xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 
47 /*
48  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49  * calls that change the file system. Each itx has enough information to
50  * be able to replay them after a system crash, power loss, or
51  * equivalent failure mode. These are stored in memory until either:
52  *
53  *   1. they are committed to the pool by the DMU transaction group
54  *      (txg), at which point they can be discarded; or
55  *   2. they are committed to the on-disk ZIL for the dataset being
56  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57  *      requirement).
58  *
59  * In the event of a crash or power loss, the itxs contained by each
60  * dataset's on-disk ZIL will be replayed when that dataset is first
61  * instantiated (e.g. if the dataset is a normal filesystem, when it is
62  * first mounted).
63  *
64  * As hinted at above, there is one ZIL per dataset (both the in-memory
65  * representation, and the on-disk representation). The on-disk format
66  * consists of 3 parts:
67  *
68  * 	- a single, per-dataset, ZIL header; which points to a chain of
69  * 	- zero or more ZIL blocks; each of which contains
70  * 	- zero or more ZIL records
71  *
72  * A ZIL record holds the information necessary to replay a single
73  * system call transaction. A ZIL block can hold many ZIL records, and
74  * the blocks are chained together, similarly to a singly linked list.
75  *
76  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77  * block in the chain, and the ZIL header points to the first block in
78  * the chain.
79  *
80  * Note, there is not a fixed place in the pool to hold these ZIL
81  * blocks; they are dynamically allocated and freed as needed from the
82  * blocks available on the pool, though they can be preferentially
83  * allocated from a dedicated "log" vdev.
84  */
85 
86 /*
87  * This controls the amount of time that a ZIL block (lwb) will remain
88  * "open" when it isn't "full", and it has a thread waiting for it to be
89  * committed to stable storage. Please refer to the zil_commit_waiter()
90  * function (and the comments within it) for more details.
91  */
92 static int zfs_commit_timeout_pct = 5;
93 
94 /*
95  * See zil.h for more information about these fields.
96  */
97 static zil_stats_t zil_stats = {
98 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
99 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
100 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
103 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
108 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
111 };
112 
113 static kstat_t *zil_ksp;
114 
115 /*
116  * Disable intent logging replay.  This global ZIL switch affects all pools.
117  */
118 int zil_replay_disable = 0;
119 
120 /*
121  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
122  * the disk(s) by the ZIL after an LWB write has completed. Setting this
123  * will cause ZIL corruption on power loss if a volatile out-of-order
124  * write cache is enabled.
125  */
126 static int zil_nocacheflush = 0;
127 
128 /*
129  * Limit SLOG write size per commit executed with synchronous priority.
130  * Any writes above that will be executed with lower (asynchronous) priority
131  * to limit potential SLOG device abuse by single active ZIL writer.
132  */
133 static unsigned long zil_slog_bulk = 768 * 1024;
134 
135 static kmem_cache_t *zil_lwb_cache;
136 static kmem_cache_t *zil_zcw_cache;
137 
138 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140 
141 static int
142 zil_bp_compare(const void *x1, const void *x2)
143 {
144 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
146 
147 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 	if (likely(cmp))
149 		return (cmp);
150 
151 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
152 }
153 
154 static void
155 zil_bp_tree_init(zilog_t *zilog)
156 {
157 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
159 }
160 
161 static void
162 zil_bp_tree_fini(zilog_t *zilog)
163 {
164 	avl_tree_t *t = &zilog->zl_bp_tree;
165 	zil_bp_node_t *zn;
166 	void *cookie = NULL;
167 
168 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
169 		kmem_free(zn, sizeof (zil_bp_node_t));
170 
171 	avl_destroy(t);
172 }
173 
174 int
175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
176 {
177 	avl_tree_t *t = &zilog->zl_bp_tree;
178 	const dva_t *dva;
179 	zil_bp_node_t *zn;
180 	avl_index_t where;
181 
182 	if (BP_IS_EMBEDDED(bp))
183 		return (0);
184 
185 	dva = BP_IDENTITY(bp);
186 
187 	if (avl_find(t, dva, &where) != NULL)
188 		return (SET_ERROR(EEXIST));
189 
190 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
191 	zn->zn_dva = *dva;
192 	avl_insert(t, zn, where);
193 
194 	return (0);
195 }
196 
197 static zil_header_t *
198 zil_header_in_syncing_context(zilog_t *zilog)
199 {
200 	return ((zil_header_t *)zilog->zl_header);
201 }
202 
203 static void
204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205 {
206 	zio_cksum_t *zc = &bp->blk_cksum;
207 
208 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
209 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
210 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
211 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
212 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
213 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
214 }
215 
216 /*
217  * Read a log block and make sure it's valid.
218  */
219 static int
220 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
221     blkptr_t *nbp, void *dst, char **end)
222 {
223 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
224 	arc_flags_t aflags = ARC_FLAG_WAIT;
225 	arc_buf_t *abuf = NULL;
226 	zbookmark_phys_t zb;
227 	int error;
228 
229 	if (zilog->zl_header->zh_claim_txg == 0)
230 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
231 
232 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
233 		zio_flags |= ZIO_FLAG_SPECULATIVE;
234 
235 	if (!decrypt)
236 		zio_flags |= ZIO_FLAG_RAW;
237 
238 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
239 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
240 
241 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
242 	    &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
243 
244 	if (error == 0) {
245 		zio_cksum_t cksum = bp->blk_cksum;
246 
247 		/*
248 		 * Validate the checksummed log block.
249 		 *
250 		 * Sequence numbers should be... sequential.  The checksum
251 		 * verifier for the next block should be bp's checksum plus 1.
252 		 *
253 		 * Also check the log chain linkage and size used.
254 		 */
255 		cksum.zc_word[ZIL_ZC_SEQ]++;
256 
257 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
258 			zil_chain_t *zilc = abuf->b_data;
259 			char *lr = (char *)(zilc + 1);
260 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
261 
262 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
263 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
264 				error = SET_ERROR(ECKSUM);
265 			} else {
266 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
267 				memcpy(dst, lr, len);
268 				*end = (char *)dst + len;
269 				*nbp = zilc->zc_next_blk;
270 			}
271 		} else {
272 			char *lr = abuf->b_data;
273 			uint64_t size = BP_GET_LSIZE(bp);
274 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
275 
276 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
277 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
278 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
279 				error = SET_ERROR(ECKSUM);
280 			} else {
281 				ASSERT3U(zilc->zc_nused, <=,
282 				    SPA_OLD_MAXBLOCKSIZE);
283 				memcpy(dst, lr, zilc->zc_nused);
284 				*end = (char *)dst + zilc->zc_nused;
285 				*nbp = zilc->zc_next_blk;
286 			}
287 		}
288 
289 		arc_buf_destroy(abuf, &abuf);
290 	}
291 
292 	return (error);
293 }
294 
295 /*
296  * Read a TX_WRITE log data block.
297  */
298 static int
299 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
300 {
301 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
302 	const blkptr_t *bp = &lr->lr_blkptr;
303 	arc_flags_t aflags = ARC_FLAG_WAIT;
304 	arc_buf_t *abuf = NULL;
305 	zbookmark_phys_t zb;
306 	int error;
307 
308 	if (BP_IS_HOLE(bp)) {
309 		if (wbuf != NULL)
310 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
311 		return (0);
312 	}
313 
314 	if (zilog->zl_header->zh_claim_txg == 0)
315 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
316 
317 	/*
318 	 * If we are not using the resulting data, we are just checking that
319 	 * it hasn't been corrupted so we don't need to waste CPU time
320 	 * decompressing and decrypting it.
321 	 */
322 	if (wbuf == NULL)
323 		zio_flags |= ZIO_FLAG_RAW;
324 
325 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
326 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
327 
328 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
329 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
330 
331 	if (error == 0) {
332 		if (wbuf != NULL)
333 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
334 		arc_buf_destroy(abuf, &abuf);
335 	}
336 
337 	return (error);
338 }
339 
340 /*
341  * Parse the intent log, and call parse_func for each valid record within.
342  */
343 int
344 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
345     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
346     boolean_t decrypt)
347 {
348 	const zil_header_t *zh = zilog->zl_header;
349 	boolean_t claimed = !!zh->zh_claim_txg;
350 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
351 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
352 	uint64_t max_blk_seq = 0;
353 	uint64_t max_lr_seq = 0;
354 	uint64_t blk_count = 0;
355 	uint64_t lr_count = 0;
356 	blkptr_t blk, next_blk = {{{{0}}}};
357 	char *lrbuf, *lrp;
358 	int error = 0;
359 
360 	/*
361 	 * Old logs didn't record the maximum zh_claim_lr_seq.
362 	 */
363 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
364 		claim_lr_seq = UINT64_MAX;
365 
366 	/*
367 	 * Starting at the block pointed to by zh_log we read the log chain.
368 	 * For each block in the chain we strongly check that block to
369 	 * ensure its validity.  We stop when an invalid block is found.
370 	 * For each block pointer in the chain we call parse_blk_func().
371 	 * For each record in each valid block we call parse_lr_func().
372 	 * If the log has been claimed, stop if we encounter a sequence
373 	 * number greater than the highest claimed sequence number.
374 	 */
375 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
376 	zil_bp_tree_init(zilog);
377 
378 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
379 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
380 		int reclen;
381 		char *end = NULL;
382 
383 		if (blk_seq > claim_blk_seq)
384 			break;
385 
386 		error = parse_blk_func(zilog, &blk, arg, txg);
387 		if (error != 0)
388 			break;
389 		ASSERT3U(max_blk_seq, <, blk_seq);
390 		max_blk_seq = blk_seq;
391 		blk_count++;
392 
393 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
394 			break;
395 
396 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
397 		    lrbuf, &end);
398 		if (error != 0)
399 			break;
400 
401 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
402 			lr_t *lr = (lr_t *)lrp;
403 			reclen = lr->lrc_reclen;
404 			ASSERT3U(reclen, >=, sizeof (lr_t));
405 			if (lr->lrc_seq > claim_lr_seq)
406 				goto done;
407 
408 			error = parse_lr_func(zilog, lr, arg, txg);
409 			if (error != 0)
410 				goto done;
411 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
412 			max_lr_seq = lr->lrc_seq;
413 			lr_count++;
414 		}
415 	}
416 done:
417 	zilog->zl_parse_error = error;
418 	zilog->zl_parse_blk_seq = max_blk_seq;
419 	zilog->zl_parse_lr_seq = max_lr_seq;
420 	zilog->zl_parse_blk_count = blk_count;
421 	zilog->zl_parse_lr_count = lr_count;
422 
423 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
424 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
425 	    (decrypt && error == EIO));
426 
427 	zil_bp_tree_fini(zilog);
428 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
429 
430 	return (error);
431 }
432 
433 static int
434 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
435     uint64_t first_txg)
436 {
437 	(void) tx;
438 	ASSERT(!BP_IS_HOLE(bp));
439 
440 	/*
441 	 * As we call this function from the context of a rewind to a
442 	 * checkpoint, each ZIL block whose txg is later than the txg
443 	 * that we rewind to is invalid. Thus, we return -1 so
444 	 * zil_parse() doesn't attempt to read it.
445 	 */
446 	if (bp->blk_birth >= first_txg)
447 		return (-1);
448 
449 	if (zil_bp_tree_add(zilog, bp) != 0)
450 		return (0);
451 
452 	zio_free(zilog->zl_spa, first_txg, bp);
453 	return (0);
454 }
455 
456 static int
457 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
458     uint64_t first_txg)
459 {
460 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
461 	return (0);
462 }
463 
464 static int
465 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
466     uint64_t first_txg)
467 {
468 	/*
469 	 * Claim log block if not already committed and not already claimed.
470 	 * If tx == NULL, just verify that the block is claimable.
471 	 */
472 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
473 	    zil_bp_tree_add(zilog, bp) != 0)
474 		return (0);
475 
476 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
477 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
478 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
479 }
480 
481 static int
482 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
483     uint64_t first_txg)
484 {
485 	lr_write_t *lr = (lr_write_t *)lrc;
486 	int error;
487 
488 	if (lrc->lrc_txtype != TX_WRITE)
489 		return (0);
490 
491 	/*
492 	 * If the block is not readable, don't claim it.  This can happen
493 	 * in normal operation when a log block is written to disk before
494 	 * some of the dmu_sync() blocks it points to.  In this case, the
495 	 * transaction cannot have been committed to anyone (we would have
496 	 * waited for all writes to be stable first), so it is semantically
497 	 * correct to declare this the end of the log.
498 	 */
499 	if (lr->lr_blkptr.blk_birth >= first_txg) {
500 		error = zil_read_log_data(zilog, lr, NULL);
501 		if (error != 0)
502 			return (error);
503 	}
504 
505 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
506 }
507 
508 static int
509 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
510     uint64_t claim_txg)
511 {
512 	(void) claim_txg;
513 
514 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
515 
516 	return (0);
517 }
518 
519 static int
520 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
521     uint64_t claim_txg)
522 {
523 	lr_write_t *lr = (lr_write_t *)lrc;
524 	blkptr_t *bp = &lr->lr_blkptr;
525 
526 	/*
527 	 * If we previously claimed it, we need to free it.
528 	 */
529 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
530 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
531 	    !BP_IS_HOLE(bp))
532 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
533 
534 	return (0);
535 }
536 
537 static int
538 zil_lwb_vdev_compare(const void *x1, const void *x2)
539 {
540 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
541 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
542 
543 	return (TREE_CMP(v1, v2));
544 }
545 
546 static lwb_t *
547 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
548     boolean_t fastwrite)
549 {
550 	lwb_t *lwb;
551 
552 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
553 	lwb->lwb_zilog = zilog;
554 	lwb->lwb_blk = *bp;
555 	lwb->lwb_fastwrite = fastwrite;
556 	lwb->lwb_slog = slog;
557 	lwb->lwb_state = LWB_STATE_CLOSED;
558 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
559 	lwb->lwb_max_txg = txg;
560 	lwb->lwb_write_zio = NULL;
561 	lwb->lwb_root_zio = NULL;
562 	lwb->lwb_issued_timestamp = 0;
563 	lwb->lwb_issued_txg = 0;
564 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
565 		lwb->lwb_nused = sizeof (zil_chain_t);
566 		lwb->lwb_sz = BP_GET_LSIZE(bp);
567 	} else {
568 		lwb->lwb_nused = 0;
569 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
570 	}
571 
572 	mutex_enter(&zilog->zl_lock);
573 	list_insert_tail(&zilog->zl_lwb_list, lwb);
574 	mutex_exit(&zilog->zl_lock);
575 
576 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
577 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
578 	VERIFY(list_is_empty(&lwb->lwb_waiters));
579 	VERIFY(list_is_empty(&lwb->lwb_itxs));
580 
581 	return (lwb);
582 }
583 
584 static void
585 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
586 {
587 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
588 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
589 	VERIFY(list_is_empty(&lwb->lwb_waiters));
590 	VERIFY(list_is_empty(&lwb->lwb_itxs));
591 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
592 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
593 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
594 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
595 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
596 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
597 
598 	/*
599 	 * Clear the zilog's field to indicate this lwb is no longer
600 	 * valid, and prevent use-after-free errors.
601 	 */
602 	if (zilog->zl_last_lwb_opened == lwb)
603 		zilog->zl_last_lwb_opened = NULL;
604 
605 	kmem_cache_free(zil_lwb_cache, lwb);
606 }
607 
608 /*
609  * Called when we create in-memory log transactions so that we know
610  * to cleanup the itxs at the end of spa_sync().
611  */
612 static void
613 zilog_dirty(zilog_t *zilog, uint64_t txg)
614 {
615 	dsl_pool_t *dp = zilog->zl_dmu_pool;
616 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
617 
618 	ASSERT(spa_writeable(zilog->zl_spa));
619 
620 	if (ds->ds_is_snapshot)
621 		panic("dirtying snapshot!");
622 
623 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
624 		/* up the hold count until we can be written out */
625 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
626 
627 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
628 	}
629 }
630 
631 /*
632  * Determine if the zil is dirty in the specified txg. Callers wanting to
633  * ensure that the dirty state does not change must hold the itxg_lock for
634  * the specified txg. Holding the lock will ensure that the zil cannot be
635  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
636  * state.
637  */
638 static boolean_t __maybe_unused
639 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
640 {
641 	dsl_pool_t *dp = zilog->zl_dmu_pool;
642 
643 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
644 		return (B_TRUE);
645 	return (B_FALSE);
646 }
647 
648 /*
649  * Determine if the zil is dirty. The zil is considered dirty if it has
650  * any pending itx records that have not been cleaned by zil_clean().
651  */
652 static boolean_t
653 zilog_is_dirty(zilog_t *zilog)
654 {
655 	dsl_pool_t *dp = zilog->zl_dmu_pool;
656 
657 	for (int t = 0; t < TXG_SIZE; t++) {
658 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
659 			return (B_TRUE);
660 	}
661 	return (B_FALSE);
662 }
663 
664 /*
665  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
666  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
667  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
668  * zil_commit.
669  */
670 static void
671 zil_commit_activate_saxattr_feature(zilog_t *zilog)
672 {
673 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
674 	uint64_t txg = 0;
675 	dmu_tx_t *tx = NULL;
676 
677 	if (spa_feature_is_enabled(zilog->zl_spa,
678 	    SPA_FEATURE_ZILSAXATTR) &&
679 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
680 	    !dsl_dataset_feature_is_active(ds,
681 	    SPA_FEATURE_ZILSAXATTR)) {
682 		tx = dmu_tx_create(zilog->zl_os);
683 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
684 		dsl_dataset_dirty(ds, tx);
685 		txg = dmu_tx_get_txg(tx);
686 
687 		mutex_enter(&ds->ds_lock);
688 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
689 		    (void *)B_TRUE;
690 		mutex_exit(&ds->ds_lock);
691 		dmu_tx_commit(tx);
692 		txg_wait_synced(zilog->zl_dmu_pool, txg);
693 	}
694 }
695 
696 /*
697  * Create an on-disk intent log.
698  */
699 static lwb_t *
700 zil_create(zilog_t *zilog)
701 {
702 	const zil_header_t *zh = zilog->zl_header;
703 	lwb_t *lwb = NULL;
704 	uint64_t txg = 0;
705 	dmu_tx_t *tx = NULL;
706 	blkptr_t blk;
707 	int error = 0;
708 	boolean_t fastwrite = FALSE;
709 	boolean_t slog = FALSE;
710 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
711 
712 
713 	/*
714 	 * Wait for any previous destroy to complete.
715 	 */
716 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
717 
718 	ASSERT(zh->zh_claim_txg == 0);
719 	ASSERT(zh->zh_replay_seq == 0);
720 
721 	blk = zh->zh_log;
722 
723 	/*
724 	 * Allocate an initial log block if:
725 	 *    - there isn't one already
726 	 *    - the existing block is the wrong endianness
727 	 */
728 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
729 		tx = dmu_tx_create(zilog->zl_os);
730 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
731 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
732 		txg = dmu_tx_get_txg(tx);
733 
734 		if (!BP_IS_HOLE(&blk)) {
735 			zio_free(zilog->zl_spa, txg, &blk);
736 			BP_ZERO(&blk);
737 		}
738 
739 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
740 		    ZIL_MIN_BLKSZ, &slog);
741 		fastwrite = TRUE;
742 
743 		if (error == 0)
744 			zil_init_log_chain(zilog, &blk);
745 	}
746 
747 	/*
748 	 * Allocate a log write block (lwb) for the first log block.
749 	 */
750 	if (error == 0)
751 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
752 
753 	/*
754 	 * If we just allocated the first log block, commit our transaction
755 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
756 	 * (zh is part of the MOS, so we cannot modify it in open context.)
757 	 */
758 	if (tx != NULL) {
759 		/*
760 		 * If "zilsaxattr" feature is enabled on zpool, then activate
761 		 * it now when we're creating the ZIL chain. We can't wait with
762 		 * this until we write the first xattr log record because we
763 		 * need to wait for the feature activation to sync out.
764 		 */
765 		if (spa_feature_is_enabled(zilog->zl_spa,
766 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
767 		    DMU_OST_ZVOL) {
768 			mutex_enter(&ds->ds_lock);
769 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
770 			    (void *)B_TRUE;
771 			mutex_exit(&ds->ds_lock);
772 		}
773 
774 		dmu_tx_commit(tx);
775 		txg_wait_synced(zilog->zl_dmu_pool, txg);
776 	} else {
777 		/*
778 		 * This branch covers the case where we enable the feature on a
779 		 * zpool that has existing ZIL headers.
780 		 */
781 		zil_commit_activate_saxattr_feature(zilog);
782 	}
783 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
784 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
785 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
786 
787 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
788 	IMPLY(error == 0, lwb != NULL);
789 
790 	return (lwb);
791 }
792 
793 /*
794  * In one tx, free all log blocks and clear the log header. If keep_first
795  * is set, then we're replaying a log with no content. We want to keep the
796  * first block, however, so that the first synchronous transaction doesn't
797  * require a txg_wait_synced() in zil_create(). We don't need to
798  * txg_wait_synced() here either when keep_first is set, because both
799  * zil_create() and zil_destroy() will wait for any in-progress destroys
800  * to complete.
801  */
802 void
803 zil_destroy(zilog_t *zilog, boolean_t keep_first)
804 {
805 	const zil_header_t *zh = zilog->zl_header;
806 	lwb_t *lwb;
807 	dmu_tx_t *tx;
808 	uint64_t txg;
809 
810 	/*
811 	 * Wait for any previous destroy to complete.
812 	 */
813 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
814 
815 	zilog->zl_old_header = *zh;		/* debugging aid */
816 
817 	if (BP_IS_HOLE(&zh->zh_log))
818 		return;
819 
820 	tx = dmu_tx_create(zilog->zl_os);
821 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
822 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
823 	txg = dmu_tx_get_txg(tx);
824 
825 	mutex_enter(&zilog->zl_lock);
826 
827 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
828 	zilog->zl_destroy_txg = txg;
829 	zilog->zl_keep_first = keep_first;
830 
831 	if (!list_is_empty(&zilog->zl_lwb_list)) {
832 		ASSERT(zh->zh_claim_txg == 0);
833 		VERIFY(!keep_first);
834 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
835 			if (lwb->lwb_fastwrite)
836 				metaslab_fastwrite_unmark(zilog->zl_spa,
837 				    &lwb->lwb_blk);
838 
839 			list_remove(&zilog->zl_lwb_list, lwb);
840 			if (lwb->lwb_buf != NULL)
841 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
842 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
843 			zil_free_lwb(zilog, lwb);
844 		}
845 	} else if (!keep_first) {
846 		zil_destroy_sync(zilog, tx);
847 	}
848 	mutex_exit(&zilog->zl_lock);
849 
850 	dmu_tx_commit(tx);
851 }
852 
853 void
854 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
855 {
856 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
857 	(void) zil_parse(zilog, zil_free_log_block,
858 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
859 }
860 
861 int
862 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
863 {
864 	dmu_tx_t *tx = txarg;
865 	zilog_t *zilog;
866 	uint64_t first_txg;
867 	zil_header_t *zh;
868 	objset_t *os;
869 	int error;
870 
871 	error = dmu_objset_own_obj(dp, ds->ds_object,
872 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
873 	if (error != 0) {
874 		/*
875 		 * EBUSY indicates that the objset is inconsistent, in which
876 		 * case it can not have a ZIL.
877 		 */
878 		if (error != EBUSY) {
879 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
880 			    (unsigned long long)ds->ds_object, error);
881 		}
882 
883 		return (0);
884 	}
885 
886 	zilog = dmu_objset_zil(os);
887 	zh = zil_header_in_syncing_context(zilog);
888 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
889 	first_txg = spa_min_claim_txg(zilog->zl_spa);
890 
891 	/*
892 	 * If the spa_log_state is not set to be cleared, check whether
893 	 * the current uberblock is a checkpoint one and if the current
894 	 * header has been claimed before moving on.
895 	 *
896 	 * If the current uberblock is a checkpointed uberblock then
897 	 * one of the following scenarios took place:
898 	 *
899 	 * 1] We are currently rewinding to the checkpoint of the pool.
900 	 * 2] We crashed in the middle of a checkpoint rewind but we
901 	 *    did manage to write the checkpointed uberblock to the
902 	 *    vdev labels, so when we tried to import the pool again
903 	 *    the checkpointed uberblock was selected from the import
904 	 *    procedure.
905 	 *
906 	 * In both cases we want to zero out all the ZIL blocks, except
907 	 * the ones that have been claimed at the time of the checkpoint
908 	 * (their zh_claim_txg != 0). The reason is that these blocks
909 	 * may be corrupted since we may have reused their locations on
910 	 * disk after we took the checkpoint.
911 	 *
912 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
913 	 * when we first figure out whether the current uberblock is
914 	 * checkpointed or not. Unfortunately, that would discard all
915 	 * the logs, including the ones that are claimed, and we would
916 	 * leak space.
917 	 */
918 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
919 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
920 	    zh->zh_claim_txg == 0)) {
921 		if (!BP_IS_HOLE(&zh->zh_log)) {
922 			(void) zil_parse(zilog, zil_clear_log_block,
923 			    zil_noop_log_record, tx, first_txg, B_FALSE);
924 		}
925 		BP_ZERO(&zh->zh_log);
926 		if (os->os_encrypted)
927 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
928 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
929 		dmu_objset_disown(os, B_FALSE, FTAG);
930 		return (0);
931 	}
932 
933 	/*
934 	 * If we are not rewinding and opening the pool normally, then
935 	 * the min_claim_txg should be equal to the first txg of the pool.
936 	 */
937 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
938 
939 	/*
940 	 * Claim all log blocks if we haven't already done so, and remember
941 	 * the highest claimed sequence number.  This ensures that if we can
942 	 * read only part of the log now (e.g. due to a missing device),
943 	 * but we can read the entire log later, we will not try to replay
944 	 * or destroy beyond the last block we successfully claimed.
945 	 */
946 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
947 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
948 		(void) zil_parse(zilog, zil_claim_log_block,
949 		    zil_claim_log_record, tx, first_txg, B_FALSE);
950 		zh->zh_claim_txg = first_txg;
951 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
952 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
953 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
954 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
955 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
956 		if (os->os_encrypted)
957 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
958 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
959 	}
960 
961 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
962 	dmu_objset_disown(os, B_FALSE, FTAG);
963 	return (0);
964 }
965 
966 /*
967  * Check the log by walking the log chain.
968  * Checksum errors are ok as they indicate the end of the chain.
969  * Any other error (no device or read failure) returns an error.
970  */
971 int
972 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
973 {
974 	(void) dp;
975 	zilog_t *zilog;
976 	objset_t *os;
977 	blkptr_t *bp;
978 	int error;
979 
980 	ASSERT(tx == NULL);
981 
982 	error = dmu_objset_from_ds(ds, &os);
983 	if (error != 0) {
984 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
985 		    (unsigned long long)ds->ds_object, error);
986 		return (0);
987 	}
988 
989 	zilog = dmu_objset_zil(os);
990 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
991 
992 	if (!BP_IS_HOLE(bp)) {
993 		vdev_t *vd;
994 		boolean_t valid = B_TRUE;
995 
996 		/*
997 		 * Check the first block and determine if it's on a log device
998 		 * which may have been removed or faulted prior to loading this
999 		 * pool.  If so, there's no point in checking the rest of the
1000 		 * log as its content should have already been synced to the
1001 		 * pool.
1002 		 */
1003 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1004 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1005 		if (vd->vdev_islog && vdev_is_dead(vd))
1006 			valid = vdev_log_state_valid(vd);
1007 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1008 
1009 		if (!valid)
1010 			return (0);
1011 
1012 		/*
1013 		 * Check whether the current uberblock is checkpointed (e.g.
1014 		 * we are rewinding) and whether the current header has been
1015 		 * claimed or not. If it hasn't then skip verifying it. We
1016 		 * do this because its ZIL blocks may be part of the pool's
1017 		 * state before the rewind, which is no longer valid.
1018 		 */
1019 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1020 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1021 		    zh->zh_claim_txg == 0)
1022 			return (0);
1023 	}
1024 
1025 	/*
1026 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1027 	 * any blocks, but just determine whether it is possible to do so.
1028 	 * In addition to checking the log chain, zil_claim_log_block()
1029 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1030 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1031 	 */
1032 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1033 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1034 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1035 
1036 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1037 }
1038 
1039 /*
1040  * When an itx is "skipped", this function is used to properly mark the
1041  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1042  * be skipped (and not committed to an lwb) for a variety of reasons,
1043  * one of them being that the itx was committed via spa_sync(), prior to
1044  * it being committed to an lwb; this can happen if a thread calling
1045  * zil_commit() is racing with spa_sync().
1046  */
1047 static void
1048 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1049 {
1050 	mutex_enter(&zcw->zcw_lock);
1051 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1052 	zcw->zcw_done = B_TRUE;
1053 	cv_broadcast(&zcw->zcw_cv);
1054 	mutex_exit(&zcw->zcw_lock);
1055 }
1056 
1057 /*
1058  * This function is used when the given waiter is to be linked into an
1059  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1060  * At this point, the waiter will no longer be referenced by the itx,
1061  * and instead, will be referenced by the lwb.
1062  */
1063 static void
1064 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1065 {
1066 	/*
1067 	 * The lwb_waiters field of the lwb is protected by the zilog's
1068 	 * zl_lock, thus it must be held when calling this function.
1069 	 */
1070 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1071 
1072 	mutex_enter(&zcw->zcw_lock);
1073 	ASSERT(!list_link_active(&zcw->zcw_node));
1074 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1075 	ASSERT3P(lwb, !=, NULL);
1076 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1077 	    lwb->lwb_state == LWB_STATE_ISSUED ||
1078 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
1079 
1080 	list_insert_tail(&lwb->lwb_waiters, zcw);
1081 	zcw->zcw_lwb = lwb;
1082 	mutex_exit(&zcw->zcw_lock);
1083 }
1084 
1085 /*
1086  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1087  * block, and the given waiter must be linked to the "nolwb waiters"
1088  * list inside of zil_process_commit_list().
1089  */
1090 static void
1091 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1092 {
1093 	mutex_enter(&zcw->zcw_lock);
1094 	ASSERT(!list_link_active(&zcw->zcw_node));
1095 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1096 	list_insert_tail(nolwb, zcw);
1097 	mutex_exit(&zcw->zcw_lock);
1098 }
1099 
1100 void
1101 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1102 {
1103 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1104 	avl_index_t where;
1105 	zil_vdev_node_t *zv, zvsearch;
1106 	int ndvas = BP_GET_NDVAS(bp);
1107 	int i;
1108 
1109 	if (zil_nocacheflush)
1110 		return;
1111 
1112 	mutex_enter(&lwb->lwb_vdev_lock);
1113 	for (i = 0; i < ndvas; i++) {
1114 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1115 		if (avl_find(t, &zvsearch, &where) == NULL) {
1116 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1117 			zv->zv_vdev = zvsearch.zv_vdev;
1118 			avl_insert(t, zv, where);
1119 		}
1120 	}
1121 	mutex_exit(&lwb->lwb_vdev_lock);
1122 }
1123 
1124 static void
1125 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1126 {
1127 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1128 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1129 	void *cookie = NULL;
1130 	zil_vdev_node_t *zv;
1131 
1132 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1133 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1134 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1135 
1136 	/*
1137 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1138 	 * not need the protection of lwb_vdev_lock (it will only be modified
1139 	 * while holding zilog->zl_lock) as its writes and those of its
1140 	 * children have all completed.  The younger 'nlwb' may be waiting on
1141 	 * future writes to additional vdevs.
1142 	 */
1143 	mutex_enter(&nlwb->lwb_vdev_lock);
1144 	/*
1145 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1146 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1147 	 */
1148 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1149 		avl_index_t where;
1150 
1151 		if (avl_find(dst, zv, &where) == NULL) {
1152 			avl_insert(dst, zv, where);
1153 		} else {
1154 			kmem_free(zv, sizeof (*zv));
1155 		}
1156 	}
1157 	mutex_exit(&nlwb->lwb_vdev_lock);
1158 }
1159 
1160 void
1161 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1162 {
1163 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1164 }
1165 
1166 /*
1167  * This function is a called after all vdevs associated with a given lwb
1168  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1169  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1170  * all "previous" lwb's will have completed before this function is
1171  * called; i.e. this function is called for all previous lwbs before
1172  * it's called for "this" lwb (enforced via zio the dependencies
1173  * configured in zil_lwb_set_zio_dependency()).
1174  *
1175  * The intention is for this function to be called as soon as the
1176  * contents of an lwb are considered "stable" on disk, and will survive
1177  * any sudden loss of power. At this point, any threads waiting for the
1178  * lwb to reach this state are signalled, and the "waiter" structures
1179  * are marked "done".
1180  */
1181 static void
1182 zil_lwb_flush_vdevs_done(zio_t *zio)
1183 {
1184 	lwb_t *lwb = zio->io_private;
1185 	zilog_t *zilog = lwb->lwb_zilog;
1186 	zil_commit_waiter_t *zcw;
1187 	itx_t *itx;
1188 	uint64_t txg;
1189 
1190 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1191 
1192 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1193 
1194 	mutex_enter(&zilog->zl_lock);
1195 
1196 	/*
1197 	 * If we have had an allocation failure and the txg is
1198 	 * waiting to sync then we want zil_sync() to remove the lwb so
1199 	 * that it's not picked up as the next new one in
1200 	 * zil_process_commit_list(). zil_sync() will only remove the
1201 	 * lwb if lwb_buf is null.
1202 	 */
1203 	lwb->lwb_buf = NULL;
1204 
1205 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1206 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1207 
1208 	lwb->lwb_root_zio = NULL;
1209 
1210 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1211 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1212 
1213 	if (zilog->zl_last_lwb_opened == lwb) {
1214 		/*
1215 		 * Remember the highest committed log sequence number
1216 		 * for ztest. We only update this value when all the log
1217 		 * writes succeeded, because ztest wants to ASSERT that
1218 		 * it got the whole log chain.
1219 		 */
1220 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1221 	}
1222 
1223 	while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1224 		list_remove(&lwb->lwb_itxs, itx);
1225 		zil_itx_destroy(itx);
1226 	}
1227 
1228 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1229 		mutex_enter(&zcw->zcw_lock);
1230 
1231 		ASSERT(list_link_active(&zcw->zcw_node));
1232 		list_remove(&lwb->lwb_waiters, zcw);
1233 
1234 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1235 		zcw->zcw_lwb = NULL;
1236 		/*
1237 		 * We expect any ZIO errors from child ZIOs to have been
1238 		 * propagated "up" to this specific LWB's root ZIO, in
1239 		 * order for this error handling to work correctly. This
1240 		 * includes ZIO errors from either this LWB's write or
1241 		 * flush, as well as any errors from other dependent LWBs
1242 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1243 		 *
1244 		 * With that said, it's important to note that LWB flush
1245 		 * errors are not propagated up to the LWB root ZIO.
1246 		 * This is incorrect behavior, and results in VDEV flush
1247 		 * errors not being handled correctly here. See the
1248 		 * comment above the call to "zio_flush" for details.
1249 		 */
1250 
1251 		zcw->zcw_zio_error = zio->io_error;
1252 
1253 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1254 		zcw->zcw_done = B_TRUE;
1255 		cv_broadcast(&zcw->zcw_cv);
1256 
1257 		mutex_exit(&zcw->zcw_lock);
1258 	}
1259 
1260 	mutex_exit(&zilog->zl_lock);
1261 
1262 	mutex_enter(&zilog->zl_lwb_io_lock);
1263 	txg = lwb->lwb_issued_txg;
1264 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1265 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1266 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1267 		cv_broadcast(&zilog->zl_lwb_io_cv);
1268 	mutex_exit(&zilog->zl_lwb_io_lock);
1269 }
1270 
1271 /*
1272  * Wait for the completion of all issued write/flush of that txg provided.
1273  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1274  */
1275 static void
1276 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1277 {
1278 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1279 
1280 	mutex_enter(&zilog->zl_lwb_io_lock);
1281 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1282 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1283 	mutex_exit(&zilog->zl_lwb_io_lock);
1284 
1285 #ifdef ZFS_DEBUG
1286 	mutex_enter(&zilog->zl_lock);
1287 	mutex_enter(&zilog->zl_lwb_io_lock);
1288 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1289 	while (lwb != NULL && lwb->lwb_max_txg <= txg) {
1290 		if (lwb->lwb_issued_txg <= txg) {
1291 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1292 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1293 			IMPLY(lwb->lwb_issued_txg > 0,
1294 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1295 		}
1296 		IMPLY(lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1297 		    lwb->lwb_buf == NULL);
1298 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1299 	}
1300 	mutex_exit(&zilog->zl_lwb_io_lock);
1301 	mutex_exit(&zilog->zl_lock);
1302 #endif
1303 }
1304 
1305 /*
1306  * This is called when an lwb's write zio completes. The callback's
1307  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1308  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1309  * in writing out this specific lwb's data, and in the case that cache
1310  * flushes have been deferred, vdevs involved in writing the data for
1311  * previous lwbs. The writes corresponding to all the vdevs in the
1312  * lwb_vdev_tree will have completed by the time this is called, due to
1313  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1314  * which takes deferred flushes into account. The lwb will be "done"
1315  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1316  * completion callback for the lwb's root zio.
1317  */
1318 static void
1319 zil_lwb_write_done(zio_t *zio)
1320 {
1321 	lwb_t *lwb = zio->io_private;
1322 	spa_t *spa = zio->io_spa;
1323 	zilog_t *zilog = lwb->lwb_zilog;
1324 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1325 	void *cookie = NULL;
1326 	zil_vdev_node_t *zv;
1327 	lwb_t *nlwb;
1328 
1329 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1330 
1331 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1332 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1333 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1334 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1335 	ASSERT(!BP_IS_GANG(zio->io_bp));
1336 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1337 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1338 
1339 	abd_free(zio->io_abd);
1340 
1341 	mutex_enter(&zilog->zl_lock);
1342 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1343 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1344 	lwb->lwb_write_zio = NULL;
1345 	lwb->lwb_fastwrite = FALSE;
1346 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1347 	mutex_exit(&zilog->zl_lock);
1348 
1349 	if (avl_numnodes(t) == 0)
1350 		return;
1351 
1352 	/*
1353 	 * If there was an IO error, we're not going to call zio_flush()
1354 	 * on these vdevs, so we simply empty the tree and free the
1355 	 * nodes. We avoid calling zio_flush() since there isn't any
1356 	 * good reason for doing so, after the lwb block failed to be
1357 	 * written out.
1358 	 *
1359 	 * Additionally, we don't perform any further error handling at
1360 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1361 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1362 	 * we expect any error seen here, to have been propagated to
1363 	 * that function).
1364 	 */
1365 	if (zio->io_error != 0) {
1366 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1367 			kmem_free(zv, sizeof (*zv));
1368 		return;
1369 	}
1370 
1371 	/*
1372 	 * If this lwb does not have any threads waiting for it to
1373 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1374 	 * command to the vdevs written to by "this" lwb, and instead
1375 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1376 	 * command for those vdevs. Thus, we merge the vdev tree of
1377 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1378 	 * and assume the "next" lwb will handle flushing the vdevs (or
1379 	 * deferring the flush(s) again).
1380 	 *
1381 	 * This is a useful performance optimization, especially for
1382 	 * workloads with lots of async write activity and few sync
1383 	 * write and/or fsync activity, as it has the potential to
1384 	 * coalesce multiple flush commands to a vdev into one.
1385 	 */
1386 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1387 		zil_lwb_flush_defer(lwb, nlwb);
1388 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1389 		return;
1390 	}
1391 
1392 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1393 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1394 		if (vd != NULL) {
1395 			/*
1396 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1397 			 * always used within "zio_flush". This means,
1398 			 * any errors when flushing the vdev(s), will
1399 			 * (unfortunately) not be handled correctly,
1400 			 * since these "zio_flush" errors will not be
1401 			 * propagated up to "zil_lwb_flush_vdevs_done".
1402 			 */
1403 			zio_flush(lwb->lwb_root_zio, vd);
1404 		}
1405 		kmem_free(zv, sizeof (*zv));
1406 	}
1407 }
1408 
1409 static void
1410 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1411 {
1412 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1413 
1414 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1415 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1416 
1417 	/*
1418 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1419 	 * lwb/zio dependency chain, which is used to preserve the
1420 	 * ordering of lwb completions that is required by the semantics
1421 	 * of the ZIL. Each new lwb zio becomes a parent of the
1422 	 * "previous" lwb zio, such that the new lwb's zio cannot
1423 	 * complete until the "previous" lwb's zio completes.
1424 	 *
1425 	 * This is required by the semantics of zil_commit(); the commit
1426 	 * waiters attached to the lwbs will be woken in the lwb zio's
1427 	 * completion callback, so this zio dependency graph ensures the
1428 	 * waiters are woken in the correct order (the same order the
1429 	 * lwbs were created).
1430 	 */
1431 	if (last_lwb_opened != NULL &&
1432 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1433 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1434 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1435 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1436 
1437 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1438 		zio_add_child(lwb->lwb_root_zio,
1439 		    last_lwb_opened->lwb_root_zio);
1440 
1441 		/*
1442 		 * If the previous lwb's write hasn't already completed,
1443 		 * we also want to order the completion of the lwb write
1444 		 * zios (above, we only order the completion of the lwb
1445 		 * root zios). This is required because of how we can
1446 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1447 		 *
1448 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1449 		 * the previous lwb will rely on this lwb to flush the
1450 		 * vdevs written to by that previous lwb. Thus, we need
1451 		 * to ensure this lwb doesn't issue the flush until
1452 		 * after the previous lwb's write completes. We ensure
1453 		 * this ordering by setting the zio parent/child
1454 		 * relationship here.
1455 		 *
1456 		 * Without this relationship on the lwb's write zio,
1457 		 * it's possible for this lwb's write to complete prior
1458 		 * to the previous lwb's write completing; and thus, the
1459 		 * vdevs for the previous lwb would be flushed prior to
1460 		 * that lwb's data being written to those vdevs (the
1461 		 * vdevs are flushed in the lwb write zio's completion
1462 		 * handler, zil_lwb_write_done()).
1463 		 */
1464 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1465 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1466 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1467 
1468 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1469 			zio_add_child(lwb->lwb_write_zio,
1470 			    last_lwb_opened->lwb_write_zio);
1471 		}
1472 	}
1473 }
1474 
1475 
1476 /*
1477  * This function's purpose is to "open" an lwb such that it is ready to
1478  * accept new itxs being committed to it. To do this, the lwb's zio
1479  * structures are created, and linked to the lwb. This function is
1480  * idempotent; if the passed in lwb has already been opened, this
1481  * function is essentially a no-op.
1482  */
1483 static void
1484 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1485 {
1486 	zbookmark_phys_t zb;
1487 	zio_priority_t prio;
1488 
1489 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1490 	ASSERT3P(lwb, !=, NULL);
1491 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1492 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1493 
1494 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1495 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1496 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1497 
1498 	/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1499 	mutex_enter(&zilog->zl_lock);
1500 	if (lwb->lwb_root_zio == NULL) {
1501 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1502 		    BP_GET_LSIZE(&lwb->lwb_blk));
1503 
1504 		if (!lwb->lwb_fastwrite) {
1505 			metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1506 			lwb->lwb_fastwrite = 1;
1507 		}
1508 
1509 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1510 			prio = ZIO_PRIORITY_SYNC_WRITE;
1511 		else
1512 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1513 
1514 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1515 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1516 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1517 
1518 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1519 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1520 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1521 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1522 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1523 
1524 		lwb->lwb_state = LWB_STATE_OPENED;
1525 
1526 		zil_lwb_set_zio_dependency(zilog, lwb);
1527 		zilog->zl_last_lwb_opened = lwb;
1528 	}
1529 	mutex_exit(&zilog->zl_lock);
1530 
1531 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1532 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1533 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1534 }
1535 
1536 /*
1537  * Define a limited set of intent log block sizes.
1538  *
1539  * These must be a multiple of 4KB. Note only the amount used (again
1540  * aligned to 4KB) actually gets written. However, we can't always just
1541  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1542  */
1543 static const struct {
1544 	uint64_t	limit;
1545 	uint64_t	blksz;
1546 } zil_block_buckets[] = {
1547 	{ 4096,		4096 },			/* non TX_WRITE */
1548 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1549 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1550 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1551 	{ 131072,	131072 },		/* < 128KB writes */
1552 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1553 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1554 };
1555 
1556 /*
1557  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1558  * initialized.  Otherwise this should not be used directly; see
1559  * zl_max_block_size instead.
1560  */
1561 static int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1562 
1563 /*
1564  * Start a log block write and advance to the next log block.
1565  * Calls are serialized.
1566  */
1567 static lwb_t *
1568 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1569 {
1570 	lwb_t *nlwb = NULL;
1571 	zil_chain_t *zilc;
1572 	spa_t *spa = zilog->zl_spa;
1573 	blkptr_t *bp;
1574 	dmu_tx_t *tx;
1575 	uint64_t txg;
1576 	uint64_t zil_blksz, wsz;
1577 	int i, error;
1578 	boolean_t slog;
1579 
1580 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1581 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1582 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1583 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1584 
1585 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1586 		zilc = (zil_chain_t *)lwb->lwb_buf;
1587 		bp = &zilc->zc_next_blk;
1588 	} else {
1589 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1590 		bp = &zilc->zc_next_blk;
1591 	}
1592 
1593 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1594 
1595 	/*
1596 	 * Allocate the next block and save its address in this block
1597 	 * before writing it in order to establish the log chain.
1598 	 */
1599 
1600 	tx = dmu_tx_create(zilog->zl_os);
1601 
1602 	/*
1603 	 * Since we are not going to create any new dirty data, and we
1604 	 * can even help with clearing the existing dirty data, we
1605 	 * should not be subject to the dirty data based delays. We
1606 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1607 	 */
1608 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1609 
1610 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1611 	txg = dmu_tx_get_txg(tx);
1612 
1613 	mutex_enter(&zilog->zl_lwb_io_lock);
1614 	lwb->lwb_issued_txg = txg;
1615 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1616 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1617 	mutex_exit(&zilog->zl_lwb_io_lock);
1618 
1619 	/*
1620 	 * Log blocks are pre-allocated. Here we select the size of the next
1621 	 * block, based on size used in the last block.
1622 	 * - first find the smallest bucket that will fit the block from a
1623 	 *   limited set of block sizes. This is because it's faster to write
1624 	 *   blocks allocated from the same metaslab as they are adjacent or
1625 	 *   close.
1626 	 * - next find the maximum from the new suggested size and an array of
1627 	 *   previous sizes. This lessens a picket fence effect of wrongly
1628 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1629 	 *   requests.
1630 	 *
1631 	 * Note we only write what is used, but we can't just allocate
1632 	 * the maximum block size because we can exhaust the available
1633 	 * pool log space.
1634 	 */
1635 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1636 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1637 		continue;
1638 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1639 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1640 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1641 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1642 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1643 
1644 	BP_ZERO(bp);
1645 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1646 	if (slog) {
1647 		ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1648 		ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1649 	} else {
1650 		ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1651 		ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1652 	}
1653 	if (error == 0) {
1654 		ASSERT3U(bp->blk_birth, ==, txg);
1655 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1656 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1657 
1658 		/*
1659 		 * Allocate a new log write block (lwb).
1660 		 */
1661 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1662 	}
1663 
1664 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1665 		/* For Slim ZIL only write what is used. */
1666 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1667 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1668 		zio_shrink(lwb->lwb_write_zio, wsz);
1669 
1670 	} else {
1671 		wsz = lwb->lwb_sz;
1672 	}
1673 
1674 	zilc->zc_pad = 0;
1675 	zilc->zc_nused = lwb->lwb_nused;
1676 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1677 
1678 	/*
1679 	 * clear unused data for security
1680 	 */
1681 	memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1682 
1683 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1684 
1685 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1686 	lwb->lwb_issued_timestamp = gethrtime();
1687 	lwb->lwb_state = LWB_STATE_ISSUED;
1688 
1689 	zio_nowait(lwb->lwb_root_zio);
1690 	zio_nowait(lwb->lwb_write_zio);
1691 
1692 	dmu_tx_commit(tx);
1693 
1694 	/*
1695 	 * If there was an allocation failure then nlwb will be null which
1696 	 * forces a txg_wait_synced().
1697 	 */
1698 	return (nlwb);
1699 }
1700 
1701 /*
1702  * Maximum amount of write data that can be put into single log block.
1703  */
1704 uint64_t
1705 zil_max_log_data(zilog_t *zilog)
1706 {
1707 	return (zilog->zl_max_block_size -
1708 	    sizeof (zil_chain_t) - sizeof (lr_write_t));
1709 }
1710 
1711 /*
1712  * Maximum amount of log space we agree to waste to reduce number of
1713  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1714  */
1715 static inline uint64_t
1716 zil_max_waste_space(zilog_t *zilog)
1717 {
1718 	return (zil_max_log_data(zilog) / 8);
1719 }
1720 
1721 /*
1722  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1723  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1724  * maximum sized log block, because each WR_COPIED record must fit in a
1725  * single log block.  For space efficiency, we want to fit two records into a
1726  * max-sized log block.
1727  */
1728 uint64_t
1729 zil_max_copied_data(zilog_t *zilog)
1730 {
1731 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1732 	    sizeof (lr_write_t));
1733 }
1734 
1735 static lwb_t *
1736 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1737 {
1738 	lr_t *lrcb, *lrc;
1739 	lr_write_t *lrwb, *lrw;
1740 	char *lr_buf;
1741 	uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1742 
1743 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1744 	ASSERT3P(lwb, !=, NULL);
1745 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1746 
1747 	zil_lwb_write_open(zilog, lwb);
1748 
1749 	lrc = &itx->itx_lr;
1750 	lrw = (lr_write_t *)lrc;
1751 
1752 	/*
1753 	 * A commit itx doesn't represent any on-disk state; instead
1754 	 * it's simply used as a place holder on the commit list, and
1755 	 * provides a mechanism for attaching a "commit waiter" onto the
1756 	 * correct lwb (such that the waiter can be signalled upon
1757 	 * completion of that lwb). Thus, we don't process this itx's
1758 	 * log record if it's a commit itx (these itx's don't have log
1759 	 * records), and instead link the itx's waiter onto the lwb's
1760 	 * list of waiters.
1761 	 *
1762 	 * For more details, see the comment above zil_commit().
1763 	 */
1764 	if (lrc->lrc_txtype == TX_COMMIT) {
1765 		mutex_enter(&zilog->zl_lock);
1766 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1767 		itx->itx_private = NULL;
1768 		mutex_exit(&zilog->zl_lock);
1769 		return (lwb);
1770 	}
1771 
1772 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1773 		dlen = P2ROUNDUP_TYPED(
1774 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1775 		dpad = dlen - lrw->lr_length;
1776 	} else {
1777 		dlen = dpad = 0;
1778 	}
1779 	reclen = lrc->lrc_reclen;
1780 	zilog->zl_cur_used += (reclen + dlen);
1781 	txg = lrc->lrc_txg;
1782 
1783 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1784 
1785 cont:
1786 	/*
1787 	 * If this record won't fit in the current log block, start a new one.
1788 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1789 	 */
1790 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1791 	max_log_data = zil_max_log_data(zilog);
1792 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1793 	    lwb_sp < zil_max_waste_space(zilog) &&
1794 	    (dlen % max_log_data == 0 ||
1795 	    lwb_sp < reclen + dlen % max_log_data))) {
1796 		lwb = zil_lwb_write_issue(zilog, lwb);
1797 		if (lwb == NULL)
1798 			return (NULL);
1799 		zil_lwb_write_open(zilog, lwb);
1800 		ASSERT(LWB_EMPTY(lwb));
1801 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1802 
1803 		/*
1804 		 * There must be enough space in the new, empty log block to
1805 		 * hold reclen.  For WR_COPIED, we need to fit the whole
1806 		 * record in one block, and reclen is the header size + the
1807 		 * data size. For WR_NEED_COPY, we can create multiple
1808 		 * records, splitting the data into multiple blocks, so we
1809 		 * only need to fit one word of data per block; in this case
1810 		 * reclen is just the header size (no data).
1811 		 */
1812 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1813 	}
1814 
1815 	dnow = MIN(dlen, lwb_sp - reclen);
1816 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1817 	memcpy(lr_buf, lrc, reclen);
1818 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1819 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1820 
1821 	ZIL_STAT_BUMP(zil_itx_count);
1822 
1823 	/*
1824 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1825 	 */
1826 	if (lrc->lrc_txtype == TX_WRITE) {
1827 		if (txg > spa_freeze_txg(zilog->zl_spa))
1828 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1829 		if (itx->itx_wr_state == WR_COPIED) {
1830 			ZIL_STAT_BUMP(zil_itx_copied_count);
1831 			ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1832 		} else {
1833 			char *dbuf;
1834 			int error;
1835 
1836 			if (itx->itx_wr_state == WR_NEED_COPY) {
1837 				dbuf = lr_buf + reclen;
1838 				lrcb->lrc_reclen += dnow;
1839 				if (lrwb->lr_length > dnow)
1840 					lrwb->lr_length = dnow;
1841 				lrw->lr_offset += dnow;
1842 				lrw->lr_length -= dnow;
1843 				ZIL_STAT_BUMP(zil_itx_needcopy_count);
1844 				ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1845 			} else {
1846 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1847 				dbuf = NULL;
1848 				ZIL_STAT_BUMP(zil_itx_indirect_count);
1849 				ZIL_STAT_INCR(zil_itx_indirect_bytes,
1850 				    lrw->lr_length);
1851 			}
1852 
1853 			/*
1854 			 * We pass in the "lwb_write_zio" rather than
1855 			 * "lwb_root_zio" so that the "lwb_write_zio"
1856 			 * becomes the parent of any zio's created by
1857 			 * the "zl_get_data" callback. The vdevs are
1858 			 * flushed after the "lwb_write_zio" completes,
1859 			 * so we want to make sure that completion
1860 			 * callback waits for these additional zio's,
1861 			 * such that the vdevs used by those zio's will
1862 			 * be included in the lwb's vdev tree, and those
1863 			 * vdevs will be properly flushed. If we passed
1864 			 * in "lwb_root_zio" here, then these additional
1865 			 * vdevs may not be flushed; e.g. if these zio's
1866 			 * completed after "lwb_write_zio" completed.
1867 			 */
1868 			error = zilog->zl_get_data(itx->itx_private,
1869 			    itx->itx_gen, lrwb, dbuf, lwb,
1870 			    lwb->lwb_write_zio);
1871 			if (dbuf != NULL && error == 0 && dnow == dlen)
1872 				/* Zero any padding bytes in the last block. */
1873 				memset((char *)dbuf + lrwb->lr_length, 0, dpad);
1874 
1875 			if (error == EIO) {
1876 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1877 				return (lwb);
1878 			}
1879 			if (error != 0) {
1880 				ASSERT(error == ENOENT || error == EEXIST ||
1881 				    error == EALREADY);
1882 				return (lwb);
1883 			}
1884 		}
1885 	}
1886 
1887 	/*
1888 	 * We're actually making an entry, so update lrc_seq to be the
1889 	 * log record sequence number.  Note that this is generally not
1890 	 * equal to the itx sequence number because not all transactions
1891 	 * are synchronous, and sometimes spa_sync() gets there first.
1892 	 */
1893 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1894 	lwb->lwb_nused += reclen + dnow;
1895 
1896 	zil_lwb_add_txg(lwb, txg);
1897 
1898 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1899 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1900 
1901 	dlen -= dnow;
1902 	if (dlen > 0) {
1903 		zilog->zl_cur_used += reclen;
1904 		goto cont;
1905 	}
1906 
1907 	return (lwb);
1908 }
1909 
1910 itx_t *
1911 zil_itx_create(uint64_t txtype, size_t olrsize)
1912 {
1913 	size_t itxsize, lrsize;
1914 	itx_t *itx;
1915 
1916 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
1917 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
1918 
1919 	itx = zio_data_buf_alloc(itxsize);
1920 	itx->itx_lr.lrc_txtype = txtype;
1921 	itx->itx_lr.lrc_reclen = lrsize;
1922 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1923 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
1924 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1925 	itx->itx_callback = NULL;
1926 	itx->itx_callback_data = NULL;
1927 	itx->itx_size = itxsize;
1928 
1929 	return (itx);
1930 }
1931 
1932 void
1933 zil_itx_destroy(itx_t *itx)
1934 {
1935 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1936 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1937 
1938 	if (itx->itx_callback != NULL)
1939 		itx->itx_callback(itx->itx_callback_data);
1940 
1941 	zio_data_buf_free(itx, itx->itx_size);
1942 }
1943 
1944 /*
1945  * Free up the sync and async itxs. The itxs_t has already been detached
1946  * so no locks are needed.
1947  */
1948 static void
1949 zil_itxg_clean(void *arg)
1950 {
1951 	itx_t *itx;
1952 	list_t *list;
1953 	avl_tree_t *t;
1954 	void *cookie;
1955 	itxs_t *itxs = arg;
1956 	itx_async_node_t *ian;
1957 
1958 	list = &itxs->i_sync_list;
1959 	while ((itx = list_head(list)) != NULL) {
1960 		/*
1961 		 * In the general case, commit itxs will not be found
1962 		 * here, as they'll be committed to an lwb via
1963 		 * zil_lwb_commit(), and free'd in that function. Having
1964 		 * said that, it is still possible for commit itxs to be
1965 		 * found here, due to the following race:
1966 		 *
1967 		 *	- a thread calls zil_commit() which assigns the
1968 		 *	  commit itx to a per-txg i_sync_list
1969 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1970 		 *	  while the waiter is still on the i_sync_list
1971 		 *
1972 		 * There's nothing to prevent syncing the txg while the
1973 		 * waiter is on the i_sync_list. This normally doesn't
1974 		 * happen because spa_sync() is slower than zil_commit(),
1975 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1976 		 * because zil_create() or zil_commit_writer_stall() is
1977 		 * called) we will hit this case.
1978 		 */
1979 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1980 			zil_commit_waiter_skip(itx->itx_private);
1981 
1982 		list_remove(list, itx);
1983 		zil_itx_destroy(itx);
1984 	}
1985 
1986 	cookie = NULL;
1987 	t = &itxs->i_async_tree;
1988 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1989 		list = &ian->ia_list;
1990 		while ((itx = list_head(list)) != NULL) {
1991 			list_remove(list, itx);
1992 			/* commit itxs should never be on the async lists. */
1993 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1994 			zil_itx_destroy(itx);
1995 		}
1996 		list_destroy(list);
1997 		kmem_free(ian, sizeof (itx_async_node_t));
1998 	}
1999 	avl_destroy(t);
2000 
2001 	kmem_free(itxs, sizeof (itxs_t));
2002 }
2003 
2004 static int
2005 zil_aitx_compare(const void *x1, const void *x2)
2006 {
2007 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2008 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2009 
2010 	return (TREE_CMP(o1, o2));
2011 }
2012 
2013 /*
2014  * Remove all async itx with the given oid.
2015  */
2016 void
2017 zil_remove_async(zilog_t *zilog, uint64_t oid)
2018 {
2019 	uint64_t otxg, txg;
2020 	itx_async_node_t *ian;
2021 	avl_tree_t *t;
2022 	avl_index_t where;
2023 	list_t clean_list;
2024 	itx_t *itx;
2025 
2026 	ASSERT(oid != 0);
2027 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2028 
2029 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2030 		otxg = ZILTEST_TXG;
2031 	else
2032 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2033 
2034 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2035 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2036 
2037 		mutex_enter(&itxg->itxg_lock);
2038 		if (itxg->itxg_txg != txg) {
2039 			mutex_exit(&itxg->itxg_lock);
2040 			continue;
2041 		}
2042 
2043 		/*
2044 		 * Locate the object node and append its list.
2045 		 */
2046 		t = &itxg->itxg_itxs->i_async_tree;
2047 		ian = avl_find(t, &oid, &where);
2048 		if (ian != NULL)
2049 			list_move_tail(&clean_list, &ian->ia_list);
2050 		mutex_exit(&itxg->itxg_lock);
2051 	}
2052 	while ((itx = list_head(&clean_list)) != NULL) {
2053 		list_remove(&clean_list, itx);
2054 		/* commit itxs should never be on the async lists. */
2055 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2056 		zil_itx_destroy(itx);
2057 	}
2058 	list_destroy(&clean_list);
2059 }
2060 
2061 void
2062 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2063 {
2064 	uint64_t txg;
2065 	itxg_t *itxg;
2066 	itxs_t *itxs, *clean = NULL;
2067 
2068 	/*
2069 	 * Ensure the data of a renamed file is committed before the rename.
2070 	 */
2071 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2072 		zil_async_to_sync(zilog, itx->itx_oid);
2073 
2074 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2075 		txg = ZILTEST_TXG;
2076 	else
2077 		txg = dmu_tx_get_txg(tx);
2078 
2079 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2080 	mutex_enter(&itxg->itxg_lock);
2081 	itxs = itxg->itxg_itxs;
2082 	if (itxg->itxg_txg != txg) {
2083 		if (itxs != NULL) {
2084 			/*
2085 			 * The zil_clean callback hasn't got around to cleaning
2086 			 * this itxg. Save the itxs for release below.
2087 			 * This should be rare.
2088 			 */
2089 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2090 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2091 			clean = itxg->itxg_itxs;
2092 		}
2093 		itxg->itxg_txg = txg;
2094 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2095 		    KM_SLEEP);
2096 
2097 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2098 		    offsetof(itx_t, itx_node));
2099 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2100 		    sizeof (itx_async_node_t),
2101 		    offsetof(itx_async_node_t, ia_node));
2102 	}
2103 	if (itx->itx_sync) {
2104 		list_insert_tail(&itxs->i_sync_list, itx);
2105 	} else {
2106 		avl_tree_t *t = &itxs->i_async_tree;
2107 		uint64_t foid =
2108 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2109 		itx_async_node_t *ian;
2110 		avl_index_t where;
2111 
2112 		ian = avl_find(t, &foid, &where);
2113 		if (ian == NULL) {
2114 			ian = kmem_alloc(sizeof (itx_async_node_t),
2115 			    KM_SLEEP);
2116 			list_create(&ian->ia_list, sizeof (itx_t),
2117 			    offsetof(itx_t, itx_node));
2118 			ian->ia_foid = foid;
2119 			avl_insert(t, ian, where);
2120 		}
2121 		list_insert_tail(&ian->ia_list, itx);
2122 	}
2123 
2124 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2125 
2126 	/*
2127 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2128 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2129 	 * need to be careful to always dirty the ZIL using the "real"
2130 	 * TXG (not itxg_txg) even when the SPA is frozen.
2131 	 */
2132 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2133 	mutex_exit(&itxg->itxg_lock);
2134 
2135 	/* Release the old itxs now we've dropped the lock */
2136 	if (clean != NULL)
2137 		zil_itxg_clean(clean);
2138 }
2139 
2140 /*
2141  * If there are any in-memory intent log transactions which have now been
2142  * synced then start up a taskq to free them. We should only do this after we
2143  * have written out the uberblocks (i.e. txg has been committed) so that
2144  * don't inadvertently clean out in-memory log records that would be required
2145  * by zil_commit().
2146  */
2147 void
2148 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2149 {
2150 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2151 	itxs_t *clean_me;
2152 
2153 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2154 
2155 	mutex_enter(&itxg->itxg_lock);
2156 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2157 		mutex_exit(&itxg->itxg_lock);
2158 		return;
2159 	}
2160 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2161 	ASSERT3U(itxg->itxg_txg, !=, 0);
2162 	clean_me = itxg->itxg_itxs;
2163 	itxg->itxg_itxs = NULL;
2164 	itxg->itxg_txg = 0;
2165 	mutex_exit(&itxg->itxg_lock);
2166 	/*
2167 	 * Preferably start a task queue to free up the old itxs but
2168 	 * if taskq_dispatch can't allocate resources to do that then
2169 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2170 	 * created a bad performance problem.
2171 	 */
2172 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2173 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2174 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2175 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2176 	if (id == TASKQID_INVALID)
2177 		zil_itxg_clean(clean_me);
2178 }
2179 
2180 /*
2181  * This function will traverse the queue of itxs that need to be
2182  * committed, and move them onto the ZIL's zl_itx_commit_list.
2183  */
2184 static void
2185 zil_get_commit_list(zilog_t *zilog)
2186 {
2187 	uint64_t otxg, txg;
2188 	list_t *commit_list = &zilog->zl_itx_commit_list;
2189 
2190 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2191 
2192 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2193 		otxg = ZILTEST_TXG;
2194 	else
2195 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2196 
2197 	/*
2198 	 * This is inherently racy, since there is nothing to prevent
2199 	 * the last synced txg from changing. That's okay since we'll
2200 	 * only commit things in the future.
2201 	 */
2202 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2203 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2204 
2205 		mutex_enter(&itxg->itxg_lock);
2206 		if (itxg->itxg_txg != txg) {
2207 			mutex_exit(&itxg->itxg_lock);
2208 			continue;
2209 		}
2210 
2211 		/*
2212 		 * If we're adding itx records to the zl_itx_commit_list,
2213 		 * then the zil better be dirty in this "txg". We can assert
2214 		 * that here since we're holding the itxg_lock which will
2215 		 * prevent spa_sync from cleaning it. Once we add the itxs
2216 		 * to the zl_itx_commit_list we must commit it to disk even
2217 		 * if it's unnecessary (i.e. the txg was synced).
2218 		 */
2219 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2220 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2221 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2222 
2223 		mutex_exit(&itxg->itxg_lock);
2224 	}
2225 }
2226 
2227 /*
2228  * Move the async itxs for a specified object to commit into sync lists.
2229  */
2230 void
2231 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2232 {
2233 	uint64_t otxg, txg;
2234 	itx_async_node_t *ian;
2235 	avl_tree_t *t;
2236 	avl_index_t where;
2237 
2238 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2239 		otxg = ZILTEST_TXG;
2240 	else
2241 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2242 
2243 	/*
2244 	 * This is inherently racy, since there is nothing to prevent
2245 	 * the last synced txg from changing.
2246 	 */
2247 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2248 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2249 
2250 		mutex_enter(&itxg->itxg_lock);
2251 		if (itxg->itxg_txg != txg) {
2252 			mutex_exit(&itxg->itxg_lock);
2253 			continue;
2254 		}
2255 
2256 		/*
2257 		 * If a foid is specified then find that node and append its
2258 		 * list. Otherwise walk the tree appending all the lists
2259 		 * to the sync list. We add to the end rather than the
2260 		 * beginning to ensure the create has happened.
2261 		 */
2262 		t = &itxg->itxg_itxs->i_async_tree;
2263 		if (foid != 0) {
2264 			ian = avl_find(t, &foid, &where);
2265 			if (ian != NULL) {
2266 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2267 				    &ian->ia_list);
2268 			}
2269 		} else {
2270 			void *cookie = NULL;
2271 
2272 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2273 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2274 				    &ian->ia_list);
2275 				list_destroy(&ian->ia_list);
2276 				kmem_free(ian, sizeof (itx_async_node_t));
2277 			}
2278 		}
2279 		mutex_exit(&itxg->itxg_lock);
2280 	}
2281 }
2282 
2283 /*
2284  * This function will prune commit itxs that are at the head of the
2285  * commit list (it won't prune past the first non-commit itx), and
2286  * either: a) attach them to the last lwb that's still pending
2287  * completion, or b) skip them altogether.
2288  *
2289  * This is used as a performance optimization to prevent commit itxs
2290  * from generating new lwbs when it's unnecessary to do so.
2291  */
2292 static void
2293 zil_prune_commit_list(zilog_t *zilog)
2294 {
2295 	itx_t *itx;
2296 
2297 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2298 
2299 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2300 		lr_t *lrc = &itx->itx_lr;
2301 		if (lrc->lrc_txtype != TX_COMMIT)
2302 			break;
2303 
2304 		mutex_enter(&zilog->zl_lock);
2305 
2306 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2307 		if (last_lwb == NULL ||
2308 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2309 			/*
2310 			 * All of the itxs this waiter was waiting on
2311 			 * must have already completed (or there were
2312 			 * never any itx's for it to wait on), so it's
2313 			 * safe to skip this waiter and mark it done.
2314 			 */
2315 			zil_commit_waiter_skip(itx->itx_private);
2316 		} else {
2317 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2318 			itx->itx_private = NULL;
2319 		}
2320 
2321 		mutex_exit(&zilog->zl_lock);
2322 
2323 		list_remove(&zilog->zl_itx_commit_list, itx);
2324 		zil_itx_destroy(itx);
2325 	}
2326 
2327 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2328 }
2329 
2330 static void
2331 zil_commit_writer_stall(zilog_t *zilog)
2332 {
2333 	/*
2334 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2335 	 * disk, we must call txg_wait_synced() to ensure all of the
2336 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2337 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2338 	 * to zil_process_commit_list()) will have to call zil_create(),
2339 	 * and start a new ZIL chain.
2340 	 *
2341 	 * Since zil_alloc_zil() failed, the lwb that was previously
2342 	 * issued does not have a pointer to the "next" lwb on disk.
2343 	 * Thus, if another ZIL writer thread was to allocate the "next"
2344 	 * on-disk lwb, that block could be leaked in the event of a
2345 	 * crash (because the previous lwb on-disk would not point to
2346 	 * it).
2347 	 *
2348 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2349 	 * ensure no new threads enter zil_process_commit_list() until
2350 	 * all lwb's in the zl_lwb_list have been synced and freed
2351 	 * (which is achieved via the txg_wait_synced() call).
2352 	 */
2353 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2354 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2355 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2356 }
2357 
2358 /*
2359  * This function will traverse the commit list, creating new lwbs as
2360  * needed, and committing the itxs from the commit list to these newly
2361  * created lwbs. Additionally, as a new lwb is created, the previous
2362  * lwb will be issued to the zio layer to be written to disk.
2363  */
2364 static void
2365 zil_process_commit_list(zilog_t *zilog)
2366 {
2367 	spa_t *spa = zilog->zl_spa;
2368 	list_t nolwb_itxs;
2369 	list_t nolwb_waiters;
2370 	lwb_t *lwb;
2371 	itx_t *itx;
2372 
2373 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2374 
2375 	/*
2376 	 * Return if there's nothing to commit before we dirty the fs by
2377 	 * calling zil_create().
2378 	 */
2379 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2380 		return;
2381 
2382 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2383 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2384 	    offsetof(zil_commit_waiter_t, zcw_node));
2385 
2386 	lwb = list_tail(&zilog->zl_lwb_list);
2387 	if (lwb == NULL) {
2388 		lwb = zil_create(zilog);
2389 	} else {
2390 		/*
2391 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2392 		 * have already been created (zl_lwb_list not empty).
2393 		 */
2394 		zil_commit_activate_saxattr_feature(zilog);
2395 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2396 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2397 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2398 	}
2399 
2400 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2401 		lr_t *lrc = &itx->itx_lr;
2402 		uint64_t txg = lrc->lrc_txg;
2403 
2404 		ASSERT3U(txg, !=, 0);
2405 
2406 		if (lrc->lrc_txtype == TX_COMMIT) {
2407 			DTRACE_PROBE2(zil__process__commit__itx,
2408 			    zilog_t *, zilog, itx_t *, itx);
2409 		} else {
2410 			DTRACE_PROBE2(zil__process__normal__itx,
2411 			    zilog_t *, zilog, itx_t *, itx);
2412 		}
2413 
2414 		list_remove(&zilog->zl_itx_commit_list, itx);
2415 
2416 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2417 		boolean_t frozen = txg > spa_freeze_txg(spa);
2418 
2419 		/*
2420 		 * If the txg of this itx has already been synced out, then
2421 		 * we don't need to commit this itx to an lwb. This is
2422 		 * because the data of this itx will have already been
2423 		 * written to the main pool. This is inherently racy, and
2424 		 * it's still ok to commit an itx whose txg has already
2425 		 * been synced; this will result in a write that's
2426 		 * unnecessary, but will do no harm.
2427 		 *
2428 		 * With that said, we always want to commit TX_COMMIT itxs
2429 		 * to an lwb, regardless of whether or not that itx's txg
2430 		 * has been synced out. We do this to ensure any OPENED lwb
2431 		 * will always have at least one zil_commit_waiter_t linked
2432 		 * to the lwb.
2433 		 *
2434 		 * As a counter-example, if we skipped TX_COMMIT itx's
2435 		 * whose txg had already been synced, the following
2436 		 * situation could occur if we happened to be racing with
2437 		 * spa_sync:
2438 		 *
2439 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2440 		 *    itx's txg is 10 and the last synced txg is 9.
2441 		 * 2. spa_sync finishes syncing out txg 10.
2442 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2443 		 *    whose txg is 10, so we skip it rather than committing
2444 		 *    it to the lwb used in (1).
2445 		 *
2446 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2447 		 * itx in the commit list, than it's possible for the lwb
2448 		 * used in (1) to remain in the OPENED state indefinitely.
2449 		 *
2450 		 * To prevent the above scenario from occurring, ensuring
2451 		 * that once an lwb is OPENED it will transition to ISSUED
2452 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2453 		 * an lwb here, even if that itx's txg has already been
2454 		 * synced.
2455 		 *
2456 		 * Finally, if the pool is frozen, we _always_ commit the
2457 		 * itx.  The point of freezing the pool is to prevent data
2458 		 * from being written to the main pool via spa_sync, and
2459 		 * instead rely solely on the ZIL to persistently store the
2460 		 * data; i.e.  when the pool is frozen, the last synced txg
2461 		 * value can't be trusted.
2462 		 */
2463 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2464 			if (lwb != NULL) {
2465 				lwb = zil_lwb_commit(zilog, itx, lwb);
2466 
2467 				if (lwb == NULL)
2468 					list_insert_tail(&nolwb_itxs, itx);
2469 				else
2470 					list_insert_tail(&lwb->lwb_itxs, itx);
2471 			} else {
2472 				if (lrc->lrc_txtype == TX_COMMIT) {
2473 					zil_commit_waiter_link_nolwb(
2474 					    itx->itx_private, &nolwb_waiters);
2475 				}
2476 
2477 				list_insert_tail(&nolwb_itxs, itx);
2478 			}
2479 		} else {
2480 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2481 			zil_itx_destroy(itx);
2482 		}
2483 	}
2484 
2485 	if (lwb == NULL) {
2486 		/*
2487 		 * This indicates zio_alloc_zil() failed to allocate the
2488 		 * "next" lwb on-disk. When this happens, we must stall
2489 		 * the ZIL write pipeline; see the comment within
2490 		 * zil_commit_writer_stall() for more details.
2491 		 */
2492 		zil_commit_writer_stall(zilog);
2493 
2494 		/*
2495 		 * Additionally, we have to signal and mark the "nolwb"
2496 		 * waiters as "done" here, since without an lwb, we
2497 		 * can't do this via zil_lwb_flush_vdevs_done() like
2498 		 * normal.
2499 		 */
2500 		zil_commit_waiter_t *zcw;
2501 		while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2502 			zil_commit_waiter_skip(zcw);
2503 			list_remove(&nolwb_waiters, zcw);
2504 		}
2505 
2506 		/*
2507 		 * And finally, we have to destroy the itx's that
2508 		 * couldn't be committed to an lwb; this will also call
2509 		 * the itx's callback if one exists for the itx.
2510 		 */
2511 		while ((itx = list_head(&nolwb_itxs)) != NULL) {
2512 			list_remove(&nolwb_itxs, itx);
2513 			zil_itx_destroy(itx);
2514 		}
2515 	} else {
2516 		ASSERT(list_is_empty(&nolwb_waiters));
2517 		ASSERT3P(lwb, !=, NULL);
2518 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2519 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2520 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2521 
2522 		/*
2523 		 * At this point, the ZIL block pointed at by the "lwb"
2524 		 * variable is in one of the following states: "closed"
2525 		 * or "open".
2526 		 *
2527 		 * If it's "closed", then no itxs have been committed to
2528 		 * it, so there's no point in issuing its zio (i.e. it's
2529 		 * "empty").
2530 		 *
2531 		 * If it's "open", then it contains one or more itxs that
2532 		 * eventually need to be committed to stable storage. In
2533 		 * this case we intentionally do not issue the lwb's zio
2534 		 * to disk yet, and instead rely on one of the following
2535 		 * two mechanisms for issuing the zio:
2536 		 *
2537 		 * 1. Ideally, there will be more ZIL activity occurring
2538 		 * on the system, such that this function will be
2539 		 * immediately called again (not necessarily by the same
2540 		 * thread) and this lwb's zio will be issued via
2541 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2542 		 * be "full" when it is issued to disk, and we'll make
2543 		 * use of the lwb's size the best we can.
2544 		 *
2545 		 * 2. If there isn't sufficient ZIL activity occurring on
2546 		 * the system, such that this lwb's zio isn't issued via
2547 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2548 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2549 		 * to be "full" by the time its zio is issued, and means
2550 		 * the size of the lwb was "too large" given the amount
2551 		 * of ZIL activity occurring on the system at that time.
2552 		 *
2553 		 * We do this for a couple of reasons:
2554 		 *
2555 		 * 1. To try and reduce the number of IOPs needed to
2556 		 * write the same number of itxs. If an lwb has space
2557 		 * available in its buffer for more itxs, and more itxs
2558 		 * will be committed relatively soon (relative to the
2559 		 * latency of performing a write), then it's beneficial
2560 		 * to wait for these "next" itxs. This way, more itxs
2561 		 * can be committed to stable storage with fewer writes.
2562 		 *
2563 		 * 2. To try and use the largest lwb block size that the
2564 		 * incoming rate of itxs can support. Again, this is to
2565 		 * try and pack as many itxs into as few lwbs as
2566 		 * possible, without significantly impacting the latency
2567 		 * of each individual itx.
2568 		 */
2569 	}
2570 }
2571 
2572 /*
2573  * This function is responsible for ensuring the passed in commit waiter
2574  * (and associated commit itx) is committed to an lwb. If the waiter is
2575  * not already committed to an lwb, all itxs in the zilog's queue of
2576  * itxs will be processed. The assumption is the passed in waiter's
2577  * commit itx will found in the queue just like the other non-commit
2578  * itxs, such that when the entire queue is processed, the waiter will
2579  * have been committed to an lwb.
2580  *
2581  * The lwb associated with the passed in waiter is not guaranteed to
2582  * have been issued by the time this function completes. If the lwb is
2583  * not issued, we rely on future calls to zil_commit_writer() to issue
2584  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2585  */
2586 static void
2587 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2588 {
2589 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2590 	ASSERT(spa_writeable(zilog->zl_spa));
2591 
2592 	mutex_enter(&zilog->zl_issuer_lock);
2593 
2594 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2595 		/*
2596 		 * It's possible that, while we were waiting to acquire
2597 		 * the "zl_issuer_lock", another thread committed this
2598 		 * waiter to an lwb. If that occurs, we bail out early,
2599 		 * without processing any of the zilog's queue of itxs.
2600 		 *
2601 		 * On certain workloads and system configurations, the
2602 		 * "zl_issuer_lock" can become highly contended. In an
2603 		 * attempt to reduce this contention, we immediately drop
2604 		 * the lock if the waiter has already been processed.
2605 		 *
2606 		 * We've measured this optimization to reduce CPU spent
2607 		 * contending on this lock by up to 5%, using a system
2608 		 * with 32 CPUs, low latency storage (~50 usec writes),
2609 		 * and 1024 threads performing sync writes.
2610 		 */
2611 		goto out;
2612 	}
2613 
2614 	ZIL_STAT_BUMP(zil_commit_writer_count);
2615 
2616 	zil_get_commit_list(zilog);
2617 	zil_prune_commit_list(zilog);
2618 	zil_process_commit_list(zilog);
2619 
2620 out:
2621 	mutex_exit(&zilog->zl_issuer_lock);
2622 }
2623 
2624 static void
2625 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2626 {
2627 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2628 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2629 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2630 
2631 	lwb_t *lwb = zcw->zcw_lwb;
2632 	ASSERT3P(lwb, !=, NULL);
2633 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2634 
2635 	/*
2636 	 * If the lwb has already been issued by another thread, we can
2637 	 * immediately return since there's no work to be done (the
2638 	 * point of this function is to issue the lwb). Additionally, we
2639 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2640 	 * acquiring it when it's not necessary to do so.
2641 	 */
2642 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2643 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2644 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2645 		return;
2646 
2647 	/*
2648 	 * In order to call zil_lwb_write_issue() we must hold the
2649 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2650 	 * since we're already holding the commit waiter's "zcw_lock",
2651 	 * and those two locks are acquired in the opposite order
2652 	 * elsewhere.
2653 	 */
2654 	mutex_exit(&zcw->zcw_lock);
2655 	mutex_enter(&zilog->zl_issuer_lock);
2656 	mutex_enter(&zcw->zcw_lock);
2657 
2658 	/*
2659 	 * Since we just dropped and re-acquired the commit waiter's
2660 	 * lock, we have to re-check to see if the waiter was marked
2661 	 * "done" during that process. If the waiter was marked "done",
2662 	 * the "lwb" pointer is no longer valid (it can be free'd after
2663 	 * the waiter is marked "done"), so without this check we could
2664 	 * wind up with a use-after-free error below.
2665 	 */
2666 	if (zcw->zcw_done)
2667 		goto out;
2668 
2669 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2670 
2671 	/*
2672 	 * We've already checked this above, but since we hadn't acquired
2673 	 * the zilog's zl_issuer_lock, we have to perform this check a
2674 	 * second time while holding the lock.
2675 	 *
2676 	 * We don't need to hold the zl_lock since the lwb cannot transition
2677 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2678 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2679 	 * that transition since we treat the lwb the same, whether it's in
2680 	 * the ISSUED or DONE states.
2681 	 *
2682 	 * The important thing, is we treat the lwb differently depending on
2683 	 * if it's ISSUED or OPENED, and block any other threads that might
2684 	 * attempt to issue this lwb. For that reason we hold the
2685 	 * zl_issuer_lock when checking the lwb_state; we must not call
2686 	 * zil_lwb_write_issue() if the lwb had already been issued.
2687 	 *
2688 	 * See the comment above the lwb_state_t structure definition for
2689 	 * more details on the lwb states, and locking requirements.
2690 	 */
2691 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2692 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2693 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2694 		goto out;
2695 
2696 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2697 
2698 	/*
2699 	 * As described in the comments above zil_commit_waiter() and
2700 	 * zil_process_commit_list(), we need to issue this lwb's zio
2701 	 * since we've reached the commit waiter's timeout and it still
2702 	 * hasn't been issued.
2703 	 */
2704 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2705 
2706 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2707 
2708 	/*
2709 	 * Since the lwb's zio hadn't been issued by the time this thread
2710 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2711 	 * to influence the zil block size selection algorithm.
2712 	 *
2713 	 * By having to issue the lwb's zio here, it means the size of the
2714 	 * lwb was too large, given the incoming throughput of itxs.  By
2715 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2716 	 * block size selection algorithm, so it can take this information
2717 	 * into account, and potentially select a smaller size for the
2718 	 * next lwb block that is allocated.
2719 	 */
2720 	zilog->zl_cur_used = 0;
2721 
2722 	if (nlwb == NULL) {
2723 		/*
2724 		 * When zil_lwb_write_issue() returns NULL, this
2725 		 * indicates zio_alloc_zil() failed to allocate the
2726 		 * "next" lwb on-disk. When this occurs, the ZIL write
2727 		 * pipeline must be stalled; see the comment within the
2728 		 * zil_commit_writer_stall() function for more details.
2729 		 *
2730 		 * We must drop the commit waiter's lock prior to
2731 		 * calling zil_commit_writer_stall() or else we can wind
2732 		 * up with the following deadlock:
2733 		 *
2734 		 * - This thread is waiting for the txg to sync while
2735 		 *   holding the waiter's lock; txg_wait_synced() is
2736 		 *   used within txg_commit_writer_stall().
2737 		 *
2738 		 * - The txg can't sync because it is waiting for this
2739 		 *   lwb's zio callback to call dmu_tx_commit().
2740 		 *
2741 		 * - The lwb's zio callback can't call dmu_tx_commit()
2742 		 *   because it's blocked trying to acquire the waiter's
2743 		 *   lock, which occurs prior to calling dmu_tx_commit()
2744 		 */
2745 		mutex_exit(&zcw->zcw_lock);
2746 		zil_commit_writer_stall(zilog);
2747 		mutex_enter(&zcw->zcw_lock);
2748 	}
2749 
2750 out:
2751 	mutex_exit(&zilog->zl_issuer_lock);
2752 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2753 }
2754 
2755 /*
2756  * This function is responsible for performing the following two tasks:
2757  *
2758  * 1. its primary responsibility is to block until the given "commit
2759  *    waiter" is considered "done".
2760  *
2761  * 2. its secondary responsibility is to issue the zio for the lwb that
2762  *    the given "commit waiter" is waiting on, if this function has
2763  *    waited "long enough" and the lwb is still in the "open" state.
2764  *
2765  * Given a sufficient amount of itxs being generated and written using
2766  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2767  * function. If this does not occur, this secondary responsibility will
2768  * ensure the lwb is issued even if there is not other synchronous
2769  * activity on the system.
2770  *
2771  * For more details, see zil_process_commit_list(); more specifically,
2772  * the comment at the bottom of that function.
2773  */
2774 static void
2775 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2776 {
2777 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2778 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2779 	ASSERT(spa_writeable(zilog->zl_spa));
2780 
2781 	mutex_enter(&zcw->zcw_lock);
2782 
2783 	/*
2784 	 * The timeout is scaled based on the lwb latency to avoid
2785 	 * significantly impacting the latency of each individual itx.
2786 	 * For more details, see the comment at the bottom of the
2787 	 * zil_process_commit_list() function.
2788 	 */
2789 	int pct = MAX(zfs_commit_timeout_pct, 1);
2790 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2791 	hrtime_t wakeup = gethrtime() + sleep;
2792 	boolean_t timedout = B_FALSE;
2793 
2794 	while (!zcw->zcw_done) {
2795 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2796 
2797 		lwb_t *lwb = zcw->zcw_lwb;
2798 
2799 		/*
2800 		 * Usually, the waiter will have a non-NULL lwb field here,
2801 		 * but it's possible for it to be NULL as a result of
2802 		 * zil_commit() racing with spa_sync().
2803 		 *
2804 		 * When zil_clean() is called, it's possible for the itxg
2805 		 * list (which may be cleaned via a taskq) to contain
2806 		 * commit itxs. When this occurs, the commit waiters linked
2807 		 * off of these commit itxs will not be committed to an
2808 		 * lwb.  Additionally, these commit waiters will not be
2809 		 * marked done until zil_commit_waiter_skip() is called via
2810 		 * zil_itxg_clean().
2811 		 *
2812 		 * Thus, it's possible for this commit waiter (i.e. the
2813 		 * "zcw" variable) to be found in this "in between" state;
2814 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2815 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2816 		 */
2817 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2818 
2819 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2820 			ASSERT3B(timedout, ==, B_FALSE);
2821 
2822 			/*
2823 			 * If the lwb hasn't been issued yet, then we
2824 			 * need to wait with a timeout, in case this
2825 			 * function needs to issue the lwb after the
2826 			 * timeout is reached; responsibility (2) from
2827 			 * the comment above this function.
2828 			 */
2829 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
2830 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2831 			    CALLOUT_FLAG_ABSOLUTE);
2832 
2833 			if (rc != -1 || zcw->zcw_done)
2834 				continue;
2835 
2836 			timedout = B_TRUE;
2837 			zil_commit_waiter_timeout(zilog, zcw);
2838 
2839 			if (!zcw->zcw_done) {
2840 				/*
2841 				 * If the commit waiter has already been
2842 				 * marked "done", it's possible for the
2843 				 * waiter's lwb structure to have already
2844 				 * been freed.  Thus, we can only reliably
2845 				 * make these assertions if the waiter
2846 				 * isn't done.
2847 				 */
2848 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2849 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2850 			}
2851 		} else {
2852 			/*
2853 			 * If the lwb isn't open, then it must have already
2854 			 * been issued. In that case, there's no need to
2855 			 * use a timeout when waiting for the lwb to
2856 			 * complete.
2857 			 *
2858 			 * Additionally, if the lwb is NULL, the waiter
2859 			 * will soon be signaled and marked done via
2860 			 * zil_clean() and zil_itxg_clean(), so no timeout
2861 			 * is required.
2862 			 */
2863 
2864 			IMPLY(lwb != NULL,
2865 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2866 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2867 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2868 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2869 		}
2870 	}
2871 
2872 	mutex_exit(&zcw->zcw_lock);
2873 }
2874 
2875 static zil_commit_waiter_t *
2876 zil_alloc_commit_waiter(void)
2877 {
2878 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2879 
2880 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2881 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2882 	list_link_init(&zcw->zcw_node);
2883 	zcw->zcw_lwb = NULL;
2884 	zcw->zcw_done = B_FALSE;
2885 	zcw->zcw_zio_error = 0;
2886 
2887 	return (zcw);
2888 }
2889 
2890 static void
2891 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2892 {
2893 	ASSERT(!list_link_active(&zcw->zcw_node));
2894 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2895 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2896 	mutex_destroy(&zcw->zcw_lock);
2897 	cv_destroy(&zcw->zcw_cv);
2898 	kmem_cache_free(zil_zcw_cache, zcw);
2899 }
2900 
2901 /*
2902  * This function is used to create a TX_COMMIT itx and assign it. This
2903  * way, it will be linked into the ZIL's list of synchronous itxs, and
2904  * then later committed to an lwb (or skipped) when
2905  * zil_process_commit_list() is called.
2906  */
2907 static void
2908 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2909 {
2910 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2911 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2912 
2913 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2914 	itx->itx_sync = B_TRUE;
2915 	itx->itx_private = zcw;
2916 
2917 	zil_itx_assign(zilog, itx, tx);
2918 
2919 	dmu_tx_commit(tx);
2920 }
2921 
2922 /*
2923  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2924  *
2925  * When writing ZIL transactions to the on-disk representation of the
2926  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2927  * itxs can be committed to a single lwb. Once a lwb is written and
2928  * committed to stable storage (i.e. the lwb is written, and vdevs have
2929  * been flushed), each itx that was committed to that lwb is also
2930  * considered to be committed to stable storage.
2931  *
2932  * When an itx is committed to an lwb, the log record (lr_t) contained
2933  * by the itx is copied into the lwb's zio buffer, and once this buffer
2934  * is written to disk, it becomes an on-disk ZIL block.
2935  *
2936  * As itxs are generated, they're inserted into the ZIL's queue of
2937  * uncommitted itxs. The semantics of zil_commit() are such that it will
2938  * block until all itxs that were in the queue when it was called, are
2939  * committed to stable storage.
2940  *
2941  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2942  * itxs, for all objects in the dataset, will be committed to stable
2943  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2944  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2945  * that correspond to the foid passed in, will be committed to stable
2946  * storage prior to zil_commit() returning.
2947  *
2948  * Generally speaking, when zil_commit() is called, the consumer doesn't
2949  * actually care about _all_ of the uncommitted itxs. Instead, they're
2950  * simply trying to waiting for a specific itx to be committed to disk,
2951  * but the interface(s) for interacting with the ZIL don't allow such
2952  * fine-grained communication. A better interface would allow a consumer
2953  * to create and assign an itx, and then pass a reference to this itx to
2954  * zil_commit(); such that zil_commit() would return as soon as that
2955  * specific itx was committed to disk (instead of waiting for _all_
2956  * itxs to be committed).
2957  *
2958  * When a thread calls zil_commit() a special "commit itx" will be
2959  * generated, along with a corresponding "waiter" for this commit itx.
2960  * zil_commit() will wait on this waiter's CV, such that when the waiter
2961  * is marked done, and signaled, zil_commit() will return.
2962  *
2963  * This commit itx is inserted into the queue of uncommitted itxs. This
2964  * provides an easy mechanism for determining which itxs were in the
2965  * queue prior to zil_commit() having been called, and which itxs were
2966  * added after zil_commit() was called.
2967  *
2968  * The commit itx is special; it doesn't have any on-disk representation.
2969  * When a commit itx is "committed" to an lwb, the waiter associated
2970  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2971  * completes, each waiter on the lwb's list is marked done and signaled
2972  * -- allowing the thread waiting on the waiter to return from zil_commit().
2973  *
2974  * It's important to point out a few critical factors that allow us
2975  * to make use of the commit itxs, commit waiters, per-lwb lists of
2976  * commit waiters, and zio completion callbacks like we're doing:
2977  *
2978  *   1. The list of waiters for each lwb is traversed, and each commit
2979  *      waiter is marked "done" and signaled, in the zio completion
2980  *      callback of the lwb's zio[*].
2981  *
2982  *      * Actually, the waiters are signaled in the zio completion
2983  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2984  *        that are sent to the vdevs upon completion of the lwb zio.
2985  *
2986  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2987  *      itxs, the order in which they are inserted is preserved[*]; as
2988  *      itxs are added to the queue, they are added to the tail of
2989  *      in-memory linked lists.
2990  *
2991  *      When committing the itxs to lwbs (to be written to disk), they
2992  *      are committed in the same order in which the itxs were added to
2993  *      the uncommitted queue's linked list(s); i.e. the linked list of
2994  *      itxs to commit is traversed from head to tail, and each itx is
2995  *      committed to an lwb in that order.
2996  *
2997  *      * To clarify:
2998  *
2999  *        - the order of "sync" itxs is preserved w.r.t. other
3000  *          "sync" itxs, regardless of the corresponding objects.
3001  *        - the order of "async" itxs is preserved w.r.t. other
3002  *          "async" itxs corresponding to the same object.
3003  *        - the order of "async" itxs is *not* preserved w.r.t. other
3004  *          "async" itxs corresponding to different objects.
3005  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3006  *          versa) is *not* preserved, even for itxs that correspond
3007  *          to the same object.
3008  *
3009  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3010  *      zil_get_commit_list(), and zil_process_commit_list().
3011  *
3012  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3013  *      lwb cannot be considered committed to stable storage, until its
3014  *      "previous" lwb is also committed to stable storage. This fact,
3015  *      coupled with the fact described above, means that itxs are
3016  *      committed in (roughly) the order in which they were generated.
3017  *      This is essential because itxs are dependent on prior itxs.
3018  *      Thus, we *must not* deem an itx as being committed to stable
3019  *      storage, until *all* prior itxs have also been committed to
3020  *      stable storage.
3021  *
3022  *      To enforce this ordering of lwb zio's, while still leveraging as
3023  *      much of the underlying storage performance as possible, we rely
3024  *      on two fundamental concepts:
3025  *
3026  *          1. The creation and issuance of lwb zio's is protected by
3027  *             the zilog's "zl_issuer_lock", which ensures only a single
3028  *             thread is creating and/or issuing lwb's at a time
3029  *          2. The "previous" lwb is a child of the "current" lwb
3030  *             (leveraging the zio parent-child dependency graph)
3031  *
3032  *      By relying on this parent-child zio relationship, we can have
3033  *      many lwb zio's concurrently issued to the underlying storage,
3034  *      but the order in which they complete will be the same order in
3035  *      which they were created.
3036  */
3037 void
3038 zil_commit(zilog_t *zilog, uint64_t foid)
3039 {
3040 	/*
3041 	 * We should never attempt to call zil_commit on a snapshot for
3042 	 * a couple of reasons:
3043 	 *
3044 	 * 1. A snapshot may never be modified, thus it cannot have any
3045 	 *    in-flight itxs that would have modified the dataset.
3046 	 *
3047 	 * 2. By design, when zil_commit() is called, a commit itx will
3048 	 *    be assigned to this zilog; as a result, the zilog will be
3049 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3050 	 *    checks in the code that enforce this invariant, and will
3051 	 *    cause a panic if it's not upheld.
3052 	 */
3053 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3054 
3055 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3056 		return;
3057 
3058 	if (!spa_writeable(zilog->zl_spa)) {
3059 		/*
3060 		 * If the SPA is not writable, there should never be any
3061 		 * pending itxs waiting to be committed to disk. If that
3062 		 * weren't true, we'd skip writing those itxs out, and
3063 		 * would break the semantics of zil_commit(); thus, we're
3064 		 * verifying that truth before we return to the caller.
3065 		 */
3066 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3067 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3068 		for (int i = 0; i < TXG_SIZE; i++)
3069 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3070 		return;
3071 	}
3072 
3073 	/*
3074 	 * If the ZIL is suspended, we don't want to dirty it by calling
3075 	 * zil_commit_itx_assign() below, nor can we write out
3076 	 * lwbs like would be done in zil_commit_write(). Thus, we
3077 	 * simply rely on txg_wait_synced() to maintain the necessary
3078 	 * semantics, and avoid calling those functions altogether.
3079 	 */
3080 	if (zilog->zl_suspend > 0) {
3081 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3082 		return;
3083 	}
3084 
3085 	zil_commit_impl(zilog, foid);
3086 }
3087 
3088 void
3089 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3090 {
3091 	ZIL_STAT_BUMP(zil_commit_count);
3092 
3093 	/*
3094 	 * Move the "async" itxs for the specified foid to the "sync"
3095 	 * queues, such that they will be later committed (or skipped)
3096 	 * to an lwb when zil_process_commit_list() is called.
3097 	 *
3098 	 * Since these "async" itxs must be committed prior to this
3099 	 * call to zil_commit returning, we must perform this operation
3100 	 * before we call zil_commit_itx_assign().
3101 	 */
3102 	zil_async_to_sync(zilog, foid);
3103 
3104 	/*
3105 	 * We allocate a new "waiter" structure which will initially be
3106 	 * linked to the commit itx using the itx's "itx_private" field.
3107 	 * Since the commit itx doesn't represent any on-disk state,
3108 	 * when it's committed to an lwb, rather than copying the its
3109 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3110 	 * added to the lwb's list of waiters. Then, when the lwb is
3111 	 * committed to stable storage, each waiter in the lwb's list of
3112 	 * waiters will be marked "done", and signalled.
3113 	 *
3114 	 * We must create the waiter and assign the commit itx prior to
3115 	 * calling zil_commit_writer(), or else our specific commit itx
3116 	 * is not guaranteed to be committed to an lwb prior to calling
3117 	 * zil_commit_waiter().
3118 	 */
3119 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3120 	zil_commit_itx_assign(zilog, zcw);
3121 
3122 	zil_commit_writer(zilog, zcw);
3123 	zil_commit_waiter(zilog, zcw);
3124 
3125 	if (zcw->zcw_zio_error != 0) {
3126 		/*
3127 		 * If there was an error writing out the ZIL blocks that
3128 		 * this thread is waiting on, then we fallback to
3129 		 * relying on spa_sync() to write out the data this
3130 		 * thread is waiting on. Obviously this has performance
3131 		 * implications, but the expectation is for this to be
3132 		 * an exceptional case, and shouldn't occur often.
3133 		 */
3134 		DTRACE_PROBE2(zil__commit__io__error,
3135 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3136 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3137 	}
3138 
3139 	zil_free_commit_waiter(zcw);
3140 }
3141 
3142 /*
3143  * Called in syncing context to free committed log blocks and update log header.
3144  */
3145 void
3146 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3147 {
3148 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3149 	uint64_t txg = dmu_tx_get_txg(tx);
3150 	spa_t *spa = zilog->zl_spa;
3151 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3152 	lwb_t *lwb;
3153 
3154 	/*
3155 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3156 	 * to destroy it twice.
3157 	 */
3158 	if (spa_sync_pass(spa) != 1)
3159 		return;
3160 
3161 	zil_lwb_flush_wait_all(zilog, txg);
3162 
3163 	mutex_enter(&zilog->zl_lock);
3164 
3165 	ASSERT(zilog->zl_stop_sync == 0);
3166 
3167 	if (*replayed_seq != 0) {
3168 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3169 		zh->zh_replay_seq = *replayed_seq;
3170 		*replayed_seq = 0;
3171 	}
3172 
3173 	if (zilog->zl_destroy_txg == txg) {
3174 		blkptr_t blk = zh->zh_log;
3175 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3176 
3177 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3178 
3179 		memset(zh, 0, sizeof (zil_header_t));
3180 		memset(zilog->zl_replayed_seq, 0,
3181 		    sizeof (zilog->zl_replayed_seq));
3182 
3183 		if (zilog->zl_keep_first) {
3184 			/*
3185 			 * If this block was part of log chain that couldn't
3186 			 * be claimed because a device was missing during
3187 			 * zil_claim(), but that device later returns,
3188 			 * then this block could erroneously appear valid.
3189 			 * To guard against this, assign a new GUID to the new
3190 			 * log chain so it doesn't matter what blk points to.
3191 			 */
3192 			zil_init_log_chain(zilog, &blk);
3193 			zh->zh_log = blk;
3194 		} else {
3195 			/*
3196 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3197 			 * records. So, deactivate the feature for this dataset.
3198 			 * We activate it again when we start a new ZIL chain.
3199 			 */
3200 			if (dsl_dataset_feature_is_active(ds,
3201 			    SPA_FEATURE_ZILSAXATTR))
3202 				dsl_dataset_deactivate_feature(ds,
3203 				    SPA_FEATURE_ZILSAXATTR, tx);
3204 		}
3205 	}
3206 
3207 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3208 		zh->zh_log = lwb->lwb_blk;
3209 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3210 			break;
3211 		list_remove(&zilog->zl_lwb_list, lwb);
3212 		zio_free(spa, txg, &lwb->lwb_blk);
3213 		zil_free_lwb(zilog, lwb);
3214 
3215 		/*
3216 		 * If we don't have anything left in the lwb list then
3217 		 * we've had an allocation failure and we need to zero
3218 		 * out the zil_header blkptr so that we don't end
3219 		 * up freeing the same block twice.
3220 		 */
3221 		if (list_head(&zilog->zl_lwb_list) == NULL)
3222 			BP_ZERO(&zh->zh_log);
3223 	}
3224 
3225 	/*
3226 	 * Remove fastwrite on any blocks that have been pre-allocated for
3227 	 * the next commit. This prevents fastwrite counter pollution by
3228 	 * unused, long-lived LWBs.
3229 	 */
3230 	for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3231 		if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3232 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3233 			lwb->lwb_fastwrite = 0;
3234 		}
3235 	}
3236 
3237 	mutex_exit(&zilog->zl_lock);
3238 }
3239 
3240 static int
3241 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3242 {
3243 	(void) unused, (void) kmflag;
3244 	lwb_t *lwb = vbuf;
3245 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3246 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3247 	    offsetof(zil_commit_waiter_t, zcw_node));
3248 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3249 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3250 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3251 	return (0);
3252 }
3253 
3254 static void
3255 zil_lwb_dest(void *vbuf, void *unused)
3256 {
3257 	(void) unused;
3258 	lwb_t *lwb = vbuf;
3259 	mutex_destroy(&lwb->lwb_vdev_lock);
3260 	avl_destroy(&lwb->lwb_vdev_tree);
3261 	list_destroy(&lwb->lwb_waiters);
3262 	list_destroy(&lwb->lwb_itxs);
3263 }
3264 
3265 void
3266 zil_init(void)
3267 {
3268 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3269 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3270 
3271 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3272 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3273 
3274 	zil_ksp = kstat_create("zfs", 0, "zil", "misc",
3275 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3276 	    KSTAT_FLAG_VIRTUAL);
3277 
3278 	if (zil_ksp != NULL) {
3279 		zil_ksp->ks_data = &zil_stats;
3280 		kstat_install(zil_ksp);
3281 	}
3282 }
3283 
3284 void
3285 zil_fini(void)
3286 {
3287 	kmem_cache_destroy(zil_zcw_cache);
3288 	kmem_cache_destroy(zil_lwb_cache);
3289 
3290 	if (zil_ksp != NULL) {
3291 		kstat_delete(zil_ksp);
3292 		zil_ksp = NULL;
3293 	}
3294 }
3295 
3296 void
3297 zil_set_sync(zilog_t *zilog, uint64_t sync)
3298 {
3299 	zilog->zl_sync = sync;
3300 }
3301 
3302 void
3303 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3304 {
3305 	zilog->zl_logbias = logbias;
3306 }
3307 
3308 zilog_t *
3309 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3310 {
3311 	zilog_t *zilog;
3312 
3313 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3314 
3315 	zilog->zl_header = zh_phys;
3316 	zilog->zl_os = os;
3317 	zilog->zl_spa = dmu_objset_spa(os);
3318 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3319 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3320 	zilog->zl_logbias = dmu_objset_logbias(os);
3321 	zilog->zl_sync = dmu_objset_syncprop(os);
3322 	zilog->zl_dirty_max_txg = 0;
3323 	zilog->zl_last_lwb_opened = NULL;
3324 	zilog->zl_last_lwb_latency = 0;
3325 	zilog->zl_max_block_size = zil_maxblocksize;
3326 
3327 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3328 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3329 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3330 
3331 	for (int i = 0; i < TXG_SIZE; i++) {
3332 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3333 		    MUTEX_DEFAULT, NULL);
3334 	}
3335 
3336 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3337 	    offsetof(lwb_t, lwb_node));
3338 
3339 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3340 	    offsetof(itx_t, itx_node));
3341 
3342 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3343 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3344 
3345 	return (zilog);
3346 }
3347 
3348 void
3349 zil_free(zilog_t *zilog)
3350 {
3351 	int i;
3352 
3353 	zilog->zl_stop_sync = 1;
3354 
3355 	ASSERT0(zilog->zl_suspend);
3356 	ASSERT0(zilog->zl_suspending);
3357 
3358 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3359 	list_destroy(&zilog->zl_lwb_list);
3360 
3361 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3362 	list_destroy(&zilog->zl_itx_commit_list);
3363 
3364 	for (i = 0; i < TXG_SIZE; i++) {
3365 		/*
3366 		 * It's possible for an itx to be generated that doesn't dirty
3367 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3368 		 * callback to remove the entry. We remove those here.
3369 		 *
3370 		 * Also free up the ziltest itxs.
3371 		 */
3372 		if (zilog->zl_itxg[i].itxg_itxs)
3373 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3374 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3375 	}
3376 
3377 	mutex_destroy(&zilog->zl_issuer_lock);
3378 	mutex_destroy(&zilog->zl_lock);
3379 	mutex_destroy(&zilog->zl_lwb_io_lock);
3380 
3381 	cv_destroy(&zilog->zl_cv_suspend);
3382 	cv_destroy(&zilog->zl_lwb_io_cv);
3383 
3384 	kmem_free(zilog, sizeof (zilog_t));
3385 }
3386 
3387 /*
3388  * Open an intent log.
3389  */
3390 zilog_t *
3391 zil_open(objset_t *os, zil_get_data_t *get_data)
3392 {
3393 	zilog_t *zilog = dmu_objset_zil(os);
3394 
3395 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3396 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3397 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3398 
3399 	zilog->zl_get_data = get_data;
3400 
3401 	return (zilog);
3402 }
3403 
3404 /*
3405  * Close an intent log.
3406  */
3407 void
3408 zil_close(zilog_t *zilog)
3409 {
3410 	lwb_t *lwb;
3411 	uint64_t txg;
3412 
3413 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3414 		zil_commit(zilog, 0);
3415 	} else {
3416 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3417 		ASSERT0(zilog->zl_dirty_max_txg);
3418 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3419 	}
3420 
3421 	mutex_enter(&zilog->zl_lock);
3422 	lwb = list_tail(&zilog->zl_lwb_list);
3423 	if (lwb == NULL)
3424 		txg = zilog->zl_dirty_max_txg;
3425 	else
3426 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3427 	mutex_exit(&zilog->zl_lock);
3428 
3429 	/*
3430 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3431 	 * on the time when the dmu_tx transaction is assigned in
3432 	 * zil_lwb_write_issue().
3433 	 */
3434 	mutex_enter(&zilog->zl_lwb_io_lock);
3435 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3436 	mutex_exit(&zilog->zl_lwb_io_lock);
3437 
3438 	/*
3439 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3440 	 * zil_sync() will guarantee all lwbs up to that txg have been
3441 	 * written out, flushed, and cleaned.
3442 	 */
3443 	if (txg != 0)
3444 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3445 
3446 	if (zilog_is_dirty(zilog))
3447 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3448 		    (u_longlong_t)txg);
3449 	if (txg < spa_freeze_txg(zilog->zl_spa))
3450 		VERIFY(!zilog_is_dirty(zilog));
3451 
3452 	zilog->zl_get_data = NULL;
3453 
3454 	/*
3455 	 * We should have only one lwb left on the list; remove it now.
3456 	 */
3457 	mutex_enter(&zilog->zl_lock);
3458 	lwb = list_head(&zilog->zl_lwb_list);
3459 	if (lwb != NULL) {
3460 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3461 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3462 
3463 		if (lwb->lwb_fastwrite)
3464 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3465 
3466 		list_remove(&zilog->zl_lwb_list, lwb);
3467 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3468 		zil_free_lwb(zilog, lwb);
3469 	}
3470 	mutex_exit(&zilog->zl_lock);
3471 }
3472 
3473 static char *suspend_tag = "zil suspending";
3474 
3475 /*
3476  * Suspend an intent log.  While in suspended mode, we still honor
3477  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3478  * On old version pools, we suspend the log briefly when taking a
3479  * snapshot so that it will have an empty intent log.
3480  *
3481  * Long holds are not really intended to be used the way we do here --
3482  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3483  * could fail.  Therefore we take pains to only put a long hold if it is
3484  * actually necessary.  Fortunately, it will only be necessary if the
3485  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3486  * will already have a long hold, so we are not really making things any worse.
3487  *
3488  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3489  * zvol_state_t), and use their mechanism to prevent their hold from being
3490  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3491  * very little gain.
3492  *
3493  * if cookiep == NULL, this does both the suspend & resume.
3494  * Otherwise, it returns with the dataset "long held", and the cookie
3495  * should be passed into zil_resume().
3496  */
3497 int
3498 zil_suspend(const char *osname, void **cookiep)
3499 {
3500 	objset_t *os;
3501 	zilog_t *zilog;
3502 	const zil_header_t *zh;
3503 	int error;
3504 
3505 	error = dmu_objset_hold(osname, suspend_tag, &os);
3506 	if (error != 0)
3507 		return (error);
3508 	zilog = dmu_objset_zil(os);
3509 
3510 	mutex_enter(&zilog->zl_lock);
3511 	zh = zilog->zl_header;
3512 
3513 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3514 		mutex_exit(&zilog->zl_lock);
3515 		dmu_objset_rele(os, suspend_tag);
3516 		return (SET_ERROR(EBUSY));
3517 	}
3518 
3519 	/*
3520 	 * Don't put a long hold in the cases where we can avoid it.  This
3521 	 * is when there is no cookie so we are doing a suspend & resume
3522 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3523 	 * for the suspend because it's already suspended, or there's no ZIL.
3524 	 */
3525 	if (cookiep == NULL && !zilog->zl_suspending &&
3526 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3527 		mutex_exit(&zilog->zl_lock);
3528 		dmu_objset_rele(os, suspend_tag);
3529 		return (0);
3530 	}
3531 
3532 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3533 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3534 
3535 	zilog->zl_suspend++;
3536 
3537 	if (zilog->zl_suspend > 1) {
3538 		/*
3539 		 * Someone else is already suspending it.
3540 		 * Just wait for them to finish.
3541 		 */
3542 
3543 		while (zilog->zl_suspending)
3544 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3545 		mutex_exit(&zilog->zl_lock);
3546 
3547 		if (cookiep == NULL)
3548 			zil_resume(os);
3549 		else
3550 			*cookiep = os;
3551 		return (0);
3552 	}
3553 
3554 	/*
3555 	 * If there is no pointer to an on-disk block, this ZIL must not
3556 	 * be active (e.g. filesystem not mounted), so there's nothing
3557 	 * to clean up.
3558 	 */
3559 	if (BP_IS_HOLE(&zh->zh_log)) {
3560 		ASSERT(cookiep != NULL); /* fast path already handled */
3561 
3562 		*cookiep = os;
3563 		mutex_exit(&zilog->zl_lock);
3564 		return (0);
3565 	}
3566 
3567 	/*
3568 	 * The ZIL has work to do. Ensure that the associated encryption
3569 	 * key will remain mapped while we are committing the log by
3570 	 * grabbing a reference to it. If the key isn't loaded we have no
3571 	 * choice but to return an error until the wrapping key is loaded.
3572 	 */
3573 	if (os->os_encrypted &&
3574 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3575 		zilog->zl_suspend--;
3576 		mutex_exit(&zilog->zl_lock);
3577 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3578 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3579 		return (SET_ERROR(EACCES));
3580 	}
3581 
3582 	zilog->zl_suspending = B_TRUE;
3583 	mutex_exit(&zilog->zl_lock);
3584 
3585 	/*
3586 	 * We need to use zil_commit_impl to ensure we wait for all
3587 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3588 	 * to disk before proceeding. If we used zil_commit instead, it
3589 	 * would just call txg_wait_synced(), because zl_suspend is set.
3590 	 * txg_wait_synced() doesn't wait for these lwb's to be
3591 	 * LWB_STATE_FLUSH_DONE before returning.
3592 	 */
3593 	zil_commit_impl(zilog, 0);
3594 
3595 	/*
3596 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3597 	 * use txg_wait_synced() to ensure the data from the zilog has
3598 	 * migrated to the main pool before calling zil_destroy().
3599 	 */
3600 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3601 
3602 	zil_destroy(zilog, B_FALSE);
3603 
3604 	mutex_enter(&zilog->zl_lock);
3605 	zilog->zl_suspending = B_FALSE;
3606 	cv_broadcast(&zilog->zl_cv_suspend);
3607 	mutex_exit(&zilog->zl_lock);
3608 
3609 	if (os->os_encrypted)
3610 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3611 
3612 	if (cookiep == NULL)
3613 		zil_resume(os);
3614 	else
3615 		*cookiep = os;
3616 	return (0);
3617 }
3618 
3619 void
3620 zil_resume(void *cookie)
3621 {
3622 	objset_t *os = cookie;
3623 	zilog_t *zilog = dmu_objset_zil(os);
3624 
3625 	mutex_enter(&zilog->zl_lock);
3626 	ASSERT(zilog->zl_suspend != 0);
3627 	zilog->zl_suspend--;
3628 	mutex_exit(&zilog->zl_lock);
3629 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3630 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3631 }
3632 
3633 typedef struct zil_replay_arg {
3634 	zil_replay_func_t *const *zr_replay;
3635 	void		*zr_arg;
3636 	boolean_t	zr_byteswap;
3637 	char		*zr_lr;
3638 } zil_replay_arg_t;
3639 
3640 static int
3641 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3642 {
3643 	char name[ZFS_MAX_DATASET_NAME_LEN];
3644 
3645 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3646 
3647 	dmu_objset_name(zilog->zl_os, name);
3648 
3649 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3650 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3651 	    (u_longlong_t)lr->lrc_seq,
3652 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3653 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3654 
3655 	return (error);
3656 }
3657 
3658 static int
3659 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3660     uint64_t claim_txg)
3661 {
3662 	zil_replay_arg_t *zr = zra;
3663 	const zil_header_t *zh = zilog->zl_header;
3664 	uint64_t reclen = lr->lrc_reclen;
3665 	uint64_t txtype = lr->lrc_txtype;
3666 	int error = 0;
3667 
3668 	zilog->zl_replaying_seq = lr->lrc_seq;
3669 
3670 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3671 		return (0);
3672 
3673 	if (lr->lrc_txg < claim_txg)		/* already committed */
3674 		return (0);
3675 
3676 	/* Strip case-insensitive bit, still present in log record */
3677 	txtype &= ~TX_CI;
3678 
3679 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3680 		return (zil_replay_error(zilog, lr, EINVAL));
3681 
3682 	/*
3683 	 * If this record type can be logged out of order, the object
3684 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3685 	 */
3686 	if (TX_OOO(txtype)) {
3687 		error = dmu_object_info(zilog->zl_os,
3688 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3689 		if (error == ENOENT || error == EEXIST)
3690 			return (0);
3691 	}
3692 
3693 	/*
3694 	 * Make a copy of the data so we can revise and extend it.
3695 	 */
3696 	memcpy(zr->zr_lr, lr, reclen);
3697 
3698 	/*
3699 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3700 	 */
3701 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3702 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3703 		    zr->zr_lr + reclen);
3704 		if (error != 0)
3705 			return (zil_replay_error(zilog, lr, error));
3706 	}
3707 
3708 	/*
3709 	 * The log block containing this lr may have been byteswapped
3710 	 * so that we can easily examine common fields like lrc_txtype.
3711 	 * However, the log is a mix of different record types, and only the
3712 	 * replay vectors know how to byteswap their records.  Therefore, if
3713 	 * the lr was byteswapped, undo it before invoking the replay vector.
3714 	 */
3715 	if (zr->zr_byteswap)
3716 		byteswap_uint64_array(zr->zr_lr, reclen);
3717 
3718 	/*
3719 	 * We must now do two things atomically: replay this log record,
3720 	 * and update the log header sequence number to reflect the fact that
3721 	 * we did so. At the end of each replay function the sequence number
3722 	 * is updated if we are in replay mode.
3723 	 */
3724 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3725 	if (error != 0) {
3726 		/*
3727 		 * The DMU's dnode layer doesn't see removes until the txg
3728 		 * commits, so a subsequent claim can spuriously fail with
3729 		 * EEXIST. So if we receive any error we try syncing out
3730 		 * any removes then retry the transaction.  Note that we
3731 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3732 		 */
3733 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3734 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3735 		if (error != 0)
3736 			return (zil_replay_error(zilog, lr, error));
3737 	}
3738 	return (0);
3739 }
3740 
3741 static int
3742 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3743 {
3744 	(void) bp, (void) arg, (void) claim_txg;
3745 
3746 	zilog->zl_replay_blks++;
3747 
3748 	return (0);
3749 }
3750 
3751 /*
3752  * If this dataset has a non-empty intent log, replay it and destroy it.
3753  */
3754 void
3755 zil_replay(objset_t *os, void *arg,
3756     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
3757 {
3758 	zilog_t *zilog = dmu_objset_zil(os);
3759 	const zil_header_t *zh = zilog->zl_header;
3760 	zil_replay_arg_t zr;
3761 
3762 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3763 		zil_destroy(zilog, B_TRUE);
3764 		return;
3765 	}
3766 
3767 	zr.zr_replay = replay_func;
3768 	zr.zr_arg = arg;
3769 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3770 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3771 
3772 	/*
3773 	 * Wait for in-progress removes to sync before starting replay.
3774 	 */
3775 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3776 
3777 	zilog->zl_replay = B_TRUE;
3778 	zilog->zl_replay_time = ddi_get_lbolt();
3779 	ASSERT(zilog->zl_replay_blks == 0);
3780 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3781 	    zh->zh_claim_txg, B_TRUE);
3782 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3783 
3784 	zil_destroy(zilog, B_FALSE);
3785 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3786 	zilog->zl_replay = B_FALSE;
3787 }
3788 
3789 boolean_t
3790 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3791 {
3792 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3793 		return (B_TRUE);
3794 
3795 	if (zilog->zl_replay) {
3796 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3797 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3798 		    zilog->zl_replaying_seq;
3799 		return (B_TRUE);
3800 	}
3801 
3802 	return (B_FALSE);
3803 }
3804 
3805 int
3806 zil_reset(const char *osname, void *arg)
3807 {
3808 	(void) arg;
3809 
3810 	int error = zil_suspend(osname, NULL);
3811 	/* EACCES means crypto key not loaded */
3812 	if ((error == EACCES) || (error == EBUSY))
3813 		return (SET_ERROR(error));
3814 	if (error != 0)
3815 		return (SET_ERROR(EEXIST));
3816 	return (0);
3817 }
3818 
3819 EXPORT_SYMBOL(zil_alloc);
3820 EXPORT_SYMBOL(zil_free);
3821 EXPORT_SYMBOL(zil_open);
3822 EXPORT_SYMBOL(zil_close);
3823 EXPORT_SYMBOL(zil_replay);
3824 EXPORT_SYMBOL(zil_replaying);
3825 EXPORT_SYMBOL(zil_destroy);
3826 EXPORT_SYMBOL(zil_destroy_sync);
3827 EXPORT_SYMBOL(zil_itx_create);
3828 EXPORT_SYMBOL(zil_itx_destroy);
3829 EXPORT_SYMBOL(zil_itx_assign);
3830 EXPORT_SYMBOL(zil_commit);
3831 EXPORT_SYMBOL(zil_claim);
3832 EXPORT_SYMBOL(zil_check_log_chain);
3833 EXPORT_SYMBOL(zil_sync);
3834 EXPORT_SYMBOL(zil_clean);
3835 EXPORT_SYMBOL(zil_suspend);
3836 EXPORT_SYMBOL(zil_resume);
3837 EXPORT_SYMBOL(zil_lwb_add_block);
3838 EXPORT_SYMBOL(zil_bp_tree_add);
3839 EXPORT_SYMBOL(zil_set_sync);
3840 EXPORT_SYMBOL(zil_set_logbias);
3841 
3842 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW,
3843 	"ZIL block open timeout percentage");
3844 
3845 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3846 	"Disable intent logging replay");
3847 
3848 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3849 	"Disable ZIL cache flushes");
3850 
3851 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW,
3852 	"Limit in bytes slog sync writes per commit");
3853 
3854 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW,
3855 	"Limit in bytes of ZIL log block size");
3856