xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_vnops.c (revision e9d419a05357036ea2fd37218d853d2c713d55cc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/uio.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/cmn_err.h>
42 #include <sys/errno.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zfs_acl.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/dmu.h>
48 #include <sys/dmu_objset.h>
49 #include <sys/spa.h>
50 #include <sys/txg.h>
51 #include <sys/dbuf.h>
52 #include <sys/policy.h>
53 #include <sys/zfs_vnops.h>
54 #include <sys/zfs_quota.h>
55 #include <sys/zfs_vfsops.h>
56 #include <sys/zfs_znode.h>
57 
58 
59 static ulong_t zfs_fsync_sync_cnt = 4;
60 
61 int
62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
63 {
64 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
65 
66 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
67 
68 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
69 		ZFS_ENTER(zfsvfs);
70 		ZFS_VERIFY_ZP(zp);
71 		zil_commit(zfsvfs->z_log, zp->z_id);
72 		ZFS_EXIT(zfsvfs);
73 	}
74 	tsd_set(zfs_fsyncer_key, NULL);
75 
76 	return (0);
77 }
78 
79 
80 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
81 /*
82  * Lseek support for finding holes (cmd == SEEK_HOLE) and
83  * data (cmd == SEEK_DATA). "off" is an in/out parameter.
84  */
85 static int
86 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
87 {
88 	uint64_t noff = (uint64_t)*off; /* new offset */
89 	uint64_t file_sz;
90 	int error;
91 	boolean_t hole;
92 
93 	file_sz = zp->z_size;
94 	if (noff >= file_sz)  {
95 		return (SET_ERROR(ENXIO));
96 	}
97 
98 	if (cmd == F_SEEK_HOLE)
99 		hole = B_TRUE;
100 	else
101 		hole = B_FALSE;
102 
103 	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
104 
105 	if (error == ESRCH)
106 		return (SET_ERROR(ENXIO));
107 
108 	/* file was dirty, so fall back to using generic logic */
109 	if (error == EBUSY) {
110 		if (hole)
111 			*off = file_sz;
112 
113 		return (0);
114 	}
115 
116 	/*
117 	 * We could find a hole that begins after the logical end-of-file,
118 	 * because dmu_offset_next() only works on whole blocks.  If the
119 	 * EOF falls mid-block, then indicate that the "virtual hole"
120 	 * at the end of the file begins at the logical EOF, rather than
121 	 * at the end of the last block.
122 	 */
123 	if (noff > file_sz) {
124 		ASSERT(hole);
125 		noff = file_sz;
126 	}
127 
128 	if (noff < *off)
129 		return (error);
130 	*off = noff;
131 	return (error);
132 }
133 
134 int
135 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
136 {
137 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
138 	int error;
139 
140 	ZFS_ENTER(zfsvfs);
141 	ZFS_VERIFY_ZP(zp);
142 
143 	error = zfs_holey_common(zp, cmd, off);
144 
145 	ZFS_EXIT(zfsvfs);
146 	return (error);
147 }
148 #endif /* SEEK_HOLE && SEEK_DATA */
149 
150 /*ARGSUSED*/
151 int
152 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
153 {
154 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
155 	int error;
156 
157 	ZFS_ENTER(zfsvfs);
158 	ZFS_VERIFY_ZP(zp);
159 
160 	if (flag & V_ACE_MASK)
161 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
162 	else
163 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
164 
165 	ZFS_EXIT(zfsvfs);
166 	return (error);
167 }
168 
169 static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
170 
171 /*
172  * Read bytes from specified file into supplied buffer.
173  *
174  *	IN:	zp	- inode of file to be read from.
175  *		uio	- structure supplying read location, range info,
176  *			  and return buffer.
177  *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
178  *			  O_DIRECT flag; used to bypass page cache.
179  *		cr	- credentials of caller.
180  *
181  *	OUT:	uio	- updated offset and range, buffer filled.
182  *
183  *	RETURN:	0 on success, error code on failure.
184  *
185  * Side Effects:
186  *	inode - atime updated if byte count > 0
187  */
188 /* ARGSUSED */
189 int
190 zfs_read(struct znode *zp, uio_t *uio, int ioflag, cred_t *cr)
191 {
192 	int error = 0;
193 	boolean_t frsync = B_FALSE;
194 
195 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
196 	ZFS_ENTER(zfsvfs);
197 	ZFS_VERIFY_ZP(zp);
198 
199 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
200 		ZFS_EXIT(zfsvfs);
201 		return (SET_ERROR(EACCES));
202 	}
203 
204 	/* We don't copy out anything useful for directories. */
205 	if (Z_ISDIR(ZTOTYPE(zp))) {
206 		ZFS_EXIT(zfsvfs);
207 		return (SET_ERROR(EISDIR));
208 	}
209 
210 	/*
211 	 * Validate file offset
212 	 */
213 	if (uio->uio_loffset < (offset_t)0) {
214 		ZFS_EXIT(zfsvfs);
215 		return (SET_ERROR(EINVAL));
216 	}
217 
218 	/*
219 	 * Fasttrack empty reads
220 	 */
221 	if (uio->uio_resid == 0) {
222 		ZFS_EXIT(zfsvfs);
223 		return (0);
224 	}
225 
226 #ifdef FRSYNC
227 	/*
228 	 * If we're in FRSYNC mode, sync out this znode before reading it.
229 	 * Only do this for non-snapshots.
230 	 *
231 	 * Some platforms do not support FRSYNC and instead map it
232 	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
233 	 * only honor FRSYNC requests on platforms which support it.
234 	 */
235 	frsync = !!(ioflag & FRSYNC);
236 #endif
237 	if (zfsvfs->z_log &&
238 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
239 		zil_commit(zfsvfs->z_log, zp->z_id);
240 
241 	/*
242 	 * Lock the range against changes.
243 	 */
244 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
245 	    uio->uio_loffset, uio->uio_resid, RL_READER);
246 
247 	/*
248 	 * If we are reading past end-of-file we can skip
249 	 * to the end; but we might still need to set atime.
250 	 */
251 	if (uio->uio_loffset >= zp->z_size) {
252 		error = 0;
253 		goto out;
254 	}
255 
256 	ASSERT(uio->uio_loffset < zp->z_size);
257 	ssize_t n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
258 	ssize_t start_resid = n;
259 
260 	while (n > 0) {
261 		ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
262 		    P2PHASE(uio->uio_loffset, zfs_vnops_read_chunk_size));
263 #ifdef UIO_NOCOPY
264 		if (uio->uio_segflg == UIO_NOCOPY)
265 			error = mappedread_sf(zp, nbytes, uio);
266 		else
267 #endif
268 		if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
269 			error = mappedread(zp, nbytes, uio);
270 		} else {
271 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
272 			    uio, nbytes);
273 		}
274 
275 		if (error) {
276 			/* convert checksum errors into IO errors */
277 			if (error == ECKSUM)
278 				error = SET_ERROR(EIO);
279 			break;
280 		}
281 
282 		n -= nbytes;
283 	}
284 
285 	int64_t nread = start_resid - n;
286 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
287 	task_io_account_read(nread);
288 out:
289 	zfs_rangelock_exit(lr);
290 
291 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
292 	ZFS_EXIT(zfsvfs);
293 	return (error);
294 }
295 
296 /*
297  * Write the bytes to a file.
298  *
299  *	IN:	zp	- znode of file to be written to.
300  *		uio	- structure supplying write location, range info,
301  *			  and data buffer.
302  *		ioflag	- O_APPEND flag set if in append mode.
303  *			  O_DIRECT flag; used to bypass page cache.
304  *		cr	- credentials of caller.
305  *
306  *	OUT:	uio	- updated offset and range.
307  *
308  *	RETURN:	0 if success
309  *		error code if failure
310  *
311  * Timestamps:
312  *	ip - ctime|mtime updated if byte count > 0
313  */
314 
315 /* ARGSUSED */
316 int
317 zfs_write(znode_t *zp, uio_t *uio, int ioflag, cred_t *cr)
318 {
319 	int error = 0;
320 	ssize_t start_resid = uio->uio_resid;
321 
322 	/*
323 	 * Fasttrack empty write
324 	 */
325 	ssize_t n = start_resid;
326 	if (n == 0)
327 		return (0);
328 
329 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
330 	ZFS_ENTER(zfsvfs);
331 	ZFS_VERIFY_ZP(zp);
332 
333 	sa_bulk_attr_t bulk[4];
334 	int count = 0;
335 	uint64_t mtime[2], ctime[2];
336 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
337 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
338 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
339 	    &zp->z_size, 8);
340 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
341 	    &zp->z_pflags, 8);
342 
343 	/*
344 	 * Callers might not be able to detect properly that we are read-only,
345 	 * so check it explicitly here.
346 	 */
347 	if (zfs_is_readonly(zfsvfs)) {
348 		ZFS_EXIT(zfsvfs);
349 		return (SET_ERROR(EROFS));
350 	}
351 
352 	/*
353 	 * If immutable or not appending then return EPERM
354 	 */
355 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
356 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
357 	    (uio->uio_loffset < zp->z_size))) {
358 		ZFS_EXIT(zfsvfs);
359 		return (SET_ERROR(EPERM));
360 	}
361 
362 	/*
363 	 * Validate file offset
364 	 */
365 	offset_t woff = ioflag & O_APPEND ? zp->z_size : uio->uio_loffset;
366 	if (woff < 0) {
367 		ZFS_EXIT(zfsvfs);
368 		return (SET_ERROR(EINVAL));
369 	}
370 
371 	const uint64_t max_blksz = zfsvfs->z_max_blksz;
372 
373 	/*
374 	 * Pre-fault the pages to ensure slow (eg NFS) pages
375 	 * don't hold up txg.
376 	 * Skip this if uio contains loaned arc_buf.
377 	 */
378 	if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
379 		ZFS_EXIT(zfsvfs);
380 		return (SET_ERROR(EFAULT));
381 	}
382 
383 	/*
384 	 * If in append mode, set the io offset pointer to eof.
385 	 */
386 	zfs_locked_range_t *lr;
387 	if (ioflag & O_APPEND) {
388 		/*
389 		 * Obtain an appending range lock to guarantee file append
390 		 * semantics.  We reset the write offset once we have the lock.
391 		 */
392 		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
393 		woff = lr->lr_offset;
394 		if (lr->lr_length == UINT64_MAX) {
395 			/*
396 			 * We overlocked the file because this write will cause
397 			 * the file block size to increase.
398 			 * Note that zp_size cannot change with this lock held.
399 			 */
400 			woff = zp->z_size;
401 		}
402 		uio->uio_loffset = woff;
403 	} else {
404 		/*
405 		 * Note that if the file block size will change as a result of
406 		 * this write, then this range lock will lock the entire file
407 		 * so that we can re-write the block safely.
408 		 */
409 		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
410 	}
411 
412 	if (zn_rlimit_fsize(zp, uio, uio->uio_td)) {
413 		zfs_rangelock_exit(lr);
414 		ZFS_EXIT(zfsvfs);
415 		return (SET_ERROR(EFBIG));
416 	}
417 
418 	const rlim64_t limit = MAXOFFSET_T;
419 
420 	if (woff >= limit) {
421 		zfs_rangelock_exit(lr);
422 		ZFS_EXIT(zfsvfs);
423 		return (SET_ERROR(EFBIG));
424 	}
425 
426 	if (n > limit - woff)
427 		n = limit - woff;
428 
429 	uint64_t end_size = MAX(zp->z_size, woff + n);
430 	zilog_t *zilog = zfsvfs->z_log;
431 
432 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
433 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
434 	const uint64_t projid = zp->z_projid;
435 
436 	/*
437 	 * Write the file in reasonable size chunks.  Each chunk is written
438 	 * in a separate transaction; this keeps the intent log records small
439 	 * and allows us to do more fine-grained space accounting.
440 	 */
441 	while (n > 0) {
442 		woff = uio->uio_loffset;
443 
444 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
445 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
446 		    (projid != ZFS_DEFAULT_PROJID &&
447 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
448 		    projid))) {
449 			error = SET_ERROR(EDQUOT);
450 			break;
451 		}
452 
453 		arc_buf_t *abuf = NULL;
454 		if (n >= max_blksz && woff >= zp->z_size &&
455 		    P2PHASE(woff, max_blksz) == 0 &&
456 		    zp->z_blksz == max_blksz) {
457 			/*
458 			 * This write covers a full block.  "Borrow" a buffer
459 			 * from the dmu so that we can fill it before we enter
460 			 * a transaction.  This avoids the possibility of
461 			 * holding up the transaction if the data copy hangs
462 			 * up on a pagefault (e.g., from an NFS server mapping).
463 			 */
464 			size_t cbytes;
465 
466 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
467 			    max_blksz);
468 			ASSERT(abuf != NULL);
469 			ASSERT(arc_buf_size(abuf) == max_blksz);
470 			if ((error = uiocopy(abuf->b_data, max_blksz,
471 			    UIO_WRITE, uio, &cbytes))) {
472 				dmu_return_arcbuf(abuf);
473 				break;
474 			}
475 			ASSERT3S(cbytes, ==, max_blksz);
476 		}
477 
478 		/*
479 		 * Start a transaction.
480 		 */
481 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
482 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
483 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
484 		DB_DNODE_ENTER(db);
485 		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
486 		    MIN(n, max_blksz));
487 		DB_DNODE_EXIT(db);
488 		zfs_sa_upgrade_txholds(tx, zp);
489 		error = dmu_tx_assign(tx, TXG_WAIT);
490 		if (error) {
491 			dmu_tx_abort(tx);
492 			if (abuf != NULL)
493 				dmu_return_arcbuf(abuf);
494 			break;
495 		}
496 
497 		/*
498 		 * If rangelock_enter() over-locked we grow the blocksize
499 		 * and then reduce the lock range.  This will only happen
500 		 * on the first iteration since rangelock_reduce() will
501 		 * shrink down lr_length to the appropriate size.
502 		 */
503 		if (lr->lr_length == UINT64_MAX) {
504 			uint64_t new_blksz;
505 
506 			if (zp->z_blksz > max_blksz) {
507 				/*
508 				 * File's blocksize is already larger than the
509 				 * "recordsize" property.  Only let it grow to
510 				 * the next power of 2.
511 				 */
512 				ASSERT(!ISP2(zp->z_blksz));
513 				new_blksz = MIN(end_size,
514 				    1 << highbit64(zp->z_blksz));
515 			} else {
516 				new_blksz = MIN(end_size, max_blksz);
517 			}
518 			zfs_grow_blocksize(zp, new_blksz, tx);
519 			zfs_rangelock_reduce(lr, woff, n);
520 		}
521 
522 		/*
523 		 * XXX - should we really limit each write to z_max_blksz?
524 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
525 		 */
526 		const ssize_t nbytes =
527 		    MIN(n, max_blksz - P2PHASE(woff, max_blksz));
528 
529 		ssize_t tx_bytes;
530 		if (abuf == NULL) {
531 			tx_bytes = uio->uio_resid;
532 			uio_fault_disable(uio, B_TRUE);
533 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
534 			    uio, nbytes, tx);
535 			uio_fault_disable(uio, B_FALSE);
536 #ifdef __linux__
537 			if (error == EFAULT) {
538 				dmu_tx_commit(tx);
539 				/*
540 				 * Account for partial writes before
541 				 * continuing the loop.
542 				 * Update needs to occur before the next
543 				 * uio_prefaultpages, or prefaultpages may
544 				 * error, and we may break the loop early.
545 				 */
546 				if (tx_bytes != uio->uio_resid)
547 					n -= tx_bytes - uio->uio_resid;
548 				if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
549 					break;
550 				}
551 				continue;
552 			}
553 #endif
554 			if (error != 0) {
555 				dmu_tx_commit(tx);
556 				break;
557 			}
558 			tx_bytes -= uio->uio_resid;
559 		} else {
560 			/* Implied by abuf != NULL: */
561 			ASSERT3S(n, >=, max_blksz);
562 			ASSERT0(P2PHASE(woff, max_blksz));
563 			/*
564 			 * We can simplify nbytes to MIN(n, max_blksz) since
565 			 * P2PHASE(woff, max_blksz) is 0, and knowing
566 			 * n >= max_blksz lets us simplify further:
567 			 */
568 			ASSERT3S(nbytes, ==, max_blksz);
569 			/*
570 			 * Thus, we're writing a full block at a block-aligned
571 			 * offset and extending the file past EOF.
572 			 *
573 			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
574 			 * arc buffer to a dbuf.
575 			 */
576 			error = dmu_assign_arcbuf_by_dbuf(
577 			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
578 			if (error != 0) {
579 				dmu_return_arcbuf(abuf);
580 				dmu_tx_commit(tx);
581 				break;
582 			}
583 			ASSERT3S(nbytes, <=, uio->uio_resid);
584 			uioskip(uio, nbytes);
585 			tx_bytes = nbytes;
586 		}
587 		if (tx_bytes && zn_has_cached_data(zp) &&
588 		    !(ioflag & O_DIRECT)) {
589 			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
590 		}
591 
592 		/*
593 		 * If we made no progress, we're done.  If we made even
594 		 * partial progress, update the znode and ZIL accordingly.
595 		 */
596 		if (tx_bytes == 0) {
597 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
598 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
599 			dmu_tx_commit(tx);
600 			ASSERT(error != 0);
601 			break;
602 		}
603 
604 		/*
605 		 * Clear Set-UID/Set-GID bits on successful write if not
606 		 * privileged and at least one of the execute bits is set.
607 		 *
608 		 * It would be nice to do this after all writes have
609 		 * been done, but that would still expose the ISUID/ISGID
610 		 * to another app after the partial write is committed.
611 		 *
612 		 * Note: we don't call zfs_fuid_map_id() here because
613 		 * user 0 is not an ephemeral uid.
614 		 */
615 		mutex_enter(&zp->z_acl_lock);
616 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
617 		    (S_IXUSR >> 6))) != 0 &&
618 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
619 		    secpolicy_vnode_setid_retain(zp, cr,
620 		    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
621 			uint64_t newmode;
622 			zp->z_mode &= ~(S_ISUID | S_ISGID);
623 			newmode = zp->z_mode;
624 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
625 			    (void *)&newmode, sizeof (uint64_t), tx);
626 		}
627 		mutex_exit(&zp->z_acl_lock);
628 
629 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
630 
631 		/*
632 		 * Update the file size (zp_size) if it has changed;
633 		 * account for possible concurrent updates.
634 		 */
635 		while ((end_size = zp->z_size) < uio->uio_loffset) {
636 			(void) atomic_cas_64(&zp->z_size, end_size,
637 			    uio->uio_loffset);
638 			ASSERT(error == 0);
639 		}
640 		/*
641 		 * If we are replaying and eof is non zero then force
642 		 * the file size to the specified eof. Note, there's no
643 		 * concurrency during replay.
644 		 */
645 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
646 			zp->z_size = zfsvfs->z_replay_eof;
647 
648 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
649 
650 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
651 		    NULL, NULL);
652 		dmu_tx_commit(tx);
653 
654 		if (error != 0)
655 			break;
656 		ASSERT3S(tx_bytes, ==, nbytes);
657 		n -= nbytes;
658 
659 		if (n > 0) {
660 			if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
661 				error = SET_ERROR(EFAULT);
662 				break;
663 			}
664 		}
665 	}
666 
667 	zfs_inode_update(zp);
668 	zfs_rangelock_exit(lr);
669 
670 	/*
671 	 * If we're in replay mode, or we made no progress, or the
672 	 * uio data is inaccessible return an error.  Otherwise, it's
673 	 * at least a partial write, so it's successful.
674 	 */
675 	if (zfsvfs->z_replay || uio->uio_resid == start_resid ||
676 	    error == EFAULT) {
677 		ZFS_EXIT(zfsvfs);
678 		return (error);
679 	}
680 
681 	if (ioflag & (O_SYNC | O_DSYNC) ||
682 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
683 		zil_commit(zilog, zp->z_id);
684 
685 	const int64_t nwritten = start_resid - uio->uio_resid;
686 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
687 	task_io_account_write(nwritten);
688 
689 	ZFS_EXIT(zfsvfs);
690 	return (0);
691 }
692 
693 /*ARGSUSED*/
694 int
695 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
696 {
697 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
698 	int error;
699 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
700 
701 	ZFS_ENTER(zfsvfs);
702 	ZFS_VERIFY_ZP(zp);
703 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
704 	ZFS_EXIT(zfsvfs);
705 
706 	return (error);
707 }
708 
709 /*ARGSUSED*/
710 int
711 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
712 {
713 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
714 	int error;
715 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
716 	zilog_t	*zilog = zfsvfs->z_log;
717 
718 	ZFS_ENTER(zfsvfs);
719 	ZFS_VERIFY_ZP(zp);
720 
721 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
722 
723 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
724 		zil_commit(zilog, 0);
725 
726 	ZFS_EXIT(zfsvfs);
727 	return (error);
728 }
729 
730 #ifdef ZFS_DEBUG
731 static int zil_fault_io = 0;
732 #endif
733 
734 static void zfs_get_done(zgd_t *zgd, int error);
735 
736 /*
737  * Get data to generate a TX_WRITE intent log record.
738  */
739 int
740 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
741 {
742 	zfsvfs_t *zfsvfs = arg;
743 	objset_t *os = zfsvfs->z_os;
744 	znode_t *zp;
745 	uint64_t object = lr->lr_foid;
746 	uint64_t offset = lr->lr_offset;
747 	uint64_t size = lr->lr_length;
748 	dmu_buf_t *db;
749 	zgd_t *zgd;
750 	int error = 0;
751 
752 	ASSERT3P(lwb, !=, NULL);
753 	ASSERT3P(zio, !=, NULL);
754 	ASSERT3U(size, !=, 0);
755 
756 	/*
757 	 * Nothing to do if the file has been removed
758 	 */
759 	if (zfs_zget(zfsvfs, object, &zp) != 0)
760 		return (SET_ERROR(ENOENT));
761 	if (zp->z_unlinked) {
762 		/*
763 		 * Release the vnode asynchronously as we currently have the
764 		 * txg stopped from syncing.
765 		 */
766 		zfs_zrele_async(zp);
767 		return (SET_ERROR(ENOENT));
768 	}
769 
770 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
771 	zgd->zgd_lwb = lwb;
772 	zgd->zgd_private = zp;
773 
774 	/*
775 	 * Write records come in two flavors: immediate and indirect.
776 	 * For small writes it's cheaper to store the data with the
777 	 * log record (immediate); for large writes it's cheaper to
778 	 * sync the data and get a pointer to it (indirect) so that
779 	 * we don't have to write the data twice.
780 	 */
781 	if (buf != NULL) { /* immediate write */
782 		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
783 		    offset, size, RL_READER);
784 		/* test for truncation needs to be done while range locked */
785 		if (offset >= zp->z_size) {
786 			error = SET_ERROR(ENOENT);
787 		} else {
788 			error = dmu_read(os, object, offset, size, buf,
789 			    DMU_READ_NO_PREFETCH);
790 		}
791 		ASSERT(error == 0 || error == ENOENT);
792 	} else { /* indirect write */
793 		/*
794 		 * Have to lock the whole block to ensure when it's
795 		 * written out and its checksum is being calculated
796 		 * that no one can change the data. We need to re-check
797 		 * blocksize after we get the lock in case it's changed!
798 		 */
799 		for (;;) {
800 			uint64_t blkoff;
801 			size = zp->z_blksz;
802 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
803 			offset -= blkoff;
804 			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
805 			    offset, size, RL_READER);
806 			if (zp->z_blksz == size)
807 				break;
808 			offset += blkoff;
809 			zfs_rangelock_exit(zgd->zgd_lr);
810 		}
811 		/* test for truncation needs to be done while range locked */
812 		if (lr->lr_offset >= zp->z_size)
813 			error = SET_ERROR(ENOENT);
814 #ifdef ZFS_DEBUG
815 		if (zil_fault_io) {
816 			error = SET_ERROR(EIO);
817 			zil_fault_io = 0;
818 		}
819 #endif
820 		if (error == 0)
821 			error = dmu_buf_hold(os, object, offset, zgd, &db,
822 			    DMU_READ_NO_PREFETCH);
823 
824 		if (error == 0) {
825 			blkptr_t *bp = &lr->lr_blkptr;
826 
827 			zgd->zgd_db = db;
828 			zgd->zgd_bp = bp;
829 
830 			ASSERT(db->db_offset == offset);
831 			ASSERT(db->db_size == size);
832 
833 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
834 			    zfs_get_done, zgd);
835 			ASSERT(error || lr->lr_length <= size);
836 
837 			/*
838 			 * On success, we need to wait for the write I/O
839 			 * initiated by dmu_sync() to complete before we can
840 			 * release this dbuf.  We will finish everything up
841 			 * in the zfs_get_done() callback.
842 			 */
843 			if (error == 0)
844 				return (0);
845 
846 			if (error == EALREADY) {
847 				lr->lr_common.lrc_txtype = TX_WRITE2;
848 				/*
849 				 * TX_WRITE2 relies on the data previously
850 				 * written by the TX_WRITE that caused
851 				 * EALREADY.  We zero out the BP because
852 				 * it is the old, currently-on-disk BP.
853 				 */
854 				zgd->zgd_bp = NULL;
855 				BP_ZERO(bp);
856 				error = 0;
857 			}
858 		}
859 	}
860 
861 	zfs_get_done(zgd, error);
862 
863 	return (error);
864 }
865 
866 
867 /* ARGSUSED */
868 static void
869 zfs_get_done(zgd_t *zgd, int error)
870 {
871 	znode_t *zp = zgd->zgd_private;
872 
873 	if (zgd->zgd_db)
874 		dmu_buf_rele(zgd->zgd_db, zgd);
875 
876 	zfs_rangelock_exit(zgd->zgd_lr);
877 
878 	/*
879 	 * Release the vnode asynchronously as we currently have the
880 	 * txg stopped from syncing.
881 	 */
882 	zfs_zrele_async(zp);
883 
884 	kmem_free(zgd, sizeof (zgd_t));
885 }
886 
887 EXPORT_SYMBOL(zfs_access);
888 EXPORT_SYMBOL(zfs_fsync);
889 EXPORT_SYMBOL(zfs_holey);
890 EXPORT_SYMBOL(zfs_read);
891 EXPORT_SYMBOL(zfs_write);
892 EXPORT_SYMBOL(zfs_getsecattr);
893 EXPORT_SYMBOL(zfs_setsecattr);
894 
895 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW,
896 	"Bytes to read per chunk");
897