xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 0be82d56b44fbe157d4bf1c125eca6625486d17f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/brt.h>
47 #include <sys/wmsum.h>
48 
49 /*
50  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51  * calls that change the file system. Each itx has enough information to
52  * be able to replay them after a system crash, power loss, or
53  * equivalent failure mode. These are stored in memory until either:
54  *
55  *   1. they are committed to the pool by the DMU transaction group
56  *      (txg), at which point they can be discarded; or
57  *   2. they are committed to the on-disk ZIL for the dataset being
58  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
59  *      requirement).
60  *
61  * In the event of a crash or power loss, the itxs contained by each
62  * dataset's on-disk ZIL will be replayed when that dataset is first
63  * instantiated (e.g. if the dataset is a normal filesystem, when it is
64  * first mounted).
65  *
66  * As hinted at above, there is one ZIL per dataset (both the in-memory
67  * representation, and the on-disk representation). The on-disk format
68  * consists of 3 parts:
69  *
70  * 	- a single, per-dataset, ZIL header; which points to a chain of
71  * 	- zero or more ZIL blocks; each of which contains
72  * 	- zero or more ZIL records
73  *
74  * A ZIL record holds the information necessary to replay a single
75  * system call transaction. A ZIL block can hold many ZIL records, and
76  * the blocks are chained together, similarly to a singly linked list.
77  *
78  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79  * block in the chain, and the ZIL header points to the first block in
80  * the chain.
81  *
82  * Note, there is not a fixed place in the pool to hold these ZIL
83  * blocks; they are dynamically allocated and freed as needed from the
84  * blocks available on the pool, though they can be preferentially
85  * allocated from a dedicated "log" vdev.
86  */
87 
88 /*
89  * This controls the amount of time that a ZIL block (lwb) will remain
90  * "open" when it isn't "full", and it has a thread waiting for it to be
91  * committed to stable storage. Please refer to the zil_commit_waiter()
92  * function (and the comments within it) for more details.
93  */
94 static uint_t zfs_commit_timeout_pct = 5;
95 
96 /*
97  * Minimal time we care to delay commit waiting for more ZIL records.
98  * At least FreeBSD kernel can't sleep for less than 2us at its best.
99  * So requests to sleep for less then 5us is a waste of CPU time with
100  * a risk of significant log latency increase due to oversleep.
101  */
102 static uint64_t zil_min_commit_timeout = 5000;
103 
104 /*
105  * See zil.h for more information about these fields.
106  */
107 static zil_kstat_values_t zil_stats = {
108 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
109 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
110 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
111 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
112 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
113 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
114 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
115 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
116 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
117 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
118 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
119 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
120 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
121 };
122 
123 static zil_sums_t zil_sums_global;
124 static kstat_t *zil_kstats_global;
125 
126 /*
127  * Disable intent logging replay.  This global ZIL switch affects all pools.
128  */
129 int zil_replay_disable = 0;
130 
131 /*
132  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
133  * the disk(s) by the ZIL after an LWB write has completed. Setting this
134  * will cause ZIL corruption on power loss if a volatile out-of-order
135  * write cache is enabled.
136  */
137 static int zil_nocacheflush = 0;
138 
139 /*
140  * Limit SLOG write size per commit executed with synchronous priority.
141  * Any writes above that will be executed with lower (asynchronous) priority
142  * to limit potential SLOG device abuse by single active ZIL writer.
143  */
144 static uint64_t zil_slog_bulk = 768 * 1024;
145 
146 static kmem_cache_t *zil_lwb_cache;
147 static kmem_cache_t *zil_zcw_cache;
148 
149 static int
150 zil_bp_compare(const void *x1, const void *x2)
151 {
152 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
153 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
154 
155 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
156 	if (likely(cmp))
157 		return (cmp);
158 
159 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
160 }
161 
162 static void
163 zil_bp_tree_init(zilog_t *zilog)
164 {
165 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
166 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
167 }
168 
169 static void
170 zil_bp_tree_fini(zilog_t *zilog)
171 {
172 	avl_tree_t *t = &zilog->zl_bp_tree;
173 	zil_bp_node_t *zn;
174 	void *cookie = NULL;
175 
176 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
177 		kmem_free(zn, sizeof (zil_bp_node_t));
178 
179 	avl_destroy(t);
180 }
181 
182 int
183 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
184 {
185 	avl_tree_t *t = &zilog->zl_bp_tree;
186 	const dva_t *dva;
187 	zil_bp_node_t *zn;
188 	avl_index_t where;
189 
190 	if (BP_IS_EMBEDDED(bp))
191 		return (0);
192 
193 	dva = BP_IDENTITY(bp);
194 
195 	if (avl_find(t, dva, &where) != NULL)
196 		return (SET_ERROR(EEXIST));
197 
198 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
199 	zn->zn_dva = *dva;
200 	avl_insert(t, zn, where);
201 
202 	return (0);
203 }
204 
205 static zil_header_t *
206 zil_header_in_syncing_context(zilog_t *zilog)
207 {
208 	return ((zil_header_t *)zilog->zl_header);
209 }
210 
211 static void
212 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
213 {
214 	zio_cksum_t *zc = &bp->blk_cksum;
215 
216 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
217 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
218 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
219 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
220 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
221 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
222 }
223 
224 static int
225 zil_kstats_global_update(kstat_t *ksp, int rw)
226 {
227 	zil_kstat_values_t *zs = ksp->ks_data;
228 	ASSERT3P(&zil_stats, ==, zs);
229 
230 	if (rw == KSTAT_WRITE) {
231 		return (SET_ERROR(EACCES));
232 	}
233 
234 	zil_kstat_values_update(zs, &zil_sums_global);
235 
236 	return (0);
237 }
238 
239 /*
240  * Read a log block and make sure it's valid.
241  */
242 static int
243 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
244     blkptr_t *nbp, void *dst, char **end)
245 {
246 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
247 	arc_flags_t aflags = ARC_FLAG_WAIT;
248 	arc_buf_t *abuf = NULL;
249 	zbookmark_phys_t zb;
250 	int error;
251 
252 	if (zilog->zl_header->zh_claim_txg == 0)
253 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
254 
255 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
256 		zio_flags |= ZIO_FLAG_SPECULATIVE;
257 
258 	if (!decrypt)
259 		zio_flags |= ZIO_FLAG_RAW;
260 
261 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
262 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
263 
264 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
265 	    &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
266 
267 	if (error == 0) {
268 		zio_cksum_t cksum = bp->blk_cksum;
269 
270 		/*
271 		 * Validate the checksummed log block.
272 		 *
273 		 * Sequence numbers should be... sequential.  The checksum
274 		 * verifier for the next block should be bp's checksum plus 1.
275 		 *
276 		 * Also check the log chain linkage and size used.
277 		 */
278 		cksum.zc_word[ZIL_ZC_SEQ]++;
279 
280 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
281 			zil_chain_t *zilc = abuf->b_data;
282 			char *lr = (char *)(zilc + 1);
283 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
284 
285 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
286 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
287 				error = SET_ERROR(ECKSUM);
288 			} else {
289 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
290 				memcpy(dst, lr, len);
291 				*end = (char *)dst + len;
292 				*nbp = zilc->zc_next_blk;
293 			}
294 		} else {
295 			char *lr = abuf->b_data;
296 			uint64_t size = BP_GET_LSIZE(bp);
297 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
298 
299 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
300 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
301 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
302 				error = SET_ERROR(ECKSUM);
303 			} else {
304 				ASSERT3U(zilc->zc_nused, <=,
305 				    SPA_OLD_MAXBLOCKSIZE);
306 				memcpy(dst, lr, zilc->zc_nused);
307 				*end = (char *)dst + zilc->zc_nused;
308 				*nbp = zilc->zc_next_blk;
309 			}
310 		}
311 
312 		arc_buf_destroy(abuf, &abuf);
313 	}
314 
315 	return (error);
316 }
317 
318 /*
319  * Read a TX_WRITE log data block.
320  */
321 static int
322 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
323 {
324 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
325 	const blkptr_t *bp = &lr->lr_blkptr;
326 	arc_flags_t aflags = ARC_FLAG_WAIT;
327 	arc_buf_t *abuf = NULL;
328 	zbookmark_phys_t zb;
329 	int error;
330 
331 	if (BP_IS_HOLE(bp)) {
332 		if (wbuf != NULL)
333 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
334 		return (0);
335 	}
336 
337 	if (zilog->zl_header->zh_claim_txg == 0)
338 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
339 
340 	/*
341 	 * If we are not using the resulting data, we are just checking that
342 	 * it hasn't been corrupted so we don't need to waste CPU time
343 	 * decompressing and decrypting it.
344 	 */
345 	if (wbuf == NULL)
346 		zio_flags |= ZIO_FLAG_RAW;
347 
348 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
349 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
350 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
351 
352 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
353 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
354 
355 	if (error == 0) {
356 		if (wbuf != NULL)
357 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
358 		arc_buf_destroy(abuf, &abuf);
359 	}
360 
361 	return (error);
362 }
363 
364 void
365 zil_sums_init(zil_sums_t *zs)
366 {
367 	wmsum_init(&zs->zil_commit_count, 0);
368 	wmsum_init(&zs->zil_commit_writer_count, 0);
369 	wmsum_init(&zs->zil_itx_count, 0);
370 	wmsum_init(&zs->zil_itx_indirect_count, 0);
371 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
372 	wmsum_init(&zs->zil_itx_copied_count, 0);
373 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
374 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
375 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
376 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
377 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
378 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
379 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
380 }
381 
382 void
383 zil_sums_fini(zil_sums_t *zs)
384 {
385 	wmsum_fini(&zs->zil_commit_count);
386 	wmsum_fini(&zs->zil_commit_writer_count);
387 	wmsum_fini(&zs->zil_itx_count);
388 	wmsum_fini(&zs->zil_itx_indirect_count);
389 	wmsum_fini(&zs->zil_itx_indirect_bytes);
390 	wmsum_fini(&zs->zil_itx_copied_count);
391 	wmsum_fini(&zs->zil_itx_copied_bytes);
392 	wmsum_fini(&zs->zil_itx_needcopy_count);
393 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
394 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
395 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
396 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
397 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
398 }
399 
400 void
401 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
402 {
403 	zs->zil_commit_count.value.ui64 =
404 	    wmsum_value(&zil_sums->zil_commit_count);
405 	zs->zil_commit_writer_count.value.ui64 =
406 	    wmsum_value(&zil_sums->zil_commit_writer_count);
407 	zs->zil_itx_count.value.ui64 =
408 	    wmsum_value(&zil_sums->zil_itx_count);
409 	zs->zil_itx_indirect_count.value.ui64 =
410 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
411 	zs->zil_itx_indirect_bytes.value.ui64 =
412 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
413 	zs->zil_itx_copied_count.value.ui64 =
414 	    wmsum_value(&zil_sums->zil_itx_copied_count);
415 	zs->zil_itx_copied_bytes.value.ui64 =
416 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
417 	zs->zil_itx_needcopy_count.value.ui64 =
418 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
419 	zs->zil_itx_needcopy_bytes.value.ui64 =
420 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
421 	zs->zil_itx_metaslab_normal_count.value.ui64 =
422 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
423 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
424 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
425 	zs->zil_itx_metaslab_slog_count.value.ui64 =
426 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
427 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
428 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
429 }
430 
431 /*
432  * Parse the intent log, and call parse_func for each valid record within.
433  */
434 int
435 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
436     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
437     boolean_t decrypt)
438 {
439 	const zil_header_t *zh = zilog->zl_header;
440 	boolean_t claimed = !!zh->zh_claim_txg;
441 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
442 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
443 	uint64_t max_blk_seq = 0;
444 	uint64_t max_lr_seq = 0;
445 	uint64_t blk_count = 0;
446 	uint64_t lr_count = 0;
447 	blkptr_t blk, next_blk = {{{{0}}}};
448 	char *lrbuf, *lrp;
449 	int error = 0;
450 
451 	/*
452 	 * Old logs didn't record the maximum zh_claim_lr_seq.
453 	 */
454 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
455 		claim_lr_seq = UINT64_MAX;
456 
457 	/*
458 	 * Starting at the block pointed to by zh_log we read the log chain.
459 	 * For each block in the chain we strongly check that block to
460 	 * ensure its validity.  We stop when an invalid block is found.
461 	 * For each block pointer in the chain we call parse_blk_func().
462 	 * For each record in each valid block we call parse_lr_func().
463 	 * If the log has been claimed, stop if we encounter a sequence
464 	 * number greater than the highest claimed sequence number.
465 	 */
466 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
467 	zil_bp_tree_init(zilog);
468 
469 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
470 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
471 		int reclen;
472 		char *end = NULL;
473 
474 		if (blk_seq > claim_blk_seq)
475 			break;
476 
477 		error = parse_blk_func(zilog, &blk, arg, txg);
478 		if (error != 0)
479 			break;
480 		ASSERT3U(max_blk_seq, <, blk_seq);
481 		max_blk_seq = blk_seq;
482 		blk_count++;
483 
484 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
485 			break;
486 
487 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
488 		    lrbuf, &end);
489 		if (error != 0) {
490 			if (claimed) {
491 				char name[ZFS_MAX_DATASET_NAME_LEN];
492 
493 				dmu_objset_name(zilog->zl_os, name);
494 
495 				cmn_err(CE_WARN, "ZFS read log block error %d, "
496 				    "dataset %s, seq 0x%llx\n", error, name,
497 				    (u_longlong_t)blk_seq);
498 			}
499 			break;
500 		}
501 
502 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
503 			lr_t *lr = (lr_t *)lrp;
504 			reclen = lr->lrc_reclen;
505 			ASSERT3U(reclen, >=, sizeof (lr_t));
506 			if (lr->lrc_seq > claim_lr_seq)
507 				goto done;
508 
509 			error = parse_lr_func(zilog, lr, arg, txg);
510 			if (error != 0)
511 				goto done;
512 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
513 			max_lr_seq = lr->lrc_seq;
514 			lr_count++;
515 		}
516 	}
517 done:
518 	zilog->zl_parse_error = error;
519 	zilog->zl_parse_blk_seq = max_blk_seq;
520 	zilog->zl_parse_lr_seq = max_lr_seq;
521 	zilog->zl_parse_blk_count = blk_count;
522 	zilog->zl_parse_lr_count = lr_count;
523 
524 	zil_bp_tree_fini(zilog);
525 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
526 
527 	return (error);
528 }
529 
530 static int
531 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
532     uint64_t first_txg)
533 {
534 	(void) tx;
535 	ASSERT(!BP_IS_HOLE(bp));
536 
537 	/*
538 	 * As we call this function from the context of a rewind to a
539 	 * checkpoint, each ZIL block whose txg is later than the txg
540 	 * that we rewind to is invalid. Thus, we return -1 so
541 	 * zil_parse() doesn't attempt to read it.
542 	 */
543 	if (bp->blk_birth >= first_txg)
544 		return (-1);
545 
546 	if (zil_bp_tree_add(zilog, bp) != 0)
547 		return (0);
548 
549 	zio_free(zilog->zl_spa, first_txg, bp);
550 	return (0);
551 }
552 
553 static int
554 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
555     uint64_t first_txg)
556 {
557 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
558 	return (0);
559 }
560 
561 static int
562 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
563     uint64_t first_txg)
564 {
565 	/*
566 	 * Claim log block if not already committed and not already claimed.
567 	 * If tx == NULL, just verify that the block is claimable.
568 	 */
569 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
570 	    zil_bp_tree_add(zilog, bp) != 0)
571 		return (0);
572 
573 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
574 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
575 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
576 }
577 
578 static int
579 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
580 {
581 	lr_write_t *lr = (lr_write_t *)lrc;
582 	int error;
583 
584 	ASSERT(lrc->lrc_txtype == TX_WRITE);
585 
586 	/*
587 	 * If the block is not readable, don't claim it.  This can happen
588 	 * in normal operation when a log block is written to disk before
589 	 * some of the dmu_sync() blocks it points to.  In this case, the
590 	 * transaction cannot have been committed to anyone (we would have
591 	 * waited for all writes to be stable first), so it is semantically
592 	 * correct to declare this the end of the log.
593 	 */
594 	if (lr->lr_blkptr.blk_birth >= first_txg) {
595 		error = zil_read_log_data(zilog, lr, NULL);
596 		if (error != 0)
597 			return (error);
598 	}
599 
600 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
601 }
602 
603 static int
604 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
605 {
606 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
607 	const blkptr_t *bp;
608 	spa_t *spa;
609 	uint_t ii;
610 
611 	ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE);
612 
613 	if (tx == NULL) {
614 		return (0);
615 	}
616 
617 	/*
618 	 * XXX: Do we need to byteswap lr?
619 	 */
620 
621 	spa = zilog->zl_spa;
622 
623 	for (ii = 0; ii < lr->lr_nbps; ii++) {
624 		bp = &lr->lr_bps[ii];
625 
626 		/*
627 		 * When data in embedded into BP there is no need to create
628 		 * BRT entry as there is no data block. Just copy the BP as
629 		 * it contains the data.
630 		 */
631 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
632 			brt_pending_add(spa, bp, tx);
633 		}
634 	}
635 
636 	return (0);
637 }
638 
639 static int
640 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
641     uint64_t first_txg)
642 {
643 
644 	switch (lrc->lrc_txtype) {
645 	case TX_WRITE:
646 		return (zil_claim_write(zilog, lrc, tx, first_txg));
647 	case TX_CLONE_RANGE:
648 		return (zil_claim_clone_range(zilog, lrc, tx));
649 	default:
650 		return (0);
651 	}
652 }
653 
654 static int
655 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
656     uint64_t claim_txg)
657 {
658 	(void) claim_txg;
659 
660 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
661 
662 	return (0);
663 }
664 
665 static int
666 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
667 {
668 	lr_write_t *lr = (lr_write_t *)lrc;
669 	blkptr_t *bp = &lr->lr_blkptr;
670 
671 	ASSERT(lrc->lrc_txtype == TX_WRITE);
672 
673 	/*
674 	 * If we previously claimed it, we need to free it.
675 	 */
676 	if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
677 	    !BP_IS_HOLE(bp)) {
678 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
679 	}
680 
681 	return (0);
682 }
683 
684 static int
685 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
686 {
687 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
688 	const blkptr_t *bp;
689 	spa_t *spa;
690 	uint_t ii;
691 
692 	ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE);
693 
694 	if (tx == NULL) {
695 		return (0);
696 	}
697 
698 	spa = zilog->zl_spa;
699 
700 	for (ii = 0; ii < lr->lr_nbps; ii++) {
701 		bp = &lr->lr_bps[ii];
702 
703 		if (!BP_IS_HOLE(bp)) {
704 			zio_free(spa, dmu_tx_get_txg(tx), bp);
705 		}
706 	}
707 
708 	return (0);
709 }
710 
711 static int
712 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
713     uint64_t claim_txg)
714 {
715 
716 	if (claim_txg == 0) {
717 		return (0);
718 	}
719 
720 	switch (lrc->lrc_txtype) {
721 	case TX_WRITE:
722 		return (zil_free_write(zilog, lrc, tx, claim_txg));
723 	case TX_CLONE_RANGE:
724 		return (zil_free_clone_range(zilog, lrc, tx));
725 	default:
726 		return (0);
727 	}
728 }
729 
730 static int
731 zil_lwb_vdev_compare(const void *x1, const void *x2)
732 {
733 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
734 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
735 
736 	return (TREE_CMP(v1, v2));
737 }
738 
739 static lwb_t *
740 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
741     boolean_t fastwrite)
742 {
743 	lwb_t *lwb;
744 
745 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
746 	lwb->lwb_zilog = zilog;
747 	lwb->lwb_blk = *bp;
748 	lwb->lwb_fastwrite = fastwrite;
749 	lwb->lwb_slog = slog;
750 	lwb->lwb_state = LWB_STATE_CLOSED;
751 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
752 	lwb->lwb_max_txg = txg;
753 	lwb->lwb_write_zio = NULL;
754 	lwb->lwb_root_zio = NULL;
755 	lwb->lwb_issued_timestamp = 0;
756 	lwb->lwb_issued_txg = 0;
757 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
758 		lwb->lwb_nused = sizeof (zil_chain_t);
759 		lwb->lwb_sz = BP_GET_LSIZE(bp);
760 	} else {
761 		lwb->lwb_nused = 0;
762 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
763 	}
764 
765 	mutex_enter(&zilog->zl_lock);
766 	list_insert_tail(&zilog->zl_lwb_list, lwb);
767 	mutex_exit(&zilog->zl_lock);
768 
769 	return (lwb);
770 }
771 
772 static void
773 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
774 {
775 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
776 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
777 	ASSERT(list_is_empty(&lwb->lwb_waiters));
778 	ASSERT(list_is_empty(&lwb->lwb_itxs));
779 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
780 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
781 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
782 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
783 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
784 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
785 
786 	/*
787 	 * Clear the zilog's field to indicate this lwb is no longer
788 	 * valid, and prevent use-after-free errors.
789 	 */
790 	if (zilog->zl_last_lwb_opened == lwb)
791 		zilog->zl_last_lwb_opened = NULL;
792 
793 	kmem_cache_free(zil_lwb_cache, lwb);
794 }
795 
796 /*
797  * Called when we create in-memory log transactions so that we know
798  * to cleanup the itxs at the end of spa_sync().
799  */
800 static void
801 zilog_dirty(zilog_t *zilog, uint64_t txg)
802 {
803 	dsl_pool_t *dp = zilog->zl_dmu_pool;
804 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
805 
806 	ASSERT(spa_writeable(zilog->zl_spa));
807 
808 	if (ds->ds_is_snapshot)
809 		panic("dirtying snapshot!");
810 
811 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
812 		/* up the hold count until we can be written out */
813 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
814 
815 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
816 	}
817 }
818 
819 /*
820  * Determine if the zil is dirty in the specified txg. Callers wanting to
821  * ensure that the dirty state does not change must hold the itxg_lock for
822  * the specified txg. Holding the lock will ensure that the zil cannot be
823  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
824  * state.
825  */
826 static boolean_t __maybe_unused
827 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
828 {
829 	dsl_pool_t *dp = zilog->zl_dmu_pool;
830 
831 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
832 		return (B_TRUE);
833 	return (B_FALSE);
834 }
835 
836 /*
837  * Determine if the zil is dirty. The zil is considered dirty if it has
838  * any pending itx records that have not been cleaned by zil_clean().
839  */
840 static boolean_t
841 zilog_is_dirty(zilog_t *zilog)
842 {
843 	dsl_pool_t *dp = zilog->zl_dmu_pool;
844 
845 	for (int t = 0; t < TXG_SIZE; t++) {
846 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
847 			return (B_TRUE);
848 	}
849 	return (B_FALSE);
850 }
851 
852 /*
853  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
854  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
855  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
856  * zil_commit.
857  */
858 static void
859 zil_commit_activate_saxattr_feature(zilog_t *zilog)
860 {
861 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
862 	uint64_t txg = 0;
863 	dmu_tx_t *tx = NULL;
864 
865 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
866 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
867 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
868 		tx = dmu_tx_create(zilog->zl_os);
869 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
870 		dsl_dataset_dirty(ds, tx);
871 		txg = dmu_tx_get_txg(tx);
872 
873 		mutex_enter(&ds->ds_lock);
874 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
875 		    (void *)B_TRUE;
876 		mutex_exit(&ds->ds_lock);
877 		dmu_tx_commit(tx);
878 		txg_wait_synced(zilog->zl_dmu_pool, txg);
879 	}
880 }
881 
882 /*
883  * Create an on-disk intent log.
884  */
885 static lwb_t *
886 zil_create(zilog_t *zilog)
887 {
888 	const zil_header_t *zh = zilog->zl_header;
889 	lwb_t *lwb = NULL;
890 	uint64_t txg = 0;
891 	dmu_tx_t *tx = NULL;
892 	blkptr_t blk;
893 	int error = 0;
894 	boolean_t fastwrite = FALSE;
895 	boolean_t slog = FALSE;
896 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
897 
898 
899 	/*
900 	 * Wait for any previous destroy to complete.
901 	 */
902 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
903 
904 	ASSERT(zh->zh_claim_txg == 0);
905 	ASSERT(zh->zh_replay_seq == 0);
906 
907 	blk = zh->zh_log;
908 
909 	/*
910 	 * Allocate an initial log block if:
911 	 *    - there isn't one already
912 	 *    - the existing block is the wrong endianness
913 	 */
914 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
915 		tx = dmu_tx_create(zilog->zl_os);
916 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
917 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
918 		txg = dmu_tx_get_txg(tx);
919 
920 		if (!BP_IS_HOLE(&blk)) {
921 			zio_free(zilog->zl_spa, txg, &blk);
922 			BP_ZERO(&blk);
923 		}
924 
925 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
926 		    ZIL_MIN_BLKSZ, &slog);
927 		fastwrite = TRUE;
928 
929 		if (error == 0)
930 			zil_init_log_chain(zilog, &blk);
931 	}
932 
933 	/*
934 	 * Allocate a log write block (lwb) for the first log block.
935 	 */
936 	if (error == 0)
937 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
938 
939 	/*
940 	 * If we just allocated the first log block, commit our transaction
941 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
942 	 * (zh is part of the MOS, so we cannot modify it in open context.)
943 	 */
944 	if (tx != NULL) {
945 		/*
946 		 * If "zilsaxattr" feature is enabled on zpool, then activate
947 		 * it now when we're creating the ZIL chain. We can't wait with
948 		 * this until we write the first xattr log record because we
949 		 * need to wait for the feature activation to sync out.
950 		 */
951 		if (spa_feature_is_enabled(zilog->zl_spa,
952 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
953 		    DMU_OST_ZVOL) {
954 			mutex_enter(&ds->ds_lock);
955 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
956 			    (void *)B_TRUE;
957 			mutex_exit(&ds->ds_lock);
958 		}
959 
960 		dmu_tx_commit(tx);
961 		txg_wait_synced(zilog->zl_dmu_pool, txg);
962 	} else {
963 		/*
964 		 * This branch covers the case where we enable the feature on a
965 		 * zpool that has existing ZIL headers.
966 		 */
967 		zil_commit_activate_saxattr_feature(zilog);
968 	}
969 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
970 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
971 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
972 
973 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
974 	IMPLY(error == 0, lwb != NULL);
975 
976 	return (lwb);
977 }
978 
979 /*
980  * In one tx, free all log blocks and clear the log header. If keep_first
981  * is set, then we're replaying a log with no content. We want to keep the
982  * first block, however, so that the first synchronous transaction doesn't
983  * require a txg_wait_synced() in zil_create(). We don't need to
984  * txg_wait_synced() here either when keep_first is set, because both
985  * zil_create() and zil_destroy() will wait for any in-progress destroys
986  * to complete.
987  * Return B_TRUE if there were any entries to replay.
988  */
989 boolean_t
990 zil_destroy(zilog_t *zilog, boolean_t keep_first)
991 {
992 	const zil_header_t *zh = zilog->zl_header;
993 	lwb_t *lwb;
994 	dmu_tx_t *tx;
995 	uint64_t txg;
996 
997 	/*
998 	 * Wait for any previous destroy to complete.
999 	 */
1000 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1001 
1002 	zilog->zl_old_header = *zh;		/* debugging aid */
1003 
1004 	if (BP_IS_HOLE(&zh->zh_log))
1005 		return (B_FALSE);
1006 
1007 	tx = dmu_tx_create(zilog->zl_os);
1008 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1009 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1010 	txg = dmu_tx_get_txg(tx);
1011 
1012 	mutex_enter(&zilog->zl_lock);
1013 
1014 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
1015 	zilog->zl_destroy_txg = txg;
1016 	zilog->zl_keep_first = keep_first;
1017 
1018 	if (!list_is_empty(&zilog->zl_lwb_list)) {
1019 		ASSERT(zh->zh_claim_txg == 0);
1020 		VERIFY(!keep_first);
1021 		while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1022 			if (lwb->lwb_fastwrite)
1023 				metaslab_fastwrite_unmark(zilog->zl_spa,
1024 				    &lwb->lwb_blk);
1025 			if (lwb->lwb_buf != NULL)
1026 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1027 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1028 			zil_free_lwb(zilog, lwb);
1029 		}
1030 	} else if (!keep_first) {
1031 		zil_destroy_sync(zilog, tx);
1032 	}
1033 	mutex_exit(&zilog->zl_lock);
1034 
1035 	dmu_tx_commit(tx);
1036 
1037 	return (B_TRUE);
1038 }
1039 
1040 void
1041 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1042 {
1043 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1044 	(void) zil_parse(zilog, zil_free_log_block,
1045 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1046 }
1047 
1048 int
1049 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1050 {
1051 	dmu_tx_t *tx = txarg;
1052 	zilog_t *zilog;
1053 	uint64_t first_txg;
1054 	zil_header_t *zh;
1055 	objset_t *os;
1056 	int error;
1057 
1058 	error = dmu_objset_own_obj(dp, ds->ds_object,
1059 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1060 	if (error != 0) {
1061 		/*
1062 		 * EBUSY indicates that the objset is inconsistent, in which
1063 		 * case it can not have a ZIL.
1064 		 */
1065 		if (error != EBUSY) {
1066 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1067 			    (unsigned long long)ds->ds_object, error);
1068 		}
1069 
1070 		return (0);
1071 	}
1072 
1073 	zilog = dmu_objset_zil(os);
1074 	zh = zil_header_in_syncing_context(zilog);
1075 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1076 	first_txg = spa_min_claim_txg(zilog->zl_spa);
1077 
1078 	/*
1079 	 * If the spa_log_state is not set to be cleared, check whether
1080 	 * the current uberblock is a checkpoint one and if the current
1081 	 * header has been claimed before moving on.
1082 	 *
1083 	 * If the current uberblock is a checkpointed uberblock then
1084 	 * one of the following scenarios took place:
1085 	 *
1086 	 * 1] We are currently rewinding to the checkpoint of the pool.
1087 	 * 2] We crashed in the middle of a checkpoint rewind but we
1088 	 *    did manage to write the checkpointed uberblock to the
1089 	 *    vdev labels, so when we tried to import the pool again
1090 	 *    the checkpointed uberblock was selected from the import
1091 	 *    procedure.
1092 	 *
1093 	 * In both cases we want to zero out all the ZIL blocks, except
1094 	 * the ones that have been claimed at the time of the checkpoint
1095 	 * (their zh_claim_txg != 0). The reason is that these blocks
1096 	 * may be corrupted since we may have reused their locations on
1097 	 * disk after we took the checkpoint.
1098 	 *
1099 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1100 	 * when we first figure out whether the current uberblock is
1101 	 * checkpointed or not. Unfortunately, that would discard all
1102 	 * the logs, including the ones that are claimed, and we would
1103 	 * leak space.
1104 	 */
1105 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1106 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1107 	    zh->zh_claim_txg == 0)) {
1108 		if (!BP_IS_HOLE(&zh->zh_log)) {
1109 			(void) zil_parse(zilog, zil_clear_log_block,
1110 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1111 		}
1112 		BP_ZERO(&zh->zh_log);
1113 		if (os->os_encrypted)
1114 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1115 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1116 		dmu_objset_disown(os, B_FALSE, FTAG);
1117 		return (0);
1118 	}
1119 
1120 	/*
1121 	 * If we are not rewinding and opening the pool normally, then
1122 	 * the min_claim_txg should be equal to the first txg of the pool.
1123 	 */
1124 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1125 
1126 	/*
1127 	 * Claim all log blocks if we haven't already done so, and remember
1128 	 * the highest claimed sequence number.  This ensures that if we can
1129 	 * read only part of the log now (e.g. due to a missing device),
1130 	 * but we can read the entire log later, we will not try to replay
1131 	 * or destroy beyond the last block we successfully claimed.
1132 	 */
1133 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1134 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1135 		(void) zil_parse(zilog, zil_claim_log_block,
1136 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1137 		zh->zh_claim_txg = first_txg;
1138 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1139 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1140 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1141 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1142 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1143 		if (os->os_encrypted)
1144 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1145 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1146 	}
1147 
1148 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1149 	dmu_objset_disown(os, B_FALSE, FTAG);
1150 	return (0);
1151 }
1152 
1153 /*
1154  * Check the log by walking the log chain.
1155  * Checksum errors are ok as they indicate the end of the chain.
1156  * Any other error (no device or read failure) returns an error.
1157  */
1158 int
1159 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1160 {
1161 	(void) dp;
1162 	zilog_t *zilog;
1163 	objset_t *os;
1164 	blkptr_t *bp;
1165 	int error;
1166 
1167 	ASSERT(tx == NULL);
1168 
1169 	error = dmu_objset_from_ds(ds, &os);
1170 	if (error != 0) {
1171 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1172 		    (unsigned long long)ds->ds_object, error);
1173 		return (0);
1174 	}
1175 
1176 	zilog = dmu_objset_zil(os);
1177 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1178 
1179 	if (!BP_IS_HOLE(bp)) {
1180 		vdev_t *vd;
1181 		boolean_t valid = B_TRUE;
1182 
1183 		/*
1184 		 * Check the first block and determine if it's on a log device
1185 		 * which may have been removed or faulted prior to loading this
1186 		 * pool.  If so, there's no point in checking the rest of the
1187 		 * log as its content should have already been synced to the
1188 		 * pool.
1189 		 */
1190 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1191 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1192 		if (vd->vdev_islog && vdev_is_dead(vd))
1193 			valid = vdev_log_state_valid(vd);
1194 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1195 
1196 		if (!valid)
1197 			return (0);
1198 
1199 		/*
1200 		 * Check whether the current uberblock is checkpointed (e.g.
1201 		 * we are rewinding) and whether the current header has been
1202 		 * claimed or not. If it hasn't then skip verifying it. We
1203 		 * do this because its ZIL blocks may be part of the pool's
1204 		 * state before the rewind, which is no longer valid.
1205 		 */
1206 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1207 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1208 		    zh->zh_claim_txg == 0)
1209 			return (0);
1210 	}
1211 
1212 	/*
1213 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1214 	 * any blocks, but just determine whether it is possible to do so.
1215 	 * In addition to checking the log chain, zil_claim_log_block()
1216 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1217 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1218 	 */
1219 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1220 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1221 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1222 
1223 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1224 }
1225 
1226 /*
1227  * When an itx is "skipped", this function is used to properly mark the
1228  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1229  * be skipped (and not committed to an lwb) for a variety of reasons,
1230  * one of them being that the itx was committed via spa_sync(), prior to
1231  * it being committed to an lwb; this can happen if a thread calling
1232  * zil_commit() is racing with spa_sync().
1233  */
1234 static void
1235 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1236 {
1237 	mutex_enter(&zcw->zcw_lock);
1238 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1239 	zcw->zcw_done = B_TRUE;
1240 	cv_broadcast(&zcw->zcw_cv);
1241 	mutex_exit(&zcw->zcw_lock);
1242 }
1243 
1244 /*
1245  * This function is used when the given waiter is to be linked into an
1246  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1247  * At this point, the waiter will no longer be referenced by the itx,
1248  * and instead, will be referenced by the lwb.
1249  */
1250 static void
1251 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1252 {
1253 	/*
1254 	 * The lwb_waiters field of the lwb is protected by the zilog's
1255 	 * zl_lock, thus it must be held when calling this function.
1256 	 */
1257 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1258 
1259 	mutex_enter(&zcw->zcw_lock);
1260 	ASSERT(!list_link_active(&zcw->zcw_node));
1261 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1262 	ASSERT3P(lwb, !=, NULL);
1263 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1264 	    lwb->lwb_state == LWB_STATE_ISSUED ||
1265 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
1266 
1267 	list_insert_tail(&lwb->lwb_waiters, zcw);
1268 	zcw->zcw_lwb = lwb;
1269 	mutex_exit(&zcw->zcw_lock);
1270 }
1271 
1272 /*
1273  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1274  * block, and the given waiter must be linked to the "nolwb waiters"
1275  * list inside of zil_process_commit_list().
1276  */
1277 static void
1278 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1279 {
1280 	mutex_enter(&zcw->zcw_lock);
1281 	ASSERT(!list_link_active(&zcw->zcw_node));
1282 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1283 	list_insert_tail(nolwb, zcw);
1284 	mutex_exit(&zcw->zcw_lock);
1285 }
1286 
1287 void
1288 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1289 {
1290 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1291 	avl_index_t where;
1292 	zil_vdev_node_t *zv, zvsearch;
1293 	int ndvas = BP_GET_NDVAS(bp);
1294 	int i;
1295 
1296 	if (zil_nocacheflush)
1297 		return;
1298 
1299 	mutex_enter(&lwb->lwb_vdev_lock);
1300 	for (i = 0; i < ndvas; i++) {
1301 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1302 		if (avl_find(t, &zvsearch, &where) == NULL) {
1303 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1304 			zv->zv_vdev = zvsearch.zv_vdev;
1305 			avl_insert(t, zv, where);
1306 		}
1307 	}
1308 	mutex_exit(&lwb->lwb_vdev_lock);
1309 }
1310 
1311 static void
1312 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1313 {
1314 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1315 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1316 	void *cookie = NULL;
1317 	zil_vdev_node_t *zv;
1318 
1319 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1320 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1321 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1322 
1323 	/*
1324 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1325 	 * not need the protection of lwb_vdev_lock (it will only be modified
1326 	 * while holding zilog->zl_lock) as its writes and those of its
1327 	 * children have all completed.  The younger 'nlwb' may be waiting on
1328 	 * future writes to additional vdevs.
1329 	 */
1330 	mutex_enter(&nlwb->lwb_vdev_lock);
1331 	/*
1332 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1333 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1334 	 */
1335 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1336 		avl_index_t where;
1337 
1338 		if (avl_find(dst, zv, &where) == NULL) {
1339 			avl_insert(dst, zv, where);
1340 		} else {
1341 			kmem_free(zv, sizeof (*zv));
1342 		}
1343 	}
1344 	mutex_exit(&nlwb->lwb_vdev_lock);
1345 }
1346 
1347 void
1348 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1349 {
1350 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1351 }
1352 
1353 /*
1354  * This function is a called after all vdevs associated with a given lwb
1355  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1356  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1357  * all "previous" lwb's will have completed before this function is
1358  * called; i.e. this function is called for all previous lwbs before
1359  * it's called for "this" lwb (enforced via zio the dependencies
1360  * configured in zil_lwb_set_zio_dependency()).
1361  *
1362  * The intention is for this function to be called as soon as the
1363  * contents of an lwb are considered "stable" on disk, and will survive
1364  * any sudden loss of power. At this point, any threads waiting for the
1365  * lwb to reach this state are signalled, and the "waiter" structures
1366  * are marked "done".
1367  */
1368 static void
1369 zil_lwb_flush_vdevs_done(zio_t *zio)
1370 {
1371 	lwb_t *lwb = zio->io_private;
1372 	zilog_t *zilog = lwb->lwb_zilog;
1373 	zil_commit_waiter_t *zcw;
1374 	itx_t *itx;
1375 	uint64_t txg;
1376 
1377 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1378 
1379 	hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1380 
1381 	mutex_enter(&zilog->zl_lock);
1382 
1383 	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1384 
1385 	lwb->lwb_root_zio = NULL;
1386 
1387 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1388 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1389 
1390 	if (zilog->zl_last_lwb_opened == lwb) {
1391 		/*
1392 		 * Remember the highest committed log sequence number
1393 		 * for ztest. We only update this value when all the log
1394 		 * writes succeeded, because ztest wants to ASSERT that
1395 		 * it got the whole log chain.
1396 		 */
1397 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1398 	}
1399 
1400 	while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1401 		zil_itx_destroy(itx);
1402 
1403 	while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1404 		mutex_enter(&zcw->zcw_lock);
1405 
1406 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1407 		zcw->zcw_lwb = NULL;
1408 		/*
1409 		 * We expect any ZIO errors from child ZIOs to have been
1410 		 * propagated "up" to this specific LWB's root ZIO, in
1411 		 * order for this error handling to work correctly. This
1412 		 * includes ZIO errors from either this LWB's write or
1413 		 * flush, as well as any errors from other dependent LWBs
1414 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1415 		 *
1416 		 * With that said, it's important to note that LWB flush
1417 		 * errors are not propagated up to the LWB root ZIO.
1418 		 * This is incorrect behavior, and results in VDEV flush
1419 		 * errors not being handled correctly here. See the
1420 		 * comment above the call to "zio_flush" for details.
1421 		 */
1422 
1423 		zcw->zcw_zio_error = zio->io_error;
1424 
1425 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1426 		zcw->zcw_done = B_TRUE;
1427 		cv_broadcast(&zcw->zcw_cv);
1428 
1429 		mutex_exit(&zcw->zcw_lock);
1430 	}
1431 
1432 	mutex_exit(&zilog->zl_lock);
1433 
1434 	mutex_enter(&zilog->zl_lwb_io_lock);
1435 	txg = lwb->lwb_issued_txg;
1436 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1437 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1438 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1439 		cv_broadcast(&zilog->zl_lwb_io_cv);
1440 	mutex_exit(&zilog->zl_lwb_io_lock);
1441 }
1442 
1443 /*
1444  * Wait for the completion of all issued write/flush of that txg provided.
1445  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1446  */
1447 static void
1448 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1449 {
1450 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1451 
1452 	mutex_enter(&zilog->zl_lwb_io_lock);
1453 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1454 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1455 	mutex_exit(&zilog->zl_lwb_io_lock);
1456 
1457 #ifdef ZFS_DEBUG
1458 	mutex_enter(&zilog->zl_lock);
1459 	mutex_enter(&zilog->zl_lwb_io_lock);
1460 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1461 	while (lwb != NULL && lwb->lwb_max_txg <= txg) {
1462 		if (lwb->lwb_issued_txg <= txg) {
1463 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1464 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1465 			IMPLY(lwb->lwb_issued_txg > 0,
1466 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1467 		}
1468 		IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1469 		    lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1470 		    lwb->lwb_buf == NULL);
1471 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1472 	}
1473 	mutex_exit(&zilog->zl_lwb_io_lock);
1474 	mutex_exit(&zilog->zl_lock);
1475 #endif
1476 }
1477 
1478 /*
1479  * This is called when an lwb's write zio completes. The callback's
1480  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1481  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1482  * in writing out this specific lwb's data, and in the case that cache
1483  * flushes have been deferred, vdevs involved in writing the data for
1484  * previous lwbs. The writes corresponding to all the vdevs in the
1485  * lwb_vdev_tree will have completed by the time this is called, due to
1486  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1487  * which takes deferred flushes into account. The lwb will be "done"
1488  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1489  * completion callback for the lwb's root zio.
1490  */
1491 static void
1492 zil_lwb_write_done(zio_t *zio)
1493 {
1494 	lwb_t *lwb = zio->io_private;
1495 	spa_t *spa = zio->io_spa;
1496 	zilog_t *zilog = lwb->lwb_zilog;
1497 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1498 	void *cookie = NULL;
1499 	zil_vdev_node_t *zv;
1500 	lwb_t *nlwb;
1501 
1502 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1503 
1504 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1505 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1506 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1507 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1508 	ASSERT(!BP_IS_GANG(zio->io_bp));
1509 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1510 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1511 
1512 	abd_free(zio->io_abd);
1513 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1514 	lwb->lwb_buf = NULL;
1515 
1516 	mutex_enter(&zilog->zl_lock);
1517 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1518 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1519 	lwb->lwb_write_zio = NULL;
1520 	lwb->lwb_fastwrite = FALSE;
1521 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1522 	mutex_exit(&zilog->zl_lock);
1523 
1524 	if (avl_numnodes(t) == 0)
1525 		return;
1526 
1527 	/*
1528 	 * If there was an IO error, we're not going to call zio_flush()
1529 	 * on these vdevs, so we simply empty the tree and free the
1530 	 * nodes. We avoid calling zio_flush() since there isn't any
1531 	 * good reason for doing so, after the lwb block failed to be
1532 	 * written out.
1533 	 *
1534 	 * Additionally, we don't perform any further error handling at
1535 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1536 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1537 	 * we expect any error seen here, to have been propagated to
1538 	 * that function).
1539 	 */
1540 	if (zio->io_error != 0) {
1541 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1542 			kmem_free(zv, sizeof (*zv));
1543 		return;
1544 	}
1545 
1546 	/*
1547 	 * If this lwb does not have any threads waiting for it to
1548 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1549 	 * command to the vdevs written to by "this" lwb, and instead
1550 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1551 	 * command for those vdevs. Thus, we merge the vdev tree of
1552 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1553 	 * and assume the "next" lwb will handle flushing the vdevs (or
1554 	 * deferring the flush(s) again).
1555 	 *
1556 	 * This is a useful performance optimization, especially for
1557 	 * workloads with lots of async write activity and few sync
1558 	 * write and/or fsync activity, as it has the potential to
1559 	 * coalesce multiple flush commands to a vdev into one.
1560 	 */
1561 	if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1562 		zil_lwb_flush_defer(lwb, nlwb);
1563 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1564 		return;
1565 	}
1566 
1567 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1568 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1569 		if (vd != NULL && !vd->vdev_nowritecache) {
1570 			/*
1571 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1572 			 * always used within "zio_flush". This means,
1573 			 * any errors when flushing the vdev(s), will
1574 			 * (unfortunately) not be handled correctly,
1575 			 * since these "zio_flush" errors will not be
1576 			 * propagated up to "zil_lwb_flush_vdevs_done".
1577 			 */
1578 			zio_flush(lwb->lwb_root_zio, vd);
1579 		}
1580 		kmem_free(zv, sizeof (*zv));
1581 	}
1582 }
1583 
1584 static void
1585 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1586 {
1587 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1588 
1589 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1590 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1591 
1592 	/*
1593 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1594 	 * lwb/zio dependency chain, which is used to preserve the
1595 	 * ordering of lwb completions that is required by the semantics
1596 	 * of the ZIL. Each new lwb zio becomes a parent of the
1597 	 * "previous" lwb zio, such that the new lwb's zio cannot
1598 	 * complete until the "previous" lwb's zio completes.
1599 	 *
1600 	 * This is required by the semantics of zil_commit(); the commit
1601 	 * waiters attached to the lwbs will be woken in the lwb zio's
1602 	 * completion callback, so this zio dependency graph ensures the
1603 	 * waiters are woken in the correct order (the same order the
1604 	 * lwbs were created).
1605 	 */
1606 	if (last_lwb_opened != NULL &&
1607 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1608 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1609 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1610 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1611 
1612 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1613 		zio_add_child(lwb->lwb_root_zio,
1614 		    last_lwb_opened->lwb_root_zio);
1615 
1616 		/*
1617 		 * If the previous lwb's write hasn't already completed,
1618 		 * we also want to order the completion of the lwb write
1619 		 * zios (above, we only order the completion of the lwb
1620 		 * root zios). This is required because of how we can
1621 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1622 		 *
1623 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1624 		 * the previous lwb will rely on this lwb to flush the
1625 		 * vdevs written to by that previous lwb. Thus, we need
1626 		 * to ensure this lwb doesn't issue the flush until
1627 		 * after the previous lwb's write completes. We ensure
1628 		 * this ordering by setting the zio parent/child
1629 		 * relationship here.
1630 		 *
1631 		 * Without this relationship on the lwb's write zio,
1632 		 * it's possible for this lwb's write to complete prior
1633 		 * to the previous lwb's write completing; and thus, the
1634 		 * vdevs for the previous lwb would be flushed prior to
1635 		 * that lwb's data being written to those vdevs (the
1636 		 * vdevs are flushed in the lwb write zio's completion
1637 		 * handler, zil_lwb_write_done()).
1638 		 */
1639 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1640 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1641 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1642 
1643 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1644 			zio_add_child(lwb->lwb_write_zio,
1645 			    last_lwb_opened->lwb_write_zio);
1646 		}
1647 	}
1648 }
1649 
1650 
1651 /*
1652  * This function's purpose is to "open" an lwb such that it is ready to
1653  * accept new itxs being committed to it. To do this, the lwb's zio
1654  * structures are created, and linked to the lwb. This function is
1655  * idempotent; if the passed in lwb has already been opened, this
1656  * function is essentially a no-op.
1657  */
1658 static void
1659 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1660 {
1661 	zbookmark_phys_t zb;
1662 	zio_priority_t prio;
1663 
1664 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1665 	ASSERT3P(lwb, !=, NULL);
1666 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1667 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1668 
1669 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1670 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1671 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1672 
1673 	/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1674 	mutex_enter(&zilog->zl_lock);
1675 	if (lwb->lwb_root_zio == NULL) {
1676 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1677 		    BP_GET_LSIZE(&lwb->lwb_blk));
1678 
1679 		if (!lwb->lwb_fastwrite) {
1680 			metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1681 			lwb->lwb_fastwrite = 1;
1682 		}
1683 
1684 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1685 			prio = ZIO_PRIORITY_SYNC_WRITE;
1686 		else
1687 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1688 
1689 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1690 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1691 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1692 
1693 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1694 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1695 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1696 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1697 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1698 
1699 		lwb->lwb_state = LWB_STATE_OPENED;
1700 
1701 		zil_lwb_set_zio_dependency(zilog, lwb);
1702 		zilog->zl_last_lwb_opened = lwb;
1703 	}
1704 	mutex_exit(&zilog->zl_lock);
1705 
1706 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1707 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1708 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1709 }
1710 
1711 /*
1712  * Define a limited set of intent log block sizes.
1713  *
1714  * These must be a multiple of 4KB. Note only the amount used (again
1715  * aligned to 4KB) actually gets written. However, we can't always just
1716  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1717  */
1718 static const struct {
1719 	uint64_t	limit;
1720 	uint64_t	blksz;
1721 } zil_block_buckets[] = {
1722 	{ 4096,		4096 },			/* non TX_WRITE */
1723 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1724 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1725 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1726 	{ 131072,	131072 },		/* < 128KB writes */
1727 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1728 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1729 };
1730 
1731 /*
1732  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1733  * initialized.  Otherwise this should not be used directly; see
1734  * zl_max_block_size instead.
1735  */
1736 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1737 
1738 /*
1739  * Start a log block write and advance to the next log block.
1740  * Calls are serialized.
1741  */
1742 static lwb_t *
1743 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1744 {
1745 	lwb_t *nlwb = NULL;
1746 	zil_chain_t *zilc;
1747 	spa_t *spa = zilog->zl_spa;
1748 	blkptr_t *bp;
1749 	dmu_tx_t *tx;
1750 	uint64_t txg;
1751 	uint64_t zil_blksz, wsz;
1752 	int i, error;
1753 	boolean_t slog;
1754 
1755 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1756 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1757 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1758 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1759 
1760 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1761 		zilc = (zil_chain_t *)lwb->lwb_buf;
1762 		bp = &zilc->zc_next_blk;
1763 	} else {
1764 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1765 		bp = &zilc->zc_next_blk;
1766 	}
1767 
1768 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1769 
1770 	/*
1771 	 * Allocate the next block and save its address in this block
1772 	 * before writing it in order to establish the log chain.
1773 	 */
1774 
1775 	tx = dmu_tx_create(zilog->zl_os);
1776 
1777 	/*
1778 	 * Since we are not going to create any new dirty data, and we
1779 	 * can even help with clearing the existing dirty data, we
1780 	 * should not be subject to the dirty data based delays. We
1781 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1782 	 */
1783 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1784 
1785 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1786 	txg = dmu_tx_get_txg(tx);
1787 
1788 	mutex_enter(&zilog->zl_lwb_io_lock);
1789 	lwb->lwb_issued_txg = txg;
1790 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1791 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1792 	mutex_exit(&zilog->zl_lwb_io_lock);
1793 
1794 	/*
1795 	 * Log blocks are pre-allocated. Here we select the size of the next
1796 	 * block, based on size used in the last block.
1797 	 * - first find the smallest bucket that will fit the block from a
1798 	 *   limited set of block sizes. This is because it's faster to write
1799 	 *   blocks allocated from the same metaslab as they are adjacent or
1800 	 *   close.
1801 	 * - next find the maximum from the new suggested size and an array of
1802 	 *   previous sizes. This lessens a picket fence effect of wrongly
1803 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1804 	 *   requests.
1805 	 *
1806 	 * Note we only write what is used, but we can't just allocate
1807 	 * the maximum block size because we can exhaust the available
1808 	 * pool log space.
1809 	 */
1810 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1811 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1812 		continue;
1813 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1814 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1815 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1816 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1817 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1818 
1819 	BP_ZERO(bp);
1820 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1821 	if (slog) {
1822 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
1823 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
1824 		    lwb->lwb_nused);
1825 	} else {
1826 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
1827 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
1828 		    lwb->lwb_nused);
1829 	}
1830 	if (error == 0) {
1831 		ASSERT3U(bp->blk_birth, ==, txg);
1832 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1833 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1834 
1835 		/*
1836 		 * Allocate a new log write block (lwb).
1837 		 */
1838 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1839 	}
1840 
1841 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1842 		/* For Slim ZIL only write what is used. */
1843 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1844 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1845 		zio_shrink(lwb->lwb_write_zio, wsz);
1846 		wsz = lwb->lwb_write_zio->io_size;
1847 
1848 	} else {
1849 		wsz = lwb->lwb_sz;
1850 	}
1851 
1852 	zilc->zc_pad = 0;
1853 	zilc->zc_nused = lwb->lwb_nused;
1854 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1855 
1856 	/*
1857 	 * clear unused data for security
1858 	 */
1859 	memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1860 
1861 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1862 
1863 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1864 	lwb->lwb_issued_timestamp = gethrtime();
1865 	lwb->lwb_state = LWB_STATE_ISSUED;
1866 
1867 	zio_nowait(lwb->lwb_root_zio);
1868 	zio_nowait(lwb->lwb_write_zio);
1869 
1870 	dmu_tx_commit(tx);
1871 
1872 	/*
1873 	 * If there was an allocation failure then nlwb will be null which
1874 	 * forces a txg_wait_synced().
1875 	 */
1876 	return (nlwb);
1877 }
1878 
1879 /*
1880  * Maximum amount of data that can be put into single log block.
1881  */
1882 uint64_t
1883 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
1884 {
1885 	return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
1886 }
1887 
1888 /*
1889  * Maximum amount of log space we agree to waste to reduce number of
1890  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1891  */
1892 static inline uint64_t
1893 zil_max_waste_space(zilog_t *zilog)
1894 {
1895 	return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 8);
1896 }
1897 
1898 /*
1899  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1900  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1901  * maximum sized log block, because each WR_COPIED record must fit in a
1902  * single log block.  For space efficiency, we want to fit two records into a
1903  * max-sized log block.
1904  */
1905 uint64_t
1906 zil_max_copied_data(zilog_t *zilog)
1907 {
1908 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1909 	    sizeof (lr_write_t));
1910 }
1911 
1912 static lwb_t *
1913 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1914 {
1915 	lr_t *lrcb, *lrc;
1916 	lr_write_t *lrwb, *lrw;
1917 	char *lr_buf;
1918 	uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1919 
1920 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1921 	ASSERT3P(lwb, !=, NULL);
1922 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1923 
1924 	zil_lwb_write_open(zilog, lwb);
1925 
1926 	lrc = &itx->itx_lr;
1927 	lrw = (lr_write_t *)lrc;
1928 
1929 	/*
1930 	 * A commit itx doesn't represent any on-disk state; instead
1931 	 * it's simply used as a place holder on the commit list, and
1932 	 * provides a mechanism for attaching a "commit waiter" onto the
1933 	 * correct lwb (such that the waiter can be signalled upon
1934 	 * completion of that lwb). Thus, we don't process this itx's
1935 	 * log record if it's a commit itx (these itx's don't have log
1936 	 * records), and instead link the itx's waiter onto the lwb's
1937 	 * list of waiters.
1938 	 *
1939 	 * For more details, see the comment above zil_commit().
1940 	 */
1941 	if (lrc->lrc_txtype == TX_COMMIT) {
1942 		mutex_enter(&zilog->zl_lock);
1943 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1944 		itx->itx_private = NULL;
1945 		mutex_exit(&zilog->zl_lock);
1946 		return (lwb);
1947 	}
1948 
1949 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1950 		dlen = P2ROUNDUP_TYPED(
1951 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1952 		dpad = dlen - lrw->lr_length;
1953 	} else {
1954 		dlen = dpad = 0;
1955 	}
1956 	reclen = lrc->lrc_reclen;
1957 	zilog->zl_cur_used += (reclen + dlen);
1958 	txg = lrc->lrc_txg;
1959 
1960 cont:
1961 	/*
1962 	 * If this record won't fit in the current log block, start a new one.
1963 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1964 	 */
1965 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1966 	max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
1967 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1968 	    lwb_sp < zil_max_waste_space(zilog) &&
1969 	    (dlen % max_log_data == 0 ||
1970 	    lwb_sp < reclen + dlen % max_log_data))) {
1971 		lwb = zil_lwb_write_issue(zilog, lwb);
1972 		if (lwb == NULL)
1973 			return (NULL);
1974 		zil_lwb_write_open(zilog, lwb);
1975 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1976 
1977 		/*
1978 		 * There must be enough space in the new, empty log block to
1979 		 * hold reclen.  For WR_COPIED, we need to fit the whole
1980 		 * record in one block, and reclen is the header size + the
1981 		 * data size. For WR_NEED_COPY, we can create multiple
1982 		 * records, splitting the data into multiple blocks, so we
1983 		 * only need to fit one word of data per block; in this case
1984 		 * reclen is just the header size (no data).
1985 		 */
1986 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1987 	}
1988 
1989 	dnow = MIN(dlen, lwb_sp - reclen);
1990 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1991 	memcpy(lr_buf, lrc, reclen);
1992 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1993 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1994 
1995 	ZIL_STAT_BUMP(zilog, zil_itx_count);
1996 
1997 	/*
1998 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1999 	 */
2000 	if (lrc->lrc_txtype == TX_WRITE) {
2001 		if (txg > spa_freeze_txg(zilog->zl_spa))
2002 			txg_wait_synced(zilog->zl_dmu_pool, txg);
2003 		if (itx->itx_wr_state == WR_COPIED) {
2004 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2005 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2006 			    lrw->lr_length);
2007 		} else {
2008 			char *dbuf;
2009 			int error;
2010 
2011 			if (itx->itx_wr_state == WR_NEED_COPY) {
2012 				dbuf = lr_buf + reclen;
2013 				lrcb->lrc_reclen += dnow;
2014 				if (lrwb->lr_length > dnow)
2015 					lrwb->lr_length = dnow;
2016 				lrw->lr_offset += dnow;
2017 				lrw->lr_length -= dnow;
2018 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2019 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2020 				    dnow);
2021 			} else {
2022 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2023 				dbuf = NULL;
2024 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2025 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2026 				    lrw->lr_length);
2027 			}
2028 
2029 			/*
2030 			 * We pass in the "lwb_write_zio" rather than
2031 			 * "lwb_root_zio" so that the "lwb_write_zio"
2032 			 * becomes the parent of any zio's created by
2033 			 * the "zl_get_data" callback. The vdevs are
2034 			 * flushed after the "lwb_write_zio" completes,
2035 			 * so we want to make sure that completion
2036 			 * callback waits for these additional zio's,
2037 			 * such that the vdevs used by those zio's will
2038 			 * be included in the lwb's vdev tree, and those
2039 			 * vdevs will be properly flushed. If we passed
2040 			 * in "lwb_root_zio" here, then these additional
2041 			 * vdevs may not be flushed; e.g. if these zio's
2042 			 * completed after "lwb_write_zio" completed.
2043 			 */
2044 			error = zilog->zl_get_data(itx->itx_private,
2045 			    itx->itx_gen, lrwb, dbuf, lwb,
2046 			    lwb->lwb_write_zio);
2047 			if (dbuf != NULL && error == 0 && dnow == dlen)
2048 				/* Zero any padding bytes in the last block. */
2049 				memset((char *)dbuf + lrwb->lr_length, 0, dpad);
2050 
2051 			/*
2052 			 * Typically, the only return values we should see from
2053 			 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2054 			 *  EALREADY. However, it is also possible to see other
2055 			 *  error values such as ENOSPC or EINVAL from
2056 			 *  dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2057 			 *  ENXIO as well as a multitude of others from the
2058 			 *  block layer through dmu_buf_hold() -> dbuf_read()
2059 			 *  -> zio_wait(), as well as through dmu_read() ->
2060 			 *  dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2061 			 *  zio_wait(). When these errors happen, we can assume
2062 			 *  that neither an immediate write nor an indirect
2063 			 *  write occurred, so we need to fall back to
2064 			 *  txg_wait_synced(). This is unusual, so we print to
2065 			 *  dmesg whenever one of these errors occurs.
2066 			 */
2067 			switch (error) {
2068 			case 0:
2069 				break;
2070 			default:
2071 				cmn_err(CE_WARN, "zil_lwb_commit() received "
2072 				    "unexpected error %d from ->zl_get_data()"
2073 				    ". Falling back to txg_wait_synced().",
2074 				    error);
2075 				zfs_fallthrough;
2076 			case EIO:
2077 				txg_wait_synced(zilog->zl_dmu_pool, txg);
2078 				zfs_fallthrough;
2079 			case ENOENT:
2080 				zfs_fallthrough;
2081 			case EEXIST:
2082 				zfs_fallthrough;
2083 			case EALREADY:
2084 				return (lwb);
2085 			}
2086 		}
2087 	}
2088 
2089 	/*
2090 	 * We're actually making an entry, so update lrc_seq to be the
2091 	 * log record sequence number.  Note that this is generally not
2092 	 * equal to the itx sequence number because not all transactions
2093 	 * are synchronous, and sometimes spa_sync() gets there first.
2094 	 */
2095 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
2096 	lwb->lwb_nused += reclen + dnow;
2097 
2098 	zil_lwb_add_txg(lwb, txg);
2099 
2100 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
2101 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2102 
2103 	dlen -= dnow;
2104 	if (dlen > 0) {
2105 		zilog->zl_cur_used += reclen;
2106 		goto cont;
2107 	}
2108 
2109 	return (lwb);
2110 }
2111 
2112 itx_t *
2113 zil_itx_create(uint64_t txtype, size_t olrsize)
2114 {
2115 	size_t itxsize, lrsize;
2116 	itx_t *itx;
2117 
2118 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2119 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2120 
2121 	itx = zio_data_buf_alloc(itxsize);
2122 	itx->itx_lr.lrc_txtype = txtype;
2123 	itx->itx_lr.lrc_reclen = lrsize;
2124 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2125 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2126 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2127 	itx->itx_callback = NULL;
2128 	itx->itx_callback_data = NULL;
2129 	itx->itx_size = itxsize;
2130 
2131 	return (itx);
2132 }
2133 
2134 void
2135 zil_itx_destroy(itx_t *itx)
2136 {
2137 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2138 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2139 
2140 	if (itx->itx_callback != NULL)
2141 		itx->itx_callback(itx->itx_callback_data);
2142 
2143 	zio_data_buf_free(itx, itx->itx_size);
2144 }
2145 
2146 /*
2147  * Free up the sync and async itxs. The itxs_t has already been detached
2148  * so no locks are needed.
2149  */
2150 static void
2151 zil_itxg_clean(void *arg)
2152 {
2153 	itx_t *itx;
2154 	list_t *list;
2155 	avl_tree_t *t;
2156 	void *cookie;
2157 	itxs_t *itxs = arg;
2158 	itx_async_node_t *ian;
2159 
2160 	list = &itxs->i_sync_list;
2161 	while ((itx = list_remove_head(list)) != NULL) {
2162 		/*
2163 		 * In the general case, commit itxs will not be found
2164 		 * here, as they'll be committed to an lwb via
2165 		 * zil_lwb_commit(), and free'd in that function. Having
2166 		 * said that, it is still possible for commit itxs to be
2167 		 * found here, due to the following race:
2168 		 *
2169 		 *	- a thread calls zil_commit() which assigns the
2170 		 *	  commit itx to a per-txg i_sync_list
2171 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2172 		 *	  while the waiter is still on the i_sync_list
2173 		 *
2174 		 * There's nothing to prevent syncing the txg while the
2175 		 * waiter is on the i_sync_list. This normally doesn't
2176 		 * happen because spa_sync() is slower than zil_commit(),
2177 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2178 		 * because zil_create() or zil_commit_writer_stall() is
2179 		 * called) we will hit this case.
2180 		 */
2181 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2182 			zil_commit_waiter_skip(itx->itx_private);
2183 
2184 		zil_itx_destroy(itx);
2185 	}
2186 
2187 	cookie = NULL;
2188 	t = &itxs->i_async_tree;
2189 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2190 		list = &ian->ia_list;
2191 		while ((itx = list_remove_head(list)) != NULL) {
2192 			/* commit itxs should never be on the async lists. */
2193 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2194 			zil_itx_destroy(itx);
2195 		}
2196 		list_destroy(list);
2197 		kmem_free(ian, sizeof (itx_async_node_t));
2198 	}
2199 	avl_destroy(t);
2200 
2201 	kmem_free(itxs, sizeof (itxs_t));
2202 }
2203 
2204 static int
2205 zil_aitx_compare(const void *x1, const void *x2)
2206 {
2207 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2208 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2209 
2210 	return (TREE_CMP(o1, o2));
2211 }
2212 
2213 /*
2214  * Remove all async itx with the given oid.
2215  */
2216 void
2217 zil_remove_async(zilog_t *zilog, uint64_t oid)
2218 {
2219 	uint64_t otxg, txg;
2220 	itx_async_node_t *ian;
2221 	avl_tree_t *t;
2222 	avl_index_t where;
2223 	list_t clean_list;
2224 	itx_t *itx;
2225 
2226 	ASSERT(oid != 0);
2227 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2228 
2229 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2230 		otxg = ZILTEST_TXG;
2231 	else
2232 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2233 
2234 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2235 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2236 
2237 		mutex_enter(&itxg->itxg_lock);
2238 		if (itxg->itxg_txg != txg) {
2239 			mutex_exit(&itxg->itxg_lock);
2240 			continue;
2241 		}
2242 
2243 		/*
2244 		 * Locate the object node and append its list.
2245 		 */
2246 		t = &itxg->itxg_itxs->i_async_tree;
2247 		ian = avl_find(t, &oid, &where);
2248 		if (ian != NULL)
2249 			list_move_tail(&clean_list, &ian->ia_list);
2250 		mutex_exit(&itxg->itxg_lock);
2251 	}
2252 	while ((itx = list_remove_head(&clean_list)) != NULL) {
2253 		/* commit itxs should never be on the async lists. */
2254 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2255 		zil_itx_destroy(itx);
2256 	}
2257 	list_destroy(&clean_list);
2258 }
2259 
2260 void
2261 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2262 {
2263 	uint64_t txg;
2264 	itxg_t *itxg;
2265 	itxs_t *itxs, *clean = NULL;
2266 
2267 	/*
2268 	 * Ensure the data of a renamed file is committed before the rename.
2269 	 */
2270 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2271 		zil_async_to_sync(zilog, itx->itx_oid);
2272 
2273 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2274 		txg = ZILTEST_TXG;
2275 	else
2276 		txg = dmu_tx_get_txg(tx);
2277 
2278 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2279 	mutex_enter(&itxg->itxg_lock);
2280 	itxs = itxg->itxg_itxs;
2281 	if (itxg->itxg_txg != txg) {
2282 		if (itxs != NULL) {
2283 			/*
2284 			 * The zil_clean callback hasn't got around to cleaning
2285 			 * this itxg. Save the itxs for release below.
2286 			 * This should be rare.
2287 			 */
2288 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2289 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2290 			clean = itxg->itxg_itxs;
2291 		}
2292 		itxg->itxg_txg = txg;
2293 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2294 		    KM_SLEEP);
2295 
2296 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2297 		    offsetof(itx_t, itx_node));
2298 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2299 		    sizeof (itx_async_node_t),
2300 		    offsetof(itx_async_node_t, ia_node));
2301 	}
2302 	if (itx->itx_sync) {
2303 		list_insert_tail(&itxs->i_sync_list, itx);
2304 	} else {
2305 		avl_tree_t *t = &itxs->i_async_tree;
2306 		uint64_t foid =
2307 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2308 		itx_async_node_t *ian;
2309 		avl_index_t where;
2310 
2311 		ian = avl_find(t, &foid, &where);
2312 		if (ian == NULL) {
2313 			ian = kmem_alloc(sizeof (itx_async_node_t),
2314 			    KM_SLEEP);
2315 			list_create(&ian->ia_list, sizeof (itx_t),
2316 			    offsetof(itx_t, itx_node));
2317 			ian->ia_foid = foid;
2318 			avl_insert(t, ian, where);
2319 		}
2320 		list_insert_tail(&ian->ia_list, itx);
2321 	}
2322 
2323 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2324 
2325 	/*
2326 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2327 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2328 	 * need to be careful to always dirty the ZIL using the "real"
2329 	 * TXG (not itxg_txg) even when the SPA is frozen.
2330 	 */
2331 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2332 	mutex_exit(&itxg->itxg_lock);
2333 
2334 	/* Release the old itxs now we've dropped the lock */
2335 	if (clean != NULL)
2336 		zil_itxg_clean(clean);
2337 }
2338 
2339 /*
2340  * If there are any in-memory intent log transactions which have now been
2341  * synced then start up a taskq to free them. We should only do this after we
2342  * have written out the uberblocks (i.e. txg has been committed) so that
2343  * don't inadvertently clean out in-memory log records that would be required
2344  * by zil_commit().
2345  */
2346 void
2347 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2348 {
2349 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2350 	itxs_t *clean_me;
2351 
2352 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2353 
2354 	mutex_enter(&itxg->itxg_lock);
2355 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2356 		mutex_exit(&itxg->itxg_lock);
2357 		return;
2358 	}
2359 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2360 	ASSERT3U(itxg->itxg_txg, !=, 0);
2361 	clean_me = itxg->itxg_itxs;
2362 	itxg->itxg_itxs = NULL;
2363 	itxg->itxg_txg = 0;
2364 	mutex_exit(&itxg->itxg_lock);
2365 	/*
2366 	 * Preferably start a task queue to free up the old itxs but
2367 	 * if taskq_dispatch can't allocate resources to do that then
2368 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2369 	 * created a bad performance problem.
2370 	 */
2371 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2372 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2373 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2374 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2375 	if (id == TASKQID_INVALID)
2376 		zil_itxg_clean(clean_me);
2377 }
2378 
2379 /*
2380  * This function will traverse the queue of itxs that need to be
2381  * committed, and move them onto the ZIL's zl_itx_commit_list.
2382  */
2383 static void
2384 zil_get_commit_list(zilog_t *zilog)
2385 {
2386 	uint64_t otxg, txg;
2387 	list_t *commit_list = &zilog->zl_itx_commit_list;
2388 
2389 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2390 
2391 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2392 		otxg = ZILTEST_TXG;
2393 	else
2394 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2395 
2396 	/*
2397 	 * This is inherently racy, since there is nothing to prevent
2398 	 * the last synced txg from changing. That's okay since we'll
2399 	 * only commit things in the future.
2400 	 */
2401 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2402 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2403 
2404 		mutex_enter(&itxg->itxg_lock);
2405 		if (itxg->itxg_txg != txg) {
2406 			mutex_exit(&itxg->itxg_lock);
2407 			continue;
2408 		}
2409 
2410 		/*
2411 		 * If we're adding itx records to the zl_itx_commit_list,
2412 		 * then the zil better be dirty in this "txg". We can assert
2413 		 * that here since we're holding the itxg_lock which will
2414 		 * prevent spa_sync from cleaning it. Once we add the itxs
2415 		 * to the zl_itx_commit_list we must commit it to disk even
2416 		 * if it's unnecessary (i.e. the txg was synced).
2417 		 */
2418 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2419 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2420 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2421 
2422 		mutex_exit(&itxg->itxg_lock);
2423 	}
2424 }
2425 
2426 /*
2427  * Move the async itxs for a specified object to commit into sync lists.
2428  */
2429 void
2430 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2431 {
2432 	uint64_t otxg, txg;
2433 	itx_async_node_t *ian;
2434 	avl_tree_t *t;
2435 	avl_index_t where;
2436 
2437 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2438 		otxg = ZILTEST_TXG;
2439 	else
2440 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2441 
2442 	/*
2443 	 * This is inherently racy, since there is nothing to prevent
2444 	 * the last synced txg from changing.
2445 	 */
2446 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2447 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2448 
2449 		mutex_enter(&itxg->itxg_lock);
2450 		if (itxg->itxg_txg != txg) {
2451 			mutex_exit(&itxg->itxg_lock);
2452 			continue;
2453 		}
2454 
2455 		/*
2456 		 * If a foid is specified then find that node and append its
2457 		 * list. Otherwise walk the tree appending all the lists
2458 		 * to the sync list. We add to the end rather than the
2459 		 * beginning to ensure the create has happened.
2460 		 */
2461 		t = &itxg->itxg_itxs->i_async_tree;
2462 		if (foid != 0) {
2463 			ian = avl_find(t, &foid, &where);
2464 			if (ian != NULL) {
2465 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2466 				    &ian->ia_list);
2467 			}
2468 		} else {
2469 			void *cookie = NULL;
2470 
2471 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2472 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2473 				    &ian->ia_list);
2474 				list_destroy(&ian->ia_list);
2475 				kmem_free(ian, sizeof (itx_async_node_t));
2476 			}
2477 		}
2478 		mutex_exit(&itxg->itxg_lock);
2479 	}
2480 }
2481 
2482 /*
2483  * This function will prune commit itxs that are at the head of the
2484  * commit list (it won't prune past the first non-commit itx), and
2485  * either: a) attach them to the last lwb that's still pending
2486  * completion, or b) skip them altogether.
2487  *
2488  * This is used as a performance optimization to prevent commit itxs
2489  * from generating new lwbs when it's unnecessary to do so.
2490  */
2491 static void
2492 zil_prune_commit_list(zilog_t *zilog)
2493 {
2494 	itx_t *itx;
2495 
2496 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2497 
2498 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2499 		lr_t *lrc = &itx->itx_lr;
2500 		if (lrc->lrc_txtype != TX_COMMIT)
2501 			break;
2502 
2503 		mutex_enter(&zilog->zl_lock);
2504 
2505 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2506 		if (last_lwb == NULL ||
2507 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2508 			/*
2509 			 * All of the itxs this waiter was waiting on
2510 			 * must have already completed (or there were
2511 			 * never any itx's for it to wait on), so it's
2512 			 * safe to skip this waiter and mark it done.
2513 			 */
2514 			zil_commit_waiter_skip(itx->itx_private);
2515 		} else {
2516 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2517 			itx->itx_private = NULL;
2518 		}
2519 
2520 		mutex_exit(&zilog->zl_lock);
2521 
2522 		list_remove(&zilog->zl_itx_commit_list, itx);
2523 		zil_itx_destroy(itx);
2524 	}
2525 
2526 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2527 }
2528 
2529 static void
2530 zil_commit_writer_stall(zilog_t *zilog)
2531 {
2532 	/*
2533 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2534 	 * disk, we must call txg_wait_synced() to ensure all of the
2535 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2536 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2537 	 * to zil_process_commit_list()) will have to call zil_create(),
2538 	 * and start a new ZIL chain.
2539 	 *
2540 	 * Since zil_alloc_zil() failed, the lwb that was previously
2541 	 * issued does not have a pointer to the "next" lwb on disk.
2542 	 * Thus, if another ZIL writer thread was to allocate the "next"
2543 	 * on-disk lwb, that block could be leaked in the event of a
2544 	 * crash (because the previous lwb on-disk would not point to
2545 	 * it).
2546 	 *
2547 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2548 	 * ensure no new threads enter zil_process_commit_list() until
2549 	 * all lwb's in the zl_lwb_list have been synced and freed
2550 	 * (which is achieved via the txg_wait_synced() call).
2551 	 */
2552 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2553 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2554 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2555 }
2556 
2557 /*
2558  * This function will traverse the commit list, creating new lwbs as
2559  * needed, and committing the itxs from the commit list to these newly
2560  * created lwbs. Additionally, as a new lwb is created, the previous
2561  * lwb will be issued to the zio layer to be written to disk.
2562  */
2563 static void
2564 zil_process_commit_list(zilog_t *zilog)
2565 {
2566 	spa_t *spa = zilog->zl_spa;
2567 	list_t nolwb_itxs;
2568 	list_t nolwb_waiters;
2569 	lwb_t *lwb, *plwb;
2570 	itx_t *itx;
2571 	boolean_t first = B_TRUE;
2572 
2573 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2574 
2575 	/*
2576 	 * Return if there's nothing to commit before we dirty the fs by
2577 	 * calling zil_create().
2578 	 */
2579 	if (list_is_empty(&zilog->zl_itx_commit_list))
2580 		return;
2581 
2582 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2583 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2584 	    offsetof(zil_commit_waiter_t, zcw_node));
2585 
2586 	lwb = list_tail(&zilog->zl_lwb_list);
2587 	if (lwb == NULL) {
2588 		lwb = zil_create(zilog);
2589 	} else {
2590 		/*
2591 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2592 		 * have already been created (zl_lwb_list not empty).
2593 		 */
2594 		zil_commit_activate_saxattr_feature(zilog);
2595 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2596 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2597 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2598 		first = (lwb->lwb_state != LWB_STATE_OPENED) &&
2599 		    ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL ||
2600 		    plwb->lwb_state == LWB_STATE_FLUSH_DONE);
2601 	}
2602 
2603 	while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2604 		lr_t *lrc = &itx->itx_lr;
2605 		uint64_t txg = lrc->lrc_txg;
2606 
2607 		ASSERT3U(txg, !=, 0);
2608 
2609 		if (lrc->lrc_txtype == TX_COMMIT) {
2610 			DTRACE_PROBE2(zil__process__commit__itx,
2611 			    zilog_t *, zilog, itx_t *, itx);
2612 		} else {
2613 			DTRACE_PROBE2(zil__process__normal__itx,
2614 			    zilog_t *, zilog, itx_t *, itx);
2615 		}
2616 
2617 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2618 		boolean_t frozen = txg > spa_freeze_txg(spa);
2619 
2620 		/*
2621 		 * If the txg of this itx has already been synced out, then
2622 		 * we don't need to commit this itx to an lwb. This is
2623 		 * because the data of this itx will have already been
2624 		 * written to the main pool. This is inherently racy, and
2625 		 * it's still ok to commit an itx whose txg has already
2626 		 * been synced; this will result in a write that's
2627 		 * unnecessary, but will do no harm.
2628 		 *
2629 		 * With that said, we always want to commit TX_COMMIT itxs
2630 		 * to an lwb, regardless of whether or not that itx's txg
2631 		 * has been synced out. We do this to ensure any OPENED lwb
2632 		 * will always have at least one zil_commit_waiter_t linked
2633 		 * to the lwb.
2634 		 *
2635 		 * As a counter-example, if we skipped TX_COMMIT itx's
2636 		 * whose txg had already been synced, the following
2637 		 * situation could occur if we happened to be racing with
2638 		 * spa_sync:
2639 		 *
2640 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2641 		 *    itx's txg is 10 and the last synced txg is 9.
2642 		 * 2. spa_sync finishes syncing out txg 10.
2643 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2644 		 *    whose txg is 10, so we skip it rather than committing
2645 		 *    it to the lwb used in (1).
2646 		 *
2647 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2648 		 * itx in the commit list, than it's possible for the lwb
2649 		 * used in (1) to remain in the OPENED state indefinitely.
2650 		 *
2651 		 * To prevent the above scenario from occurring, ensuring
2652 		 * that once an lwb is OPENED it will transition to ISSUED
2653 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2654 		 * an lwb here, even if that itx's txg has already been
2655 		 * synced.
2656 		 *
2657 		 * Finally, if the pool is frozen, we _always_ commit the
2658 		 * itx.  The point of freezing the pool is to prevent data
2659 		 * from being written to the main pool via spa_sync, and
2660 		 * instead rely solely on the ZIL to persistently store the
2661 		 * data; i.e.  when the pool is frozen, the last synced txg
2662 		 * value can't be trusted.
2663 		 */
2664 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2665 			if (lwb != NULL) {
2666 				lwb = zil_lwb_commit(zilog, itx, lwb);
2667 
2668 				if (lwb == NULL)
2669 					list_insert_tail(&nolwb_itxs, itx);
2670 				else
2671 					list_insert_tail(&lwb->lwb_itxs, itx);
2672 			} else {
2673 				if (lrc->lrc_txtype == TX_COMMIT) {
2674 					zil_commit_waiter_link_nolwb(
2675 					    itx->itx_private, &nolwb_waiters);
2676 				}
2677 
2678 				list_insert_tail(&nolwb_itxs, itx);
2679 			}
2680 		} else {
2681 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2682 			zil_itx_destroy(itx);
2683 		}
2684 	}
2685 
2686 	if (lwb == NULL) {
2687 		/*
2688 		 * This indicates zio_alloc_zil() failed to allocate the
2689 		 * "next" lwb on-disk. When this happens, we must stall
2690 		 * the ZIL write pipeline; see the comment within
2691 		 * zil_commit_writer_stall() for more details.
2692 		 */
2693 		zil_commit_writer_stall(zilog);
2694 
2695 		/*
2696 		 * Additionally, we have to signal and mark the "nolwb"
2697 		 * waiters as "done" here, since without an lwb, we
2698 		 * can't do this via zil_lwb_flush_vdevs_done() like
2699 		 * normal.
2700 		 */
2701 		zil_commit_waiter_t *zcw;
2702 		while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
2703 			zil_commit_waiter_skip(zcw);
2704 
2705 		/*
2706 		 * And finally, we have to destroy the itx's that
2707 		 * couldn't be committed to an lwb; this will also call
2708 		 * the itx's callback if one exists for the itx.
2709 		 */
2710 		while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
2711 			zil_itx_destroy(itx);
2712 	} else {
2713 		ASSERT(list_is_empty(&nolwb_waiters));
2714 		ASSERT3P(lwb, !=, NULL);
2715 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2716 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2717 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2718 
2719 		/*
2720 		 * At this point, the ZIL block pointed at by the "lwb"
2721 		 * variable is in one of the following states: "closed"
2722 		 * or "open".
2723 		 *
2724 		 * If it's "closed", then no itxs have been committed to
2725 		 * it, so there's no point in issuing its zio (i.e. it's
2726 		 * "empty").
2727 		 *
2728 		 * If it's "open", then it contains one or more itxs that
2729 		 * eventually need to be committed to stable storage. In
2730 		 * this case we intentionally do not issue the lwb's zio
2731 		 * to disk yet, and instead rely on one of the following
2732 		 * two mechanisms for issuing the zio:
2733 		 *
2734 		 * 1. Ideally, there will be more ZIL activity occurring
2735 		 * on the system, such that this function will be
2736 		 * immediately called again (not necessarily by the same
2737 		 * thread) and this lwb's zio will be issued via
2738 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2739 		 * be "full" when it is issued to disk, and we'll make
2740 		 * use of the lwb's size the best we can.
2741 		 *
2742 		 * 2. If there isn't sufficient ZIL activity occurring on
2743 		 * the system, such that this lwb's zio isn't issued via
2744 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2745 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2746 		 * to be "full" by the time its zio is issued, and means
2747 		 * the size of the lwb was "too large" given the amount
2748 		 * of ZIL activity occurring on the system at that time.
2749 		 *
2750 		 * We do this for a couple of reasons:
2751 		 *
2752 		 * 1. To try and reduce the number of IOPs needed to
2753 		 * write the same number of itxs. If an lwb has space
2754 		 * available in its buffer for more itxs, and more itxs
2755 		 * will be committed relatively soon (relative to the
2756 		 * latency of performing a write), then it's beneficial
2757 		 * to wait for these "next" itxs. This way, more itxs
2758 		 * can be committed to stable storage with fewer writes.
2759 		 *
2760 		 * 2. To try and use the largest lwb block size that the
2761 		 * incoming rate of itxs can support. Again, this is to
2762 		 * try and pack as many itxs into as few lwbs as
2763 		 * possible, without significantly impacting the latency
2764 		 * of each individual itx.
2765 		 *
2766 		 * If we had no already running or open LWBs, it can be
2767 		 * the workload is single-threaded.  And if the ZIL write
2768 		 * latency is very small or if the LWB is almost full, it
2769 		 * may be cheaper to bypass the delay.
2770 		 */
2771 		if (lwb->lwb_state == LWB_STATE_OPENED && first) {
2772 			hrtime_t sleep = zilog->zl_last_lwb_latency *
2773 			    zfs_commit_timeout_pct / 100;
2774 			if (sleep < zil_min_commit_timeout ||
2775 			    lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) {
2776 				lwb = zil_lwb_write_issue(zilog, lwb);
2777 				zilog->zl_cur_used = 0;
2778 				if (lwb == NULL)
2779 					zil_commit_writer_stall(zilog);
2780 			}
2781 		}
2782 	}
2783 }
2784 
2785 /*
2786  * This function is responsible for ensuring the passed in commit waiter
2787  * (and associated commit itx) is committed to an lwb. If the waiter is
2788  * not already committed to an lwb, all itxs in the zilog's queue of
2789  * itxs will be processed. The assumption is the passed in waiter's
2790  * commit itx will found in the queue just like the other non-commit
2791  * itxs, such that when the entire queue is processed, the waiter will
2792  * have been committed to an lwb.
2793  *
2794  * The lwb associated with the passed in waiter is not guaranteed to
2795  * have been issued by the time this function completes. If the lwb is
2796  * not issued, we rely on future calls to zil_commit_writer() to issue
2797  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2798  */
2799 static void
2800 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2801 {
2802 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2803 	ASSERT(spa_writeable(zilog->zl_spa));
2804 
2805 	mutex_enter(&zilog->zl_issuer_lock);
2806 
2807 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2808 		/*
2809 		 * It's possible that, while we were waiting to acquire
2810 		 * the "zl_issuer_lock", another thread committed this
2811 		 * waiter to an lwb. If that occurs, we bail out early,
2812 		 * without processing any of the zilog's queue of itxs.
2813 		 *
2814 		 * On certain workloads and system configurations, the
2815 		 * "zl_issuer_lock" can become highly contended. In an
2816 		 * attempt to reduce this contention, we immediately drop
2817 		 * the lock if the waiter has already been processed.
2818 		 *
2819 		 * We've measured this optimization to reduce CPU spent
2820 		 * contending on this lock by up to 5%, using a system
2821 		 * with 32 CPUs, low latency storage (~50 usec writes),
2822 		 * and 1024 threads performing sync writes.
2823 		 */
2824 		goto out;
2825 	}
2826 
2827 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
2828 
2829 	zil_get_commit_list(zilog);
2830 	zil_prune_commit_list(zilog);
2831 	zil_process_commit_list(zilog);
2832 
2833 out:
2834 	mutex_exit(&zilog->zl_issuer_lock);
2835 }
2836 
2837 static void
2838 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2839 {
2840 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2841 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2842 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2843 
2844 	lwb_t *lwb = zcw->zcw_lwb;
2845 	ASSERT3P(lwb, !=, NULL);
2846 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2847 
2848 	/*
2849 	 * If the lwb has already been issued by another thread, we can
2850 	 * immediately return since there's no work to be done (the
2851 	 * point of this function is to issue the lwb). Additionally, we
2852 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2853 	 * acquiring it when it's not necessary to do so.
2854 	 */
2855 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2856 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2857 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2858 		return;
2859 
2860 	/*
2861 	 * In order to call zil_lwb_write_issue() we must hold the
2862 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2863 	 * since we're already holding the commit waiter's "zcw_lock",
2864 	 * and those two locks are acquired in the opposite order
2865 	 * elsewhere.
2866 	 */
2867 	mutex_exit(&zcw->zcw_lock);
2868 	mutex_enter(&zilog->zl_issuer_lock);
2869 	mutex_enter(&zcw->zcw_lock);
2870 
2871 	/*
2872 	 * Since we just dropped and re-acquired the commit waiter's
2873 	 * lock, we have to re-check to see if the waiter was marked
2874 	 * "done" during that process. If the waiter was marked "done",
2875 	 * the "lwb" pointer is no longer valid (it can be free'd after
2876 	 * the waiter is marked "done"), so without this check we could
2877 	 * wind up with a use-after-free error below.
2878 	 */
2879 	if (zcw->zcw_done)
2880 		goto out;
2881 
2882 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2883 
2884 	/*
2885 	 * We've already checked this above, but since we hadn't acquired
2886 	 * the zilog's zl_issuer_lock, we have to perform this check a
2887 	 * second time while holding the lock.
2888 	 *
2889 	 * We don't need to hold the zl_lock since the lwb cannot transition
2890 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2891 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2892 	 * that transition since we treat the lwb the same, whether it's in
2893 	 * the ISSUED or DONE states.
2894 	 *
2895 	 * The important thing, is we treat the lwb differently depending on
2896 	 * if it's ISSUED or OPENED, and block any other threads that might
2897 	 * attempt to issue this lwb. For that reason we hold the
2898 	 * zl_issuer_lock when checking the lwb_state; we must not call
2899 	 * zil_lwb_write_issue() if the lwb had already been issued.
2900 	 *
2901 	 * See the comment above the lwb_state_t structure definition for
2902 	 * more details on the lwb states, and locking requirements.
2903 	 */
2904 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2905 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2906 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2907 		goto out;
2908 
2909 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2910 
2911 	/*
2912 	 * As described in the comments above zil_commit_waiter() and
2913 	 * zil_process_commit_list(), we need to issue this lwb's zio
2914 	 * since we've reached the commit waiter's timeout and it still
2915 	 * hasn't been issued.
2916 	 */
2917 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2918 
2919 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2920 
2921 	/*
2922 	 * Since the lwb's zio hadn't been issued by the time this thread
2923 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2924 	 * to influence the zil block size selection algorithm.
2925 	 *
2926 	 * By having to issue the lwb's zio here, it means the size of the
2927 	 * lwb was too large, given the incoming throughput of itxs.  By
2928 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2929 	 * block size selection algorithm, so it can take this information
2930 	 * into account, and potentially select a smaller size for the
2931 	 * next lwb block that is allocated.
2932 	 */
2933 	zilog->zl_cur_used = 0;
2934 
2935 	if (nlwb == NULL) {
2936 		/*
2937 		 * When zil_lwb_write_issue() returns NULL, this
2938 		 * indicates zio_alloc_zil() failed to allocate the
2939 		 * "next" lwb on-disk. When this occurs, the ZIL write
2940 		 * pipeline must be stalled; see the comment within the
2941 		 * zil_commit_writer_stall() function for more details.
2942 		 *
2943 		 * We must drop the commit waiter's lock prior to
2944 		 * calling zil_commit_writer_stall() or else we can wind
2945 		 * up with the following deadlock:
2946 		 *
2947 		 * - This thread is waiting for the txg to sync while
2948 		 *   holding the waiter's lock; txg_wait_synced() is
2949 		 *   used within txg_commit_writer_stall().
2950 		 *
2951 		 * - The txg can't sync because it is waiting for this
2952 		 *   lwb's zio callback to call dmu_tx_commit().
2953 		 *
2954 		 * - The lwb's zio callback can't call dmu_tx_commit()
2955 		 *   because it's blocked trying to acquire the waiter's
2956 		 *   lock, which occurs prior to calling dmu_tx_commit()
2957 		 */
2958 		mutex_exit(&zcw->zcw_lock);
2959 		zil_commit_writer_stall(zilog);
2960 		mutex_enter(&zcw->zcw_lock);
2961 	}
2962 
2963 out:
2964 	mutex_exit(&zilog->zl_issuer_lock);
2965 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2966 }
2967 
2968 /*
2969  * This function is responsible for performing the following two tasks:
2970  *
2971  * 1. its primary responsibility is to block until the given "commit
2972  *    waiter" is considered "done".
2973  *
2974  * 2. its secondary responsibility is to issue the zio for the lwb that
2975  *    the given "commit waiter" is waiting on, if this function has
2976  *    waited "long enough" and the lwb is still in the "open" state.
2977  *
2978  * Given a sufficient amount of itxs being generated and written using
2979  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2980  * function. If this does not occur, this secondary responsibility will
2981  * ensure the lwb is issued even if there is not other synchronous
2982  * activity on the system.
2983  *
2984  * For more details, see zil_process_commit_list(); more specifically,
2985  * the comment at the bottom of that function.
2986  */
2987 static void
2988 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2989 {
2990 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2991 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2992 	ASSERT(spa_writeable(zilog->zl_spa));
2993 
2994 	mutex_enter(&zcw->zcw_lock);
2995 
2996 	/*
2997 	 * The timeout is scaled based on the lwb latency to avoid
2998 	 * significantly impacting the latency of each individual itx.
2999 	 * For more details, see the comment at the bottom of the
3000 	 * zil_process_commit_list() function.
3001 	 */
3002 	int pct = MAX(zfs_commit_timeout_pct, 1);
3003 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3004 	hrtime_t wakeup = gethrtime() + sleep;
3005 	boolean_t timedout = B_FALSE;
3006 
3007 	while (!zcw->zcw_done) {
3008 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3009 
3010 		lwb_t *lwb = zcw->zcw_lwb;
3011 
3012 		/*
3013 		 * Usually, the waiter will have a non-NULL lwb field here,
3014 		 * but it's possible for it to be NULL as a result of
3015 		 * zil_commit() racing with spa_sync().
3016 		 *
3017 		 * When zil_clean() is called, it's possible for the itxg
3018 		 * list (which may be cleaned via a taskq) to contain
3019 		 * commit itxs. When this occurs, the commit waiters linked
3020 		 * off of these commit itxs will not be committed to an
3021 		 * lwb.  Additionally, these commit waiters will not be
3022 		 * marked done until zil_commit_waiter_skip() is called via
3023 		 * zil_itxg_clean().
3024 		 *
3025 		 * Thus, it's possible for this commit waiter (i.e. the
3026 		 * "zcw" variable) to be found in this "in between" state;
3027 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3028 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
3029 		 */
3030 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
3031 
3032 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3033 			ASSERT3B(timedout, ==, B_FALSE);
3034 
3035 			/*
3036 			 * If the lwb hasn't been issued yet, then we
3037 			 * need to wait with a timeout, in case this
3038 			 * function needs to issue the lwb after the
3039 			 * timeout is reached; responsibility (2) from
3040 			 * the comment above this function.
3041 			 */
3042 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
3043 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3044 			    CALLOUT_FLAG_ABSOLUTE);
3045 
3046 			if (rc != -1 || zcw->zcw_done)
3047 				continue;
3048 
3049 			timedout = B_TRUE;
3050 			zil_commit_waiter_timeout(zilog, zcw);
3051 
3052 			if (!zcw->zcw_done) {
3053 				/*
3054 				 * If the commit waiter has already been
3055 				 * marked "done", it's possible for the
3056 				 * waiter's lwb structure to have already
3057 				 * been freed.  Thus, we can only reliably
3058 				 * make these assertions if the waiter
3059 				 * isn't done.
3060 				 */
3061 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
3062 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3063 			}
3064 		} else {
3065 			/*
3066 			 * If the lwb isn't open, then it must have already
3067 			 * been issued. In that case, there's no need to
3068 			 * use a timeout when waiting for the lwb to
3069 			 * complete.
3070 			 *
3071 			 * Additionally, if the lwb is NULL, the waiter
3072 			 * will soon be signaled and marked done via
3073 			 * zil_clean() and zil_itxg_clean(), so no timeout
3074 			 * is required.
3075 			 */
3076 
3077 			IMPLY(lwb != NULL,
3078 			    lwb->lwb_state == LWB_STATE_ISSUED ||
3079 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3080 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3081 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3082 		}
3083 	}
3084 
3085 	mutex_exit(&zcw->zcw_lock);
3086 }
3087 
3088 static zil_commit_waiter_t *
3089 zil_alloc_commit_waiter(void)
3090 {
3091 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3092 
3093 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3094 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3095 	list_link_init(&zcw->zcw_node);
3096 	zcw->zcw_lwb = NULL;
3097 	zcw->zcw_done = B_FALSE;
3098 	zcw->zcw_zio_error = 0;
3099 
3100 	return (zcw);
3101 }
3102 
3103 static void
3104 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3105 {
3106 	ASSERT(!list_link_active(&zcw->zcw_node));
3107 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
3108 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3109 	mutex_destroy(&zcw->zcw_lock);
3110 	cv_destroy(&zcw->zcw_cv);
3111 	kmem_cache_free(zil_zcw_cache, zcw);
3112 }
3113 
3114 /*
3115  * This function is used to create a TX_COMMIT itx and assign it. This
3116  * way, it will be linked into the ZIL's list of synchronous itxs, and
3117  * then later committed to an lwb (or skipped) when
3118  * zil_process_commit_list() is called.
3119  */
3120 static void
3121 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3122 {
3123 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3124 
3125 	/*
3126 	 * Since we are not going to create any new dirty data, and we
3127 	 * can even help with clearing the existing dirty data, we
3128 	 * should not be subject to the dirty data based delays. We
3129 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3130 	 */
3131 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
3132 
3133 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3134 	itx->itx_sync = B_TRUE;
3135 	itx->itx_private = zcw;
3136 
3137 	zil_itx_assign(zilog, itx, tx);
3138 
3139 	dmu_tx_commit(tx);
3140 }
3141 
3142 /*
3143  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3144  *
3145  * When writing ZIL transactions to the on-disk representation of the
3146  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3147  * itxs can be committed to a single lwb. Once a lwb is written and
3148  * committed to stable storage (i.e. the lwb is written, and vdevs have
3149  * been flushed), each itx that was committed to that lwb is also
3150  * considered to be committed to stable storage.
3151  *
3152  * When an itx is committed to an lwb, the log record (lr_t) contained
3153  * by the itx is copied into the lwb's zio buffer, and once this buffer
3154  * is written to disk, it becomes an on-disk ZIL block.
3155  *
3156  * As itxs are generated, they're inserted into the ZIL's queue of
3157  * uncommitted itxs. The semantics of zil_commit() are such that it will
3158  * block until all itxs that were in the queue when it was called, are
3159  * committed to stable storage.
3160  *
3161  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3162  * itxs, for all objects in the dataset, will be committed to stable
3163  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3164  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3165  * that correspond to the foid passed in, will be committed to stable
3166  * storage prior to zil_commit() returning.
3167  *
3168  * Generally speaking, when zil_commit() is called, the consumer doesn't
3169  * actually care about _all_ of the uncommitted itxs. Instead, they're
3170  * simply trying to waiting for a specific itx to be committed to disk,
3171  * but the interface(s) for interacting with the ZIL don't allow such
3172  * fine-grained communication. A better interface would allow a consumer
3173  * to create and assign an itx, and then pass a reference to this itx to
3174  * zil_commit(); such that zil_commit() would return as soon as that
3175  * specific itx was committed to disk (instead of waiting for _all_
3176  * itxs to be committed).
3177  *
3178  * When a thread calls zil_commit() a special "commit itx" will be
3179  * generated, along with a corresponding "waiter" for this commit itx.
3180  * zil_commit() will wait on this waiter's CV, such that when the waiter
3181  * is marked done, and signaled, zil_commit() will return.
3182  *
3183  * This commit itx is inserted into the queue of uncommitted itxs. This
3184  * provides an easy mechanism for determining which itxs were in the
3185  * queue prior to zil_commit() having been called, and which itxs were
3186  * added after zil_commit() was called.
3187  *
3188  * The commit itx is special; it doesn't have any on-disk representation.
3189  * When a commit itx is "committed" to an lwb, the waiter associated
3190  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3191  * completes, each waiter on the lwb's list is marked done and signaled
3192  * -- allowing the thread waiting on the waiter to return from zil_commit().
3193  *
3194  * It's important to point out a few critical factors that allow us
3195  * to make use of the commit itxs, commit waiters, per-lwb lists of
3196  * commit waiters, and zio completion callbacks like we're doing:
3197  *
3198  *   1. The list of waiters for each lwb is traversed, and each commit
3199  *      waiter is marked "done" and signaled, in the zio completion
3200  *      callback of the lwb's zio[*].
3201  *
3202  *      * Actually, the waiters are signaled in the zio completion
3203  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3204  *        that are sent to the vdevs upon completion of the lwb zio.
3205  *
3206  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3207  *      itxs, the order in which they are inserted is preserved[*]; as
3208  *      itxs are added to the queue, they are added to the tail of
3209  *      in-memory linked lists.
3210  *
3211  *      When committing the itxs to lwbs (to be written to disk), they
3212  *      are committed in the same order in which the itxs were added to
3213  *      the uncommitted queue's linked list(s); i.e. the linked list of
3214  *      itxs to commit is traversed from head to tail, and each itx is
3215  *      committed to an lwb in that order.
3216  *
3217  *      * To clarify:
3218  *
3219  *        - the order of "sync" itxs is preserved w.r.t. other
3220  *          "sync" itxs, regardless of the corresponding objects.
3221  *        - the order of "async" itxs is preserved w.r.t. other
3222  *          "async" itxs corresponding to the same object.
3223  *        - the order of "async" itxs is *not* preserved w.r.t. other
3224  *          "async" itxs corresponding to different objects.
3225  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3226  *          versa) is *not* preserved, even for itxs that correspond
3227  *          to the same object.
3228  *
3229  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3230  *      zil_get_commit_list(), and zil_process_commit_list().
3231  *
3232  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3233  *      lwb cannot be considered committed to stable storage, until its
3234  *      "previous" lwb is also committed to stable storage. This fact,
3235  *      coupled with the fact described above, means that itxs are
3236  *      committed in (roughly) the order in which they were generated.
3237  *      This is essential because itxs are dependent on prior itxs.
3238  *      Thus, we *must not* deem an itx as being committed to stable
3239  *      storage, until *all* prior itxs have also been committed to
3240  *      stable storage.
3241  *
3242  *      To enforce this ordering of lwb zio's, while still leveraging as
3243  *      much of the underlying storage performance as possible, we rely
3244  *      on two fundamental concepts:
3245  *
3246  *          1. The creation and issuance of lwb zio's is protected by
3247  *             the zilog's "zl_issuer_lock", which ensures only a single
3248  *             thread is creating and/or issuing lwb's at a time
3249  *          2. The "previous" lwb is a child of the "current" lwb
3250  *             (leveraging the zio parent-child dependency graph)
3251  *
3252  *      By relying on this parent-child zio relationship, we can have
3253  *      many lwb zio's concurrently issued to the underlying storage,
3254  *      but the order in which they complete will be the same order in
3255  *      which they were created.
3256  */
3257 void
3258 zil_commit(zilog_t *zilog, uint64_t foid)
3259 {
3260 	/*
3261 	 * We should never attempt to call zil_commit on a snapshot for
3262 	 * a couple of reasons:
3263 	 *
3264 	 * 1. A snapshot may never be modified, thus it cannot have any
3265 	 *    in-flight itxs that would have modified the dataset.
3266 	 *
3267 	 * 2. By design, when zil_commit() is called, a commit itx will
3268 	 *    be assigned to this zilog; as a result, the zilog will be
3269 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3270 	 *    checks in the code that enforce this invariant, and will
3271 	 *    cause a panic if it's not upheld.
3272 	 */
3273 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3274 
3275 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3276 		return;
3277 
3278 	if (!spa_writeable(zilog->zl_spa)) {
3279 		/*
3280 		 * If the SPA is not writable, there should never be any
3281 		 * pending itxs waiting to be committed to disk. If that
3282 		 * weren't true, we'd skip writing those itxs out, and
3283 		 * would break the semantics of zil_commit(); thus, we're
3284 		 * verifying that truth before we return to the caller.
3285 		 */
3286 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3287 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3288 		for (int i = 0; i < TXG_SIZE; i++)
3289 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3290 		return;
3291 	}
3292 
3293 	/*
3294 	 * If the ZIL is suspended, we don't want to dirty it by calling
3295 	 * zil_commit_itx_assign() below, nor can we write out
3296 	 * lwbs like would be done in zil_commit_write(). Thus, we
3297 	 * simply rely on txg_wait_synced() to maintain the necessary
3298 	 * semantics, and avoid calling those functions altogether.
3299 	 */
3300 	if (zilog->zl_suspend > 0) {
3301 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3302 		return;
3303 	}
3304 
3305 	zil_commit_impl(zilog, foid);
3306 }
3307 
3308 void
3309 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3310 {
3311 	ZIL_STAT_BUMP(zilog, zil_commit_count);
3312 
3313 	/*
3314 	 * Move the "async" itxs for the specified foid to the "sync"
3315 	 * queues, such that they will be later committed (or skipped)
3316 	 * to an lwb when zil_process_commit_list() is called.
3317 	 *
3318 	 * Since these "async" itxs must be committed prior to this
3319 	 * call to zil_commit returning, we must perform this operation
3320 	 * before we call zil_commit_itx_assign().
3321 	 */
3322 	zil_async_to_sync(zilog, foid);
3323 
3324 	/*
3325 	 * We allocate a new "waiter" structure which will initially be
3326 	 * linked to the commit itx using the itx's "itx_private" field.
3327 	 * Since the commit itx doesn't represent any on-disk state,
3328 	 * when it's committed to an lwb, rather than copying the its
3329 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3330 	 * added to the lwb's list of waiters. Then, when the lwb is
3331 	 * committed to stable storage, each waiter in the lwb's list of
3332 	 * waiters will be marked "done", and signalled.
3333 	 *
3334 	 * We must create the waiter and assign the commit itx prior to
3335 	 * calling zil_commit_writer(), or else our specific commit itx
3336 	 * is not guaranteed to be committed to an lwb prior to calling
3337 	 * zil_commit_waiter().
3338 	 */
3339 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3340 	zil_commit_itx_assign(zilog, zcw);
3341 
3342 	zil_commit_writer(zilog, zcw);
3343 	zil_commit_waiter(zilog, zcw);
3344 
3345 	if (zcw->zcw_zio_error != 0) {
3346 		/*
3347 		 * If there was an error writing out the ZIL blocks that
3348 		 * this thread is waiting on, then we fallback to
3349 		 * relying on spa_sync() to write out the data this
3350 		 * thread is waiting on. Obviously this has performance
3351 		 * implications, but the expectation is for this to be
3352 		 * an exceptional case, and shouldn't occur often.
3353 		 */
3354 		DTRACE_PROBE2(zil__commit__io__error,
3355 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3356 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3357 	}
3358 
3359 	zil_free_commit_waiter(zcw);
3360 }
3361 
3362 /*
3363  * Called in syncing context to free committed log blocks and update log header.
3364  */
3365 void
3366 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3367 {
3368 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3369 	uint64_t txg = dmu_tx_get_txg(tx);
3370 	spa_t *spa = zilog->zl_spa;
3371 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3372 	lwb_t *lwb;
3373 
3374 	/*
3375 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3376 	 * to destroy it twice.
3377 	 */
3378 	if (spa_sync_pass(spa) != 1)
3379 		return;
3380 
3381 	zil_lwb_flush_wait_all(zilog, txg);
3382 
3383 	mutex_enter(&zilog->zl_lock);
3384 
3385 	ASSERT(zilog->zl_stop_sync == 0);
3386 
3387 	if (*replayed_seq != 0) {
3388 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3389 		zh->zh_replay_seq = *replayed_seq;
3390 		*replayed_seq = 0;
3391 	}
3392 
3393 	if (zilog->zl_destroy_txg == txg) {
3394 		blkptr_t blk = zh->zh_log;
3395 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3396 
3397 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3398 
3399 		memset(zh, 0, sizeof (zil_header_t));
3400 		memset(zilog->zl_replayed_seq, 0,
3401 		    sizeof (zilog->zl_replayed_seq));
3402 
3403 		if (zilog->zl_keep_first) {
3404 			/*
3405 			 * If this block was part of log chain that couldn't
3406 			 * be claimed because a device was missing during
3407 			 * zil_claim(), but that device later returns,
3408 			 * then this block could erroneously appear valid.
3409 			 * To guard against this, assign a new GUID to the new
3410 			 * log chain so it doesn't matter what blk points to.
3411 			 */
3412 			zil_init_log_chain(zilog, &blk);
3413 			zh->zh_log = blk;
3414 		} else {
3415 			/*
3416 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3417 			 * records. So, deactivate the feature for this dataset.
3418 			 * We activate it again when we start a new ZIL chain.
3419 			 */
3420 			if (dsl_dataset_feature_is_active(ds,
3421 			    SPA_FEATURE_ZILSAXATTR))
3422 				dsl_dataset_deactivate_feature(ds,
3423 				    SPA_FEATURE_ZILSAXATTR, tx);
3424 		}
3425 	}
3426 
3427 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3428 		zh->zh_log = lwb->lwb_blk;
3429 		if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3430 		    lwb->lwb_max_txg > txg)
3431 			break;
3432 		list_remove(&zilog->zl_lwb_list, lwb);
3433 		zio_free(spa, txg, &lwb->lwb_blk);
3434 		zil_free_lwb(zilog, lwb);
3435 
3436 		/*
3437 		 * If we don't have anything left in the lwb list then
3438 		 * we've had an allocation failure and we need to zero
3439 		 * out the zil_header blkptr so that we don't end
3440 		 * up freeing the same block twice.
3441 		 */
3442 		if (list_is_empty(&zilog->zl_lwb_list))
3443 			BP_ZERO(&zh->zh_log);
3444 	}
3445 
3446 	/*
3447 	 * Remove fastwrite on any blocks that have been pre-allocated for
3448 	 * the next commit. This prevents fastwrite counter pollution by
3449 	 * unused, long-lived LWBs.
3450 	 */
3451 	for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3452 		if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3453 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3454 			lwb->lwb_fastwrite = 0;
3455 		}
3456 	}
3457 
3458 	mutex_exit(&zilog->zl_lock);
3459 }
3460 
3461 static int
3462 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3463 {
3464 	(void) unused, (void) kmflag;
3465 	lwb_t *lwb = vbuf;
3466 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3467 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3468 	    offsetof(zil_commit_waiter_t, zcw_node));
3469 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3470 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3471 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3472 	return (0);
3473 }
3474 
3475 static void
3476 zil_lwb_dest(void *vbuf, void *unused)
3477 {
3478 	(void) unused;
3479 	lwb_t *lwb = vbuf;
3480 	mutex_destroy(&lwb->lwb_vdev_lock);
3481 	avl_destroy(&lwb->lwb_vdev_tree);
3482 	list_destroy(&lwb->lwb_waiters);
3483 	list_destroy(&lwb->lwb_itxs);
3484 }
3485 
3486 void
3487 zil_init(void)
3488 {
3489 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3490 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3491 
3492 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3493 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3494 
3495 	zil_sums_init(&zil_sums_global);
3496 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3497 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3498 	    KSTAT_FLAG_VIRTUAL);
3499 
3500 	if (zil_kstats_global != NULL) {
3501 		zil_kstats_global->ks_data = &zil_stats;
3502 		zil_kstats_global->ks_update = zil_kstats_global_update;
3503 		zil_kstats_global->ks_private = NULL;
3504 		kstat_install(zil_kstats_global);
3505 	}
3506 }
3507 
3508 void
3509 zil_fini(void)
3510 {
3511 	kmem_cache_destroy(zil_zcw_cache);
3512 	kmem_cache_destroy(zil_lwb_cache);
3513 
3514 	if (zil_kstats_global != NULL) {
3515 		kstat_delete(zil_kstats_global);
3516 		zil_kstats_global = NULL;
3517 	}
3518 
3519 	zil_sums_fini(&zil_sums_global);
3520 }
3521 
3522 void
3523 zil_set_sync(zilog_t *zilog, uint64_t sync)
3524 {
3525 	zilog->zl_sync = sync;
3526 }
3527 
3528 void
3529 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3530 {
3531 	zilog->zl_logbias = logbias;
3532 }
3533 
3534 zilog_t *
3535 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3536 {
3537 	zilog_t *zilog;
3538 
3539 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3540 
3541 	zilog->zl_header = zh_phys;
3542 	zilog->zl_os = os;
3543 	zilog->zl_spa = dmu_objset_spa(os);
3544 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3545 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3546 	zilog->zl_logbias = dmu_objset_logbias(os);
3547 	zilog->zl_sync = dmu_objset_syncprop(os);
3548 	zilog->zl_dirty_max_txg = 0;
3549 	zilog->zl_last_lwb_opened = NULL;
3550 	zilog->zl_last_lwb_latency = 0;
3551 	zilog->zl_max_block_size = zil_maxblocksize;
3552 
3553 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3554 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3555 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3556 
3557 	for (int i = 0; i < TXG_SIZE; i++) {
3558 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3559 		    MUTEX_DEFAULT, NULL);
3560 	}
3561 
3562 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3563 	    offsetof(lwb_t, lwb_node));
3564 
3565 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3566 	    offsetof(itx_t, itx_node));
3567 
3568 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3569 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3570 
3571 	return (zilog);
3572 }
3573 
3574 void
3575 zil_free(zilog_t *zilog)
3576 {
3577 	int i;
3578 
3579 	zilog->zl_stop_sync = 1;
3580 
3581 	ASSERT0(zilog->zl_suspend);
3582 	ASSERT0(zilog->zl_suspending);
3583 
3584 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3585 	list_destroy(&zilog->zl_lwb_list);
3586 
3587 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3588 	list_destroy(&zilog->zl_itx_commit_list);
3589 
3590 	for (i = 0; i < TXG_SIZE; i++) {
3591 		/*
3592 		 * It's possible for an itx to be generated that doesn't dirty
3593 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3594 		 * callback to remove the entry. We remove those here.
3595 		 *
3596 		 * Also free up the ziltest itxs.
3597 		 */
3598 		if (zilog->zl_itxg[i].itxg_itxs)
3599 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3600 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3601 	}
3602 
3603 	mutex_destroy(&zilog->zl_issuer_lock);
3604 	mutex_destroy(&zilog->zl_lock);
3605 	mutex_destroy(&zilog->zl_lwb_io_lock);
3606 
3607 	cv_destroy(&zilog->zl_cv_suspend);
3608 	cv_destroy(&zilog->zl_lwb_io_cv);
3609 
3610 	kmem_free(zilog, sizeof (zilog_t));
3611 }
3612 
3613 /*
3614  * Open an intent log.
3615  */
3616 zilog_t *
3617 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3618 {
3619 	zilog_t *zilog = dmu_objset_zil(os);
3620 
3621 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3622 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3623 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3624 
3625 	zilog->zl_get_data = get_data;
3626 	zilog->zl_sums = zil_sums;
3627 
3628 	return (zilog);
3629 }
3630 
3631 /*
3632  * Close an intent log.
3633  */
3634 void
3635 zil_close(zilog_t *zilog)
3636 {
3637 	lwb_t *lwb;
3638 	uint64_t txg;
3639 
3640 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3641 		zil_commit(zilog, 0);
3642 	} else {
3643 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3644 		ASSERT0(zilog->zl_dirty_max_txg);
3645 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3646 	}
3647 
3648 	mutex_enter(&zilog->zl_lock);
3649 	lwb = list_tail(&zilog->zl_lwb_list);
3650 	if (lwb == NULL)
3651 		txg = zilog->zl_dirty_max_txg;
3652 	else
3653 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3654 	mutex_exit(&zilog->zl_lock);
3655 
3656 	/*
3657 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3658 	 * on the time when the dmu_tx transaction is assigned in
3659 	 * zil_lwb_write_issue().
3660 	 */
3661 	mutex_enter(&zilog->zl_lwb_io_lock);
3662 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3663 	mutex_exit(&zilog->zl_lwb_io_lock);
3664 
3665 	/*
3666 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3667 	 * zil_sync() will guarantee all lwbs up to that txg have been
3668 	 * written out, flushed, and cleaned.
3669 	 */
3670 	if (txg != 0)
3671 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3672 
3673 	if (zilog_is_dirty(zilog))
3674 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3675 		    (u_longlong_t)txg);
3676 	if (txg < spa_freeze_txg(zilog->zl_spa))
3677 		VERIFY(!zilog_is_dirty(zilog));
3678 
3679 	zilog->zl_get_data = NULL;
3680 
3681 	/*
3682 	 * We should have only one lwb left on the list; remove it now.
3683 	 */
3684 	mutex_enter(&zilog->zl_lock);
3685 	lwb = list_remove_head(&zilog->zl_lwb_list);
3686 	if (lwb != NULL) {
3687 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3688 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3689 
3690 		if (lwb->lwb_fastwrite)
3691 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3692 
3693 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3694 		zil_free_lwb(zilog, lwb);
3695 	}
3696 	mutex_exit(&zilog->zl_lock);
3697 }
3698 
3699 static const char *suspend_tag = "zil suspending";
3700 
3701 /*
3702  * Suspend an intent log.  While in suspended mode, we still honor
3703  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3704  * On old version pools, we suspend the log briefly when taking a
3705  * snapshot so that it will have an empty intent log.
3706  *
3707  * Long holds are not really intended to be used the way we do here --
3708  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3709  * could fail.  Therefore we take pains to only put a long hold if it is
3710  * actually necessary.  Fortunately, it will only be necessary if the
3711  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3712  * will already have a long hold, so we are not really making things any worse.
3713  *
3714  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3715  * zvol_state_t), and use their mechanism to prevent their hold from being
3716  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3717  * very little gain.
3718  *
3719  * if cookiep == NULL, this does both the suspend & resume.
3720  * Otherwise, it returns with the dataset "long held", and the cookie
3721  * should be passed into zil_resume().
3722  */
3723 int
3724 zil_suspend(const char *osname, void **cookiep)
3725 {
3726 	objset_t *os;
3727 	zilog_t *zilog;
3728 	const zil_header_t *zh;
3729 	int error;
3730 
3731 	error = dmu_objset_hold(osname, suspend_tag, &os);
3732 	if (error != 0)
3733 		return (error);
3734 	zilog = dmu_objset_zil(os);
3735 
3736 	mutex_enter(&zilog->zl_lock);
3737 	zh = zilog->zl_header;
3738 
3739 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3740 		mutex_exit(&zilog->zl_lock);
3741 		dmu_objset_rele(os, suspend_tag);
3742 		return (SET_ERROR(EBUSY));
3743 	}
3744 
3745 	/*
3746 	 * Don't put a long hold in the cases where we can avoid it.  This
3747 	 * is when there is no cookie so we are doing a suspend & resume
3748 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3749 	 * for the suspend because it's already suspended, or there's no ZIL.
3750 	 */
3751 	if (cookiep == NULL && !zilog->zl_suspending &&
3752 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3753 		mutex_exit(&zilog->zl_lock);
3754 		dmu_objset_rele(os, suspend_tag);
3755 		return (0);
3756 	}
3757 
3758 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3759 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3760 
3761 	zilog->zl_suspend++;
3762 
3763 	if (zilog->zl_suspend > 1) {
3764 		/*
3765 		 * Someone else is already suspending it.
3766 		 * Just wait for them to finish.
3767 		 */
3768 
3769 		while (zilog->zl_suspending)
3770 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3771 		mutex_exit(&zilog->zl_lock);
3772 
3773 		if (cookiep == NULL)
3774 			zil_resume(os);
3775 		else
3776 			*cookiep = os;
3777 		return (0);
3778 	}
3779 
3780 	/*
3781 	 * If there is no pointer to an on-disk block, this ZIL must not
3782 	 * be active (e.g. filesystem not mounted), so there's nothing
3783 	 * to clean up.
3784 	 */
3785 	if (BP_IS_HOLE(&zh->zh_log)) {
3786 		ASSERT(cookiep != NULL); /* fast path already handled */
3787 
3788 		*cookiep = os;
3789 		mutex_exit(&zilog->zl_lock);
3790 		return (0);
3791 	}
3792 
3793 	/*
3794 	 * The ZIL has work to do. Ensure that the associated encryption
3795 	 * key will remain mapped while we are committing the log by
3796 	 * grabbing a reference to it. If the key isn't loaded we have no
3797 	 * choice but to return an error until the wrapping key is loaded.
3798 	 */
3799 	if (os->os_encrypted &&
3800 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3801 		zilog->zl_suspend--;
3802 		mutex_exit(&zilog->zl_lock);
3803 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3804 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3805 		return (SET_ERROR(EACCES));
3806 	}
3807 
3808 	zilog->zl_suspending = B_TRUE;
3809 	mutex_exit(&zilog->zl_lock);
3810 
3811 	/*
3812 	 * We need to use zil_commit_impl to ensure we wait for all
3813 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3814 	 * to disk before proceeding. If we used zil_commit instead, it
3815 	 * would just call txg_wait_synced(), because zl_suspend is set.
3816 	 * txg_wait_synced() doesn't wait for these lwb's to be
3817 	 * LWB_STATE_FLUSH_DONE before returning.
3818 	 */
3819 	zil_commit_impl(zilog, 0);
3820 
3821 	/*
3822 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3823 	 * use txg_wait_synced() to ensure the data from the zilog has
3824 	 * migrated to the main pool before calling zil_destroy().
3825 	 */
3826 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3827 
3828 	zil_destroy(zilog, B_FALSE);
3829 
3830 	mutex_enter(&zilog->zl_lock);
3831 	zilog->zl_suspending = B_FALSE;
3832 	cv_broadcast(&zilog->zl_cv_suspend);
3833 	mutex_exit(&zilog->zl_lock);
3834 
3835 	if (os->os_encrypted)
3836 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3837 
3838 	if (cookiep == NULL)
3839 		zil_resume(os);
3840 	else
3841 		*cookiep = os;
3842 	return (0);
3843 }
3844 
3845 void
3846 zil_resume(void *cookie)
3847 {
3848 	objset_t *os = cookie;
3849 	zilog_t *zilog = dmu_objset_zil(os);
3850 
3851 	mutex_enter(&zilog->zl_lock);
3852 	ASSERT(zilog->zl_suspend != 0);
3853 	zilog->zl_suspend--;
3854 	mutex_exit(&zilog->zl_lock);
3855 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3856 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3857 }
3858 
3859 typedef struct zil_replay_arg {
3860 	zil_replay_func_t *const *zr_replay;
3861 	void		*zr_arg;
3862 	boolean_t	zr_byteswap;
3863 	char		*zr_lr;
3864 } zil_replay_arg_t;
3865 
3866 static int
3867 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3868 {
3869 	char name[ZFS_MAX_DATASET_NAME_LEN];
3870 
3871 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3872 
3873 	dmu_objset_name(zilog->zl_os, name);
3874 
3875 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3876 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3877 	    (u_longlong_t)lr->lrc_seq,
3878 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3879 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3880 
3881 	return (error);
3882 }
3883 
3884 static int
3885 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3886     uint64_t claim_txg)
3887 {
3888 	zil_replay_arg_t *zr = zra;
3889 	const zil_header_t *zh = zilog->zl_header;
3890 	uint64_t reclen = lr->lrc_reclen;
3891 	uint64_t txtype = lr->lrc_txtype;
3892 	int error = 0;
3893 
3894 	zilog->zl_replaying_seq = lr->lrc_seq;
3895 
3896 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3897 		return (0);
3898 
3899 	if (lr->lrc_txg < claim_txg)		/* already committed */
3900 		return (0);
3901 
3902 	/* Strip case-insensitive bit, still present in log record */
3903 	txtype &= ~TX_CI;
3904 
3905 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3906 		return (zil_replay_error(zilog, lr, EINVAL));
3907 
3908 	/*
3909 	 * If this record type can be logged out of order, the object
3910 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3911 	 */
3912 	if (TX_OOO(txtype)) {
3913 		error = dmu_object_info(zilog->zl_os,
3914 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3915 		if (error == ENOENT || error == EEXIST)
3916 			return (0);
3917 	}
3918 
3919 	/*
3920 	 * Make a copy of the data so we can revise and extend it.
3921 	 */
3922 	memcpy(zr->zr_lr, lr, reclen);
3923 
3924 	/*
3925 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3926 	 */
3927 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3928 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3929 		    zr->zr_lr + reclen);
3930 		if (error != 0)
3931 			return (zil_replay_error(zilog, lr, error));
3932 	}
3933 
3934 	/*
3935 	 * The log block containing this lr may have been byteswapped
3936 	 * so that we can easily examine common fields like lrc_txtype.
3937 	 * However, the log is a mix of different record types, and only the
3938 	 * replay vectors know how to byteswap their records.  Therefore, if
3939 	 * the lr was byteswapped, undo it before invoking the replay vector.
3940 	 */
3941 	if (zr->zr_byteswap)
3942 		byteswap_uint64_array(zr->zr_lr, reclen);
3943 
3944 	/*
3945 	 * We must now do two things atomically: replay this log record,
3946 	 * and update the log header sequence number to reflect the fact that
3947 	 * we did so. At the end of each replay function the sequence number
3948 	 * is updated if we are in replay mode.
3949 	 */
3950 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3951 	if (error != 0) {
3952 		/*
3953 		 * The DMU's dnode layer doesn't see removes until the txg
3954 		 * commits, so a subsequent claim can spuriously fail with
3955 		 * EEXIST. So if we receive any error we try syncing out
3956 		 * any removes then retry the transaction.  Note that we
3957 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3958 		 */
3959 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3960 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3961 		if (error != 0)
3962 			return (zil_replay_error(zilog, lr, error));
3963 	}
3964 	return (0);
3965 }
3966 
3967 static int
3968 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3969 {
3970 	(void) bp, (void) arg, (void) claim_txg;
3971 
3972 	zilog->zl_replay_blks++;
3973 
3974 	return (0);
3975 }
3976 
3977 /*
3978  * If this dataset has a non-empty intent log, replay it and destroy it.
3979  * Return B_TRUE if there were any entries to replay.
3980  */
3981 boolean_t
3982 zil_replay(objset_t *os, void *arg,
3983     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
3984 {
3985 	zilog_t *zilog = dmu_objset_zil(os);
3986 	const zil_header_t *zh = zilog->zl_header;
3987 	zil_replay_arg_t zr;
3988 
3989 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3990 		return (zil_destroy(zilog, B_TRUE));
3991 	}
3992 
3993 	zr.zr_replay = replay_func;
3994 	zr.zr_arg = arg;
3995 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3996 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3997 
3998 	/*
3999 	 * Wait for in-progress removes to sync before starting replay.
4000 	 */
4001 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4002 
4003 	zilog->zl_replay = B_TRUE;
4004 	zilog->zl_replay_time = ddi_get_lbolt();
4005 	ASSERT(zilog->zl_replay_blks == 0);
4006 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4007 	    zh->zh_claim_txg, B_TRUE);
4008 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4009 
4010 	zil_destroy(zilog, B_FALSE);
4011 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4012 	zilog->zl_replay = B_FALSE;
4013 
4014 	return (B_TRUE);
4015 }
4016 
4017 boolean_t
4018 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4019 {
4020 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4021 		return (B_TRUE);
4022 
4023 	if (zilog->zl_replay) {
4024 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4025 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4026 		    zilog->zl_replaying_seq;
4027 		return (B_TRUE);
4028 	}
4029 
4030 	return (B_FALSE);
4031 }
4032 
4033 int
4034 zil_reset(const char *osname, void *arg)
4035 {
4036 	(void) arg;
4037 
4038 	int error = zil_suspend(osname, NULL);
4039 	/* EACCES means crypto key not loaded */
4040 	if ((error == EACCES) || (error == EBUSY))
4041 		return (SET_ERROR(error));
4042 	if (error != 0)
4043 		return (SET_ERROR(EEXIST));
4044 	return (0);
4045 }
4046 
4047 EXPORT_SYMBOL(zil_alloc);
4048 EXPORT_SYMBOL(zil_free);
4049 EXPORT_SYMBOL(zil_open);
4050 EXPORT_SYMBOL(zil_close);
4051 EXPORT_SYMBOL(zil_replay);
4052 EXPORT_SYMBOL(zil_replaying);
4053 EXPORT_SYMBOL(zil_destroy);
4054 EXPORT_SYMBOL(zil_destroy_sync);
4055 EXPORT_SYMBOL(zil_itx_create);
4056 EXPORT_SYMBOL(zil_itx_destroy);
4057 EXPORT_SYMBOL(zil_itx_assign);
4058 EXPORT_SYMBOL(zil_commit);
4059 EXPORT_SYMBOL(zil_claim);
4060 EXPORT_SYMBOL(zil_check_log_chain);
4061 EXPORT_SYMBOL(zil_sync);
4062 EXPORT_SYMBOL(zil_clean);
4063 EXPORT_SYMBOL(zil_suspend);
4064 EXPORT_SYMBOL(zil_resume);
4065 EXPORT_SYMBOL(zil_lwb_add_block);
4066 EXPORT_SYMBOL(zil_bp_tree_add);
4067 EXPORT_SYMBOL(zil_set_sync);
4068 EXPORT_SYMBOL(zil_set_logbias);
4069 EXPORT_SYMBOL(zil_sums_init);
4070 EXPORT_SYMBOL(zil_sums_fini);
4071 EXPORT_SYMBOL(zil_kstat_values_update);
4072 
4073 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4074 	"ZIL block open timeout percentage");
4075 
4076 ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW,
4077 	"Minimum delay we care for ZIL block commit");
4078 
4079 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4080 	"Disable intent logging replay");
4081 
4082 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4083 	"Disable ZIL cache flushes");
4084 
4085 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4086 	"Limit in bytes slog sync writes per commit");
4087 
4088 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4089 	"Limit in bytes of ZIL log block size");
4090