1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/sysmacros.h> 37 #include <sys/vfs.h> 38 #include <sys/uio_impl.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/cmn_err.h> 43 #include <sys/errno.h> 44 #include <sys/zfs_dir.h> 45 #include <sys/zfs_acl.h> 46 #include <sys/zfs_ioctl.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/dmu.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/dsl_crypt.h> 51 #include <sys/spa.h> 52 #include <sys/txg.h> 53 #include <sys/dbuf.h> 54 #include <sys/policy.h> 55 #include <sys/zfeature.h> 56 #include <sys/zfs_vnops.h> 57 #include <sys/zfs_quota.h> 58 #include <sys/zfs_vfsops.h> 59 #include <sys/zfs_znode.h> 60 61 /* 62 * Enable the experimental block cloning feature. If this setting is 0, then 63 * even if feature@block_cloning is enabled, attempts to clone blocks will act 64 * as though the feature is disabled. 65 */ 66 int zfs_bclone_enabled = 1; 67 68 /* 69 * When set zfs_clone_range() waits for dirty data to be written to disk. 70 * This allows the clone operation to reliably succeed when a file is modified 71 * and then immediately cloned. For small files this may be slower than making 72 * a copy of the file and is therefore not the default. However, in certain 73 * scenarios this behavior may be desirable so a tunable is provided. 74 */ 75 static int zfs_bclone_wait_dirty = 0; 76 77 /* 78 * Maximum bytes to read per chunk in zfs_read(). 79 */ 80 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; 81 82 int 83 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr) 84 { 85 int error = 0; 86 zfsvfs_t *zfsvfs = ZTOZSB(zp); 87 88 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 89 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 90 return (error); 91 atomic_inc_32(&zp->z_sync_writes_cnt); 92 zil_commit(zfsvfs->z_log, zp->z_id); 93 atomic_dec_32(&zp->z_sync_writes_cnt); 94 zfs_exit(zfsvfs, FTAG); 95 } 96 return (error); 97 } 98 99 100 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 101 /* 102 * Lseek support for finding holes (cmd == SEEK_HOLE) and 103 * data (cmd == SEEK_DATA). "off" is an in/out parameter. 104 */ 105 static int 106 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off) 107 { 108 zfs_locked_range_t *lr; 109 uint64_t noff = (uint64_t)*off; /* new offset */ 110 uint64_t file_sz; 111 int error; 112 boolean_t hole; 113 114 file_sz = zp->z_size; 115 if (noff >= file_sz) { 116 return (SET_ERROR(ENXIO)); 117 } 118 119 if (cmd == F_SEEK_HOLE) 120 hole = B_TRUE; 121 else 122 hole = B_FALSE; 123 124 /* Flush any mmap()'d data to disk */ 125 if (zn_has_cached_data(zp, 0, file_sz - 1)) 126 zn_flush_cached_data(zp, B_FALSE); 127 128 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER); 129 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff); 130 zfs_rangelock_exit(lr); 131 132 if (error == ESRCH) 133 return (SET_ERROR(ENXIO)); 134 135 /* File was dirty, so fall back to using generic logic */ 136 if (error == EBUSY) { 137 if (hole) 138 *off = file_sz; 139 140 return (0); 141 } 142 143 /* 144 * We could find a hole that begins after the logical end-of-file, 145 * because dmu_offset_next() only works on whole blocks. If the 146 * EOF falls mid-block, then indicate that the "virtual hole" 147 * at the end of the file begins at the logical EOF, rather than 148 * at the end of the last block. 149 */ 150 if (noff > file_sz) { 151 ASSERT(hole); 152 noff = file_sz; 153 } 154 155 if (noff < *off) 156 return (error); 157 *off = noff; 158 return (error); 159 } 160 161 int 162 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off) 163 { 164 zfsvfs_t *zfsvfs = ZTOZSB(zp); 165 int error; 166 167 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 168 return (error); 169 170 error = zfs_holey_common(zp, cmd, off); 171 172 zfs_exit(zfsvfs, FTAG); 173 return (error); 174 } 175 #endif /* SEEK_HOLE && SEEK_DATA */ 176 177 int 178 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr) 179 { 180 zfsvfs_t *zfsvfs = ZTOZSB(zp); 181 int error; 182 183 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 184 return (error); 185 186 if (flag & V_ACE_MASK) 187 #if defined(__linux__) 188 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, 189 zfs_init_idmap); 190 #else 191 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, 192 NULL); 193 #endif 194 else 195 #if defined(__linux__) 196 error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap); 197 #else 198 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL); 199 #endif 200 201 zfs_exit(zfsvfs, FTAG); 202 return (error); 203 } 204 205 /* 206 * Read bytes from specified file into supplied buffer. 207 * 208 * IN: zp - inode of file to be read from. 209 * uio - structure supplying read location, range info, 210 * and return buffer. 211 * ioflag - O_SYNC flags; used to provide FRSYNC semantics. 212 * O_DIRECT flag; used to bypass page cache. 213 * cr - credentials of caller. 214 * 215 * OUT: uio - updated offset and range, buffer filled. 216 * 217 * RETURN: 0 on success, error code on failure. 218 * 219 * Side Effects: 220 * inode - atime updated if byte count > 0 221 */ 222 int 223 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 224 { 225 (void) cr; 226 int error = 0; 227 boolean_t frsync = B_FALSE; 228 229 zfsvfs_t *zfsvfs = ZTOZSB(zp); 230 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 231 return (error); 232 233 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 234 zfs_exit(zfsvfs, FTAG); 235 return (SET_ERROR(EACCES)); 236 } 237 238 /* We don't copy out anything useful for directories. */ 239 if (Z_ISDIR(ZTOTYPE(zp))) { 240 zfs_exit(zfsvfs, FTAG); 241 return (SET_ERROR(EISDIR)); 242 } 243 244 /* 245 * Validate file offset 246 */ 247 if (zfs_uio_offset(uio) < (offset_t)0) { 248 zfs_exit(zfsvfs, FTAG); 249 return (SET_ERROR(EINVAL)); 250 } 251 252 /* 253 * Fasttrack empty reads 254 */ 255 if (zfs_uio_resid(uio) == 0) { 256 zfs_exit(zfsvfs, FTAG); 257 return (0); 258 } 259 260 #ifdef FRSYNC 261 /* 262 * If we're in FRSYNC mode, sync out this znode before reading it. 263 * Only do this for non-snapshots. 264 * 265 * Some platforms do not support FRSYNC and instead map it 266 * to O_SYNC, which results in unnecessary calls to zil_commit. We 267 * only honor FRSYNC requests on platforms which support it. 268 */ 269 frsync = !!(ioflag & FRSYNC); 270 #endif 271 if (zfsvfs->z_log && 272 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 273 zil_commit(zfsvfs->z_log, zp->z_id); 274 275 /* 276 * Lock the range against changes. 277 */ 278 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, 279 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER); 280 281 /* 282 * If we are reading past end-of-file we can skip 283 * to the end; but we might still need to set atime. 284 */ 285 if (zfs_uio_offset(uio) >= zp->z_size) { 286 error = 0; 287 goto out; 288 } 289 290 ASSERT(zfs_uio_offset(uio) < zp->z_size); 291 #if defined(__linux__) 292 ssize_t start_offset = zfs_uio_offset(uio); 293 #endif 294 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio)); 295 ssize_t start_resid = n; 296 297 while (n > 0) { 298 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size - 299 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size)); 300 #ifdef UIO_NOCOPY 301 if (zfs_uio_segflg(uio) == UIO_NOCOPY) 302 error = mappedread_sf(zp, nbytes, uio); 303 else 304 #endif 305 if (zn_has_cached_data(zp, zfs_uio_offset(uio), 306 zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) { 307 error = mappedread(zp, nbytes, uio); 308 } else { 309 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 310 uio, nbytes); 311 } 312 313 if (error) { 314 /* convert checksum errors into IO errors */ 315 if (error == ECKSUM) 316 error = SET_ERROR(EIO); 317 318 #if defined(__linux__) 319 /* 320 * if we actually read some bytes, bubbling EFAULT 321 * up to become EAGAIN isn't what we want here... 322 * 323 * ...on Linux, at least. On FBSD, doing this breaks. 324 */ 325 if (error == EFAULT && 326 (zfs_uio_offset(uio) - start_offset) != 0) 327 error = 0; 328 #endif 329 break; 330 } 331 332 n -= nbytes; 333 } 334 335 int64_t nread = start_resid - n; 336 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread); 337 task_io_account_read(nread); 338 out: 339 zfs_rangelock_exit(lr); 340 341 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 342 zfs_exit(zfsvfs, FTAG); 343 return (error); 344 } 345 346 static void 347 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr, 348 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx) 349 { 350 zilog_t *zilog = zfsvfs->z_log; 351 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 352 353 ASSERT(clear_setid_bits_txgp != NULL); 354 ASSERT(tx != NULL); 355 356 /* 357 * Clear Set-UID/Set-GID bits on successful write if not 358 * privileged and at least one of the execute bits is set. 359 * 360 * It would be nice to do this after all writes have 361 * been done, but that would still expose the ISUID/ISGID 362 * to another app after the partial write is committed. 363 * 364 * Note: we don't call zfs_fuid_map_id() here because 365 * user 0 is not an ephemeral uid. 366 */ 367 mutex_enter(&zp->z_acl_lock); 368 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && 369 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 370 secpolicy_vnode_setid_retain(zp, cr, 371 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) { 372 uint64_t newmode; 373 374 zp->z_mode &= ~(S_ISUID | S_ISGID); 375 newmode = zp->z_mode; 376 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 377 (void *)&newmode, sizeof (uint64_t), tx); 378 379 mutex_exit(&zp->z_acl_lock); 380 381 /* 382 * Make sure SUID/SGID bits will be removed when we replay the 383 * log. If the setid bits are keep coming back, don't log more 384 * than one TX_SETATTR per transaction group. 385 */ 386 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) { 387 vattr_t va = {0}; 388 389 va.va_mask = ATTR_MODE; 390 va.va_nodeid = zp->z_id; 391 va.va_mode = newmode; 392 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va, 393 ATTR_MODE, NULL); 394 *clear_setid_bits_txgp = dmu_tx_get_txg(tx); 395 } 396 } else { 397 mutex_exit(&zp->z_acl_lock); 398 } 399 } 400 401 /* 402 * Write the bytes to a file. 403 * 404 * IN: zp - znode of file to be written to. 405 * uio - structure supplying write location, range info, 406 * and data buffer. 407 * ioflag - O_APPEND flag set if in append mode. 408 * O_DIRECT flag; used to bypass page cache. 409 * cr - credentials of caller. 410 * 411 * OUT: uio - updated offset and range. 412 * 413 * RETURN: 0 if success 414 * error code if failure 415 * 416 * Timestamps: 417 * ip - ctime|mtime updated if byte count > 0 418 */ 419 int 420 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 421 { 422 int error = 0, error1; 423 ssize_t start_resid = zfs_uio_resid(uio); 424 uint64_t clear_setid_bits_txg = 0; 425 426 /* 427 * Fasttrack empty write 428 */ 429 ssize_t n = start_resid; 430 if (n == 0) 431 return (0); 432 433 zfsvfs_t *zfsvfs = ZTOZSB(zp); 434 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 435 return (error); 436 437 sa_bulk_attr_t bulk[4]; 438 int count = 0; 439 uint64_t mtime[2], ctime[2]; 440 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 441 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 442 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 443 &zp->z_size, 8); 444 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 445 &zp->z_pflags, 8); 446 447 /* 448 * Callers might not be able to detect properly that we are read-only, 449 * so check it explicitly here. 450 */ 451 if (zfs_is_readonly(zfsvfs)) { 452 zfs_exit(zfsvfs, FTAG); 453 return (SET_ERROR(EROFS)); 454 } 455 456 /* 457 * If immutable or not appending then return EPERM. 458 * Intentionally allow ZFS_READONLY through here. 459 * See zfs_zaccess_common() 460 */ 461 if ((zp->z_pflags & ZFS_IMMUTABLE) || 462 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) && 463 (zfs_uio_offset(uio) < zp->z_size))) { 464 zfs_exit(zfsvfs, FTAG); 465 return (SET_ERROR(EPERM)); 466 } 467 468 /* 469 * Validate file offset 470 */ 471 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio); 472 if (woff < 0) { 473 zfs_exit(zfsvfs, FTAG); 474 return (SET_ERROR(EINVAL)); 475 } 476 477 /* 478 * Pre-fault the pages to ensure slow (eg NFS) pages 479 * don't hold up txg. 480 */ 481 ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1); 482 if (zfs_uio_prefaultpages(pfbytes, uio)) { 483 zfs_exit(zfsvfs, FTAG); 484 return (SET_ERROR(EFAULT)); 485 } 486 487 /* 488 * If in append mode, set the io offset pointer to eof. 489 */ 490 zfs_locked_range_t *lr; 491 if (ioflag & O_APPEND) { 492 /* 493 * Obtain an appending range lock to guarantee file append 494 * semantics. We reset the write offset once we have the lock. 495 */ 496 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 497 woff = lr->lr_offset; 498 if (lr->lr_length == UINT64_MAX) { 499 /* 500 * We overlocked the file because this write will cause 501 * the file block size to increase. 502 * Note that zp_size cannot change with this lock held. 503 */ 504 woff = zp->z_size; 505 } 506 zfs_uio_setoffset(uio, woff); 507 } else { 508 /* 509 * Note that if the file block size will change as a result of 510 * this write, then this range lock will lock the entire file 511 * so that we can re-write the block safely. 512 */ 513 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 514 } 515 516 if (zn_rlimit_fsize_uio(zp, uio)) { 517 zfs_rangelock_exit(lr); 518 zfs_exit(zfsvfs, FTAG); 519 return (SET_ERROR(EFBIG)); 520 } 521 522 const rlim64_t limit = MAXOFFSET_T; 523 524 if (woff >= limit) { 525 zfs_rangelock_exit(lr); 526 zfs_exit(zfsvfs, FTAG); 527 return (SET_ERROR(EFBIG)); 528 } 529 530 if (n > limit - woff) 531 n = limit - woff; 532 533 uint64_t end_size = MAX(zp->z_size, woff + n); 534 zilog_t *zilog = zfsvfs->z_log; 535 boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) || 536 (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS); 537 538 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 539 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp)); 540 const uint64_t projid = zp->z_projid; 541 542 /* 543 * Write the file in reasonable size chunks. Each chunk is written 544 * in a separate transaction; this keeps the intent log records small 545 * and allows us to do more fine-grained space accounting. 546 */ 547 while (n > 0) { 548 woff = zfs_uio_offset(uio); 549 550 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) || 551 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) || 552 (projid != ZFS_DEFAULT_PROJID && 553 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 554 projid))) { 555 error = SET_ERROR(EDQUOT); 556 break; 557 } 558 559 uint64_t blksz; 560 if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) { 561 if (zp->z_blksz > zfsvfs->z_max_blksz && 562 !ISP2(zp->z_blksz)) { 563 /* 564 * File's blocksize is already larger than the 565 * "recordsize" property. Only let it grow to 566 * the next power of 2. 567 */ 568 blksz = 1 << highbit64(zp->z_blksz); 569 } else { 570 blksz = zfsvfs->z_max_blksz; 571 } 572 blksz = MIN(blksz, P2ROUNDUP(end_size, 573 SPA_MINBLOCKSIZE)); 574 blksz = MAX(blksz, zp->z_blksz); 575 } else { 576 blksz = zp->z_blksz; 577 } 578 579 arc_buf_t *abuf = NULL; 580 ssize_t nbytes = n; 581 if (n >= blksz && woff >= zp->z_size && 582 P2PHASE(woff, blksz) == 0 && 583 (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) { 584 /* 585 * This write covers a full block. "Borrow" a buffer 586 * from the dmu so that we can fill it before we enter 587 * a transaction. This avoids the possibility of 588 * holding up the transaction if the data copy hangs 589 * up on a pagefault (e.g., from an NFS server mapping). 590 */ 591 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 592 blksz); 593 ASSERT(abuf != NULL); 594 ASSERT(arc_buf_size(abuf) == blksz); 595 if ((error = zfs_uiocopy(abuf->b_data, blksz, 596 UIO_WRITE, uio, &nbytes))) { 597 dmu_return_arcbuf(abuf); 598 break; 599 } 600 ASSERT3S(nbytes, ==, blksz); 601 } else { 602 nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) - 603 P2PHASE(woff, blksz)); 604 if (pfbytes < nbytes) { 605 if (zfs_uio_prefaultpages(nbytes, uio)) { 606 error = SET_ERROR(EFAULT); 607 break; 608 } 609 pfbytes = nbytes; 610 } 611 } 612 613 /* 614 * Start a transaction. 615 */ 616 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 617 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 618 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); 619 DB_DNODE_ENTER(db); 620 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes); 621 DB_DNODE_EXIT(db); 622 zfs_sa_upgrade_txholds(tx, zp); 623 error = dmu_tx_assign(tx, TXG_WAIT); 624 if (error) { 625 dmu_tx_abort(tx); 626 if (abuf != NULL) 627 dmu_return_arcbuf(abuf); 628 break; 629 } 630 631 /* 632 * NB: We must call zfs_clear_setid_bits_if_necessary before 633 * committing the transaction! 634 */ 635 636 /* 637 * If rangelock_enter() over-locked we grow the blocksize 638 * and then reduce the lock range. This will only happen 639 * on the first iteration since rangelock_reduce() will 640 * shrink down lr_length to the appropriate size. 641 */ 642 if (lr->lr_length == UINT64_MAX) { 643 zfs_grow_blocksize(zp, blksz, tx); 644 zfs_rangelock_reduce(lr, woff, n); 645 } 646 647 ssize_t tx_bytes; 648 if (abuf == NULL) { 649 tx_bytes = zfs_uio_resid(uio); 650 zfs_uio_fault_disable(uio, B_TRUE); 651 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 652 uio, nbytes, tx); 653 zfs_uio_fault_disable(uio, B_FALSE); 654 #ifdef __linux__ 655 if (error == EFAULT) { 656 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 657 cr, &clear_setid_bits_txg, tx); 658 dmu_tx_commit(tx); 659 /* 660 * Account for partial writes before 661 * continuing the loop. 662 * Update needs to occur before the next 663 * zfs_uio_prefaultpages, or prefaultpages may 664 * error, and we may break the loop early. 665 */ 666 n -= tx_bytes - zfs_uio_resid(uio); 667 pfbytes -= tx_bytes - zfs_uio_resid(uio); 668 continue; 669 } 670 #endif 671 /* 672 * On FreeBSD, EFAULT should be propagated back to the 673 * VFS, which will handle faulting and will retry. 674 */ 675 if (error != 0 && error != EFAULT) { 676 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 677 cr, &clear_setid_bits_txg, tx); 678 dmu_tx_commit(tx); 679 break; 680 } 681 tx_bytes -= zfs_uio_resid(uio); 682 } else { 683 /* 684 * Thus, we're writing a full block at a block-aligned 685 * offset and extending the file past EOF. 686 * 687 * dmu_assign_arcbuf_by_dbuf() will directly assign the 688 * arc buffer to a dbuf. 689 */ 690 error = dmu_assign_arcbuf_by_dbuf( 691 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 692 if (error != 0) { 693 /* 694 * XXX This might not be necessary if 695 * dmu_assign_arcbuf_by_dbuf is guaranteed 696 * to be atomic. 697 */ 698 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 699 cr, &clear_setid_bits_txg, tx); 700 dmu_return_arcbuf(abuf); 701 dmu_tx_commit(tx); 702 break; 703 } 704 ASSERT3S(nbytes, <=, zfs_uio_resid(uio)); 705 zfs_uioskip(uio, nbytes); 706 tx_bytes = nbytes; 707 } 708 if (tx_bytes && 709 zn_has_cached_data(zp, woff, woff + tx_bytes - 1) && 710 !(ioflag & O_DIRECT)) { 711 update_pages(zp, woff, tx_bytes, zfsvfs->z_os); 712 } 713 714 /* 715 * If we made no progress, we're done. If we made even 716 * partial progress, update the znode and ZIL accordingly. 717 */ 718 if (tx_bytes == 0) { 719 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 720 (void *)&zp->z_size, sizeof (uint64_t), tx); 721 dmu_tx_commit(tx); 722 ASSERT(error != 0); 723 break; 724 } 725 726 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, 727 &clear_setid_bits_txg, tx); 728 729 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 730 731 /* 732 * Update the file size (zp_size) if it has changed; 733 * account for possible concurrent updates. 734 */ 735 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) { 736 (void) atomic_cas_64(&zp->z_size, end_size, 737 zfs_uio_offset(uio)); 738 ASSERT(error == 0 || error == EFAULT); 739 } 740 /* 741 * If we are replaying and eof is non zero then force 742 * the file size to the specified eof. Note, there's no 743 * concurrency during replay. 744 */ 745 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 746 zp->z_size = zfsvfs->z_replay_eof; 747 748 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 749 if (error1 != 0) 750 /* Avoid clobbering EFAULT. */ 751 error = error1; 752 753 /* 754 * NB: During replay, the TX_SETATTR record logged by 755 * zfs_clear_setid_bits_if_necessary must precede any of 756 * the TX_WRITE records logged here. 757 */ 758 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit, 759 NULL, NULL); 760 761 dmu_tx_commit(tx); 762 763 if (error != 0) 764 break; 765 ASSERT3S(tx_bytes, ==, nbytes); 766 n -= nbytes; 767 pfbytes -= nbytes; 768 } 769 770 zfs_znode_update_vfs(zp); 771 zfs_rangelock_exit(lr); 772 773 /* 774 * If we're in replay mode, or we made no progress, or the 775 * uio data is inaccessible return an error. Otherwise, it's 776 * at least a partial write, so it's successful. 777 */ 778 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid || 779 error == EFAULT) { 780 zfs_exit(zfsvfs, FTAG); 781 return (error); 782 } 783 784 if (commit) 785 zil_commit(zilog, zp->z_id); 786 787 const int64_t nwritten = start_resid - zfs_uio_resid(uio); 788 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten); 789 task_io_account_write(nwritten); 790 791 zfs_exit(zfsvfs, FTAG); 792 return (0); 793 } 794 795 int 796 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 797 { 798 zfsvfs_t *zfsvfs = ZTOZSB(zp); 799 int error; 800 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 801 802 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 803 return (error); 804 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 805 zfs_exit(zfsvfs, FTAG); 806 807 return (error); 808 } 809 810 int 811 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 812 { 813 zfsvfs_t *zfsvfs = ZTOZSB(zp); 814 int error; 815 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 816 zilog_t *zilog; 817 818 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 819 return (error); 820 zilog = zfsvfs->z_log; 821 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 822 823 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 824 zil_commit(zilog, 0); 825 826 zfs_exit(zfsvfs, FTAG); 827 return (error); 828 } 829 830 #ifdef ZFS_DEBUG 831 static int zil_fault_io = 0; 832 #endif 833 834 static void zfs_get_done(zgd_t *zgd, int error); 835 836 /* 837 * Get data to generate a TX_WRITE intent log record. 838 */ 839 int 840 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf, 841 struct lwb *lwb, zio_t *zio) 842 { 843 zfsvfs_t *zfsvfs = arg; 844 objset_t *os = zfsvfs->z_os; 845 znode_t *zp; 846 uint64_t object = lr->lr_foid; 847 uint64_t offset = lr->lr_offset; 848 uint64_t size = lr->lr_length; 849 dmu_buf_t *db; 850 zgd_t *zgd; 851 int error = 0; 852 uint64_t zp_gen; 853 854 ASSERT3P(lwb, !=, NULL); 855 ASSERT3U(size, !=, 0); 856 857 /* 858 * Nothing to do if the file has been removed 859 */ 860 if (zfs_zget(zfsvfs, object, &zp) != 0) 861 return (SET_ERROR(ENOENT)); 862 if (zp->z_unlinked) { 863 /* 864 * Release the vnode asynchronously as we currently have the 865 * txg stopped from syncing. 866 */ 867 zfs_zrele_async(zp); 868 return (SET_ERROR(ENOENT)); 869 } 870 /* check if generation number matches */ 871 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 872 sizeof (zp_gen)) != 0) { 873 zfs_zrele_async(zp); 874 return (SET_ERROR(EIO)); 875 } 876 if (zp_gen != gen) { 877 zfs_zrele_async(zp); 878 return (SET_ERROR(ENOENT)); 879 } 880 881 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 882 zgd->zgd_lwb = lwb; 883 zgd->zgd_private = zp; 884 885 /* 886 * Write records come in two flavors: immediate and indirect. 887 * For small writes it's cheaper to store the data with the 888 * log record (immediate); for large writes it's cheaper to 889 * sync the data and get a pointer to it (indirect) so that 890 * we don't have to write the data twice. 891 */ 892 if (buf != NULL) { /* immediate write */ 893 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 894 offset, size, RL_READER); 895 /* test for truncation needs to be done while range locked */ 896 if (offset >= zp->z_size) { 897 error = SET_ERROR(ENOENT); 898 } else { 899 error = dmu_read(os, object, offset, size, buf, 900 DMU_READ_NO_PREFETCH); 901 } 902 ASSERT(error == 0 || error == ENOENT); 903 } else { /* indirect write */ 904 ASSERT3P(zio, !=, NULL); 905 /* 906 * Have to lock the whole block to ensure when it's 907 * written out and its checksum is being calculated 908 * that no one can change the data. We need to re-check 909 * blocksize after we get the lock in case it's changed! 910 */ 911 for (;;) { 912 uint64_t blkoff; 913 size = zp->z_blksz; 914 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 915 offset -= blkoff; 916 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 917 offset, size, RL_READER); 918 if (zp->z_blksz == size) 919 break; 920 offset += blkoff; 921 zfs_rangelock_exit(zgd->zgd_lr); 922 } 923 /* test for truncation needs to be done while range locked */ 924 if (lr->lr_offset >= zp->z_size) 925 error = SET_ERROR(ENOENT); 926 #ifdef ZFS_DEBUG 927 if (zil_fault_io) { 928 error = SET_ERROR(EIO); 929 zil_fault_io = 0; 930 } 931 #endif 932 if (error == 0) 933 error = dmu_buf_hold_noread(os, object, offset, zgd, 934 &db); 935 936 if (error == 0) { 937 blkptr_t *bp = &lr->lr_blkptr; 938 939 zgd->zgd_db = db; 940 zgd->zgd_bp = bp; 941 942 ASSERT(db->db_offset == offset); 943 ASSERT(db->db_size == size); 944 945 error = dmu_sync(zio, lr->lr_common.lrc_txg, 946 zfs_get_done, zgd); 947 ASSERT(error || lr->lr_length <= size); 948 949 /* 950 * On success, we need to wait for the write I/O 951 * initiated by dmu_sync() to complete before we can 952 * release this dbuf. We will finish everything up 953 * in the zfs_get_done() callback. 954 */ 955 if (error == 0) 956 return (0); 957 958 if (error == EALREADY) { 959 lr->lr_common.lrc_txtype = TX_WRITE2; 960 /* 961 * TX_WRITE2 relies on the data previously 962 * written by the TX_WRITE that caused 963 * EALREADY. We zero out the BP because 964 * it is the old, currently-on-disk BP. 965 */ 966 zgd->zgd_bp = NULL; 967 BP_ZERO(bp); 968 error = 0; 969 } 970 } 971 } 972 973 zfs_get_done(zgd, error); 974 975 return (error); 976 } 977 978 979 static void 980 zfs_get_done(zgd_t *zgd, int error) 981 { 982 (void) error; 983 znode_t *zp = zgd->zgd_private; 984 985 if (zgd->zgd_db) 986 dmu_buf_rele(zgd->zgd_db, zgd); 987 988 zfs_rangelock_exit(zgd->zgd_lr); 989 990 /* 991 * Release the vnode asynchronously as we currently have the 992 * txg stopped from syncing. 993 */ 994 zfs_zrele_async(zp); 995 996 kmem_free(zgd, sizeof (zgd_t)); 997 } 998 999 static int 1000 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag) 1001 { 1002 int error; 1003 1004 /* Swap. Not sure if the order of zfs_enter()s is important. */ 1005 if (zfsvfs1 > zfsvfs2) { 1006 zfsvfs_t *tmpzfsvfs; 1007 1008 tmpzfsvfs = zfsvfs2; 1009 zfsvfs2 = zfsvfs1; 1010 zfsvfs1 = tmpzfsvfs; 1011 } 1012 1013 error = zfs_enter(zfsvfs1, tag); 1014 if (error != 0) 1015 return (error); 1016 if (zfsvfs1 != zfsvfs2) { 1017 error = zfs_enter(zfsvfs2, tag); 1018 if (error != 0) { 1019 zfs_exit(zfsvfs1, tag); 1020 return (error); 1021 } 1022 } 1023 1024 return (0); 1025 } 1026 1027 static void 1028 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag) 1029 { 1030 1031 zfs_exit(zfsvfs1, tag); 1032 if (zfsvfs1 != zfsvfs2) 1033 zfs_exit(zfsvfs2, tag); 1034 } 1035 1036 /* 1037 * We split each clone request in chunks that can fit into a single ZIL 1038 * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning 1039 * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives 1040 * us room for storing 1022 block pointers. 1041 * 1042 * On success, the function return the number of bytes copied in *lenp. 1043 * Note, it doesn't return how much bytes are left to be copied. 1044 * On errors which are caused by any file system limitations or 1045 * brt limitations `EINVAL` is returned. In the most cases a user 1046 * requested bad parameters, it could be possible to clone the file but 1047 * some parameters don't match the requirements. 1048 */ 1049 int 1050 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp, 1051 uint64_t *outoffp, uint64_t *lenp, cred_t *cr) 1052 { 1053 zfsvfs_t *inzfsvfs, *outzfsvfs; 1054 objset_t *inos, *outos; 1055 zfs_locked_range_t *inlr, *outlr; 1056 dmu_buf_impl_t *db; 1057 dmu_tx_t *tx; 1058 zilog_t *zilog; 1059 uint64_t inoff, outoff, len, done; 1060 uint64_t outsize, size; 1061 int error; 1062 int count = 0; 1063 sa_bulk_attr_t bulk[3]; 1064 uint64_t mtime[2], ctime[2]; 1065 uint64_t uid, gid, projid; 1066 blkptr_t *bps; 1067 size_t maxblocks, nbps; 1068 uint_t inblksz; 1069 uint64_t clear_setid_bits_txg = 0; 1070 uint64_t last_synced_txg = 0; 1071 1072 inoff = *inoffp; 1073 outoff = *outoffp; 1074 len = *lenp; 1075 done = 0; 1076 1077 inzfsvfs = ZTOZSB(inzp); 1078 outzfsvfs = ZTOZSB(outzp); 1079 1080 /* 1081 * We need to call zfs_enter() potentially on two different datasets, 1082 * so we need a dedicated function for that. 1083 */ 1084 error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG); 1085 if (error != 0) 1086 return (error); 1087 1088 inos = inzfsvfs->z_os; 1089 outos = outzfsvfs->z_os; 1090 1091 /* 1092 * Both source and destination have to belong to the same storage pool. 1093 */ 1094 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) { 1095 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1096 return (SET_ERROR(EXDEV)); 1097 } 1098 1099 /* 1100 * outos and inos belongs to the same storage pool. 1101 * see a few lines above, only one check. 1102 */ 1103 if (!spa_feature_is_enabled(dmu_objset_spa(outos), 1104 SPA_FEATURE_BLOCK_CLONING)) { 1105 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1106 return (SET_ERROR(EOPNOTSUPP)); 1107 } 1108 1109 ASSERT(!outzfsvfs->z_replay); 1110 1111 /* 1112 * Block cloning from an unencrypted dataset into an encrypted 1113 * dataset and vice versa is not supported. 1114 */ 1115 if (inos->os_encrypted != outos->os_encrypted) { 1116 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1117 return (SET_ERROR(EXDEV)); 1118 } 1119 1120 /* 1121 * Cloning across encrypted datasets is possible only if they 1122 * share the same master key. 1123 */ 1124 if (inos != outos && inos->os_encrypted && 1125 !dmu_objset_crypto_key_equal(inos, outos)) { 1126 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1127 return (SET_ERROR(EXDEV)); 1128 } 1129 1130 error = zfs_verify_zp(inzp); 1131 if (error == 0) 1132 error = zfs_verify_zp(outzp); 1133 if (error != 0) { 1134 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1135 return (error); 1136 } 1137 1138 /* 1139 * We don't copy source file's flags that's why we don't allow to clone 1140 * files that are in quarantine. 1141 */ 1142 if (inzp->z_pflags & ZFS_AV_QUARANTINED) { 1143 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1144 return (SET_ERROR(EACCES)); 1145 } 1146 1147 if (inoff >= inzp->z_size) { 1148 *lenp = 0; 1149 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1150 return (0); 1151 } 1152 if (len > inzp->z_size - inoff) { 1153 len = inzp->z_size - inoff; 1154 } 1155 if (len == 0) { 1156 *lenp = 0; 1157 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1158 return (0); 1159 } 1160 1161 /* 1162 * Callers might not be able to detect properly that we are read-only, 1163 * so check it explicitly here. 1164 */ 1165 if (zfs_is_readonly(outzfsvfs)) { 1166 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1167 return (SET_ERROR(EROFS)); 1168 } 1169 1170 /* 1171 * If immutable or not appending then return EPERM. 1172 * Intentionally allow ZFS_READONLY through here. 1173 * See zfs_zaccess_common() 1174 */ 1175 if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) { 1176 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1177 return (SET_ERROR(EPERM)); 1178 } 1179 1180 /* 1181 * No overlapping if we are cloning within the same file. 1182 */ 1183 if (inzp == outzp) { 1184 if (inoff < outoff + len && outoff < inoff + len) { 1185 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1186 return (SET_ERROR(EINVAL)); 1187 } 1188 } 1189 1190 /* 1191 * Maintain predictable lock order. 1192 */ 1193 if (inzp < outzp || (inzp == outzp && inoff < outoff)) { 1194 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len, 1195 RL_READER); 1196 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len, 1197 RL_WRITER); 1198 } else { 1199 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len, 1200 RL_WRITER); 1201 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len, 1202 RL_READER); 1203 } 1204 1205 inblksz = inzp->z_blksz; 1206 1207 /* 1208 * We cannot clone into a file with different block size if we can't 1209 * grow it (block size is already bigger, has more than one block, or 1210 * not locked for growth). There are other possible reasons for the 1211 * grow to fail, but we cover what we can before opening transaction 1212 * and the rest detect after we try to do it. 1213 */ 1214 if (inblksz < outzp->z_blksz) { 1215 error = SET_ERROR(EINVAL); 1216 goto unlock; 1217 } 1218 if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz || 1219 outlr->lr_length != UINT64_MAX)) { 1220 error = SET_ERROR(EINVAL); 1221 goto unlock; 1222 } 1223 1224 /* 1225 * Block size must be power-of-2 if destination offset != 0. 1226 * There can be no multiple blocks of non-power-of-2 size. 1227 */ 1228 if (outoff != 0 && !ISP2(inblksz)) { 1229 error = SET_ERROR(EINVAL); 1230 goto unlock; 1231 } 1232 1233 /* 1234 * Offsets and len must be at block boundries. 1235 */ 1236 if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) { 1237 error = SET_ERROR(EINVAL); 1238 goto unlock; 1239 } 1240 /* 1241 * Length must be multipe of blksz, except for the end of the file. 1242 */ 1243 if ((len % inblksz) != 0 && 1244 (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) { 1245 error = SET_ERROR(EINVAL); 1246 goto unlock; 1247 } 1248 1249 /* 1250 * If we are copying only one block and it is smaller than recordsize 1251 * property, do not allow destination to grow beyond one block if it 1252 * is not there yet. Otherwise the destination will get stuck with 1253 * that block size forever, that can be as small as 512 bytes, no 1254 * matter how big the destination grow later. 1255 */ 1256 if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz && 1257 outzp->z_size <= inblksz && outoff + len > inblksz) { 1258 error = SET_ERROR(EINVAL); 1259 goto unlock; 1260 } 1261 1262 error = zn_rlimit_fsize(outoff + len); 1263 if (error != 0) { 1264 goto unlock; 1265 } 1266 1267 if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) { 1268 error = SET_ERROR(EFBIG); 1269 goto unlock; 1270 } 1271 1272 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL, 1273 &mtime, 16); 1274 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL, 1275 &ctime, 16); 1276 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL, 1277 &outzp->z_size, 8); 1278 1279 zilog = outzfsvfs->z_log; 1280 maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) / 1281 sizeof (bps[0]); 1282 1283 uid = KUID_TO_SUID(ZTOUID(outzp)); 1284 gid = KGID_TO_SGID(ZTOGID(outzp)); 1285 projid = outzp->z_projid; 1286 1287 bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP); 1288 1289 /* 1290 * Clone the file in reasonable size chunks. Each chunk is cloned 1291 * in a separate transaction; this keeps the intent log records small 1292 * and allows us to do more fine-grained space accounting. 1293 */ 1294 while (len > 0) { 1295 size = MIN(inblksz * maxblocks, len); 1296 1297 if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT, 1298 uid) || 1299 zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT, 1300 gid) || 1301 (projid != ZFS_DEFAULT_PROJID && 1302 zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT, 1303 projid))) { 1304 error = SET_ERROR(EDQUOT); 1305 break; 1306 } 1307 1308 nbps = maxblocks; 1309 last_synced_txg = spa_last_synced_txg(dmu_objset_spa(inos)); 1310 error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps, 1311 &nbps); 1312 if (error != 0) { 1313 /* 1314 * If we are trying to clone a block that was created 1315 * in the current transaction group, the error will be 1316 * EAGAIN here. Based on zfs_bclone_wait_dirty either 1317 * return a shortened range to the caller so it can 1318 * fallback, or wait for the next TXG and check again. 1319 */ 1320 if (error == EAGAIN && zfs_bclone_wait_dirty) { 1321 txg_wait_synced(dmu_objset_pool(inos), 1322 last_synced_txg + 1); 1323 continue; 1324 } 1325 1326 break; 1327 } 1328 1329 /* 1330 * Start a transaction. 1331 */ 1332 tx = dmu_tx_create(outos); 1333 dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE); 1334 db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl); 1335 DB_DNODE_ENTER(db); 1336 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size); 1337 DB_DNODE_EXIT(db); 1338 zfs_sa_upgrade_txholds(tx, outzp); 1339 error = dmu_tx_assign(tx, TXG_WAIT); 1340 if (error != 0) { 1341 dmu_tx_abort(tx); 1342 break; 1343 } 1344 1345 /* 1346 * Copy source znode's block size. This is done only if the 1347 * whole znode is locked (see zfs_rangelock_cb()) and only 1348 * on the first iteration since zfs_rangelock_reduce() will 1349 * shrink down lr_length to the appropriate size. 1350 */ 1351 if (outlr->lr_length == UINT64_MAX) { 1352 zfs_grow_blocksize(outzp, inblksz, tx); 1353 1354 /* 1355 * Block growth may fail for many reasons we can not 1356 * predict here. If it happen the cloning is doomed. 1357 */ 1358 if (inblksz != outzp->z_blksz) { 1359 error = SET_ERROR(EINVAL); 1360 dmu_tx_abort(tx); 1361 break; 1362 } 1363 1364 /* 1365 * Round range lock up to the block boundary, so we 1366 * prevent appends until we are done. 1367 */ 1368 zfs_rangelock_reduce(outlr, outoff, 1369 ((len - 1) / inblksz + 1) * inblksz); 1370 } 1371 1372 error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx, 1373 bps, nbps); 1374 if (error != 0) { 1375 dmu_tx_commit(tx); 1376 break; 1377 } 1378 1379 if (zn_has_cached_data(outzp, outoff, outoff + size - 1)) { 1380 update_pages(outzp, outoff, size, outos); 1381 } 1382 1383 zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr, 1384 &clear_setid_bits_txg, tx); 1385 1386 zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime); 1387 1388 /* 1389 * Update the file size (zp_size) if it has changed; 1390 * account for possible concurrent updates. 1391 */ 1392 while ((outsize = outzp->z_size) < outoff + size) { 1393 (void) atomic_cas_64(&outzp->z_size, outsize, 1394 outoff + size); 1395 } 1396 1397 error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx); 1398 1399 zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff, 1400 size, inblksz, bps, nbps); 1401 1402 dmu_tx_commit(tx); 1403 1404 if (error != 0) 1405 break; 1406 1407 inoff += size; 1408 outoff += size; 1409 len -= size; 1410 done += size; 1411 } 1412 1413 vmem_free(bps, sizeof (bps[0]) * maxblocks); 1414 zfs_znode_update_vfs(outzp); 1415 1416 unlock: 1417 zfs_rangelock_exit(outlr); 1418 zfs_rangelock_exit(inlr); 1419 1420 if (done > 0) { 1421 /* 1422 * If we have made at least partial progress, reset the error. 1423 */ 1424 error = 0; 1425 1426 ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp); 1427 1428 if (outos->os_sync == ZFS_SYNC_ALWAYS) { 1429 zil_commit(zilog, outzp->z_id); 1430 } 1431 1432 *inoffp += done; 1433 *outoffp += done; 1434 *lenp = done; 1435 } else { 1436 /* 1437 * If we made no progress, there must be a good reason. 1438 * EOF is handled explicitly above, before the loop. 1439 */ 1440 ASSERT3S(error, !=, 0); 1441 } 1442 1443 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1444 1445 return (error); 1446 } 1447 1448 /* 1449 * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(), 1450 * but we cannot do that, because when replaying we don't have source znode 1451 * available. This is why we need a dedicated replay function. 1452 */ 1453 int 1454 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz, 1455 const blkptr_t *bps, size_t nbps) 1456 { 1457 zfsvfs_t *zfsvfs; 1458 dmu_buf_impl_t *db; 1459 dmu_tx_t *tx; 1460 int error; 1461 int count = 0; 1462 sa_bulk_attr_t bulk[3]; 1463 uint64_t mtime[2], ctime[2]; 1464 1465 ASSERT3U(off, <, MAXOFFSET_T); 1466 ASSERT3U(len, >, 0); 1467 ASSERT3U(nbps, >, 0); 1468 1469 zfsvfs = ZTOZSB(zp); 1470 1471 ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os), 1472 SPA_FEATURE_BLOCK_CLONING)); 1473 1474 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 1475 return (error); 1476 1477 ASSERT(zfsvfs->z_replay); 1478 ASSERT(!zfs_is_readonly(zfsvfs)); 1479 1480 if ((off % blksz) != 0) { 1481 zfs_exit(zfsvfs, FTAG); 1482 return (SET_ERROR(EINVAL)); 1483 } 1484 1485 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 1486 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 1487 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1488 &zp->z_size, 8); 1489 1490 /* 1491 * Start a transaction. 1492 */ 1493 tx = dmu_tx_create(zfsvfs->z_os); 1494 1495 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1496 db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); 1497 DB_DNODE_ENTER(db); 1498 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len); 1499 DB_DNODE_EXIT(db); 1500 zfs_sa_upgrade_txholds(tx, zp); 1501 error = dmu_tx_assign(tx, TXG_WAIT); 1502 if (error != 0) { 1503 dmu_tx_abort(tx); 1504 zfs_exit(zfsvfs, FTAG); 1505 return (error); 1506 } 1507 1508 if (zp->z_blksz < blksz) 1509 zfs_grow_blocksize(zp, blksz, tx); 1510 1511 dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps); 1512 1513 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 1514 1515 if (zp->z_size < off + len) 1516 zp->z_size = off + len; 1517 1518 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1519 1520 /* 1521 * zil_replaying() not only check if we are replaying ZIL, but also 1522 * updates the ZIL header to record replay progress. 1523 */ 1524 VERIFY(zil_replaying(zfsvfs->z_log, tx)); 1525 1526 dmu_tx_commit(tx); 1527 1528 zfs_znode_update_vfs(zp); 1529 1530 zfs_exit(zfsvfs, FTAG); 1531 1532 return (error); 1533 } 1534 1535 EXPORT_SYMBOL(zfs_access); 1536 EXPORT_SYMBOL(zfs_fsync); 1537 EXPORT_SYMBOL(zfs_holey); 1538 EXPORT_SYMBOL(zfs_read); 1539 EXPORT_SYMBOL(zfs_write); 1540 EXPORT_SYMBOL(zfs_getsecattr); 1541 EXPORT_SYMBOL(zfs_setsecattr); 1542 EXPORT_SYMBOL(zfs_clone_range); 1543 EXPORT_SYMBOL(zfs_clone_range_replay); 1544 1545 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW, 1546 "Bytes to read per chunk"); 1547 1548 ZFS_MODULE_PARAM(zfs, zfs_, bclone_enabled, INT, ZMOD_RW, 1549 "Enable block cloning"); 1550 1551 ZFS_MODULE_PARAM(zfs, zfs_, bclone_wait_dirty, INT, ZMOD_RW, 1552 "Wait for dirty blocks when cloning"); 1553