722 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 723 { 724 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 725 const blkptr_t *bp; 726 spa_t *spa; 727 uint_t ii; 728 729 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 730 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t, 731 lr_bps[lr->lr_nbps])); 732 733 if (tx == NULL) { 734 return (0); 735 } 736 737 spa = zilog->zl_spa; 738 739 for (ii = 0; ii < lr->lr_nbps; ii++) { 740 bp = &lr->lr_bps[ii]; 741 742 if (!BP_IS_HOLE(bp)) { 743 zio_free(spa, dmu_tx_get_txg(tx), bp); 744 } 745 } 746 747 return (0); 748 } 749 750 static int 751 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 752 uint64_t claim_txg) 753 { 754 755 if (claim_txg == 0) { 756 return (0); 757 } 758 759 switch (lrc->lrc_txtype) { 760 case TX_WRITE: 761 return (zil_free_write(zilog, lrc, tx, claim_txg)); 762 case TX_CLONE_RANGE: 763 return (zil_free_clone_range(zilog, lrc, tx)); 764 default: 765 return (0); 766 } 767 } 768 769 static int 770 zil_lwb_vdev_compare(const void *x1, const void *x2) 771 { 772 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 773 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 774 775 return (TREE_CMP(v1, v2)); 776 } 777 778 /* 779 * Allocate a new lwb. We may already have a block pointer for it, in which 780 * case we get size and version from there. Or we may not yet, in which case 781 * we choose them here and later make the block allocation match. 782 */ 783 static lwb_t * 784 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog, 785 uint64_t txg, lwb_state_t state) 786 { 787 lwb_t *lwb; 788 789 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 790 lwb->lwb_zilog = zilog; 791 if (bp) { 792 lwb->lwb_blk = *bp; 793 lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2); 794 sz = BP_GET_LSIZE(bp); 795 } else { 796 BP_ZERO(&lwb->lwb_blk); 797 lwb->lwb_slim = (spa_version(zilog->zl_spa) >= 798 SPA_VERSION_SLIM_ZIL); 799 } 800 lwb->lwb_slog = slog; 801 lwb->lwb_error = 0; 802 if (lwb->lwb_slim) { 803 lwb->lwb_nmax = sz; 804 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t); 805 } else { 806 lwb->lwb_nmax = sz - sizeof (zil_chain_t); 807 lwb->lwb_nused = lwb->lwb_nfilled = 0; 808 } 809 lwb->lwb_sz = sz; 810 lwb->lwb_state = state; 811 lwb->lwb_buf = zio_buf_alloc(sz); 812 lwb->lwb_child_zio = NULL; 813 lwb->lwb_write_zio = NULL; 814 lwb->lwb_root_zio = NULL; 815 lwb->lwb_issued_timestamp = 0; 816 lwb->lwb_issued_txg = 0; 817 lwb->lwb_alloc_txg = txg; 818 lwb->lwb_max_txg = 0; 819 820 mutex_enter(&zilog->zl_lock); 821 list_insert_tail(&zilog->zl_lwb_list, lwb); 822 if (state != LWB_STATE_NEW) 823 zilog->zl_last_lwb_opened = lwb; 824 mutex_exit(&zilog->zl_lock); 825 826 return (lwb); 827 } 828 829 static void 830 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 831 { 832 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 833 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 834 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 835 ASSERT3P(lwb->lwb_child_zio, ==, NULL); 836 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 837 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 838 ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa)); 839 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 840 VERIFY(list_is_empty(&lwb->lwb_itxs)); 841 VERIFY(list_is_empty(&lwb->lwb_waiters)); 842 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 843 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 844 845 /* 846 * Clear the zilog's field to indicate this lwb is no longer 847 * valid, and prevent use-after-free errors. 848 */ 849 if (zilog->zl_last_lwb_opened == lwb) 850 zilog->zl_last_lwb_opened = NULL; 851 852 kmem_cache_free(zil_lwb_cache, lwb); 853 } 854 855 /* 856 * Called when we create in-memory log transactions so that we know 857 * to cleanup the itxs at the end of spa_sync(). 858 */ 859 static void 860 zilog_dirty(zilog_t *zilog, uint64_t txg) 861 { 862 dsl_pool_t *dp = zilog->zl_dmu_pool; 863 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 864 865 ASSERT(spa_writeable(zilog->zl_spa)); 866 867 if (ds->ds_is_snapshot) 868 panic("dirtying snapshot!"); 869 870 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 871 /* up the hold count until we can be written out */ 872 dmu_buf_add_ref(ds->ds_dbuf, zilog); 873 874 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 875 } 876 } 877 878 /* 879 * Determine if the zil is dirty in the specified txg. Callers wanting to 880 * ensure that the dirty state does not change must hold the itxg_lock for 881 * the specified txg. Holding the lock will ensure that the zil cannot be 882 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 883 * state. 884 */ 885 static boolean_t __maybe_unused 886 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 887 { 888 dsl_pool_t *dp = zilog->zl_dmu_pool; 889 890 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 891 return (B_TRUE); 892 return (B_FALSE); 893 } 894 895 /* 896 * Determine if the zil is dirty. The zil is considered dirty if it has 897 * any pending itx records that have not been cleaned by zil_clean(). 898 */ 899 static boolean_t 900 zilog_is_dirty(zilog_t *zilog) 901 { 902 dsl_pool_t *dp = zilog->zl_dmu_pool; 903 904 for (int t = 0; t < TXG_SIZE; t++) { 905 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 906 return (B_TRUE); 907 } 908 return (B_FALSE); 909 } 910 911 /* 912 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 913 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 914 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 915 * zil_commit. 916 */ 917 static void 918 zil_commit_activate_saxattr_feature(zilog_t *zilog) 919 { 920 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 921 uint64_t txg = 0; 922 dmu_tx_t *tx = NULL; 923 924 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 925 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 926 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { 927 tx = dmu_tx_create(zilog->zl_os); 928 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 929 dsl_dataset_dirty(ds, tx); 930 txg = dmu_tx_get_txg(tx); 931 932 mutex_enter(&ds->ds_lock); 933 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 934 (void *)B_TRUE; 935 mutex_exit(&ds->ds_lock); 936 dmu_tx_commit(tx); 937 txg_wait_synced(zilog->zl_dmu_pool, txg); 938 } 939 } 940 941 /* 942 * Create an on-disk intent log. 943 */ 944 static lwb_t * 945 zil_create(zilog_t *zilog) 946 { 947 const zil_header_t *zh = zilog->zl_header; 948 lwb_t *lwb = NULL; 949 uint64_t txg = 0; 950 dmu_tx_t *tx = NULL; 951 blkptr_t blk; 952 int error = 0; 953 boolean_t slog = FALSE; 954 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 955 956 957 /* 958 * Wait for any previous destroy to complete. 959 */ 960 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 961 962 ASSERT(zh->zh_claim_txg == 0); 963 ASSERT(zh->zh_replay_seq == 0); 964 965 blk = zh->zh_log; 966 967 /* 968 * Allocate an initial log block if: 969 * - there isn't one already 970 * - the existing block is the wrong endianness 971 */ 972 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 973 tx = dmu_tx_create(zilog->zl_os); 974 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 975 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 976 txg = dmu_tx_get_txg(tx); 977 978 if (!BP_IS_HOLE(&blk)) { 979 zio_free(zilog->zl_spa, txg, &blk); 980 BP_ZERO(&blk); 981 } 982 983 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 984 ZIL_MIN_BLKSZ, &slog); 985 if (error == 0) 986 zil_init_log_chain(zilog, &blk); 987 } 988 989 /* 990 * Allocate a log write block (lwb) for the first log block. 991 */ 992 if (error == 0) 993 lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW); 994 995 /* 996 * If we just allocated the first log block, commit our transaction 997 * and wait for zil_sync() to stuff the block pointer into zh_log. 998 * (zh is part of the MOS, so we cannot modify it in open context.) 999 */ 1000 if (tx != NULL) { 1001 /* 1002 * If "zilsaxattr" feature is enabled on zpool, then activate 1003 * it now when we're creating the ZIL chain. We can't wait with 1004 * this until we write the first xattr log record because we 1005 * need to wait for the feature activation to sync out. 1006 */ 1007 if (spa_feature_is_enabled(zilog->zl_spa, 1008 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 1009 DMU_OST_ZVOL) { 1010 mutex_enter(&ds->ds_lock); 1011 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 1012 (void *)B_TRUE; 1013 mutex_exit(&ds->ds_lock); 1014 } 1015 1016 dmu_tx_commit(tx); 1017 txg_wait_synced(zilog->zl_dmu_pool, txg); 1018 } else { 1019 /* 1020 * This branch covers the case where we enable the feature on a 1021 * zpool that has existing ZIL headers. 1022 */ 1023 zil_commit_activate_saxattr_feature(zilog); 1024 } 1025 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 1026 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 1027 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 1028 1029 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 1030 IMPLY(error == 0, lwb != NULL); 1031 1032 return (lwb); 1033 } 1034 1035 /* 1036 * In one tx, free all log blocks and clear the log header. If keep_first 1037 * is set, then we're replaying a log with no content. We want to keep the 1038 * first block, however, so that the first synchronous transaction doesn't 1039 * require a txg_wait_synced() in zil_create(). We don't need to 1040 * txg_wait_synced() here either when keep_first is set, because both 1041 * zil_create() and zil_destroy() will wait for any in-progress destroys 1042 * to complete. 1043 * Return B_TRUE if there were any entries to replay. 1044 */ 1045 boolean_t 1046 zil_destroy(zilog_t *zilog, boolean_t keep_first) 1047 { 1048 const zil_header_t *zh = zilog->zl_header; 1049 lwb_t *lwb; 1050 dmu_tx_t *tx; 1051 uint64_t txg; 1052 1053 /* 1054 * Wait for any previous destroy to complete. 1055 */ 1056 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1057 1058 zilog->zl_old_header = *zh; /* debugging aid */ 1059 1060 if (BP_IS_HOLE(&zh->zh_log)) 1061 return (B_FALSE); 1062 1063 tx = dmu_tx_create(zilog->zl_os); 1064 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1065 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1066 txg = dmu_tx_get_txg(tx); 1067 1068 mutex_enter(&zilog->zl_lock); 1069 1070 ASSERT3U(zilog->zl_destroy_txg, <, txg); 1071 zilog->zl_destroy_txg = txg; 1072 zilog->zl_keep_first = keep_first; 1073 1074 if (!list_is_empty(&zilog->zl_lwb_list)) { 1075 ASSERT(zh->zh_claim_txg == 0); 1076 VERIFY(!keep_first); 1077 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) { 1078 if (lwb->lwb_buf != NULL) 1079 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1080 if (!BP_IS_HOLE(&lwb->lwb_blk)) 1081 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 1082 zil_free_lwb(zilog, lwb); 1083 } 1084 } else if (!keep_first) { 1085 zil_destroy_sync(zilog, tx); 1086 } 1087 mutex_exit(&zilog->zl_lock); 1088 1089 dmu_tx_commit(tx); 1090 1091 return (B_TRUE); 1092 } 1093 1094 void 1095 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 1096 { 1097 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1098 (void) zil_parse(zilog, zil_free_log_block, 1099 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 1100 } 1101 1102 int 1103 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 1104 { 1105 dmu_tx_t *tx = txarg; 1106 zilog_t *zilog; 1107 uint64_t first_txg; 1108 zil_header_t *zh; 1109 objset_t *os; 1110 int error; 1111 1112 error = dmu_objset_own_obj(dp, ds->ds_object, 1113 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 1114 if (error != 0) { 1115 /* 1116 * EBUSY indicates that the objset is inconsistent, in which 1117 * case it can not have a ZIL. 1118 */ 1119 if (error != EBUSY) { 1120 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 1121 (unsigned long long)ds->ds_object, error); 1122 } 1123 1124 return (0); 1125 } 1126 1127 zilog = dmu_objset_zil(os); 1128 zh = zil_header_in_syncing_context(zilog); 1129 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 1130 first_txg = spa_min_claim_txg(zilog->zl_spa); 1131 1132 /* 1133 * If the spa_log_state is not set to be cleared, check whether 1134 * the current uberblock is a checkpoint one and if the current 1135 * header has been claimed before moving on. 1136 * 1137 * If the current uberblock is a checkpointed uberblock then 1138 * one of the following scenarios took place: 1139 * 1140 * 1] We are currently rewinding to the checkpoint of the pool. 1141 * 2] We crashed in the middle of a checkpoint rewind but we 1142 * did manage to write the checkpointed uberblock to the 1143 * vdev labels, so when we tried to import the pool again 1144 * the checkpointed uberblock was selected from the import 1145 * procedure. 1146 * 1147 * In both cases we want to zero out all the ZIL blocks, except 1148 * the ones that have been claimed at the time of the checkpoint 1149 * (their zh_claim_txg != 0). The reason is that these blocks 1150 * may be corrupted since we may have reused their locations on 1151 * disk after we took the checkpoint. 1152 * 1153 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 1154 * when we first figure out whether the current uberblock is 1155 * checkpointed or not. Unfortunately, that would discard all 1156 * the logs, including the ones that are claimed, and we would 1157 * leak space. 1158 */ 1159 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 1160 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1161 zh->zh_claim_txg == 0)) { 1162 if (!BP_IS_HOLE(&zh->zh_log)) { 1163 (void) zil_parse(zilog, zil_clear_log_block, 1164 zil_noop_log_record, tx, first_txg, B_FALSE); 1165 } 1166 BP_ZERO(&zh->zh_log); 1167 if (os->os_encrypted) 1168 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1169 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1170 dmu_objset_disown(os, B_FALSE, FTAG); 1171 return (0); 1172 } 1173 1174 /* 1175 * If we are not rewinding and opening the pool normally, then 1176 * the min_claim_txg should be equal to the first txg of the pool. 1177 */ 1178 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 1179 1180 /* 1181 * Claim all log blocks if we haven't already done so, and remember 1182 * the highest claimed sequence number. This ensures that if we can 1183 * read only part of the log now (e.g. due to a missing device), 1184 * but we can read the entire log later, we will not try to replay 1185 * or destroy beyond the last block we successfully claimed. 1186 */ 1187 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 1188 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 1189 (void) zil_parse(zilog, zil_claim_log_block, 1190 zil_claim_log_record, tx, first_txg, B_FALSE); 1191 zh->zh_claim_txg = first_txg; 1192 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 1193 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 1194 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 1195 zh->zh_flags |= ZIL_REPLAY_NEEDED; 1196 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 1197 if (os->os_encrypted) 1198 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1199 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1200 } 1201 1202 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 1203 dmu_objset_disown(os, B_FALSE, FTAG); 1204 return (0); 1205 } 1206 1207 /* 1208 * Check the log by walking the log chain. 1209 * Checksum errors are ok as they indicate the end of the chain. 1210 * Any other error (no device or read failure) returns an error. 1211 */ 1212 int 1213 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 1214 { 1215 (void) dp; 1216 zilog_t *zilog; 1217 objset_t *os; 1218 blkptr_t *bp; 1219 int error; 1220 1221 ASSERT(tx == NULL); 1222 1223 error = dmu_objset_from_ds(ds, &os); 1224 if (error != 0) { 1225 cmn_err(CE_WARN, "can't open objset %llu, error %d", 1226 (unsigned long long)ds->ds_object, error); 1227 return (0); 1228 } 1229 1230 zilog = dmu_objset_zil(os); 1231 bp = (blkptr_t *)&zilog->zl_header->zh_log; 1232 1233 if (!BP_IS_HOLE(bp)) { 1234 vdev_t *vd; 1235 boolean_t valid = B_TRUE; 1236 1237 /* 1238 * Check the first block and determine if it's on a log device 1239 * which may have been removed or faulted prior to loading this 1240 * pool. If so, there's no point in checking the rest of the 1241 * log as its content should have already been synced to the 1242 * pool. 1243 */ 1244 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1245 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1246 if (vd->vdev_islog && vdev_is_dead(vd)) 1247 valid = vdev_log_state_valid(vd); 1248 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1249 1250 if (!valid) 1251 return (0); 1252 1253 /* 1254 * Check whether the current uberblock is checkpointed (e.g. 1255 * we are rewinding) and whether the current header has been 1256 * claimed or not. If it hasn't then skip verifying it. We 1257 * do this because its ZIL blocks may be part of the pool's 1258 * state before the rewind, which is no longer valid. 1259 */ 1260 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1261 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1262 zh->zh_claim_txg == 0) 1263 return (0); 1264 } 1265 1266 /* 1267 * Because tx == NULL, zil_claim_log_block() will not actually claim 1268 * any blocks, but just determine whether it is possible to do so. 1269 * In addition to checking the log chain, zil_claim_log_block() 1270 * will invoke zio_claim() with a done func of spa_claim_notify(), 1271 * which will update spa_max_claim_txg. See spa_load() for details. 1272 */ 1273 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1274 zilog->zl_header->zh_claim_txg ? -1ULL : 1275 spa_min_claim_txg(os->os_spa), B_FALSE); 1276 1277 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1278 } 1279 1280 /* 1281 * When an itx is "skipped", this function is used to properly mark the 1282 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1283 * be skipped (and not committed to an lwb) for a variety of reasons, 1284 * one of them being that the itx was committed via spa_sync(), prior to 1285 * it being committed to an lwb; this can happen if a thread calling 1286 * zil_commit() is racing with spa_sync(). 1287 */ 1288 static void 1289 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1290 { 1291 mutex_enter(&zcw->zcw_lock); 1292 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1293 zcw->zcw_done = B_TRUE; 1294 cv_broadcast(&zcw->zcw_cv); 1295 mutex_exit(&zcw->zcw_lock); 1296 } 1297 1298 /* 1299 * This function is used when the given waiter is to be linked into an 1300 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1301 * At this point, the waiter will no longer be referenced by the itx, 1302 * and instead, will be referenced by the lwb. 1303 */ 1304 static void 1305 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1306 { 1307 /* 1308 * The lwb_waiters field of the lwb is protected by the zilog's 1309 * zl_issuer_lock while the lwb is open and zl_lock otherwise. 1310 * zl_issuer_lock also protects leaving the open state. 1311 * zcw_lwb setting is protected by zl_issuer_lock and state != 1312 * flush_done, which transition is protected by zl_lock. 1313 */ 1314 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock)); 1315 IMPLY(lwb->lwb_state != LWB_STATE_OPENED, 1316 MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1317 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW); 1318 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1319 1320 ASSERT(!list_link_active(&zcw->zcw_node)); 1321 list_insert_tail(&lwb->lwb_waiters, zcw); 1322 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1323 zcw->zcw_lwb = lwb; 1324 } 1325 1326 /* 1327 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1328 * block, and the given waiter must be linked to the "nolwb waiters" 1329 * list inside of zil_process_commit_list(). 1330 */ 1331 static void 1332 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1333 { 1334 ASSERT(!list_link_active(&zcw->zcw_node)); 1335 list_insert_tail(nolwb, zcw); 1336 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1337 } 1338 1339 void 1340 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1341 { 1342 avl_tree_t *t = &lwb->lwb_vdev_tree; 1343 avl_index_t where; 1344 zil_vdev_node_t *zv, zvsearch; 1345 int ndvas = BP_GET_NDVAS(bp); 1346 int i; 1347 1348 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1349 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1350 1351 if (zil_nocacheflush) 1352 return; 1353 1354 mutex_enter(&lwb->lwb_vdev_lock); 1355 for (i = 0; i < ndvas; i++) { 1356 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1357 if (avl_find(t, &zvsearch, &where) == NULL) { 1358 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1359 zv->zv_vdev = zvsearch.zv_vdev; 1360 avl_insert(t, zv, where); 1361 } 1362 } 1363 mutex_exit(&lwb->lwb_vdev_lock); 1364 } 1365 1366 static void 1367 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1368 { 1369 avl_tree_t *src = &lwb->lwb_vdev_tree; 1370 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1371 void *cookie = NULL; 1372 zil_vdev_node_t *zv; 1373 1374 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1375 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1376 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1377 1378 /* 1379 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1380 * not need the protection of lwb_vdev_lock (it will only be modified 1381 * while holding zilog->zl_lock) as its writes and those of its 1382 * children have all completed. The younger 'nlwb' may be waiting on 1383 * future writes to additional vdevs. 1384 */ 1385 mutex_enter(&nlwb->lwb_vdev_lock); 1386 /* 1387 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1388 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1389 */ 1390 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1391 avl_index_t where; 1392 1393 if (avl_find(dst, zv, &where) == NULL) { 1394 avl_insert(dst, zv, where); 1395 } else { 1396 kmem_free(zv, sizeof (*zv)); 1397 } 1398 } 1399 mutex_exit(&nlwb->lwb_vdev_lock); 1400 } 1401 1402 void 1403 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1404 { 1405 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1406 } 1407 1408 /* 1409 * This function is a called after all vdevs associated with a given lwb 1410 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1411 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1412 * all "previous" lwb's will have completed before this function is 1413 * called; i.e. this function is called for all previous lwbs before 1414 * it's called for "this" lwb (enforced via zio the dependencies 1415 * configured in zil_lwb_set_zio_dependency()). 1416 * 1417 * The intention is for this function to be called as soon as the 1418 * contents of an lwb are considered "stable" on disk, and will survive 1419 * any sudden loss of power. At this point, any threads waiting for the 1420 * lwb to reach this state are signalled, and the "waiter" structures 1421 * are marked "done". 1422 */ 1423 static void 1424 zil_lwb_flush_vdevs_done(zio_t *zio) 1425 { 1426 lwb_t *lwb = zio->io_private; 1427 zilog_t *zilog = lwb->lwb_zilog; 1428 zil_commit_waiter_t *zcw; 1429 itx_t *itx; 1430 1431 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1432 1433 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp; 1434 1435 mutex_enter(&zilog->zl_lock); 1436 1437 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8; 1438 1439 lwb->lwb_root_zio = NULL; 1440 1441 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1442 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1443 1444 if (zilog->zl_last_lwb_opened == lwb) { 1445 /* 1446 * Remember the highest committed log sequence number 1447 * for ztest. We only update this value when all the log 1448 * writes succeeded, because ztest wants to ASSERT that 1449 * it got the whole log chain. 1450 */ 1451 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1452 } 1453 1454 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL) 1455 zil_itx_destroy(itx); 1456 1457 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) { 1458 mutex_enter(&zcw->zcw_lock); 1459 1460 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1461 zcw->zcw_lwb = NULL; 1462 /* 1463 * We expect any ZIO errors from child ZIOs to have been 1464 * propagated "up" to this specific LWB's root ZIO, in 1465 * order for this error handling to work correctly. This 1466 * includes ZIO errors from either this LWB's write or 1467 * flush, as well as any errors from other dependent LWBs 1468 * (e.g. a root LWB ZIO that might be a child of this LWB). 1469 * 1470 * With that said, it's important to note that LWB flush 1471 * errors are not propagated up to the LWB root ZIO. 1472 * This is incorrect behavior, and results in VDEV flush 1473 * errors not being handled correctly here. See the 1474 * comment above the call to "zio_flush" for details. 1475 */ 1476 1477 zcw->zcw_zio_error = zio->io_error; 1478 1479 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1480 zcw->zcw_done = B_TRUE; 1481 cv_broadcast(&zcw->zcw_cv); 1482 1483 mutex_exit(&zcw->zcw_lock); 1484 } 1485 1486 uint64_t txg = lwb->lwb_issued_txg; 1487 1488 /* Once we drop the lock, lwb may be freed by zil_sync(). */ 1489 mutex_exit(&zilog->zl_lock); 1490 1491 mutex_enter(&zilog->zl_lwb_io_lock); 1492 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); 1493 zilog->zl_lwb_inflight[txg & TXG_MASK]--; 1494 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) 1495 cv_broadcast(&zilog->zl_lwb_io_cv); 1496 mutex_exit(&zilog->zl_lwb_io_lock); 1497 } 1498 1499 /* 1500 * Wait for the completion of all issued write/flush of that txg provided. 1501 * It guarantees zil_lwb_flush_vdevs_done() is called and returned. 1502 */ 1503 static void 1504 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) 1505 { 1506 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); 1507 1508 mutex_enter(&zilog->zl_lwb_io_lock); 1509 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) 1510 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); 1511 mutex_exit(&zilog->zl_lwb_io_lock); 1512 1513 #ifdef ZFS_DEBUG 1514 mutex_enter(&zilog->zl_lock); 1515 mutex_enter(&zilog->zl_lwb_io_lock); 1516 lwb_t *lwb = list_head(&zilog->zl_lwb_list); 1517 while (lwb != NULL) { 1518 if (lwb->lwb_issued_txg <= txg) { 1519 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); 1520 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); 1521 IMPLY(lwb->lwb_issued_txg > 0, 1522 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 1523 } 1524 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE || 1525 lwb->lwb_state == LWB_STATE_FLUSH_DONE, 1526 lwb->lwb_buf == NULL); 1527 lwb = list_next(&zilog->zl_lwb_list, lwb); 1528 } 1529 mutex_exit(&zilog->zl_lwb_io_lock); 1530 mutex_exit(&zilog->zl_lock); 1531 #endif 1532 } 1533 1534 /* 1535 * This is called when an lwb's write zio completes. The callback's 1536 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1537 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1538 * in writing out this specific lwb's data, and in the case that cache 1539 * flushes have been deferred, vdevs involved in writing the data for 1540 * previous lwbs. The writes corresponding to all the vdevs in the 1541 * lwb_vdev_tree will have completed by the time this is called, due to 1542 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1543 * which takes deferred flushes into account. The lwb will be "done" 1544 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1545 * completion callback for the lwb's root zio. 1546 */ 1547 static void 1548 zil_lwb_write_done(zio_t *zio) 1549 { 1550 lwb_t *lwb = zio->io_private; 1551 spa_t *spa = zio->io_spa; 1552 zilog_t *zilog = lwb->lwb_zilog; 1553 avl_tree_t *t = &lwb->lwb_vdev_tree; 1554 void *cookie = NULL; 1555 zil_vdev_node_t *zv; 1556 lwb_t *nlwb; 1557 1558 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1559 1560 abd_free(zio->io_abd); 1561 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1562 lwb->lwb_buf = NULL; 1563 1564 mutex_enter(&zilog->zl_lock); 1565 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1566 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1567 lwb->lwb_child_zio = NULL; 1568 lwb->lwb_write_zio = NULL; 1569 1570 /* 1571 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not 1572 * called for it yet, and when it will be, it won't be able to make 1573 * its write ZIO a parent this ZIO. In such case we can not defer 1574 * our flushes or below may be a race between the done callbacks. 1575 */ 1576 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1577 if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED) 1578 nlwb = NULL; 1579 mutex_exit(&zilog->zl_lock); 1580 1581 if (avl_numnodes(t) == 0) 1582 return; 1583 1584 /* 1585 * If there was an IO error, we're not going to call zio_flush() 1586 * on these vdevs, so we simply empty the tree and free the 1587 * nodes. We avoid calling zio_flush() since there isn't any 1588 * good reason for doing so, after the lwb block failed to be 1589 * written out. 1590 * 1591 * Additionally, we don't perform any further error handling at 1592 * this point (e.g. setting "zcw_zio_error" appropriately), as 1593 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1594 * we expect any error seen here, to have been propagated to 1595 * that function). 1596 */ 1597 if (zio->io_error != 0) { 1598 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1599 kmem_free(zv, sizeof (*zv)); 1600 return; 1601 } 1602 1603 /* 1604 * If this lwb does not have any threads waiting for it to 1605 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1606 * command to the vdevs written to by "this" lwb, and instead 1607 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1608 * command for those vdevs. Thus, we merge the vdev tree of 1609 * "this" lwb with the vdev tree of the "next" lwb in the list, 1610 * and assume the "next" lwb will handle flushing the vdevs (or 1611 * deferring the flush(s) again). 1612 * 1613 * This is a useful performance optimization, especially for 1614 * workloads with lots of async write activity and few sync 1615 * write and/or fsync activity, as it has the potential to 1616 * coalesce multiple flush commands to a vdev into one. 1617 */ 1618 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) { 1619 zil_lwb_flush_defer(lwb, nlwb); 1620 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1621 return; 1622 } 1623 1624 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1625 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1626 if (vd != NULL) { 1627 /* 1628 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1629 * always used within "zio_flush". This means, 1630 * any errors when flushing the vdev(s), will 1631 * (unfortunately) not be handled correctly, 1632 * since these "zio_flush" errors will not be 1633 * propagated up to "zil_lwb_flush_vdevs_done". 1634 */ 1635 zio_flush(lwb->lwb_root_zio, vd); 1636 } 1637 kmem_free(zv, sizeof (*zv)); 1638 } 1639 } 1640 1641 /* 1642 * Build the zio dependency chain, which is used to preserve the ordering of 1643 * lwb completions that is required by the semantics of the ZIL. Each new lwb 1644 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio 1645 * cannot complete until the previous lwb's zio completes. 1646 * 1647 * This is required by the semantics of zil_commit(): the commit waiters 1648 * attached to the lwbs will be woken in the lwb zio's completion callback, 1649 * so this zio dependency graph ensures the waiters are woken in the correct 1650 * order (the same order the lwbs were created). 1651 */ 1652 static void 1653 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1654 { 1655 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1656 1657 lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb); 1658 if (prev_lwb == NULL || 1659 prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE) 1660 return; 1661 1662 /* 1663 * If the previous lwb's write hasn't already completed, we also want 1664 * to order the completion of the lwb write zios (above, we only order 1665 * the completion of the lwb root zios). This is required because of 1666 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1667 * 1668 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous 1669 * lwb will rely on this lwb to flush the vdevs written to by that 1670 * previous lwb. Thus, we need to ensure this lwb doesn't issue the 1671 * flush until after the previous lwb's write completes. We ensure 1672 * this ordering by setting the zio parent/child relationship here. 1673 * 1674 * Without this relationship on the lwb's write zio, it's possible 1675 * for this lwb's write to complete prior to the previous lwb's write 1676 * completing; and thus, the vdevs for the previous lwb would be 1677 * flushed prior to that lwb's data being written to those vdevs (the 1678 * vdevs are flushed in the lwb write zio's completion handler, 1679 * zil_lwb_write_done()). 1680 */ 1681 if (prev_lwb->lwb_state == LWB_STATE_ISSUED) { 1682 ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL); 1683 zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio); 1684 } else { 1685 ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1686 } 1687 1688 ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL); 1689 zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio); 1690 } 1691 1692 1693 /* 1694 * This function's purpose is to "open" an lwb such that it is ready to 1695 * accept new itxs being committed to it. This function is idempotent; if 1696 * the passed in lwb has already been opened, it is essentially a no-op. 1697 */ 1698 static void 1699 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1700 { 1701 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1702 1703 if (lwb->lwb_state != LWB_STATE_NEW) { 1704 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1705 return; 1706 } 1707 1708 mutex_enter(&zilog->zl_lock); 1709 lwb->lwb_state = LWB_STATE_OPENED; 1710 zilog->zl_last_lwb_opened = lwb; 1711 mutex_exit(&zilog->zl_lock); 1712 } 1713 1714 /* 1715 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1716 * initialized. Otherwise this should not be used directly; see 1717 * zl_max_block_size instead. 1718 */ 1719 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1720 1721 /* 1722 * Plan splitting of the provided burst size between several blocks. 1723 */ 1724 static uint_t 1725 zil_lwb_plan(zilog_t *zilog, uint64_t size, uint_t *minsize) 1726 { 1727 uint_t md = zilog->zl_max_block_size - sizeof (zil_chain_t); 1728 1729 if (size <= md) { 1730 /* 1731 * Small bursts are written as-is in one block. 1732 */ 1733 *minsize = size; 1734 return (size); 1735 } else if (size > 8 * md) { 1736 /* 1737 * Big bursts use maximum blocks. The first block size 1738 * is hard to predict, but it does not really matter. 1739 */ 1740 *minsize = 0; 1741 return (md); 1742 } 1743 1744 /* 1745 * Medium bursts try to divide evenly to better utilize several SLOG 1746 * VDEVs. The first block size we predict assuming the worst case of 1747 * maxing out others. Fall back to using maximum blocks if due to 1748 * large records or wasted space we can not predict anything better. 1749 */ 1750 uint_t s = size; 1751 uint_t n = DIV_ROUND_UP(s, md - sizeof (lr_write_t)); 1752 uint_t chunk = DIV_ROUND_UP(s, n); 1753 uint_t waste = zil_max_waste_space(zilog); 1754 waste = MAX(waste, zilog->zl_cur_max); 1755 if (chunk <= md - waste) { 1756 *minsize = MAX(s - (md - waste) * (n - 1), waste); 1757 return (chunk); 1758 } else { 1759 *minsize = 0; 1760 return (md); 1761 } 1762 } 1763 1764 /* 1765 * Try to predict next block size based on previous history. Make prediction 1766 * sufficient for 7 of 8 previous bursts. Don't try to save if the saving is 1767 * less then 50%, extra writes may cost more, but we don't want single spike 1768 * to badly affect our predictions. 1769 */ 1770 static uint_t 1771 zil_lwb_predict(zilog_t *zilog) 1772 { 1773 uint_t m, o; 1774 1775 /* If we are in the middle of a burst, take it into account also. */ 1776 if (zilog->zl_cur_size > 0) { 1777 o = zil_lwb_plan(zilog, zilog->zl_cur_size, &m); 1778 } else { 1779 o = UINT_MAX; 1780 m = 0; 1781 } 1782 1783 /* Find minimum optimal size. We don't need to go below that. */ 1784 for (int i = 0; i < ZIL_BURSTS; i++) 1785 o = MIN(o, zilog->zl_prev_opt[i]); 1786 1787 /* Find two biggest minimal first block sizes above the optimal. */ 1788 uint_t m1 = MAX(m, o), m2 = o; 1789 for (int i = 0; i < ZIL_BURSTS; i++) { 1790 m = zilog->zl_prev_min[i]; 1791 if (m >= m1) { 1792 m2 = m1; 1793 m1 = m; 1794 } else if (m > m2) { 1795 m2 = m; 1796 } 1797 } 1798 1799 /* 1800 * If second minimum size gives 50% saving -- use it. It may cost us 1801 * one additional write later, but the space saving is just too big. 1802 */ 1803 return ((m1 < m2 * 2) ? m1 : m2); 1804 } 1805 1806 /* 1807 * Close the log block for being issued and allocate the next one. 1808 * Has to be called under zl_issuer_lock to chain more lwbs. 1809 */ 1810 static lwb_t * 1811 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state) 1812 { 1813 uint64_t blksz, plan, plan2; 1814 1815 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1816 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1817 lwb->lwb_state = LWB_STATE_CLOSED; 1818 1819 /* 1820 * If there was an allocation failure then returned NULL will trigger 1821 * zil_commit_writer_stall() at the caller. This is inherently racy, 1822 * since allocation may not have happened yet. 1823 */ 1824 if (lwb->lwb_error != 0) 1825 return (NULL); 1826 1827 /* 1828 * Log blocks are pre-allocated. Here we select the size of the next 1829 * block, based on what's left of this burst and the previous history. 1830 * While we try to only write used part of the block, we can't just 1831 * always allocate the maximum block size because we can exhaust all 1832 * available pool log space, so we try to be reasonable. 1833 */ 1834 if (zilog->zl_cur_left > 0) { 1835 /* 1836 * We are in the middle of a burst and know how much is left. 1837 * But if workload is multi-threaded there may be more soon. 1838 * Try to predict what can it be and plan for the worst case. 1839 */ 1840 uint_t m; 1841 plan = zil_lwb_plan(zilog, zilog->zl_cur_left, &m); 1842 if (zilog->zl_parallel) { 1843 plan2 = zil_lwb_plan(zilog, zilog->zl_cur_left + 1844 zil_lwb_predict(zilog), &m); 1845 if (plan < plan2) 1846 plan = plan2; 1847 } 1848 } else { 1849 /* 1850 * The previous burst is done and we can only predict what 1851 * will come next. 1852 */ 1853 plan = zil_lwb_predict(zilog); 1854 } 1855 blksz = plan + sizeof (zil_chain_t); 1856 blksz = P2ROUNDUP_TYPED(blksz, ZIL_MIN_BLKSZ, uint64_t); 1857 blksz = MIN(blksz, zilog->zl_max_block_size); 1858 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, uint64_t, blksz, 1859 uint64_t, plan); 1860 1861 return (zil_alloc_lwb(zilog, blksz, NULL, 0, 0, state)); 1862 } 1863 1864 /* 1865 * Finalize previously closed block and issue the write zio. 1866 */ 1867 static void 1868 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1869 { 1870 spa_t *spa = zilog->zl_spa; 1871 zil_chain_t *zilc; 1872 boolean_t slog; 1873 zbookmark_phys_t zb; 1874 zio_priority_t prio; 1875 int error; 1876 1877 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED); 1878 1879 /* Actually fill the lwb with the data. */ 1880 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; 1881 itx = list_next(&lwb->lwb_itxs, itx)) 1882 zil_lwb_commit(zilog, lwb, itx); 1883 lwb->lwb_nused = lwb->lwb_nfilled; 1884 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax); 1885 1886 lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb, 1887 ZIO_FLAG_CANFAIL); 1888 1889 /* 1890 * The lwb is now ready to be issued, but it can be only if it already 1891 * got its block pointer allocated or the allocation has failed. 1892 * Otherwise leave it as-is, relying on some other thread to issue it 1893 * after allocating its block pointer via calling zil_lwb_write_issue() 1894 * for the previous lwb(s) in the chain. 1895 */ 1896 mutex_enter(&zilog->zl_lock); 1897 lwb->lwb_state = LWB_STATE_READY; 1898 if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) { 1899 mutex_exit(&zilog->zl_lock); 1900 return; 1901 } 1902 mutex_exit(&zilog->zl_lock); 1903 1904 next_lwb: 1905 if (lwb->lwb_slim) 1906 zilc = (zil_chain_t *)lwb->lwb_buf; 1907 else 1908 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax); 1909 int wsz = lwb->lwb_sz; 1910 if (lwb->lwb_error == 0) { 1911 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz); 1912 if (!lwb->lwb_slog || zilog->zl_cur_size <= zil_slog_bulk) 1913 prio = ZIO_PRIORITY_SYNC_WRITE; 1914 else 1915 prio = ZIO_PRIORITY_ASYNC_WRITE; 1916 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1917 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1918 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1919 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0, 1920 &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done, 1921 lwb, prio, ZIO_FLAG_CANFAIL, &zb); 1922 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1923 1924 if (lwb->lwb_slim) { 1925 /* For Slim ZIL only write what is used. */ 1926 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, 1927 int); 1928 ASSERT3S(wsz, <=, lwb->lwb_sz); 1929 zio_shrink(lwb->lwb_write_zio, wsz); 1930 wsz = lwb->lwb_write_zio->io_size; 1931 } 1932 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); 1933 zilc->zc_pad = 0; 1934 zilc->zc_nused = lwb->lwb_nused; 1935 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1936 } else { 1937 /* 1938 * We can't write the lwb if there was an allocation failure, 1939 * so create a null zio instead just to maintain dependencies. 1940 */ 1941 lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL, 1942 zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL); 1943 lwb->lwb_write_zio->io_error = lwb->lwb_error; 1944 } 1945 if (lwb->lwb_child_zio) 1946 zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio); 1947 1948 /* 1949 * Open transaction to allocate the next block pointer. 1950 */ 1951 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1952 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1953 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1954 uint64_t txg = dmu_tx_get_txg(tx); 1955 1956 /* 1957 * Allocate next the block pointer unless we are already in error. 1958 */ 1959 lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb); 1960 blkptr_t *bp = &zilc->zc_next_blk; 1961 BP_ZERO(bp); 1962 error = lwb->lwb_error; 1963 if (error == 0) { 1964 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz, 1965 &slog); 1966 } 1967 if (error == 0) { 1968 ASSERT3U(BP_GET_LOGICAL_BIRTH(bp), ==, txg); 1969 BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 : 1970 ZIO_CHECKSUM_ZILOG); 1971 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1972 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1973 } 1974 1975 /* 1976 * Reduce TXG open time by incrementing inflight counter and committing 1977 * the transaciton. zil_sync() will wait for it to return to zero. 1978 */ 1979 mutex_enter(&zilog->zl_lwb_io_lock); 1980 lwb->lwb_issued_txg = txg; 1981 zilog->zl_lwb_inflight[txg & TXG_MASK]++; 1982 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); 1983 mutex_exit(&zilog->zl_lwb_io_lock); 1984 dmu_tx_commit(tx); 1985 1986 spa_config_enter(spa, SCL_STATE, lwb, RW_READER); 1987 1988 /* 1989 * We've completed all potentially blocking operations. Update the 1990 * nlwb and allow it proceed without possible lock order reversals. 1991 */ 1992 mutex_enter(&zilog->zl_lock); 1993 zil_lwb_set_zio_dependency(zilog, lwb); 1994 lwb->lwb_state = LWB_STATE_ISSUED; 1995 1996 if (nlwb) { 1997 nlwb->lwb_blk = *bp; 1998 nlwb->lwb_error = error; 1999 nlwb->lwb_slog = slog; 2000 nlwb->lwb_alloc_txg = txg; 2001 if (nlwb->lwb_state != LWB_STATE_READY) 2002 nlwb = NULL; 2003 } 2004 mutex_exit(&zilog->zl_lock); 2005 2006 if (lwb->lwb_slog) { 2007 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); 2008 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, 2009 lwb->lwb_nused); 2010 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write, 2011 wsz); 2012 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc, 2013 BP_GET_LSIZE(&lwb->lwb_blk)); 2014 } else { 2015 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); 2016 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, 2017 lwb->lwb_nused); 2018 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write, 2019 wsz); 2020 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc, 2021 BP_GET_LSIZE(&lwb->lwb_blk)); 2022 } 2023 lwb->lwb_issued_timestamp = gethrtime(); 2024 if (lwb->lwb_child_zio) 2025 zio_nowait(lwb->lwb_child_zio); 2026 zio_nowait(lwb->lwb_write_zio); 2027 zio_nowait(lwb->lwb_root_zio); 2028 2029 /* 2030 * If nlwb was ready when we gave it the block pointer, 2031 * it is on us to issue it and possibly following ones. 2032 */ 2033 lwb = nlwb; 2034 if (lwb) 2035 goto next_lwb; 2036 } 2037 2038 /* 2039 * Maximum amount of data that can be put into single log block. 2040 */ 2041 uint64_t 2042 zil_max_log_data(zilog_t *zilog, size_t hdrsize) 2043 { 2044 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize); 2045 } 2046 2047 /* 2048 * Maximum amount of log space we agree to waste to reduce number of 2049 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%). 2050 */ 2051 static inline uint64_t 2052 zil_max_waste_space(zilog_t *zilog) 2053 { 2054 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16); 2055 } 2056 2057 /* 2058 * Maximum amount of write data for WR_COPIED. For correctness, consumers 2059 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 2060 * maximum sized log block, because each WR_COPIED record must fit in a 2061 * single log block. Below that it is a tradeoff of additional memory copy 2062 * and possibly worse log space efficiency vs additional range lock/unlock. 2063 */ 2064 static uint_t zil_maxcopied = 7680; 2065 2066 uint64_t 2067 zil_max_copied_data(zilog_t *zilog) 2068 { 2069 uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 2070 return (MIN(max_data, zil_maxcopied)); 2071 } 2072 2073 static uint64_t 2074 zil_itx_record_size(itx_t *itx) 2075 { 2076 lr_t *lr = &itx->itx_lr; 2077 2078 if (lr->lrc_txtype == TX_COMMIT) 2079 return (0); 2080 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t)); 2081 return (lr->lrc_reclen); 2082 } 2083 2084 static uint64_t 2085 zil_itx_data_size(itx_t *itx) 2086 { 2087 lr_t *lr = &itx->itx_lr; 2088 lr_write_t *lrw = (lr_write_t *)lr; 2089 2090 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2091 ASSERT3U(lr->lrc_reclen, ==, sizeof (lr_write_t)); 2092 return (P2ROUNDUP_TYPED(lrw->lr_length, sizeof (uint64_t), 2093 uint64_t)); 2094 } 2095 return (0); 2096 } 2097 2098 static uint64_t 2099 zil_itx_full_size(itx_t *itx) 2100 { 2101 lr_t *lr = &itx->itx_lr; 2102 2103 if (lr->lrc_txtype == TX_COMMIT) 2104 return (0); 2105 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t)); 2106 return (lr->lrc_reclen + zil_itx_data_size(itx)); 2107 } 2108 2109 /* 2110 * Estimate space needed in the lwb for the itx. Allocate more lwbs or 2111 * split the itx as needed, but don't touch the actual transaction data. 2112 * Has to be called under zl_issuer_lock to call zil_lwb_write_close() 2113 * to chain more lwbs. 2114 */ 2115 static lwb_t * 2116 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs) 2117 { 2118 itx_t *citx; 2119 lr_t *lr, *clr; 2120 lr_write_t *lrw; 2121 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data; 2122 2123 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2124 ASSERT3P(lwb, !=, NULL); 2125 ASSERT3P(lwb->lwb_buf, !=, NULL); 2126 2127 zil_lwb_write_open(zilog, lwb); 2128 2129 lr = &itx->itx_lr; 2130 lrw = (lr_write_t *)lr; 2131 2132 /* 2133 * A commit itx doesn't represent any on-disk state; instead 2134 * it's simply used as a place holder on the commit list, and 2135 * provides a mechanism for attaching a "commit waiter" onto the 2136 * correct lwb (such that the waiter can be signalled upon 2137 * completion of that lwb). Thus, we don't process this itx's 2138 * log record if it's a commit itx (these itx's don't have log 2139 * records), and instead link the itx's waiter onto the lwb's 2140 * list of waiters. 2141 * 2142 * For more details, see the comment above zil_commit(). 2143 */ 2144 if (lr->lrc_txtype == TX_COMMIT) { 2145 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 2146 list_insert_tail(&lwb->lwb_itxs, itx); 2147 return (lwb); 2148 } 2149 2150 reclen = lr->lrc_reclen; 2151 ASSERT3U(reclen, >=, sizeof (lr_t)); 2152 ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0)); 2153 dlen = zil_itx_data_size(itx); 2154 2155 cont: 2156 /* 2157 * If this record won't fit in the current log block, start a new one. 2158 * For WR_NEED_COPY optimize layout for minimal number of chunks. 2159 */ 2160 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused; 2161 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 2162 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 2163 lwb_sp < zil_max_waste_space(zilog) && 2164 (dlen % max_log_data == 0 || 2165 lwb_sp < reclen + dlen % max_log_data))) { 2166 list_insert_tail(ilwbs, lwb); 2167 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED); 2168 if (lwb == NULL) 2169 return (NULL); 2170 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused; 2171 } 2172 2173 /* 2174 * There must be enough space in the log block to hold reclen. 2175 * For WR_COPIED, we need to fit the whole record in one block, 2176 * and reclen is the write record header size + the data size. 2177 * For WR_NEED_COPY, we can create multiple records, splitting 2178 * the data into multiple blocks, so we only need to fit one 2179 * word of data per block; in this case reclen is just the header 2180 * size (no data). 2181 */ 2182 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 2183 2184 dnow = MIN(dlen, lwb_sp - reclen); 2185 if (dlen > dnow) { 2186 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE); 2187 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY); 2188 citx = zil_itx_clone(itx); 2189 clr = &citx->itx_lr; 2190 lr_write_t *clrw = (lr_write_t *)clr; 2191 clrw->lr_length = dnow; 2192 lrw->lr_offset += dnow; 2193 lrw->lr_length -= dnow; 2194 zilog->zl_cur_left -= dnow; 2195 } else { 2196 citx = itx; 2197 clr = lr; 2198 } 2199 2200 /* 2201 * We're actually making an entry, so update lrc_seq to be the 2202 * log record sequence number. Note that this is generally not 2203 * equal to the itx sequence number because not all transactions 2204 * are synchronous, and sometimes spa_sync() gets there first. 2205 */ 2206 clr->lrc_seq = ++zilog->zl_lr_seq; 2207 2208 lwb->lwb_nused += reclen + dnow; 2209 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax); 2210 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 2211 2212 zil_lwb_add_txg(lwb, lr->lrc_txg); 2213 list_insert_tail(&lwb->lwb_itxs, citx); 2214 2215 dlen -= dnow; 2216 if (dlen > 0) 2217 goto cont; 2218 2219 if (lr->lrc_txtype == TX_WRITE && 2220 lr->lrc_txg > spa_freeze_txg(zilog->zl_spa)) 2221 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg); 2222 2223 return (lwb); 2224 } 2225 2226 /* 2227 * Fill the actual transaction data into the lwb, following zil_lwb_assign(). 2228 * Does not require locking. 2229 */ 2230 static void 2231 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx) 2232 { 2233 lr_t *lr, *lrb; 2234 lr_write_t *lrw, *lrwb; 2235 char *lr_buf; 2236 uint64_t dlen, reclen; 2237 2238 lr = &itx->itx_lr; 2239 lrw = (lr_write_t *)lr; 2240 2241 if (lr->lrc_txtype == TX_COMMIT) 2242 return; 2243 2244 reclen = lr->lrc_reclen; 2245 dlen = zil_itx_data_size(itx); 2246 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled); 2247 2248 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled; 2249 memcpy(lr_buf, lr, reclen); 2250 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */ 2251 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */ 2252 2253 ZIL_STAT_BUMP(zilog, zil_itx_count); 2254 2255 /* 2256 * If it's a write, fetch the data or get its blkptr as appropriate. 2257 */ 2258 if (lr->lrc_txtype == TX_WRITE) { 2259 if (itx->itx_wr_state == WR_COPIED) { 2260 ZIL_STAT_BUMP(zilog, zil_itx_copied_count); 2261 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, 2262 lrw->lr_length); 2263 } else { 2264 char *dbuf; 2265 int error; 2266 2267 if (itx->itx_wr_state == WR_NEED_COPY) { 2268 dbuf = lr_buf + reclen; 2269 lrb->lrc_reclen += dlen; 2270 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); 2271 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, 2272 dlen); 2273 } else { 2274 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 2275 dbuf = NULL; 2276 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); 2277 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, 2278 lrw->lr_length); 2279 if (lwb->lwb_child_zio == NULL) { 2280 lwb->lwb_child_zio = zio_null(NULL, 2281 zilog->zl_spa, NULL, NULL, NULL, 2282 ZIO_FLAG_CANFAIL); 2283 } 2284 } 2285 2286 /* 2287 * The "lwb_child_zio" we pass in will become a child of 2288 * "lwb_write_zio", when one is created, so one will be 2289 * a parent of any zio's created by the "zl_get_data". 2290 * This way "lwb_write_zio" will first wait for children 2291 * block pointers before own writing, and then for their 2292 * writing completion before the vdev cache flushing. 2293 */ 2294 error = zilog->zl_get_data(itx->itx_private, 2295 itx->itx_gen, lrwb, dbuf, lwb, 2296 lwb->lwb_child_zio); 2297 if (dbuf != NULL && error == 0) { 2298 /* Zero any padding bytes in the last block. */ 2299 memset((char *)dbuf + lrwb->lr_length, 0, 2300 dlen - lrwb->lr_length); 2301 } 2302 2303 /* 2304 * Typically, the only return values we should see from 2305 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or 2306 * EALREADY. However, it is also possible to see other 2307 * error values such as ENOSPC or EINVAL from 2308 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or 2309 * ENXIO as well as a multitude of others from the 2310 * block layer through dmu_buf_hold() -> dbuf_read() 2311 * -> zio_wait(), as well as through dmu_read() -> 2312 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() -> 2313 * zio_wait(). When these errors happen, we can assume 2314 * that neither an immediate write nor an indirect 2315 * write occurred, so we need to fall back to 2316 * txg_wait_synced(). This is unusual, so we print to 2317 * dmesg whenever one of these errors occurs. 2318 */ 2319 switch (error) { 2320 case 0: 2321 break; 2322 default: 2323 cmn_err(CE_WARN, "zil_lwb_commit() received " 2324 "unexpected error %d from ->zl_get_data()" 2325 ". Falling back to txg_wait_synced().", 2326 error); 2327 zfs_fallthrough; 2328 case EIO: 2329 txg_wait_synced(zilog->zl_dmu_pool, 2330 lr->lrc_txg); 2331 zfs_fallthrough; 2332 case ENOENT: 2333 zfs_fallthrough; 2334 case EEXIST: 2335 zfs_fallthrough; 2336 case EALREADY: 2337 return; 2338 } 2339 } 2340 } 2341 2342 lwb->lwb_nfilled += reclen + dlen; 2343 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused); 2344 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t))); 2345 } 2346 2347 itx_t * 2348 zil_itx_create(uint64_t txtype, size_t olrsize) 2349 { 2350 size_t itxsize, lrsize; 2351 itx_t *itx; 2352 2353 ASSERT3U(olrsize, >=, sizeof (lr_t)); 2354 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 2355 ASSERT3U(lrsize, >=, olrsize); 2356 itxsize = offsetof(itx_t, itx_lr) + lrsize; 2357 2358 itx = zio_data_buf_alloc(itxsize); 2359 itx->itx_lr.lrc_txtype = txtype; 2360 itx->itx_lr.lrc_reclen = lrsize; 2361 itx->itx_lr.lrc_seq = 0; /* defensive */ 2362 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); 2363 itx->itx_sync = B_TRUE; /* default is synchronous */ 2364 itx->itx_callback = NULL; 2365 itx->itx_callback_data = NULL; 2366 itx->itx_size = itxsize; 2367 2368 return (itx); 2369 } 2370 2371 static itx_t * 2372 zil_itx_clone(itx_t *oitx) 2373 { 2374 ASSERT3U(oitx->itx_size, >=, sizeof (itx_t)); 2375 ASSERT3U(oitx->itx_size, ==, 2376 offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen); 2377 2378 itx_t *itx = zio_data_buf_alloc(oitx->itx_size); 2379 memcpy(itx, oitx, oitx->itx_size); 2380 itx->itx_callback = NULL; 2381 itx->itx_callback_data = NULL; 2382 return (itx); 2383 } 2384 2385 void 2386 zil_itx_destroy(itx_t *itx) 2387 { 2388 ASSERT3U(itx->itx_size, >=, sizeof (itx_t)); 2389 ASSERT3U(itx->itx_lr.lrc_reclen, ==, 2390 itx->itx_size - offsetof(itx_t, itx_lr)); 2391 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 2392 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2393 2394 if (itx->itx_callback != NULL) 2395 itx->itx_callback(itx->itx_callback_data); 2396 2397 zio_data_buf_free(itx, itx->itx_size); 2398 } 2399 2400 /* 2401 * Free up the sync and async itxs. The itxs_t has already been detached 2402 * so no locks are needed. 2403 */ 2404 static void 2405 zil_itxg_clean(void *arg) 2406 { 2407 itx_t *itx; 2408 list_t *list; 2409 avl_tree_t *t; 2410 void *cookie; 2411 itxs_t *itxs = arg; 2412 itx_async_node_t *ian; 2413 2414 list = &itxs->i_sync_list; 2415 while ((itx = list_remove_head(list)) != NULL) { 2416 /* 2417 * In the general case, commit itxs will not be found 2418 * here, as they'll be committed to an lwb via 2419 * zil_lwb_assign(), and free'd in that function. Having 2420 * said that, it is still possible for commit itxs to be 2421 * found here, due to the following race: 2422 * 2423 * - a thread calls zil_commit() which assigns the 2424 * commit itx to a per-txg i_sync_list 2425 * - zil_itxg_clean() is called (e.g. via spa_sync()) 2426 * while the waiter is still on the i_sync_list 2427 * 2428 * There's nothing to prevent syncing the txg while the 2429 * waiter is on the i_sync_list. This normally doesn't 2430 * happen because spa_sync() is slower than zil_commit(), 2431 * but if zil_commit() calls txg_wait_synced() (e.g. 2432 * because zil_create() or zil_commit_writer_stall() is 2433 * called) we will hit this case. 2434 */ 2435 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 2436 zil_commit_waiter_skip(itx->itx_private); 2437 2438 zil_itx_destroy(itx); 2439 } 2440 2441 cookie = NULL; 2442 t = &itxs->i_async_tree; 2443 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2444 list = &ian->ia_list; 2445 while ((itx = list_remove_head(list)) != NULL) { 2446 /* commit itxs should never be on the async lists. */ 2447 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2448 zil_itx_destroy(itx); 2449 } 2450 list_destroy(list); 2451 kmem_free(ian, sizeof (itx_async_node_t)); 2452 } 2453 avl_destroy(t); 2454 2455 kmem_free(itxs, sizeof (itxs_t)); 2456 } 2457 2458 static int 2459 zil_aitx_compare(const void *x1, const void *x2) 2460 { 2461 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 2462 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 2463 2464 return (TREE_CMP(o1, o2)); 2465 } 2466 2467 /* 2468 * Remove all async itx with the given oid. 2469 */ 2470 void 2471 zil_remove_async(zilog_t *zilog, uint64_t oid) 2472 { 2473 uint64_t otxg, txg; 2474 itx_async_node_t *ian, ian_search; 2475 avl_tree_t *t; 2476 avl_index_t where; 2477 list_t clean_list; 2478 itx_t *itx; 2479 2480 ASSERT(oid != 0); 2481 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 2482 2483 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2484 otxg = ZILTEST_TXG; 2485 else 2486 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2487 2488 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2489 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2490 2491 mutex_enter(&itxg->itxg_lock); 2492 if (itxg->itxg_txg != txg) { 2493 mutex_exit(&itxg->itxg_lock); 2494 continue; 2495 } 2496 2497 /* 2498 * Locate the object node and append its list. 2499 */ 2500 t = &itxg->itxg_itxs->i_async_tree; 2501 ian_search.ia_foid = oid; 2502 ian = avl_find(t, &ian_search, &where); 2503 if (ian != NULL) 2504 list_move_tail(&clean_list, &ian->ia_list); 2505 mutex_exit(&itxg->itxg_lock); 2506 } 2507 while ((itx = list_remove_head(&clean_list)) != NULL) { 2508 /* commit itxs should never be on the async lists. */ 2509 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2510 zil_itx_destroy(itx); 2511 } 2512 list_destroy(&clean_list); 2513 } 2514 2515 void 2516 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2517 { 2518 uint64_t txg; 2519 itxg_t *itxg; 2520 itxs_t *itxs, *clean = NULL; 2521 2522 /* 2523 * Ensure the data of a renamed file is committed before the rename. 2524 */ 2525 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2526 zil_async_to_sync(zilog, itx->itx_oid); 2527 2528 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2529 txg = ZILTEST_TXG; 2530 else 2531 txg = dmu_tx_get_txg(tx); 2532 2533 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2534 mutex_enter(&itxg->itxg_lock); 2535 itxs = itxg->itxg_itxs; 2536 if (itxg->itxg_txg != txg) { 2537 if (itxs != NULL) { 2538 /* 2539 * The zil_clean callback hasn't got around to cleaning 2540 * this itxg. Save the itxs for release below. 2541 * This should be rare. 2542 */ 2543 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2544 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2545 clean = itxg->itxg_itxs; 2546 } 2547 itxg->itxg_txg = txg; 2548 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2549 KM_SLEEP); 2550 2551 list_create(&itxs->i_sync_list, sizeof (itx_t), 2552 offsetof(itx_t, itx_node)); 2553 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2554 sizeof (itx_async_node_t), 2555 offsetof(itx_async_node_t, ia_node)); 2556 } 2557 if (itx->itx_sync) { 2558 list_insert_tail(&itxs->i_sync_list, itx); 2559 } else { 2560 avl_tree_t *t = &itxs->i_async_tree; 2561 uint64_t foid = 2562 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2563 itx_async_node_t *ian; 2564 avl_index_t where; 2565 2566 ian = avl_find(t, &foid, &where); 2567 if (ian == NULL) { 2568 ian = kmem_alloc(sizeof (itx_async_node_t), 2569 KM_SLEEP); 2570 list_create(&ian->ia_list, sizeof (itx_t), 2571 offsetof(itx_t, itx_node)); 2572 ian->ia_foid = foid; 2573 avl_insert(t, ian, where); 2574 } 2575 list_insert_tail(&ian->ia_list, itx); 2576 } 2577 2578 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2579 2580 /* 2581 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2582 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2583 * need to be careful to always dirty the ZIL using the "real" 2584 * TXG (not itxg_txg) even when the SPA is frozen. 2585 */ 2586 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2587 mutex_exit(&itxg->itxg_lock); 2588 2589 /* Release the old itxs now we've dropped the lock */ 2590 if (clean != NULL) 2591 zil_itxg_clean(clean); 2592 } 2593 2594 /* 2595 * If there are any in-memory intent log transactions which have now been 2596 * synced then start up a taskq to free them. We should only do this after we 2597 * have written out the uberblocks (i.e. txg has been committed) so that 2598 * don't inadvertently clean out in-memory log records that would be required 2599 * by zil_commit(). 2600 */ 2601 void 2602 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2603 { 2604 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2605 itxs_t *clean_me; 2606 2607 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2608 2609 mutex_enter(&itxg->itxg_lock); 2610 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2611 mutex_exit(&itxg->itxg_lock); 2612 return; 2613 } 2614 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2615 ASSERT3U(itxg->itxg_txg, !=, 0); 2616 clean_me = itxg->itxg_itxs; 2617 itxg->itxg_itxs = NULL; 2618 itxg->itxg_txg = 0; 2619 mutex_exit(&itxg->itxg_lock); 2620 /* 2621 * Preferably start a task queue to free up the old itxs but 2622 * if taskq_dispatch can't allocate resources to do that then 2623 * free it in-line. This should be rare. Note, using TQ_SLEEP 2624 * created a bad performance problem. 2625 */ 2626 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2627 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2628 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2629 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2630 if (id == TASKQID_INVALID) 2631 zil_itxg_clean(clean_me); 2632 } 2633 2634 /* 2635 * This function will traverse the queue of itxs that need to be 2636 * committed, and move them onto the ZIL's zl_itx_commit_list. 2637 */ 2638 static uint64_t 2639 zil_get_commit_list(zilog_t *zilog) 2640 { 2641 uint64_t otxg, txg, wtxg = 0; 2642 list_t *commit_list = &zilog->zl_itx_commit_list; 2643 2644 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2645 2646 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2647 otxg = ZILTEST_TXG; 2648 else 2649 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2650 2651 /* 2652 * This is inherently racy, since there is nothing to prevent 2653 * the last synced txg from changing. That's okay since we'll 2654 * only commit things in the future. 2655 */ 2656 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2657 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2658 2659 mutex_enter(&itxg->itxg_lock); 2660 if (itxg->itxg_txg != txg) { 2661 mutex_exit(&itxg->itxg_lock); 2662 continue; 2663 } 2664 2665 /* 2666 * If we're adding itx records to the zl_itx_commit_list, 2667 * then the zil better be dirty in this "txg". We can assert 2668 * that here since we're holding the itxg_lock which will 2669 * prevent spa_sync from cleaning it. Once we add the itxs 2670 * to the zl_itx_commit_list we must commit it to disk even 2671 * if it's unnecessary (i.e. the txg was synced). 2672 */ 2673 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2674 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2675 list_t *sync_list = &itxg->itxg_itxs->i_sync_list; 2676 itx_t *itx = NULL; 2677 if (unlikely(zilog->zl_suspend > 0)) { 2678 /* 2679 * ZIL was just suspended, but we lost the race. 2680 * Allow all earlier itxs to be committed, but ask 2681 * caller to do txg_wait_synced(txg) for any new. 2682 */ 2683 if (!list_is_empty(sync_list)) 2684 wtxg = MAX(wtxg, txg); 2685 } else { 2686 itx = list_head(sync_list); 2687 list_move_tail(commit_list, sync_list); 2688 } 2689 2690 mutex_exit(&itxg->itxg_lock); 2691 2692 while (itx != NULL) { 2693 uint64_t s = zil_itx_full_size(itx); 2694 zilog->zl_cur_size += s; 2695 zilog->zl_cur_left += s; 2696 s = zil_itx_record_size(itx); 2697 zilog->zl_cur_max = MAX(zilog->zl_cur_max, s); 2698 itx = list_next(commit_list, itx); 2699 } 2700 } 2701 return (wtxg); 2702 } 2703 2704 /* 2705 * Move the async itxs for a specified object to commit into sync lists. 2706 */ 2707 void 2708 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2709 { 2710 uint64_t otxg, txg; 2711 itx_async_node_t *ian, ian_search; 2712 avl_tree_t *t; 2713 avl_index_t where; 2714 2715 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2716 otxg = ZILTEST_TXG; 2717 else 2718 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2719 2720 /* 2721 * This is inherently racy, since there is nothing to prevent 2722 * the last synced txg from changing. 2723 */ 2724 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2725 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2726 2727 mutex_enter(&itxg->itxg_lock); 2728 if (itxg->itxg_txg != txg) { 2729 mutex_exit(&itxg->itxg_lock); 2730 continue; 2731 } 2732 2733 /* 2734 * If a foid is specified then find that node and append its 2735 * list. Otherwise walk the tree appending all the lists 2736 * to the sync list. We add to the end rather than the 2737 * beginning to ensure the create has happened. 2738 */ 2739 t = &itxg->itxg_itxs->i_async_tree; 2740 if (foid != 0) { 2741 ian_search.ia_foid = foid; 2742 ian = avl_find(t, &ian_search, &where); 2743 if (ian != NULL) { 2744 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2745 &ian->ia_list); 2746 } 2747 } else { 2748 void *cookie = NULL; 2749 2750 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2751 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2752 &ian->ia_list); 2753 list_destroy(&ian->ia_list); 2754 kmem_free(ian, sizeof (itx_async_node_t)); 2755 } 2756 } 2757 mutex_exit(&itxg->itxg_lock); 2758 } 2759 } 2760 2761 /* 2762 * This function will prune commit itxs that are at the head of the 2763 * commit list (it won't prune past the first non-commit itx), and 2764 * either: a) attach them to the last lwb that's still pending 2765 * completion, or b) skip them altogether. 2766 * 2767 * This is used as a performance optimization to prevent commit itxs 2768 * from generating new lwbs when it's unnecessary to do so. 2769 */ 2770 static void 2771 zil_prune_commit_list(zilog_t *zilog) 2772 { 2773 itx_t *itx; 2774 2775 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2776 2777 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2778 lr_t *lrc = &itx->itx_lr; 2779 if (lrc->lrc_txtype != TX_COMMIT) 2780 break; 2781 2782 mutex_enter(&zilog->zl_lock); 2783 2784 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2785 if (last_lwb == NULL || 2786 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2787 /* 2788 * All of the itxs this waiter was waiting on 2789 * must have already completed (or there were 2790 * never any itx's for it to wait on), so it's 2791 * safe to skip this waiter and mark it done. 2792 */ 2793 zil_commit_waiter_skip(itx->itx_private); 2794 } else { 2795 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2796 } 2797 2798 mutex_exit(&zilog->zl_lock); 2799 2800 list_remove(&zilog->zl_itx_commit_list, itx); 2801 zil_itx_destroy(itx); 2802 } 2803 2804 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2805 } 2806 2807 static void 2808 zil_commit_writer_stall(zilog_t *zilog) 2809 { 2810 /* 2811 * When zio_alloc_zil() fails to allocate the next lwb block on 2812 * disk, we must call txg_wait_synced() to ensure all of the 2813 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2814 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2815 * to zil_process_commit_list()) will have to call zil_create(), 2816 * and start a new ZIL chain. 2817 * 2818 * Since zil_alloc_zil() failed, the lwb that was previously 2819 * issued does not have a pointer to the "next" lwb on disk. 2820 * Thus, if another ZIL writer thread was to allocate the "next" 2821 * on-disk lwb, that block could be leaked in the event of a 2822 * crash (because the previous lwb on-disk would not point to 2823 * it). 2824 * 2825 * We must hold the zilog's zl_issuer_lock while we do this, to 2826 * ensure no new threads enter zil_process_commit_list() until 2827 * all lwb's in the zl_lwb_list have been synced and freed 2828 * (which is achieved via the txg_wait_synced() call). 2829 */ 2830 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2831 txg_wait_synced(zilog->zl_dmu_pool, 0); 2832 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2833 } 2834 2835 static void 2836 zil_burst_done(zilog_t *zilog) 2837 { 2838 if (!list_is_empty(&zilog->zl_itx_commit_list) || 2839 zilog->zl_cur_size == 0) 2840 return; 2841 2842 if (zilog->zl_parallel) 2843 zilog->zl_parallel--; 2844 2845 uint_t r = (zilog->zl_prev_rotor + 1) & (ZIL_BURSTS - 1); 2846 zilog->zl_prev_rotor = r; 2847 zilog->zl_prev_opt[r] = zil_lwb_plan(zilog, zilog->zl_cur_size, 2848 &zilog->zl_prev_min[r]); 2849 2850 zilog->zl_cur_size = 0; 2851 zilog->zl_cur_max = 0; 2852 zilog->zl_cur_left = 0; 2853 } 2854 2855 /* 2856 * This function will traverse the commit list, creating new lwbs as 2857 * needed, and committing the itxs from the commit list to these newly 2858 * created lwbs. Additionally, as a new lwb is created, the previous 2859 * lwb will be issued to the zio layer to be written to disk. 2860 */ 2861 static void 2862 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs) 2863 { 2864 spa_t *spa = zilog->zl_spa; 2865 list_t nolwb_itxs; 2866 list_t nolwb_waiters; 2867 lwb_t *lwb, *plwb; 2868 itx_t *itx; 2869 2870 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2871 2872 /* 2873 * Return if there's nothing to commit before we dirty the fs by 2874 * calling zil_create(). 2875 */ 2876 if (list_is_empty(&zilog->zl_itx_commit_list)) 2877 return; 2878 2879 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2880 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2881 offsetof(zil_commit_waiter_t, zcw_node)); 2882 2883 lwb = list_tail(&zilog->zl_lwb_list); 2884 if (lwb == NULL) { 2885 lwb = zil_create(zilog); 2886 } else { 2887 /* 2888 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2889 * have already been created (zl_lwb_list not empty). 2890 */ 2891 zil_commit_activate_saxattr_feature(zilog); 2892 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 2893 lwb->lwb_state == LWB_STATE_OPENED); 2894 2895 /* 2896 * If the lwb is still opened, it means the workload is really 2897 * multi-threaded and we won the chance of write aggregation. 2898 * If it is not opened yet, but previous lwb is still not 2899 * flushed, it still means the workload is multi-threaded, but 2900 * there was too much time between the commits to aggregate, so 2901 * we try aggregation next times, but without too much hopes. 2902 */ 2903 if (lwb->lwb_state == LWB_STATE_OPENED) { 2904 zilog->zl_parallel = ZIL_BURSTS; 2905 } else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) 2906 != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) { 2907 zilog->zl_parallel = MAX(zilog->zl_parallel, 2908 ZIL_BURSTS / 2); 2909 } 2910 } 2911 2912 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) { 2913 lr_t *lrc = &itx->itx_lr; 2914 uint64_t txg = lrc->lrc_txg; 2915 2916 ASSERT3U(txg, !=, 0); 2917 2918 if (lrc->lrc_txtype == TX_COMMIT) { 2919 DTRACE_PROBE2(zil__process__commit__itx, 2920 zilog_t *, zilog, itx_t *, itx); 2921 } else { 2922 DTRACE_PROBE2(zil__process__normal__itx, 2923 zilog_t *, zilog, itx_t *, itx); 2924 } 2925 2926 boolean_t synced = txg <= spa_last_synced_txg(spa); 2927 boolean_t frozen = txg > spa_freeze_txg(spa); 2928 2929 /* 2930 * If the txg of this itx has already been synced out, then 2931 * we don't need to commit this itx to an lwb. This is 2932 * because the data of this itx will have already been 2933 * written to the main pool. This is inherently racy, and 2934 * it's still ok to commit an itx whose txg has already 2935 * been synced; this will result in a write that's 2936 * unnecessary, but will do no harm. 2937 * 2938 * With that said, we always want to commit TX_COMMIT itxs 2939 * to an lwb, regardless of whether or not that itx's txg 2940 * has been synced out. We do this to ensure any OPENED lwb 2941 * will always have at least one zil_commit_waiter_t linked 2942 * to the lwb. 2943 * 2944 * As a counter-example, if we skipped TX_COMMIT itx's 2945 * whose txg had already been synced, the following 2946 * situation could occur if we happened to be racing with 2947 * spa_sync: 2948 * 2949 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2950 * itx's txg is 10 and the last synced txg is 9. 2951 * 2. spa_sync finishes syncing out txg 10. 2952 * 3. We move to the next itx in the list, it's a TX_COMMIT 2953 * whose txg is 10, so we skip it rather than committing 2954 * it to the lwb used in (1). 2955 * 2956 * If the itx that is skipped in (3) is the last TX_COMMIT 2957 * itx in the commit list, than it's possible for the lwb 2958 * used in (1) to remain in the OPENED state indefinitely. 2959 * 2960 * To prevent the above scenario from occurring, ensuring 2961 * that once an lwb is OPENED it will transition to ISSUED 2962 * and eventually DONE, we always commit TX_COMMIT itx's to 2963 * an lwb here, even if that itx's txg has already been 2964 * synced. 2965 * 2966 * Finally, if the pool is frozen, we _always_ commit the 2967 * itx. The point of freezing the pool is to prevent data 2968 * from being written to the main pool via spa_sync, and 2969 * instead rely solely on the ZIL to persistently store the 2970 * data; i.e. when the pool is frozen, the last synced txg 2971 * value can't be trusted. 2972 */ 2973 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2974 if (lwb != NULL) { 2975 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs); 2976 if (lwb == NULL) { 2977 list_insert_tail(&nolwb_itxs, itx); 2978 } else if ((zcw->zcw_lwb != NULL && 2979 zcw->zcw_lwb != lwb) || zcw->zcw_done) { 2980 /* 2981 * Our lwb is done, leave the rest of 2982 * itx list to somebody else who care. 2983 */ 2984 zilog->zl_parallel = ZIL_BURSTS; 2985 zilog->zl_cur_left -= 2986 zil_itx_full_size(itx); 2987 break; 2988 } 2989 } else { 2990 if (lrc->lrc_txtype == TX_COMMIT) { 2991 zil_commit_waiter_link_nolwb( 2992 itx->itx_private, &nolwb_waiters); 2993 } 2994 list_insert_tail(&nolwb_itxs, itx); 2995 } 2996 zilog->zl_cur_left -= zil_itx_full_size(itx); 2997 } else { 2998 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2999 zilog->zl_cur_left -= zil_itx_full_size(itx); 3000 zil_itx_destroy(itx); 3001 } 3002 } 3003 3004 if (lwb == NULL) { 3005 /* 3006 * This indicates zio_alloc_zil() failed to allocate the 3007 * "next" lwb on-disk. When this happens, we must stall 3008 * the ZIL write pipeline; see the comment within 3009 * zil_commit_writer_stall() for more details. 3010 */ 3011 while ((lwb = list_remove_head(ilwbs)) != NULL) 3012 zil_lwb_write_issue(zilog, lwb); 3013 zil_commit_writer_stall(zilog); 3014 3015 /* 3016 * Additionally, we have to signal and mark the "nolwb" 3017 * waiters as "done" here, since without an lwb, we 3018 * can't do this via zil_lwb_flush_vdevs_done() like 3019 * normal. 3020 */ 3021 zil_commit_waiter_t *zcw; 3022 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL) 3023 zil_commit_waiter_skip(zcw); 3024 3025 /* 3026 * And finally, we have to destroy the itx's that 3027 * couldn't be committed to an lwb; this will also call 3028 * the itx's callback if one exists for the itx. 3029 */ 3030 while ((itx = list_remove_head(&nolwb_itxs)) != NULL) 3031 zil_itx_destroy(itx); 3032 } else { 3033 ASSERT(list_is_empty(&nolwb_waiters)); 3034 ASSERT3P(lwb, !=, NULL); 3035 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 3036 lwb->lwb_state == LWB_STATE_OPENED); 3037 3038 /* 3039 * At this point, the ZIL block pointed at by the "lwb" 3040 * variable is in "new" or "opened" state. 3041 * 3042 * If it's "new", then no itxs have been committed to it, so 3043 * there's no point in issuing its zio (i.e. it's "empty"). 3044 * 3045 * If it's "opened", then it contains one or more itxs that 3046 * eventually need to be committed to stable storage. In 3047 * this case we intentionally do not issue the lwb's zio 3048 * to disk yet, and instead rely on one of the following 3049 * two mechanisms for issuing the zio: 3050 * 3051 * 1. Ideally, there will be more ZIL activity occurring on 3052 * the system, such that this function will be immediately 3053 * called again by different thread and this lwb will be 3054 * closed by zil_lwb_assign(). This way, the lwb will be 3055 * "full" when it is issued to disk, and we'll make use of 3056 * the lwb's size the best we can. 3057 * 3058 * 2. If there isn't sufficient ZIL activity occurring on 3059 * the system, zil_commit_waiter() will close it and issue 3060 * the zio. If this occurs, the lwb is not guaranteed 3061 * to be "full" by the time its zio is issued, and means 3062 * the size of the lwb was "too large" given the amount 3063 * of ZIL activity occurring on the system at that time. 3064 * 3065 * We do this for a couple of reasons: 3066 * 3067 * 1. To try and reduce the number of IOPs needed to 3068 * write the same number of itxs. If an lwb has space 3069 * available in its buffer for more itxs, and more itxs 3070 * will be committed relatively soon (relative to the 3071 * latency of performing a write), then it's beneficial 3072 * to wait for these "next" itxs. This way, more itxs 3073 * can be committed to stable storage with fewer writes. 3074 * 3075 * 2. To try and use the largest lwb block size that the 3076 * incoming rate of itxs can support. Again, this is to 3077 * try and pack as many itxs into as few lwbs as 3078 * possible, without significantly impacting the latency 3079 * of each individual itx. 3080 */ 3081 if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) { 3082 zil_burst_done(zilog); 3083 list_insert_tail(ilwbs, lwb); 3084 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW); 3085 if (lwb == NULL) { 3086 while ((lwb = list_remove_head(ilwbs)) != NULL) 3087 zil_lwb_write_issue(zilog, lwb); 3088 zil_commit_writer_stall(zilog); 3089 } 3090 } 3091 } 3092 } 3093 3094 /* 3095 * This function is responsible for ensuring the passed in commit waiter 3096 * (and associated commit itx) is committed to an lwb. If the waiter is 3097 * not already committed to an lwb, all itxs in the zilog's queue of 3098 * itxs will be processed. The assumption is the passed in waiter's 3099 * commit itx will found in the queue just like the other non-commit 3100 * itxs, such that when the entire queue is processed, the waiter will 3101 * have been committed to an lwb. 3102 * 3103 * The lwb associated with the passed in waiter is not guaranteed to 3104 * have been issued by the time this function completes. If the lwb is 3105 * not issued, we rely on future calls to zil_commit_writer() to issue 3106 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 3107 */ 3108 static uint64_t 3109 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 3110 { 3111 list_t ilwbs; 3112 lwb_t *lwb; 3113 uint64_t wtxg = 0; 3114 3115 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 3116 ASSERT(spa_writeable(zilog->zl_spa)); 3117 3118 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node)); 3119 mutex_enter(&zilog->zl_issuer_lock); 3120 3121 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 3122 /* 3123 * It's possible that, while we were waiting to acquire 3124 * the "zl_issuer_lock", another thread committed this 3125 * waiter to an lwb. If that occurs, we bail out early, 3126 * without processing any of the zilog's queue of itxs. 3127 * 3128 * On certain workloads and system configurations, the 3129 * "zl_issuer_lock" can become highly contended. In an 3130 * attempt to reduce this contention, we immediately drop 3131 * the lock if the waiter has already been processed. 3132 * 3133 * We've measured this optimization to reduce CPU spent 3134 * contending on this lock by up to 5%, using a system 3135 * with 32 CPUs, low latency storage (~50 usec writes), 3136 * and 1024 threads performing sync writes. 3137 */ 3138 goto out; 3139 } 3140 3141 ZIL_STAT_BUMP(zilog, zil_commit_writer_count); 3142 3143 wtxg = zil_get_commit_list(zilog); 3144 zil_prune_commit_list(zilog); 3145 zil_process_commit_list(zilog, zcw, &ilwbs); 3146 3147 out: 3148 mutex_exit(&zilog->zl_issuer_lock); 3149 while ((lwb = list_remove_head(&ilwbs)) != NULL) 3150 zil_lwb_write_issue(zilog, lwb); 3151 list_destroy(&ilwbs); 3152 return (wtxg); 3153 } 3154 3155 static void 3156 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 3157 { 3158 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3159 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3160 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 3161 3162 lwb_t *lwb = zcw->zcw_lwb; 3163 ASSERT3P(lwb, !=, NULL); 3164 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW); 3165 3166 /* 3167 * If the lwb has already been issued by another thread, we can 3168 * immediately return since there's no work to be done (the 3169 * point of this function is to issue the lwb). Additionally, we 3170 * do this prior to acquiring the zl_issuer_lock, to avoid 3171 * acquiring it when it's not necessary to do so. 3172 */ 3173 if (lwb->lwb_state != LWB_STATE_OPENED) 3174 return; 3175 3176 /* 3177 * In order to call zil_lwb_write_close() we must hold the 3178 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 3179 * since we're already holding the commit waiter's "zcw_lock", 3180 * and those two locks are acquired in the opposite order 3181 * elsewhere. 3182 */ 3183 mutex_exit(&zcw->zcw_lock); 3184 mutex_enter(&zilog->zl_issuer_lock); 3185 mutex_enter(&zcw->zcw_lock); 3186 3187 /* 3188 * Since we just dropped and re-acquired the commit waiter's 3189 * lock, we have to re-check to see if the waiter was marked 3190 * "done" during that process. If the waiter was marked "done", 3191 * the "lwb" pointer is no longer valid (it can be free'd after 3192 * the waiter is marked "done"), so without this check we could 3193 * wind up with a use-after-free error below. 3194 */ 3195 if (zcw->zcw_done) { 3196 mutex_exit(&zilog->zl_issuer_lock); 3197 return; 3198 } 3199 3200 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3201 3202 /* 3203 * We've already checked this above, but since we hadn't acquired 3204 * the zilog's zl_issuer_lock, we have to perform this check a 3205 * second time while holding the lock. 3206 * 3207 * We don't need to hold the zl_lock since the lwb cannot transition 3208 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb 3209 * _can_ transition from CLOSED to DONE, but it's OK to race with 3210 * that transition since we treat the lwb the same, whether it's in 3211 * the CLOSED, ISSUED or DONE states. 3212 * 3213 * The important thing, is we treat the lwb differently depending on 3214 * if it's OPENED or CLOSED, and block any other threads that might 3215 * attempt to close/issue this lwb. For that reason we hold the 3216 * zl_issuer_lock when checking the lwb_state; we must not call 3217 * zil_lwb_write_close() if the lwb had already been closed/issued. 3218 * 3219 * See the comment above the lwb_state_t structure definition for 3220 * more details on the lwb states, and locking requirements. 3221 */ 3222 if (lwb->lwb_state != LWB_STATE_OPENED) { 3223 mutex_exit(&zilog->zl_issuer_lock); 3224 return; 3225 } 3226 3227 /* 3228 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb 3229 * is still open. But we have to drop it to avoid a deadlock in case 3230 * callback of zio issued by zil_lwb_write_issue() try to get it, 3231 * while zil_lwb_write_issue() is blocked on attempt to issue next 3232 * lwb it found in LWB_STATE_READY state. 3233 */ 3234 mutex_exit(&zcw->zcw_lock); 3235 3236 /* 3237 * As described in the comments above zil_commit_waiter() and 3238 * zil_process_commit_list(), we need to issue this lwb's zio 3239 * since we've reached the commit waiter's timeout and it still 3240 * hasn't been issued. 3241 */ 3242 zil_burst_done(zilog); 3243 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW); 3244 3245 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED); 3246 3247 if (nlwb == NULL) { 3248 /* 3249 * When zil_lwb_write_close() returns NULL, this 3250 * indicates zio_alloc_zil() failed to allocate the 3251 * "next" lwb on-disk. When this occurs, the ZIL write 3252 * pipeline must be stalled; see the comment within the 3253 * zil_commit_writer_stall() function for more details. 3254 */ 3255 zil_lwb_write_issue(zilog, lwb); 3256 zil_commit_writer_stall(zilog); 3257 mutex_exit(&zilog->zl_issuer_lock); 3258 } else { 3259 mutex_exit(&zilog->zl_issuer_lock); 3260 zil_lwb_write_issue(zilog, lwb); 3261 } 3262 mutex_enter(&zcw->zcw_lock); 3263 } 3264 3265 /* 3266 * This function is responsible for performing the following two tasks: 3267 * 3268 * 1. its primary responsibility is to block until the given "commit 3269 * waiter" is considered "done". 3270 * 3271 * 2. its secondary responsibility is to issue the zio for the lwb that 3272 * the given "commit waiter" is waiting on, if this function has 3273 * waited "long enough" and the lwb is still in the "open" state. 3274 * 3275 * Given a sufficient amount of itxs being generated and written using 3276 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign() 3277 * function. If this does not occur, this secondary responsibility will 3278 * ensure the lwb is issued even if there is not other synchronous 3279 * activity on the system. 3280 * 3281 * For more details, see zil_process_commit_list(); more specifically, 3282 * the comment at the bottom of that function. 3283 */ 3284 static void 3285 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 3286 { 3287 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 3288 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3289 ASSERT(spa_writeable(zilog->zl_spa)); 3290 3291 mutex_enter(&zcw->zcw_lock); 3292 3293 /* 3294 * The timeout is scaled based on the lwb latency to avoid 3295 * significantly impacting the latency of each individual itx. 3296 * For more details, see the comment at the bottom of the 3297 * zil_process_commit_list() function. 3298 */ 3299 int pct = MAX(zfs_commit_timeout_pct, 1); 3300 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 3301 hrtime_t wakeup = gethrtime() + sleep; 3302 boolean_t timedout = B_FALSE; 3303 3304 while (!zcw->zcw_done) { 3305 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3306 3307 lwb_t *lwb = zcw->zcw_lwb; 3308 3309 /* 3310 * Usually, the waiter will have a non-NULL lwb field here, 3311 * but it's possible for it to be NULL as a result of 3312 * zil_commit() racing with spa_sync(). 3313 * 3314 * When zil_clean() is called, it's possible for the itxg 3315 * list (which may be cleaned via a taskq) to contain 3316 * commit itxs. When this occurs, the commit waiters linked 3317 * off of these commit itxs will not be committed to an 3318 * lwb. Additionally, these commit waiters will not be 3319 * marked done until zil_commit_waiter_skip() is called via 3320 * zil_itxg_clean(). 3321 * 3322 * Thus, it's possible for this commit waiter (i.e. the 3323 * "zcw" variable) to be found in this "in between" state; 3324 * where it's "zcw_lwb" field is NULL, and it hasn't yet 3325 * been skipped, so it's "zcw_done" field is still B_FALSE. 3326 */ 3327 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW); 3328 3329 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 3330 ASSERT3B(timedout, ==, B_FALSE); 3331 3332 /* 3333 * If the lwb hasn't been issued yet, then we 3334 * need to wait with a timeout, in case this 3335 * function needs to issue the lwb after the 3336 * timeout is reached; responsibility (2) from 3337 * the comment above this function. 3338 */ 3339 int rc = cv_timedwait_hires(&zcw->zcw_cv, 3340 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 3341 CALLOUT_FLAG_ABSOLUTE); 3342 3343 if (rc != -1 || zcw->zcw_done) 3344 continue; 3345 3346 timedout = B_TRUE; 3347 zil_commit_waiter_timeout(zilog, zcw); 3348 3349 if (!zcw->zcw_done) { 3350 /* 3351 * If the commit waiter has already been 3352 * marked "done", it's possible for the 3353 * waiter's lwb structure to have already 3354 * been freed. Thus, we can only reliably 3355 * make these assertions if the waiter 3356 * isn't done. 3357 */ 3358 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3359 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3360 } 3361 } else { 3362 /* 3363 * If the lwb isn't open, then it must have already 3364 * been issued. In that case, there's no need to 3365 * use a timeout when waiting for the lwb to 3366 * complete. 3367 * 3368 * Additionally, if the lwb is NULL, the waiter 3369 * will soon be signaled and marked done via 3370 * zil_clean() and zil_itxg_clean(), so no timeout 3371 * is required. 3372 */ 3373 3374 IMPLY(lwb != NULL, 3375 lwb->lwb_state == LWB_STATE_CLOSED || 3376 lwb->lwb_state == LWB_STATE_READY || 3377 lwb->lwb_state == LWB_STATE_ISSUED || 3378 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3379 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 3380 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 3381 } 3382 } 3383 3384 mutex_exit(&zcw->zcw_lock); 3385 } 3386 3387 static zil_commit_waiter_t * 3388 zil_alloc_commit_waiter(void) 3389 { 3390 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 3391 3392 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 3393 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 3394 list_link_init(&zcw->zcw_node); 3395 zcw->zcw_lwb = NULL; 3396 zcw->zcw_done = B_FALSE; 3397 zcw->zcw_zio_error = 0; 3398 3399 return (zcw); 3400 } 3401 3402 static void 3403 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 3404 { 3405 ASSERT(!list_link_active(&zcw->zcw_node)); 3406 ASSERT3P(zcw->zcw_lwb, ==, NULL); 3407 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 3408 mutex_destroy(&zcw->zcw_lock); 3409 cv_destroy(&zcw->zcw_cv); 3410 kmem_cache_free(zil_zcw_cache, zcw); 3411 } 3412 3413 /* 3414 * This function is used to create a TX_COMMIT itx and assign it. This 3415 * way, it will be linked into the ZIL's list of synchronous itxs, and 3416 * then later committed to an lwb (or skipped) when 3417 * zil_process_commit_list() is called. 3418 */ 3419 static void 3420 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 3421 { 3422 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 3423 3424 /* 3425 * Since we are not going to create any new dirty data, and we 3426 * can even help with clearing the existing dirty data, we 3427 * should not be subject to the dirty data based delays. We 3428 * use TXG_NOTHROTTLE to bypass the delay mechanism. 3429 */ 3430 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 3431 3432 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 3433 itx->itx_sync = B_TRUE; 3434 itx->itx_private = zcw; 3435 3436 zil_itx_assign(zilog, itx, tx); 3437 3438 dmu_tx_commit(tx); 3439 } 3440 3441 /* 3442 * Commit ZFS Intent Log transactions (itxs) to stable storage. 3443 * 3444 * When writing ZIL transactions to the on-disk representation of the 3445 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 3446 * itxs can be committed to a single lwb. Once a lwb is written and 3447 * committed to stable storage (i.e. the lwb is written, and vdevs have 3448 * been flushed), each itx that was committed to that lwb is also 3449 * considered to be committed to stable storage. 3450 * 3451 * When an itx is committed to an lwb, the log record (lr_t) contained 3452 * by the itx is copied into the lwb's zio buffer, and once this buffer 3453 * is written to disk, it becomes an on-disk ZIL block. 3454 * 3455 * As itxs are generated, they're inserted into the ZIL's queue of 3456 * uncommitted itxs. The semantics of zil_commit() are such that it will 3457 * block until all itxs that were in the queue when it was called, are 3458 * committed to stable storage. 3459 * 3460 * If "foid" is zero, this means all "synchronous" and "asynchronous" 3461 * itxs, for all objects in the dataset, will be committed to stable 3462 * storage prior to zil_commit() returning. If "foid" is non-zero, all 3463 * "synchronous" itxs for all objects, but only "asynchronous" itxs 3464 * that correspond to the foid passed in, will be committed to stable 3465 * storage prior to zil_commit() returning. 3466 * 3467 * Generally speaking, when zil_commit() is called, the consumer doesn't 3468 * actually care about _all_ of the uncommitted itxs. Instead, they're 3469 * simply trying to waiting for a specific itx to be committed to disk, 3470 * but the interface(s) for interacting with the ZIL don't allow such 3471 * fine-grained communication. A better interface would allow a consumer 3472 * to create and assign an itx, and then pass a reference to this itx to 3473 * zil_commit(); such that zil_commit() would return as soon as that 3474 * specific itx was committed to disk (instead of waiting for _all_ 3475 * itxs to be committed). 3476 * 3477 * When a thread calls zil_commit() a special "commit itx" will be 3478 * generated, along with a corresponding "waiter" for this commit itx. 3479 * zil_commit() will wait on this waiter's CV, such that when the waiter 3480 * is marked done, and signaled, zil_commit() will return. 3481 * 3482 * This commit itx is inserted into the queue of uncommitted itxs. This 3483 * provides an easy mechanism for determining which itxs were in the 3484 * queue prior to zil_commit() having been called, and which itxs were 3485 * added after zil_commit() was called. 3486 * 3487 * The commit itx is special; it doesn't have any on-disk representation. 3488 * When a commit itx is "committed" to an lwb, the waiter associated 3489 * with it is linked onto the lwb's list of waiters. Then, when that lwb 3490 * completes, each waiter on the lwb's list is marked done and signaled 3491 * -- allowing the thread waiting on the waiter to return from zil_commit(). 3492 * 3493 * It's important to point out a few critical factors that allow us 3494 * to make use of the commit itxs, commit waiters, per-lwb lists of 3495 * commit waiters, and zio completion callbacks like we're doing: 3496 * 3497 * 1. The list of waiters for each lwb is traversed, and each commit 3498 * waiter is marked "done" and signaled, in the zio completion 3499 * callback of the lwb's zio[*]. 3500 * 3501 * * Actually, the waiters are signaled in the zio completion 3502 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 3503 * that are sent to the vdevs upon completion of the lwb zio. 3504 * 3505 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 3506 * itxs, the order in which they are inserted is preserved[*]; as 3507 * itxs are added to the queue, they are added to the tail of 3508 * in-memory linked lists. 3509 * 3510 * When committing the itxs to lwbs (to be written to disk), they 3511 * are committed in the same order in which the itxs were added to 3512 * the uncommitted queue's linked list(s); i.e. the linked list of 3513 * itxs to commit is traversed from head to tail, and each itx is 3514 * committed to an lwb in that order. 3515 * 3516 * * To clarify: 3517 * 3518 * - the order of "sync" itxs is preserved w.r.t. other 3519 * "sync" itxs, regardless of the corresponding objects. 3520 * - the order of "async" itxs is preserved w.r.t. other 3521 * "async" itxs corresponding to the same object. 3522 * - the order of "async" itxs is *not* preserved w.r.t. other 3523 * "async" itxs corresponding to different objects. 3524 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 3525 * versa) is *not* preserved, even for itxs that correspond 3526 * to the same object. 3527 * 3528 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 3529 * zil_get_commit_list(), and zil_process_commit_list(). 3530 * 3531 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 3532 * lwb cannot be considered committed to stable storage, until its 3533 * "previous" lwb is also committed to stable storage. This fact, 3534 * coupled with the fact described above, means that itxs are 3535 * committed in (roughly) the order in which they were generated. 3536 * This is essential because itxs are dependent on prior itxs. 3537 * Thus, we *must not* deem an itx as being committed to stable 3538 * storage, until *all* prior itxs have also been committed to 3539 * stable storage. 3540 * 3541 * To enforce this ordering of lwb zio's, while still leveraging as 3542 * much of the underlying storage performance as possible, we rely 3543 * on two fundamental concepts: 3544 * 3545 * 1. The creation and issuance of lwb zio's is protected by 3546 * the zilog's "zl_issuer_lock", which ensures only a single 3547 * thread is creating and/or issuing lwb's at a time 3548 * 2. The "previous" lwb is a child of the "current" lwb 3549 * (leveraging the zio parent-child dependency graph) 3550 * 3551 * By relying on this parent-child zio relationship, we can have 3552 * many lwb zio's concurrently issued to the underlying storage, 3553 * but the order in which they complete will be the same order in 3554 * which they were created. 3555 */ 3556 void 3557 zil_commit(zilog_t *zilog, uint64_t foid) 3558 { 3559 /* 3560 * We should never attempt to call zil_commit on a snapshot for 3561 * a couple of reasons: 3562 * 3563 * 1. A snapshot may never be modified, thus it cannot have any 3564 * in-flight itxs that would have modified the dataset. 3565 * 3566 * 2. By design, when zil_commit() is called, a commit itx will 3567 * be assigned to this zilog; as a result, the zilog will be 3568 * dirtied. We must not dirty the zilog of a snapshot; there's 3569 * checks in the code that enforce this invariant, and will 3570 * cause a panic if it's not upheld. 3571 */ 3572 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3573 3574 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3575 return; 3576 3577 if (!spa_writeable(zilog->zl_spa)) { 3578 /* 3579 * If the SPA is not writable, there should never be any 3580 * pending itxs waiting to be committed to disk. If that 3581 * weren't true, we'd skip writing those itxs out, and 3582 * would break the semantics of zil_commit(); thus, we're 3583 * verifying that truth before we return to the caller. 3584 */ 3585 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3586 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3587 for (int i = 0; i < TXG_SIZE; i++) 3588 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3589 return; 3590 } 3591 3592 /* 3593 * If the ZIL is suspended, we don't want to dirty it by calling 3594 * zil_commit_itx_assign() below, nor can we write out 3595 * lwbs like would be done in zil_commit_write(). Thus, we 3596 * simply rely on txg_wait_synced() to maintain the necessary 3597 * semantics, and avoid calling those functions altogether. 3598 */ 3599 if (zilog->zl_suspend > 0) { 3600 txg_wait_synced(zilog->zl_dmu_pool, 0); 3601 return; 3602 } 3603 3604 zil_commit_impl(zilog, foid); 3605 } 3606 3607 void 3608 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3609 { 3610 ZIL_STAT_BUMP(zilog, zil_commit_count); 3611 3612 /* 3613 * Move the "async" itxs for the specified foid to the "sync" 3614 * queues, such that they will be later committed (or skipped) 3615 * to an lwb when zil_process_commit_list() is called. 3616 * 3617 * Since these "async" itxs must be committed prior to this 3618 * call to zil_commit returning, we must perform this operation 3619 * before we call zil_commit_itx_assign(). 3620 */ 3621 zil_async_to_sync(zilog, foid); 3622 3623 /* 3624 * We allocate a new "waiter" structure which will initially be 3625 * linked to the commit itx using the itx's "itx_private" field. 3626 * Since the commit itx doesn't represent any on-disk state, 3627 * when it's committed to an lwb, rather than copying the its 3628 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3629 * added to the lwb's list of waiters. Then, when the lwb is 3630 * committed to stable storage, each waiter in the lwb's list of 3631 * waiters will be marked "done", and signalled. 3632 * 3633 * We must create the waiter and assign the commit itx prior to 3634 * calling zil_commit_writer(), or else our specific commit itx 3635 * is not guaranteed to be committed to an lwb prior to calling 3636 * zil_commit_waiter(). 3637 */ 3638 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3639 zil_commit_itx_assign(zilog, zcw); 3640 3641 uint64_t wtxg = zil_commit_writer(zilog, zcw); 3642 zil_commit_waiter(zilog, zcw); 3643 3644 if (zcw->zcw_zio_error != 0) { 3645 /* 3646 * If there was an error writing out the ZIL blocks that 3647 * this thread is waiting on, then we fallback to 3648 * relying on spa_sync() to write out the data this 3649 * thread is waiting on. Obviously this has performance 3650 * implications, but the expectation is for this to be 3651 * an exceptional case, and shouldn't occur often. 3652 */ 3653 DTRACE_PROBE2(zil__commit__io__error, 3654 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3655 txg_wait_synced(zilog->zl_dmu_pool, 0); 3656 } else if (wtxg != 0) { 3657 txg_wait_synced(zilog->zl_dmu_pool, wtxg); 3658 } 3659 3660 zil_free_commit_waiter(zcw); 3661 } 3662 3663 /* 3664 * Called in syncing context to free committed log blocks and update log header. 3665 */ 3666 void 3667 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3668 { 3669 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3670 uint64_t txg = dmu_tx_get_txg(tx); 3671 spa_t *spa = zilog->zl_spa; 3672 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3673 lwb_t *lwb; 3674 3675 /* 3676 * We don't zero out zl_destroy_txg, so make sure we don't try 3677 * to destroy it twice. 3678 */ 3679 if (spa_sync_pass(spa) != 1) 3680 return; 3681 3682 zil_lwb_flush_wait_all(zilog, txg); 3683 3684 mutex_enter(&zilog->zl_lock); 3685 3686 ASSERT(zilog->zl_stop_sync == 0); 3687 3688 if (*replayed_seq != 0) { 3689 ASSERT(zh->zh_replay_seq < *replayed_seq); 3690 zh->zh_replay_seq = *replayed_seq; 3691 *replayed_seq = 0; 3692 } 3693 3694 if (zilog->zl_destroy_txg == txg) { 3695 blkptr_t blk = zh->zh_log; 3696 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3697 3698 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3699 3700 memset(zh, 0, sizeof (zil_header_t)); 3701 memset(zilog->zl_replayed_seq, 0, 3702 sizeof (zilog->zl_replayed_seq)); 3703 3704 if (zilog->zl_keep_first) { 3705 /* 3706 * If this block was part of log chain that couldn't 3707 * be claimed because a device was missing during 3708 * zil_claim(), but that device later returns, 3709 * then this block could erroneously appear valid. 3710 * To guard against this, assign a new GUID to the new 3711 * log chain so it doesn't matter what blk points to. 3712 */ 3713 zil_init_log_chain(zilog, &blk); 3714 zh->zh_log = blk; 3715 } else { 3716 /* 3717 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3718 * records. So, deactivate the feature for this dataset. 3719 * We activate it again when we start a new ZIL chain. 3720 */ 3721 if (dsl_dataset_feature_is_active(ds, 3722 SPA_FEATURE_ZILSAXATTR)) 3723 dsl_dataset_deactivate_feature(ds, 3724 SPA_FEATURE_ZILSAXATTR, tx); 3725 } 3726 } 3727 3728 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3729 zh->zh_log = lwb->lwb_blk; 3730 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE || 3731 lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg) 3732 break; 3733 list_remove(&zilog->zl_lwb_list, lwb); 3734 if (!BP_IS_HOLE(&lwb->lwb_blk)) 3735 zio_free(spa, txg, &lwb->lwb_blk); 3736 zil_free_lwb(zilog, lwb); 3737 3738 /* 3739 * If we don't have anything left in the lwb list then 3740 * we've had an allocation failure and we need to zero 3741 * out the zil_header blkptr so that we don't end 3742 * up freeing the same block twice. 3743 */ 3744 if (list_is_empty(&zilog->zl_lwb_list)) 3745 BP_ZERO(&zh->zh_log); 3746 } 3747 3748 mutex_exit(&zilog->zl_lock); 3749 } 3750 3751 static int 3752 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3753 { 3754 (void) unused, (void) kmflag; 3755 lwb_t *lwb = vbuf; 3756 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3757 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3758 offsetof(zil_commit_waiter_t, zcw_node)); 3759 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3760 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3761 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3762 return (0); 3763 } 3764 3765 static void 3766 zil_lwb_dest(void *vbuf, void *unused) 3767 { 3768 (void) unused; 3769 lwb_t *lwb = vbuf; 3770 mutex_destroy(&lwb->lwb_vdev_lock); 3771 avl_destroy(&lwb->lwb_vdev_tree); 3772 list_destroy(&lwb->lwb_waiters); 3773 list_destroy(&lwb->lwb_itxs); 3774 } 3775 3776 void 3777 zil_init(void) 3778 { 3779 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3780 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3781 3782 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3783 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3784 3785 zil_sums_init(&zil_sums_global); 3786 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", 3787 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3788 KSTAT_FLAG_VIRTUAL); 3789 3790 if (zil_kstats_global != NULL) { 3791 zil_kstats_global->ks_data = &zil_stats; 3792 zil_kstats_global->ks_update = zil_kstats_global_update; 3793 zil_kstats_global->ks_private = NULL; 3794 kstat_install(zil_kstats_global); 3795 } 3796 } 3797 3798 void 3799 zil_fini(void) 3800 { 3801 kmem_cache_destroy(zil_zcw_cache); 3802 kmem_cache_destroy(zil_lwb_cache); 3803 3804 if (zil_kstats_global != NULL) { 3805 kstat_delete(zil_kstats_global); 3806 zil_kstats_global = NULL; 3807 } 3808 3809 zil_sums_fini(&zil_sums_global); 3810 } 3811 3812 void 3813 zil_set_sync(zilog_t *zilog, uint64_t sync) 3814 { 3815 zilog->zl_sync = sync; 3816 } 3817 3818 void 3819 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3820 { 3821 zilog->zl_logbias = logbias; 3822 } 3823 3824 zilog_t * 3825 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3826 { 3827 zilog_t *zilog; 3828 3829 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3830 3831 zilog->zl_header = zh_phys; 3832 zilog->zl_os = os; 3833 zilog->zl_spa = dmu_objset_spa(os); 3834 zilog->zl_dmu_pool = dmu_objset_pool(os); 3835 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3836 zilog->zl_logbias = dmu_objset_logbias(os); 3837 zilog->zl_sync = dmu_objset_syncprop(os); 3838 zilog->zl_dirty_max_txg = 0; 3839 zilog->zl_last_lwb_opened = NULL; 3840 zilog->zl_last_lwb_latency = 0; 3841 zilog->zl_max_block_size = MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize, 3842 ZIL_MIN_BLKSZ, uint64_t), ZIL_MIN_BLKSZ), 3843 spa_maxblocksize(dmu_objset_spa(os))); 3844 3845 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3846 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3847 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); 3848 3849 for (int i = 0; i < TXG_SIZE; i++) { 3850 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3851 MUTEX_DEFAULT, NULL); 3852 } 3853 3854 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3855 offsetof(lwb_t, lwb_node)); 3856 3857 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3858 offsetof(itx_t, itx_node)); 3859 3860 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3861 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); 3862 3863 for (int i = 0; i < ZIL_BURSTS; i++) { 3864 zilog->zl_prev_opt[i] = zilog->zl_max_block_size - 3865 sizeof (zil_chain_t); 3866 } 3867 3868 return (zilog); 3869 } 3870 3871 void 3872 zil_free(zilog_t *zilog) 3873 { 3874 int i; 3875 3876 zilog->zl_stop_sync = 1; 3877 3878 ASSERT0(zilog->zl_suspend); 3879 ASSERT0(zilog->zl_suspending); 3880 3881 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3882 list_destroy(&zilog->zl_lwb_list); 3883 3884 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3885 list_destroy(&zilog->zl_itx_commit_list); 3886 3887 for (i = 0; i < TXG_SIZE; i++) { 3888 /* 3889 * It's possible for an itx to be generated that doesn't dirty 3890 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3891 * callback to remove the entry. We remove those here. 3892 * 3893 * Also free up the ziltest itxs. 3894 */ 3895 if (zilog->zl_itxg[i].itxg_itxs) 3896 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3897 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3898 } 3899 3900 mutex_destroy(&zilog->zl_issuer_lock); 3901 mutex_destroy(&zilog->zl_lock); 3902 mutex_destroy(&zilog->zl_lwb_io_lock); 3903 3904 cv_destroy(&zilog->zl_cv_suspend); 3905 cv_destroy(&zilog->zl_lwb_io_cv); 3906 3907 kmem_free(zilog, sizeof (zilog_t)); 3908 } 3909 3910 /* 3911 * Open an intent log. 3912 */ 3913 zilog_t * 3914 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) 3915 { 3916 zilog_t *zilog = dmu_objset_zil(os); 3917 3918 ASSERT3P(zilog->zl_get_data, ==, NULL); 3919 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3920 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3921 3922 zilog->zl_get_data = get_data; 3923 zilog->zl_sums = zil_sums; 3924 3925 return (zilog); 3926 } 3927 3928 /* 3929 * Close an intent log. 3930 */ 3931 void 3932 zil_close(zilog_t *zilog) 3933 { 3934 lwb_t *lwb; 3935 uint64_t txg; 3936 3937 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3938 zil_commit(zilog, 0); 3939 } else { 3940 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3941 ASSERT0(zilog->zl_dirty_max_txg); 3942 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3943 } 3944 3945 mutex_enter(&zilog->zl_lock); 3946 txg = zilog->zl_dirty_max_txg; 3947 lwb = list_tail(&zilog->zl_lwb_list); 3948 if (lwb != NULL) { 3949 txg = MAX(txg, lwb->lwb_alloc_txg); 3950 txg = MAX(txg, lwb->lwb_max_txg); 3951 } 3952 mutex_exit(&zilog->zl_lock); 3953 3954 /* 3955 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends 3956 * on the time when the dmu_tx transaction is assigned in 3957 * zil_lwb_write_issue(). 3958 */ 3959 mutex_enter(&zilog->zl_lwb_io_lock); 3960 txg = MAX(zilog->zl_lwb_max_issued_txg, txg); 3961 mutex_exit(&zilog->zl_lwb_io_lock); 3962 3963 /* 3964 * We need to use txg_wait_synced() to wait until that txg is synced. 3965 * zil_sync() will guarantee all lwbs up to that txg have been 3966 * written out, flushed, and cleaned. 3967 */ 3968 if (txg != 0) 3969 txg_wait_synced(zilog->zl_dmu_pool, txg); 3970 3971 if (zilog_is_dirty(zilog)) 3972 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 3973 (u_longlong_t)txg); 3974 if (txg < spa_freeze_txg(zilog->zl_spa)) 3975 VERIFY(!zilog_is_dirty(zilog)); 3976 3977 zilog->zl_get_data = NULL; 3978 3979 /* 3980 * We should have only one lwb left on the list; remove it now. 3981 */ 3982 mutex_enter(&zilog->zl_lock); 3983 lwb = list_remove_head(&zilog->zl_lwb_list); 3984 if (lwb != NULL) { 3985 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3986 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW); 3987 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3988 zil_free_lwb(zilog, lwb); 3989 } 3990 mutex_exit(&zilog->zl_lock); 3991 } 3992 3993 static const char *suspend_tag = "zil suspending"; 3994 3995 /* 3996 * Suspend an intent log. While in suspended mode, we still honor 3997 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3998 * On old version pools, we suspend the log briefly when taking a 3999 * snapshot so that it will have an empty intent log. 4000 * 4001 * Long holds are not really intended to be used the way we do here -- 4002 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 4003 * could fail. Therefore we take pains to only put a long hold if it is 4004 * actually necessary. Fortunately, it will only be necessary if the 4005 * objset is currently mounted (or the ZVOL equivalent). In that case it 4006 * will already have a long hold, so we are not really making things any worse. 4007 * 4008 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 4009 * zvol_state_t), and use their mechanism to prevent their hold from being 4010 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 4011 * very little gain. 4012 * 4013 * if cookiep == NULL, this does both the suspend & resume. 4014 * Otherwise, it returns with the dataset "long held", and the cookie 4015 * should be passed into zil_resume(). 4016 */ 4017 int 4018 zil_suspend(const char *osname, void **cookiep) 4019 { 4020 objset_t *os; 4021 zilog_t *zilog; 4022 const zil_header_t *zh; 4023 int error; 4024 4025 error = dmu_objset_hold(osname, suspend_tag, &os); 4026 if (error != 0) 4027 return (error); 4028 zilog = dmu_objset_zil(os); 4029 4030 mutex_enter(&zilog->zl_lock); 4031 zh = zilog->zl_header; 4032 4033 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 4034 mutex_exit(&zilog->zl_lock); 4035 dmu_objset_rele(os, suspend_tag); 4036 return (SET_ERROR(EBUSY)); 4037 } 4038 4039 /* 4040 * Don't put a long hold in the cases where we can avoid it. This 4041 * is when there is no cookie so we are doing a suspend & resume 4042 * (i.e. called from zil_vdev_offline()), and there's nothing to do 4043 * for the suspend because it's already suspended, or there's no ZIL. 4044 */ 4045 if (cookiep == NULL && !zilog->zl_suspending && 4046 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 4047 mutex_exit(&zilog->zl_lock); 4048 dmu_objset_rele(os, suspend_tag); 4049 return (0); 4050 } 4051 4052 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 4053 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 4054 4055 zilog->zl_suspend++; 4056 4057 if (zilog->zl_suspend > 1) { 4058 /* 4059 * Someone else is already suspending it. 4060 * Just wait for them to finish. 4061 */ 4062 4063 while (zilog->zl_suspending) 4064 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 4065 mutex_exit(&zilog->zl_lock); 4066 4067 if (cookiep == NULL) 4068 zil_resume(os); 4069 else 4070 *cookiep = os; 4071 return (0); 4072 } 4073 4074 /* 4075 * If there is no pointer to an on-disk block, this ZIL must not 4076 * be active (e.g. filesystem not mounted), so there's nothing 4077 * to clean up. 4078 */ 4079 if (BP_IS_HOLE(&zh->zh_log)) { 4080 ASSERT(cookiep != NULL); /* fast path already handled */ 4081 4082 *cookiep = os; 4083 mutex_exit(&zilog->zl_lock); 4084 return (0); 4085 } 4086 4087 /* 4088 * The ZIL has work to do. Ensure that the associated encryption 4089 * key will remain mapped while we are committing the log by 4090 * grabbing a reference to it. If the key isn't loaded we have no 4091 * choice but to return an error until the wrapping key is loaded. 4092 */ 4093 if (os->os_encrypted && 4094 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 4095 zilog->zl_suspend--; 4096 mutex_exit(&zilog->zl_lock); 4097 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 4098 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 4099 return (SET_ERROR(EACCES)); 4100 } 4101 4102 zilog->zl_suspending = B_TRUE; 4103 mutex_exit(&zilog->zl_lock); 4104 4105 /* 4106 * We need to use zil_commit_impl to ensure we wait for all 4107 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed 4108 * to disk before proceeding. If we used zil_commit instead, it 4109 * would just call txg_wait_synced(), because zl_suspend is set. 4110 * txg_wait_synced() doesn't wait for these lwb's to be 4111 * LWB_STATE_FLUSH_DONE before returning. 4112 */ 4113 zil_commit_impl(zilog, 0); 4114 4115 /* 4116 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 4117 * use txg_wait_synced() to ensure the data from the zilog has 4118 * migrated to the main pool before calling zil_destroy(). 4119 */ 4120 txg_wait_synced(zilog->zl_dmu_pool, 0); 4121 4122 zil_destroy(zilog, B_FALSE); 4123 4124 mutex_enter(&zilog->zl_lock); 4125 zilog->zl_suspending = B_FALSE; 4126 cv_broadcast(&zilog->zl_cv_suspend); 4127 mutex_exit(&zilog->zl_lock); 4128 4129 if (os->os_encrypted) 4130 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 4131 4132 if (cookiep == NULL) 4133 zil_resume(os); 4134 else 4135 *cookiep = os; 4136 return (0); 4137 } 4138 4139 void 4140 zil_resume(void *cookie) 4141 { 4142 objset_t *os = cookie; 4143 zilog_t *zilog = dmu_objset_zil(os); 4144 4145 mutex_enter(&zilog->zl_lock); 4146 ASSERT(zilog->zl_suspend != 0); 4147 zilog->zl_suspend--; 4148 mutex_exit(&zilog->zl_lock); 4149 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 4150 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 4151 } 4152 4153 typedef struct zil_replay_arg { 4154 zil_replay_func_t *const *zr_replay; 4155 void *zr_arg; 4156 boolean_t zr_byteswap; 4157 char *zr_lr; 4158 } zil_replay_arg_t; 4159 4160 static int 4161 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 4162 { 4163 char name[ZFS_MAX_DATASET_NAME_LEN]; 4164 4165 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 4166 4167 dmu_objset_name(zilog->zl_os, name); 4168 4169 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 4170 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 4171 (u_longlong_t)lr->lrc_seq, 4172 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 4173 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 4174 4175 return (error); 4176 } 4177 4178 static int 4179 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 4180 uint64_t claim_txg) 4181 { 4182 zil_replay_arg_t *zr = zra; 4183 const zil_header_t *zh = zilog->zl_header; 4184 uint64_t reclen = lr->lrc_reclen; 4185 uint64_t txtype = lr->lrc_txtype; 4186 int error = 0; 4187 4188 zilog->zl_replaying_seq = lr->lrc_seq; 4189 4190 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 4191 return (0); 4192 4193 if (lr->lrc_txg < claim_txg) /* already committed */ 4194 return (0); 4195 4196 /* Strip case-insensitive bit, still present in log record */ 4197 txtype &= ~TX_CI; 4198 4199 if (txtype == 0 || txtype >= TX_MAX_TYPE) 4200 return (zil_replay_error(zilog, lr, EINVAL)); 4201 4202 /* 4203 * If this record type can be logged out of order, the object 4204 * (lr_foid) may no longer exist. That's legitimate, not an error. 4205 */ 4206 if (TX_OOO(txtype)) { 4207 error = dmu_object_info(zilog->zl_os, 4208 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 4209 if (error == ENOENT || error == EEXIST) 4210 return (0); 4211 } 4212 4213 /* 4214 * Make a copy of the data so we can revise and extend it. 4215 */ 4216 memcpy(zr->zr_lr, lr, reclen); 4217 4218 /* 4219 * If this is a TX_WRITE with a blkptr, suck in the data. 4220 */ 4221 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 4222 error = zil_read_log_data(zilog, (lr_write_t *)lr, 4223 zr->zr_lr + reclen); 4224 if (error != 0) 4225 return (zil_replay_error(zilog, lr, error)); 4226 } 4227 4228 /* 4229 * The log block containing this lr may have been byteswapped 4230 * so that we can easily examine common fields like lrc_txtype. 4231 * However, the log is a mix of different record types, and only the 4232 * replay vectors know how to byteswap their records. Therefore, if 4233 * the lr was byteswapped, undo it before invoking the replay vector. 4234 */ 4235 if (zr->zr_byteswap) 4236 byteswap_uint64_array(zr->zr_lr, reclen); 4237 4238 /* 4239 * We must now do two things atomically: replay this log record, 4240 * and update the log header sequence number to reflect the fact that 4241 * we did so. At the end of each replay function the sequence number 4242 * is updated if we are in replay mode. 4243 */ 4244 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 4245 if (error != 0) { 4246 /* 4247 * The DMU's dnode layer doesn't see removes until the txg 4248 * commits, so a subsequent claim can spuriously fail with 4249 * EEXIST. So if we receive any error we try syncing out 4250 * any removes then retry the transaction. Note that we 4251 * specify B_FALSE for byteswap now, so we don't do it twice. 4252 */ 4253 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 4254 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 4255 if (error != 0) 4256 return (zil_replay_error(zilog, lr, error)); 4257 } 4258 return (0); 4259 } 4260 4261 static int 4262 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 4263 { 4264 (void) bp, (void) arg, (void) claim_txg; 4265 4266 zilog->zl_replay_blks++; 4267 4268 return (0); 4269 } 4270 4271 /* 4272 * If this dataset has a non-empty intent log, replay it and destroy it. 4273 * Return B_TRUE if there were any entries to replay. 4274 */ 4275 boolean_t 4276 zil_replay(objset_t *os, void *arg, 4277 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 4278 { 4279 zilog_t *zilog = dmu_objset_zil(os); 4280 const zil_header_t *zh = zilog->zl_header; 4281 zil_replay_arg_t zr; 4282 4283 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 4284 return (zil_destroy(zilog, B_TRUE)); 4285 } 4286 4287 zr.zr_replay = replay_func; 4288 zr.zr_arg = arg; 4289 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 4290 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 4291 4292 /* 4293 * Wait for in-progress removes to sync before starting replay. 4294 */ 4295 txg_wait_synced(zilog->zl_dmu_pool, 0); 4296 4297 zilog->zl_replay = B_TRUE; 4298 zilog->zl_replay_time = ddi_get_lbolt(); 4299 ASSERT(zilog->zl_replay_blks == 0); 4300 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 4301 zh->zh_claim_txg, B_TRUE); 4302 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 4303 4304 zil_destroy(zilog, B_FALSE); 4305 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 4306 zilog->zl_replay = B_FALSE; 4307 4308 return (B_TRUE); 4309 } 4310 4311 boolean_t 4312 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 4313 { 4314 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 4315 return (B_TRUE); 4316 4317 if (zilog->zl_replay) { 4318 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 4319 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 4320 zilog->zl_replaying_seq; 4321 return (B_TRUE); 4322 } 4323 4324 return (B_FALSE); 4325 } 4326 4327 int 4328 zil_reset(const char *osname, void *arg) 4329 { 4330 (void) arg; 4331 4332 int error = zil_suspend(osname, NULL); 4333 /* EACCES means crypto key not loaded */ 4334 if ((error == EACCES) || (error == EBUSY)) 4335 return (SET_ERROR(error)); 4336 if (error != 0) 4337 return (SET_ERROR(EEXIST)); 4338 return (0); 4339 } 4340 4341 EXPORT_SYMBOL(zil_alloc); 4342 EXPORT_SYMBOL(zil_free); 4343 EXPORT_SYMBOL(zil_open); 4344 EXPORT_SYMBOL(zil_close); 4345 EXPORT_SYMBOL(zil_replay); 4346 EXPORT_SYMBOL(zil_replaying); 4347 EXPORT_SYMBOL(zil_destroy); 4348 EXPORT_SYMBOL(zil_destroy_sync); 4349 EXPORT_SYMBOL(zil_itx_create); 4350 EXPORT_SYMBOL(zil_itx_destroy); 4351 EXPORT_SYMBOL(zil_itx_assign); 4352 EXPORT_SYMBOL(zil_commit); 4353 EXPORT_SYMBOL(zil_claim); 4354 EXPORT_SYMBOL(zil_check_log_chain); 4355 EXPORT_SYMBOL(zil_sync); 4356 EXPORT_SYMBOL(zil_clean); 4357 EXPORT_SYMBOL(zil_suspend); 4358 EXPORT_SYMBOL(zil_resume); 4359 EXPORT_SYMBOL(zil_lwb_add_block); 4360 EXPORT_SYMBOL(zil_bp_tree_add); 4361 EXPORT_SYMBOL(zil_set_sync); 4362 EXPORT_SYMBOL(zil_set_logbias); 4363 EXPORT_SYMBOL(zil_sums_init); 4364 EXPORT_SYMBOL(zil_sums_fini); 4365 EXPORT_SYMBOL(zil_kstat_values_update); 4366 4367 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, 4368 "ZIL block open timeout percentage"); 4369 4370 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 4371 "Disable intent logging replay"); 4372 4373 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 4374 "Disable ZIL cache flushes"); 4375 4376 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, 4377 "Limit in bytes slog sync writes per commit"); 4378 4379 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, 4380 "Limit in bytes of ZIL log block size"); 4381 4382 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW, 4383 "Limit in bytes WR_COPIED size"); 4384