1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
28 */
29
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/cmn_err.h>
42 #include <sys/errno.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zfs_acl.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/dmu.h>
48 #include <sys/dmu_objset.h>
49 #include <sys/dsl_crypt.h>
50 #include <sys/spa.h>
51 #include <sys/txg.h>
52 #include <sys/dbuf.h>
53 #include <sys/policy.h>
54 #include <sys/zfeature.h>
55 #include <sys/zfs_vnops.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/zfs_vfsops.h>
58 #include <sys/zfs_znode.h>
59
60 /*
61 * Enables access to the block cloning feature. If this setting is 0, then even
62 * if feature@block_cloning is enabled, using functions and system calls that
63 * attempt to clone blocks will act as though the feature is disabled.
64 */
65 int zfs_bclone_enabled = 1;
66
67 /*
68 * When set zfs_clone_range() waits for dirty data to be written to disk.
69 * This allows the clone operation to reliably succeed when a file is modified
70 * and then immediately cloned. For small files this may be slower than making
71 * a copy of the file and is therefore not the default. However, in certain
72 * scenarios this behavior may be desirable so a tunable is provided.
73 */
74 int zfs_bclone_wait_dirty = 0;
75
76 /*
77 * Enable Direct I/O. If this setting is 0, then all I/O requests will be
78 * directed through the ARC acting as though the dataset property direct was
79 * set to disabled.
80 *
81 * Disabled by default on FreeBSD until a potential range locking issue in
82 * zfs_getpages() can be resolved.
83 */
84 #ifdef __FreeBSD__
85 static int zfs_dio_enabled = 0;
86 #else
87 static int zfs_dio_enabled = 1;
88 #endif
89
90
91 /*
92 * Maximum bytes to read per chunk in zfs_read().
93 */
94 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024;
95
96 int
zfs_fsync(znode_t * zp,int syncflag,cred_t * cr)97 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
98 {
99 int error = 0;
100 zfsvfs_t *zfsvfs = ZTOZSB(zp);
101
102 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
103 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
104 return (error);
105 atomic_inc_32(&zp->z_sync_writes_cnt);
106 zil_commit(zfsvfs->z_log, zp->z_id);
107 atomic_dec_32(&zp->z_sync_writes_cnt);
108 zfs_exit(zfsvfs, FTAG);
109 }
110 return (error);
111 }
112
113
114 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
115 /*
116 * Lseek support for finding holes (cmd == SEEK_HOLE) and
117 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
118 */
119 static int
zfs_holey_common(znode_t * zp,ulong_t cmd,loff_t * off)120 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
121 {
122 zfs_locked_range_t *lr;
123 uint64_t noff = (uint64_t)*off; /* new offset */
124 uint64_t file_sz;
125 int error;
126 boolean_t hole;
127
128 file_sz = zp->z_size;
129 if (noff >= file_sz) {
130 return (SET_ERROR(ENXIO));
131 }
132
133 if (cmd == F_SEEK_HOLE)
134 hole = B_TRUE;
135 else
136 hole = B_FALSE;
137
138 /* Flush any mmap()'d data to disk */
139 if (zn_has_cached_data(zp, 0, file_sz - 1))
140 zn_flush_cached_data(zp, B_TRUE);
141
142 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
143 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
144 zfs_rangelock_exit(lr);
145
146 if (error == ESRCH)
147 return (SET_ERROR(ENXIO));
148
149 /* File was dirty, so fall back to using generic logic */
150 if (error == EBUSY) {
151 if (hole)
152 *off = file_sz;
153
154 return (0);
155 }
156
157 /*
158 * We could find a hole that begins after the logical end-of-file,
159 * because dmu_offset_next() only works on whole blocks. If the
160 * EOF falls mid-block, then indicate that the "virtual hole"
161 * at the end of the file begins at the logical EOF, rather than
162 * at the end of the last block.
163 */
164 if (noff > file_sz) {
165 ASSERT(hole);
166 noff = file_sz;
167 }
168
169 if (noff < *off)
170 return (error);
171 *off = noff;
172 return (error);
173 }
174
175 int
zfs_holey(znode_t * zp,ulong_t cmd,loff_t * off)176 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
177 {
178 zfsvfs_t *zfsvfs = ZTOZSB(zp);
179 int error;
180
181 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
182 return (error);
183
184 error = zfs_holey_common(zp, cmd, off);
185
186 zfs_exit(zfsvfs, FTAG);
187 return (error);
188 }
189 #endif /* SEEK_HOLE && SEEK_DATA */
190
191 int
zfs_access(znode_t * zp,int mode,int flag,cred_t * cr)192 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
193 {
194 zfsvfs_t *zfsvfs = ZTOZSB(zp);
195 int error;
196
197 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
198 return (error);
199
200 if (flag & V_ACE_MASK)
201 #if defined(__linux__)
202 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
203 zfs_init_idmap);
204 #else
205 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
206 NULL);
207 #endif
208 else
209 #if defined(__linux__)
210 error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
211 #else
212 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
213 #endif
214
215 zfs_exit(zfsvfs, FTAG);
216 return (error);
217 }
218
219 /*
220 * Determine if Direct I/O has been requested (either via the O_DIRECT flag or
221 * the "direct" dataset property). When inherited by the property only apply
222 * the O_DIRECT flag to correctly aligned IO requests. The rational for this
223 * is it allows the property to be safely set on a dataset without forcing
224 * all of the applications to be aware of the alignment restrictions. When
225 * O_DIRECT is explicitly requested by an application return EINVAL if the
226 * request is unaligned. In all cases, if the range for this request has
227 * been mmap'ed then we will perform buffered I/O to keep the mapped region
228 * synhronized with the ARC.
229 *
230 * It is possible that a file's pages could be mmap'ed after it is checked
231 * here. If so, that is handled coorarding in zfs_write(). See comments in the
232 * following area for how this is handled:
233 * zfs_write() -> update_pages()
234 */
235 static int
zfs_setup_direct(struct znode * zp,zfs_uio_t * uio,zfs_uio_rw_t rw,int * ioflagp)236 zfs_setup_direct(struct znode *zp, zfs_uio_t *uio, zfs_uio_rw_t rw,
237 int *ioflagp)
238 {
239 zfsvfs_t *zfsvfs = ZTOZSB(zp);
240 objset_t *os = zfsvfs->z_os;
241 int ioflag = *ioflagp;
242 int error = 0;
243
244 if (!zfs_dio_enabled || os->os_direct == ZFS_DIRECT_DISABLED ||
245 zn_has_cached_data(zp, zfs_uio_offset(uio),
246 zfs_uio_offset(uio) + zfs_uio_resid(uio) - 1)) {
247 /*
248 * Direct I/O is disabled or the region is mmap'ed. In either
249 * case the I/O request will just directed through the ARC.
250 */
251 ioflag &= ~O_DIRECT;
252 goto out;
253 } else if (os->os_direct == ZFS_DIRECT_ALWAYS &&
254 zfs_uio_page_aligned(uio) &&
255 zfs_uio_aligned(uio, PAGE_SIZE)) {
256 if ((rw == UIO_WRITE && zfs_uio_resid(uio) >= zp->z_blksz) ||
257 (rw == UIO_READ)) {
258 ioflag |= O_DIRECT;
259 }
260 } else if (os->os_direct == ZFS_DIRECT_ALWAYS && (ioflag & O_DIRECT)) {
261 /*
262 * Direct I/O was requested through the direct=always, but it
263 * is not properly PAGE_SIZE aligned. The request will be
264 * directed through the ARC.
265 */
266 ioflag &= ~O_DIRECT;
267 }
268
269 if (ioflag & O_DIRECT) {
270 if (!zfs_uio_page_aligned(uio) ||
271 !zfs_uio_aligned(uio, PAGE_SIZE)) {
272 error = SET_ERROR(EINVAL);
273 goto out;
274 }
275
276 error = zfs_uio_get_dio_pages_alloc(uio, rw);
277 if (error) {
278 goto out;
279 }
280 }
281
282 IMPLY(ioflag & O_DIRECT, uio->uio_extflg & UIO_DIRECT);
283 ASSERT0(error);
284
285 out:
286 *ioflagp = ioflag;
287 return (error);
288 }
289
290 /*
291 * Read bytes from specified file into supplied buffer.
292 *
293 * IN: zp - inode of file to be read from.
294 * uio - structure supplying read location, range info,
295 * and return buffer.
296 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
297 * O_DIRECT flag; used to bypass page cache.
298 * cr - credentials of caller.
299 *
300 * OUT: uio - updated offset and range, buffer filled.
301 *
302 * RETURN: 0 on success, error code on failure.
303 *
304 * Side Effects:
305 * inode - atime updated if byte count > 0
306 */
307 int
zfs_read(struct znode * zp,zfs_uio_t * uio,int ioflag,cred_t * cr)308 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
309 {
310 (void) cr;
311 int error = 0;
312 boolean_t frsync = B_FALSE;
313 boolean_t dio_checksum_failure = B_FALSE;
314
315 zfsvfs_t *zfsvfs = ZTOZSB(zp);
316 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
317 return (error);
318
319 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
320 zfs_exit(zfsvfs, FTAG);
321 return (SET_ERROR(EACCES));
322 }
323
324 /* We don't copy out anything useful for directories. */
325 if (Z_ISDIR(ZTOTYPE(zp))) {
326 zfs_exit(zfsvfs, FTAG);
327 return (SET_ERROR(EISDIR));
328 }
329
330 /*
331 * Validate file offset
332 */
333 if (zfs_uio_offset(uio) < (offset_t)0) {
334 zfs_exit(zfsvfs, FTAG);
335 return (SET_ERROR(EINVAL));
336 }
337
338 /*
339 * Fasttrack empty reads
340 */
341 if (zfs_uio_resid(uio) == 0) {
342 zfs_exit(zfsvfs, FTAG);
343 return (0);
344 }
345
346 #ifdef FRSYNC
347 /*
348 * If we're in FRSYNC mode, sync out this znode before reading it.
349 * Only do this for non-snapshots.
350 *
351 * Some platforms do not support FRSYNC and instead map it
352 * to O_SYNC, which results in unnecessary calls to zil_commit. We
353 * only honor FRSYNC requests on platforms which support it.
354 */
355 frsync = !!(ioflag & FRSYNC);
356 #endif
357 if (zfsvfs->z_log &&
358 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
359 zil_commit(zfsvfs->z_log, zp->z_id);
360
361 /*
362 * Lock the range against changes.
363 */
364 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
365 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
366
367 /*
368 * If we are reading past end-of-file we can skip
369 * to the end; but we might still need to set atime.
370 */
371 if (zfs_uio_offset(uio) >= zp->z_size) {
372 error = 0;
373 goto out;
374 }
375 ASSERT(zfs_uio_offset(uio) < zp->z_size);
376
377 /*
378 * Setting up Direct I/O if requested.
379 */
380 error = zfs_setup_direct(zp, uio, UIO_READ, &ioflag);
381 if (error) {
382 goto out;
383 }
384
385 #if defined(__linux__)
386 ssize_t start_offset = zfs_uio_offset(uio);
387 #endif
388 ssize_t chunk_size = zfs_vnops_read_chunk_size;
389 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
390 ssize_t start_resid = n;
391 ssize_t dio_remaining_resid = 0;
392
393 if (uio->uio_extflg & UIO_DIRECT) {
394 /*
395 * All pages for an O_DIRECT request ahve already been mapped
396 * so there's no compelling reason to handle this uio in
397 * smaller chunks.
398 */
399 chunk_size = DMU_MAX_ACCESS;
400
401 /*
402 * In the event that the O_DIRECT request is reading the entire
403 * file, it is possible file's length is not page sized
404 * aligned. However, lower layers expect that the Direct I/O
405 * request is page-aligned. In this case, as much of the file
406 * that can be read using Direct I/O happens and the remaining
407 * amount will be read through the ARC.
408 *
409 * This is still consistent with the semantics of Direct I/O in
410 * ZFS as at a minimum the I/O request must be page-aligned.
411 */
412 dio_remaining_resid = n - P2ALIGN_TYPED(n, PAGE_SIZE, ssize_t);
413 if (dio_remaining_resid != 0)
414 n -= dio_remaining_resid;
415 }
416
417 while (n > 0) {
418 ssize_t nbytes = MIN(n, chunk_size -
419 P2PHASE(zfs_uio_offset(uio), chunk_size));
420 #ifdef UIO_NOCOPY
421 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
422 error = mappedread_sf(zp, nbytes, uio);
423 else
424 #endif
425 if (zn_has_cached_data(zp, zfs_uio_offset(uio),
426 zfs_uio_offset(uio) + nbytes - 1)) {
427 error = mappedread(zp, nbytes, uio);
428 } else {
429 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
430 uio, nbytes);
431 }
432
433 if (error) {
434 /* convert checksum errors into IO errors */
435 if (error == ECKSUM) {
436 /*
437 * If a Direct I/O read returned a checksum
438 * verify error, then it must be treated as
439 * suspicious. The contents of the buffer could
440 * have beeen manipulated while the I/O was in
441 * flight. In this case, the remainder of I/O
442 * request will just be reissued through the
443 * ARC.
444 */
445 if (uio->uio_extflg & UIO_DIRECT) {
446 dio_checksum_failure = B_TRUE;
447 uio->uio_extflg &= ~UIO_DIRECT;
448 n += dio_remaining_resid;
449 dio_remaining_resid = 0;
450 continue;
451 } else {
452 error = SET_ERROR(EIO);
453 }
454 }
455
456 #if defined(__linux__)
457 /*
458 * if we actually read some bytes, bubbling EFAULT
459 * up to become EAGAIN isn't what we want here...
460 *
461 * ...on Linux, at least. On FBSD, doing this breaks.
462 */
463 if (error == EFAULT &&
464 (zfs_uio_offset(uio) - start_offset) != 0)
465 error = 0;
466 #endif
467 break;
468 }
469
470 n -= nbytes;
471 }
472
473 if (error == 0 && (uio->uio_extflg & UIO_DIRECT) &&
474 dio_remaining_resid != 0) {
475 /*
476 * Temporarily remove the UIO_DIRECT flag from the UIO so the
477 * remainder of the file can be read using the ARC.
478 */
479 uio->uio_extflg &= ~UIO_DIRECT;
480
481 if (zn_has_cached_data(zp, zfs_uio_offset(uio),
482 zfs_uio_offset(uio) + dio_remaining_resid - 1)) {
483 error = mappedread(zp, dio_remaining_resid, uio);
484 } else {
485 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio,
486 dio_remaining_resid);
487 }
488 uio->uio_extflg |= UIO_DIRECT;
489
490 if (error != 0)
491 n += dio_remaining_resid;
492 } else if (error && (uio->uio_extflg & UIO_DIRECT)) {
493 n += dio_remaining_resid;
494 }
495 int64_t nread = start_resid - n;
496
497 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
498 out:
499 zfs_rangelock_exit(lr);
500
501 if (dio_checksum_failure == B_TRUE)
502 uio->uio_extflg |= UIO_DIRECT;
503
504 /*
505 * Cleanup for Direct I/O if requested.
506 */
507 if (uio->uio_extflg & UIO_DIRECT)
508 zfs_uio_free_dio_pages(uio, UIO_READ);
509
510 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
511 zfs_exit(zfsvfs, FTAG);
512 return (error);
513 }
514
515 static void
zfs_clear_setid_bits_if_necessary(zfsvfs_t * zfsvfs,znode_t * zp,cred_t * cr,uint64_t * clear_setid_bits_txgp,dmu_tx_t * tx)516 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
517 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
518 {
519 zilog_t *zilog = zfsvfs->z_log;
520 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
521
522 ASSERT(clear_setid_bits_txgp != NULL);
523 ASSERT(tx != NULL);
524
525 /*
526 * Clear Set-UID/Set-GID bits on successful write if not
527 * privileged and at least one of the execute bits is set.
528 *
529 * It would be nice to do this after all writes have
530 * been done, but that would still expose the ISUID/ISGID
531 * to another app after the partial write is committed.
532 *
533 * Note: we don't call zfs_fuid_map_id() here because
534 * user 0 is not an ephemeral uid.
535 */
536 mutex_enter(&zp->z_acl_lock);
537 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
538 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
539 secpolicy_vnode_setid_retain(zp, cr,
540 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
541 uint64_t newmode;
542
543 zp->z_mode &= ~(S_ISUID | S_ISGID);
544 newmode = zp->z_mode;
545 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
546 (void *)&newmode, sizeof (uint64_t), tx);
547
548 mutex_exit(&zp->z_acl_lock);
549
550 /*
551 * Make sure SUID/SGID bits will be removed when we replay the
552 * log. If the setid bits are keep coming back, don't log more
553 * than one TX_SETATTR per transaction group.
554 */
555 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
556 vattr_t va = {0};
557
558 va.va_mask = ATTR_MODE;
559 va.va_nodeid = zp->z_id;
560 va.va_mode = newmode;
561 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
562 ATTR_MODE, NULL);
563 *clear_setid_bits_txgp = dmu_tx_get_txg(tx);
564 }
565 } else {
566 mutex_exit(&zp->z_acl_lock);
567 }
568 }
569
570 /*
571 * Write the bytes to a file.
572 *
573 * IN: zp - znode of file to be written to.
574 * uio - structure supplying write location, range info,
575 * and data buffer.
576 * ioflag - O_APPEND flag set if in append mode.
577 * O_DIRECT flag; used to bypass page cache.
578 * cr - credentials of caller.
579 *
580 * OUT: uio - updated offset and range.
581 *
582 * RETURN: 0 if success
583 * error code if failure
584 *
585 * Timestamps:
586 * ip - ctime|mtime updated if byte count > 0
587 */
588 int
zfs_write(znode_t * zp,zfs_uio_t * uio,int ioflag,cred_t * cr)589 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
590 {
591 int error = 0, error1;
592 ssize_t start_resid = zfs_uio_resid(uio);
593 uint64_t clear_setid_bits_txg = 0;
594 boolean_t o_direct_defer = B_FALSE;
595
596 /*
597 * Fasttrack empty write
598 */
599 ssize_t n = start_resid;
600 if (n == 0)
601 return (0);
602
603 zfsvfs_t *zfsvfs = ZTOZSB(zp);
604 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
605 return (error);
606
607 sa_bulk_attr_t bulk[4];
608 int count = 0;
609 uint64_t mtime[2], ctime[2];
610 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
611 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
612 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
613 &zp->z_size, 8);
614 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
615 &zp->z_pflags, 8);
616
617 /*
618 * Callers might not be able to detect properly that we are read-only,
619 * so check it explicitly here.
620 */
621 if (zfs_is_readonly(zfsvfs)) {
622 zfs_exit(zfsvfs, FTAG);
623 return (SET_ERROR(EROFS));
624 }
625
626 /*
627 * If immutable or not appending then return EPERM.
628 * Intentionally allow ZFS_READONLY through here.
629 * See zfs_zaccess_common()
630 */
631 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
632 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
633 (zfs_uio_offset(uio) < zp->z_size))) {
634 zfs_exit(zfsvfs, FTAG);
635 return (SET_ERROR(EPERM));
636 }
637
638 /*
639 * Validate file offset
640 */
641 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
642 if (woff < 0) {
643 zfs_exit(zfsvfs, FTAG);
644 return (SET_ERROR(EINVAL));
645 }
646
647 /*
648 * Setting up Direct I/O if requested.
649 */
650 error = zfs_setup_direct(zp, uio, UIO_WRITE, &ioflag);
651 if (error) {
652 zfs_exit(zfsvfs, FTAG);
653 return (SET_ERROR(error));
654 }
655
656 /*
657 * Pre-fault the pages to ensure slow (eg NFS) pages
658 * don't hold up txg.
659 */
660 ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
661 if (zfs_uio_prefaultpages(pfbytes, uio)) {
662 zfs_exit(zfsvfs, FTAG);
663 return (SET_ERROR(EFAULT));
664 }
665
666 /*
667 * If in append mode, set the io offset pointer to eof.
668 */
669 zfs_locked_range_t *lr;
670 if (ioflag & O_APPEND) {
671 /*
672 * Obtain an appending range lock to guarantee file append
673 * semantics. We reset the write offset once we have the lock.
674 */
675 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
676 woff = lr->lr_offset;
677 if (lr->lr_length == UINT64_MAX) {
678 /*
679 * We overlocked the file because this write will cause
680 * the file block size to increase.
681 * Note that zp_size cannot change with this lock held.
682 */
683 woff = zp->z_size;
684 }
685 zfs_uio_setoffset(uio, woff);
686 /*
687 * We need to update the starting offset as well because it is
688 * set previously in the ZPL (Linux) and VNOPS (FreeBSD)
689 * layers.
690 */
691 zfs_uio_setsoffset(uio, woff);
692 } else {
693 /*
694 * Note that if the file block size will change as a result of
695 * this write, then this range lock will lock the entire file
696 * so that we can re-write the block safely.
697 */
698 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
699 }
700
701 if (zn_rlimit_fsize_uio(zp, uio)) {
702 zfs_rangelock_exit(lr);
703 zfs_exit(zfsvfs, FTAG);
704 return (SET_ERROR(EFBIG));
705 }
706
707 const rlim64_t limit = MAXOFFSET_T;
708
709 if (woff >= limit) {
710 zfs_rangelock_exit(lr);
711 zfs_exit(zfsvfs, FTAG);
712 return (SET_ERROR(EFBIG));
713 }
714
715 if (n > limit - woff)
716 n = limit - woff;
717
718 uint64_t end_size = MAX(zp->z_size, woff + n);
719 zilog_t *zilog = zfsvfs->z_log;
720 boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) ||
721 (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);
722
723 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
724 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
725 const uint64_t projid = zp->z_projid;
726
727 /*
728 * In the event we are increasing the file block size
729 * (lr_length == UINT64_MAX), we will direct the write to the ARC.
730 * Because zfs_grow_blocksize() will read from the ARC in order to
731 * grow the dbuf, we avoid doing Direct I/O here as that would cause
732 * data written to disk to be overwritten by data in the ARC during
733 * the sync phase. Besides writing data twice to disk, we also
734 * want to avoid consistency concerns between data in the the ARC and
735 * on disk while growing the file's blocksize.
736 *
737 * We will only temporarily remove Direct I/O and put it back after
738 * we have grown the blocksize. We do this in the event a request
739 * is larger than max_blksz, so further requests to
740 * dmu_write_uio_dbuf() will still issue the requests using Direct
741 * IO.
742 *
743 * As an example:
744 * The first block to file is being written as a 4k request with
745 * a recorsize of 1K. The first 1K issued in the loop below will go
746 * through the ARC; however, the following 3 1K requests will
747 * use Direct I/O.
748 */
749 if (uio->uio_extflg & UIO_DIRECT && lr->lr_length == UINT64_MAX) {
750 uio->uio_extflg &= ~UIO_DIRECT;
751 o_direct_defer = B_TRUE;
752 }
753
754 /*
755 * Write the file in reasonable size chunks. Each chunk is written
756 * in a separate transaction; this keeps the intent log records small
757 * and allows us to do more fine-grained space accounting.
758 */
759 while (n > 0) {
760 woff = zfs_uio_offset(uio);
761
762 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
763 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
764 (projid != ZFS_DEFAULT_PROJID &&
765 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
766 projid))) {
767 error = SET_ERROR(EDQUOT);
768 break;
769 }
770
771 uint64_t blksz;
772 if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
773 if (zp->z_blksz > zfsvfs->z_max_blksz &&
774 !ISP2(zp->z_blksz)) {
775 /*
776 * File's blocksize is already larger than the
777 * "recordsize" property. Only let it grow to
778 * the next power of 2.
779 */
780 blksz = 1 << highbit64(zp->z_blksz);
781 } else {
782 blksz = zfsvfs->z_max_blksz;
783 }
784 blksz = MIN(blksz, P2ROUNDUP(end_size,
785 SPA_MINBLOCKSIZE));
786 blksz = MAX(blksz, zp->z_blksz);
787 } else {
788 blksz = zp->z_blksz;
789 }
790
791 arc_buf_t *abuf = NULL;
792 ssize_t nbytes = n;
793 if (n >= blksz && woff >= zp->z_size &&
794 P2PHASE(woff, blksz) == 0 &&
795 !(uio->uio_extflg & UIO_DIRECT) &&
796 (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
797 /*
798 * This write covers a full block. "Borrow" a buffer
799 * from the dmu so that we can fill it before we enter
800 * a transaction. This avoids the possibility of
801 * holding up the transaction if the data copy hangs
802 * up on a pagefault (e.g., from an NFS server mapping).
803 */
804 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
805 blksz);
806 ASSERT(abuf != NULL);
807 ASSERT(arc_buf_size(abuf) == blksz);
808 if ((error = zfs_uiocopy(abuf->b_data, blksz,
809 UIO_WRITE, uio, &nbytes))) {
810 dmu_return_arcbuf(abuf);
811 break;
812 }
813 ASSERT3S(nbytes, ==, blksz);
814 } else {
815 nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
816 P2PHASE(woff, blksz));
817 if (pfbytes < nbytes) {
818 if (zfs_uio_prefaultpages(nbytes, uio)) {
819 error = SET_ERROR(EFAULT);
820 break;
821 }
822 pfbytes = nbytes;
823 }
824 }
825
826 /*
827 * Start a transaction.
828 */
829 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
830 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
831 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
832 DB_DNODE_ENTER(db);
833 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
834 DB_DNODE_EXIT(db);
835 zfs_sa_upgrade_txholds(tx, zp);
836 error = dmu_tx_assign(tx, TXG_WAIT);
837 if (error) {
838 dmu_tx_abort(tx);
839 if (abuf != NULL)
840 dmu_return_arcbuf(abuf);
841 break;
842 }
843
844 /*
845 * NB: We must call zfs_clear_setid_bits_if_necessary before
846 * committing the transaction!
847 */
848
849 /*
850 * If rangelock_enter() over-locked we grow the blocksize
851 * and then reduce the lock range. This will only happen
852 * on the first iteration since rangelock_reduce() will
853 * shrink down lr_length to the appropriate size.
854 */
855 if (lr->lr_length == UINT64_MAX) {
856 zfs_grow_blocksize(zp, blksz, tx);
857 zfs_rangelock_reduce(lr, woff, n);
858 }
859
860 ssize_t tx_bytes;
861 if (abuf == NULL) {
862 tx_bytes = zfs_uio_resid(uio);
863 zfs_uio_fault_disable(uio, B_TRUE);
864 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
865 uio, nbytes, tx);
866 zfs_uio_fault_disable(uio, B_FALSE);
867 #ifdef __linux__
868 if (error == EFAULT) {
869 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
870 cr, &clear_setid_bits_txg, tx);
871 dmu_tx_commit(tx);
872 /*
873 * Account for partial writes before
874 * continuing the loop.
875 * Update needs to occur before the next
876 * zfs_uio_prefaultpages, or prefaultpages may
877 * error, and we may break the loop early.
878 */
879 n -= tx_bytes - zfs_uio_resid(uio);
880 pfbytes -= tx_bytes - zfs_uio_resid(uio);
881 continue;
882 }
883 #endif
884 /*
885 * On FreeBSD, EFAULT should be propagated back to the
886 * VFS, which will handle faulting and will retry.
887 */
888 if (error != 0 && error != EFAULT) {
889 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
890 cr, &clear_setid_bits_txg, tx);
891 dmu_tx_commit(tx);
892 break;
893 }
894 tx_bytes -= zfs_uio_resid(uio);
895 } else {
896 /*
897 * Thus, we're writing a full block at a block-aligned
898 * offset and extending the file past EOF.
899 *
900 * dmu_assign_arcbuf_by_dbuf() will directly assign the
901 * arc buffer to a dbuf.
902 */
903 error = dmu_assign_arcbuf_by_dbuf(
904 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
905 if (error != 0) {
906 /*
907 * XXX This might not be necessary if
908 * dmu_assign_arcbuf_by_dbuf is guaranteed
909 * to be atomic.
910 */
911 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
912 cr, &clear_setid_bits_txg, tx);
913 dmu_return_arcbuf(abuf);
914 dmu_tx_commit(tx);
915 break;
916 }
917 ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
918 zfs_uioskip(uio, nbytes);
919 tx_bytes = nbytes;
920 }
921 /*
922 * There is a window where a file's pages can be mmap'ed after
923 * zfs_setup_direct() is called. This is due to the fact that
924 * the rangelock in this function is acquired after calling
925 * zfs_setup_direct(). This is done so that
926 * zfs_uio_prefaultpages() does not attempt to fault in pages
927 * on Linux for Direct I/O requests. This is not necessary as
928 * the pages are pinned in memory and can not be faulted out.
929 * Ideally, the rangelock would be held before calling
930 * zfs_setup_direct() and zfs_uio_prefaultpages(); however,
931 * this can lead to a deadlock as zfs_getpage() also acquires
932 * the rangelock as a RL_WRITER and prefaulting the pages can
933 * lead to zfs_getpage() being called.
934 *
935 * In the case of the pages being mapped after
936 * zfs_setup_direct() is called, the call to update_pages()
937 * will still be made to make sure there is consistency between
938 * the ARC and the Linux page cache. This is an ufortunate
939 * situation as the data will be read back into the ARC after
940 * the Direct I/O write has completed, but this is the penality
941 * for writing to a mmap'ed region of a file using Direct I/O.
942 */
943 if (tx_bytes &&
944 zn_has_cached_data(zp, woff, woff + tx_bytes - 1)) {
945 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
946 }
947
948 /*
949 * If we made no progress, we're done. If we made even
950 * partial progress, update the znode and ZIL accordingly.
951 */
952 if (tx_bytes == 0) {
953 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
954 (void *)&zp->z_size, sizeof (uint64_t), tx);
955 dmu_tx_commit(tx);
956 ASSERT(error != 0);
957 break;
958 }
959
960 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
961 &clear_setid_bits_txg, tx);
962
963 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
964
965 /*
966 * Update the file size (zp_size) if it has changed;
967 * account for possible concurrent updates.
968 */
969 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
970 (void) atomic_cas_64(&zp->z_size, end_size,
971 zfs_uio_offset(uio));
972 ASSERT(error == 0 || error == EFAULT);
973 }
974 /*
975 * If we are replaying and eof is non zero then force
976 * the file size to the specified eof. Note, there's no
977 * concurrency during replay.
978 */
979 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
980 zp->z_size = zfsvfs->z_replay_eof;
981
982 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
983 if (error1 != 0)
984 /* Avoid clobbering EFAULT. */
985 error = error1;
986
987 /*
988 * NB: During replay, the TX_SETATTR record logged by
989 * zfs_clear_setid_bits_if_necessary must precede any of
990 * the TX_WRITE records logged here.
991 */
992 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit,
993 uio->uio_extflg & UIO_DIRECT ? B_TRUE : B_FALSE, NULL,
994 NULL);
995
996 dmu_tx_commit(tx);
997
998 /*
999 * Direct I/O was deferred in order to grow the first block.
1000 * At this point it can be re-enabled for subsequent writes.
1001 */
1002 if (o_direct_defer) {
1003 ASSERT(ioflag & O_DIRECT);
1004 uio->uio_extflg |= UIO_DIRECT;
1005 o_direct_defer = B_FALSE;
1006 }
1007
1008 if (error != 0)
1009 break;
1010 ASSERT3S(tx_bytes, ==, nbytes);
1011 n -= nbytes;
1012 pfbytes -= nbytes;
1013 }
1014
1015 if (o_direct_defer) {
1016 ASSERT(ioflag & O_DIRECT);
1017 uio->uio_extflg |= UIO_DIRECT;
1018 o_direct_defer = B_FALSE;
1019 }
1020
1021 zfs_znode_update_vfs(zp);
1022 zfs_rangelock_exit(lr);
1023
1024 /*
1025 * Cleanup for Direct I/O if requested.
1026 */
1027 if (uio->uio_extflg & UIO_DIRECT)
1028 zfs_uio_free_dio_pages(uio, UIO_WRITE);
1029
1030 /*
1031 * If we're in replay mode, or we made no progress, or the
1032 * uio data is inaccessible return an error. Otherwise, it's
1033 * at least a partial write, so it's successful.
1034 */
1035 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
1036 error == EFAULT) {
1037 zfs_exit(zfsvfs, FTAG);
1038 return (error);
1039 }
1040
1041 if (commit)
1042 zil_commit(zilog, zp->z_id);
1043
1044 int64_t nwritten = start_resid - zfs_uio_resid(uio);
1045 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
1046
1047 zfs_exit(zfsvfs, FTAG);
1048 return (0);
1049 }
1050
1051 int
zfs_getsecattr(znode_t * zp,vsecattr_t * vsecp,int flag,cred_t * cr)1052 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
1053 {
1054 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1055 int error;
1056 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1057
1058 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1059 return (error);
1060 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
1061 zfs_exit(zfsvfs, FTAG);
1062
1063 return (error);
1064 }
1065
1066 int
zfs_setsecattr(znode_t * zp,vsecattr_t * vsecp,int flag,cred_t * cr)1067 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
1068 {
1069 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1070 int error;
1071 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1072 zilog_t *zilog;
1073
1074 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1075 return (error);
1076 zilog = zfsvfs->z_log;
1077 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
1078
1079 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1080 zil_commit(zilog, 0);
1081
1082 zfs_exit(zfsvfs, FTAG);
1083 return (error);
1084 }
1085
1086 #ifdef ZFS_DEBUG
1087 static int zil_fault_io = 0;
1088 #endif
1089
1090 static void zfs_get_done(zgd_t *zgd, int error);
1091
1092 /*
1093 * Get data to generate a TX_WRITE intent log record.
1094 */
1095 int
zfs_get_data(void * arg,uint64_t gen,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)1096 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
1097 struct lwb *lwb, zio_t *zio)
1098 {
1099 zfsvfs_t *zfsvfs = arg;
1100 objset_t *os = zfsvfs->z_os;
1101 znode_t *zp;
1102 uint64_t object = lr->lr_foid;
1103 uint64_t offset = lr->lr_offset;
1104 uint64_t size = lr->lr_length;
1105 zgd_t *zgd;
1106 int error = 0;
1107 uint64_t zp_gen;
1108
1109 ASSERT3P(lwb, !=, NULL);
1110 ASSERT3U(size, !=, 0);
1111
1112 /*
1113 * Nothing to do if the file has been removed
1114 */
1115 if (zfs_zget(zfsvfs, object, &zp) != 0)
1116 return (SET_ERROR(ENOENT));
1117 if (zp->z_unlinked) {
1118 /*
1119 * Release the vnode asynchronously as we currently have the
1120 * txg stopped from syncing.
1121 */
1122 zfs_zrele_async(zp);
1123 return (SET_ERROR(ENOENT));
1124 }
1125 /* check if generation number matches */
1126 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1127 sizeof (zp_gen)) != 0) {
1128 zfs_zrele_async(zp);
1129 return (SET_ERROR(EIO));
1130 }
1131 if (zp_gen != gen) {
1132 zfs_zrele_async(zp);
1133 return (SET_ERROR(ENOENT));
1134 }
1135
1136 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1137 zgd->zgd_lwb = lwb;
1138 zgd->zgd_private = zp;
1139
1140 /*
1141 * Write records come in two flavors: immediate and indirect.
1142 * For small writes it's cheaper to store the data with the
1143 * log record (immediate); for large writes it's cheaper to
1144 * sync the data and get a pointer to it (indirect) so that
1145 * we don't have to write the data twice.
1146 */
1147 if (buf != NULL) { /* immediate write */
1148 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, offset,
1149 size, RL_READER);
1150 /* test for truncation needs to be done while range locked */
1151 if (offset >= zp->z_size) {
1152 error = SET_ERROR(ENOENT);
1153 } else {
1154 error = dmu_read(os, object, offset, size, buf,
1155 DMU_READ_NO_PREFETCH);
1156 }
1157 ASSERT(error == 0 || error == ENOENT);
1158 } else { /* indirect write */
1159 ASSERT3P(zio, !=, NULL);
1160 /*
1161 * Have to lock the whole block to ensure when it's
1162 * written out and its checksum is being calculated
1163 * that no one can change the data. We need to re-check
1164 * blocksize after we get the lock in case it's changed!
1165 */
1166 for (;;) {
1167 uint64_t blkoff;
1168 size = zp->z_blksz;
1169 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1170 offset -= blkoff;
1171 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
1172 offset, size, RL_READER);
1173 if (zp->z_blksz == size)
1174 break;
1175 offset += blkoff;
1176 zfs_rangelock_exit(zgd->zgd_lr);
1177 }
1178 /* test for truncation needs to be done while range locked */
1179 if (lr->lr_offset >= zp->z_size)
1180 error = SET_ERROR(ENOENT);
1181 #ifdef ZFS_DEBUG
1182 if (zil_fault_io) {
1183 error = SET_ERROR(EIO);
1184 zil_fault_io = 0;
1185 }
1186 #endif
1187
1188 dmu_buf_t *dbp;
1189 if (error == 0)
1190 error = dmu_buf_hold_noread(os, object, offset, zgd,
1191 &dbp);
1192
1193 if (error == 0) {
1194 zgd->zgd_db = dbp;
1195 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp;
1196 boolean_t direct_write = B_FALSE;
1197 mutex_enter(&db->db_mtx);
1198 dbuf_dirty_record_t *dr =
1199 dbuf_find_dirty_eq(db, lr->lr_common.lrc_txg);
1200 if (dr != NULL && dr->dt.dl.dr_diowrite)
1201 direct_write = B_TRUE;
1202 mutex_exit(&db->db_mtx);
1203
1204 /*
1205 * All Direct I/O writes will have already completed and
1206 * the block pointer can be immediately stored in the
1207 * log record.
1208 */
1209 if (direct_write) {
1210 /*
1211 * A Direct I/O write always covers an entire
1212 * block.
1213 */
1214 ASSERT3U(dbp->db_size, ==, zp->z_blksz);
1215 lr->lr_blkptr = dr->dt.dl.dr_overridden_by;
1216 zfs_get_done(zgd, 0);
1217 return (0);
1218 }
1219
1220 blkptr_t *bp = &lr->lr_blkptr;
1221 zgd->zgd_bp = bp;
1222
1223 ASSERT3U(dbp->db_offset, ==, offset);
1224 ASSERT3U(dbp->db_size, ==, size);
1225
1226 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1227 zfs_get_done, zgd);
1228 ASSERT(error || lr->lr_length <= size);
1229
1230 /*
1231 * On success, we need to wait for the write I/O
1232 * initiated by dmu_sync() to complete before we can
1233 * release this dbuf. We will finish everything up
1234 * in the zfs_get_done() callback.
1235 */
1236 if (error == 0)
1237 return (0);
1238
1239 if (error == EALREADY) {
1240 lr->lr_common.lrc_txtype = TX_WRITE2;
1241 /*
1242 * TX_WRITE2 relies on the data previously
1243 * written by the TX_WRITE that caused
1244 * EALREADY. We zero out the BP because
1245 * it is the old, currently-on-disk BP.
1246 */
1247 zgd->zgd_bp = NULL;
1248 BP_ZERO(bp);
1249 error = 0;
1250 }
1251 }
1252 }
1253
1254 zfs_get_done(zgd, error);
1255
1256 return (error);
1257 }
1258
1259 static void
zfs_get_done(zgd_t * zgd,int error)1260 zfs_get_done(zgd_t *zgd, int error)
1261 {
1262 (void) error;
1263 znode_t *zp = zgd->zgd_private;
1264
1265 if (zgd->zgd_db)
1266 dmu_buf_rele(zgd->zgd_db, zgd);
1267
1268 zfs_rangelock_exit(zgd->zgd_lr);
1269
1270 /*
1271 * Release the vnode asynchronously as we currently have the
1272 * txg stopped from syncing.
1273 */
1274 zfs_zrele_async(zp);
1275
1276 kmem_free(zgd, sizeof (zgd_t));
1277 }
1278
1279 static int
zfs_enter_two(zfsvfs_t * zfsvfs1,zfsvfs_t * zfsvfs2,const char * tag)1280 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1281 {
1282 int error;
1283
1284 /* Swap. Not sure if the order of zfs_enter()s is important. */
1285 if (zfsvfs1 > zfsvfs2) {
1286 zfsvfs_t *tmpzfsvfs;
1287
1288 tmpzfsvfs = zfsvfs2;
1289 zfsvfs2 = zfsvfs1;
1290 zfsvfs1 = tmpzfsvfs;
1291 }
1292
1293 error = zfs_enter(zfsvfs1, tag);
1294 if (error != 0)
1295 return (error);
1296 if (zfsvfs1 != zfsvfs2) {
1297 error = zfs_enter(zfsvfs2, tag);
1298 if (error != 0) {
1299 zfs_exit(zfsvfs1, tag);
1300 return (error);
1301 }
1302 }
1303
1304 return (0);
1305 }
1306
1307 static void
zfs_exit_two(zfsvfs_t * zfsvfs1,zfsvfs_t * zfsvfs2,const char * tag)1308 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1309 {
1310
1311 zfs_exit(zfsvfs1, tag);
1312 if (zfsvfs1 != zfsvfs2)
1313 zfs_exit(zfsvfs2, tag);
1314 }
1315
1316 /*
1317 * We split each clone request in chunks that can fit into a single ZIL
1318 * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1319 * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1320 * us room for storing 1022 block pointers.
1321 *
1322 * On success, the function return the number of bytes copied in *lenp.
1323 * Note, it doesn't return how much bytes are left to be copied.
1324 * On errors which are caused by any file system limitations or
1325 * brt limitations `EINVAL` is returned. In the most cases a user
1326 * requested bad parameters, it could be possible to clone the file but
1327 * some parameters don't match the requirements.
1328 */
1329 int
zfs_clone_range(znode_t * inzp,uint64_t * inoffp,znode_t * outzp,uint64_t * outoffp,uint64_t * lenp,cred_t * cr)1330 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1331 uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1332 {
1333 zfsvfs_t *inzfsvfs, *outzfsvfs;
1334 objset_t *inos, *outos;
1335 zfs_locked_range_t *inlr, *outlr;
1336 dmu_buf_impl_t *db;
1337 dmu_tx_t *tx;
1338 zilog_t *zilog;
1339 uint64_t inoff, outoff, len, done;
1340 uint64_t outsize, size;
1341 int error;
1342 int count = 0;
1343 sa_bulk_attr_t bulk[3];
1344 uint64_t mtime[2], ctime[2];
1345 uint64_t uid, gid, projid;
1346 blkptr_t *bps;
1347 size_t maxblocks, nbps;
1348 uint_t inblksz;
1349 uint64_t clear_setid_bits_txg = 0;
1350 uint64_t last_synced_txg = 0;
1351
1352 inoff = *inoffp;
1353 outoff = *outoffp;
1354 len = *lenp;
1355 done = 0;
1356
1357 inzfsvfs = ZTOZSB(inzp);
1358 outzfsvfs = ZTOZSB(outzp);
1359
1360 /*
1361 * We need to call zfs_enter() potentially on two different datasets,
1362 * so we need a dedicated function for that.
1363 */
1364 error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1365 if (error != 0)
1366 return (error);
1367
1368 inos = inzfsvfs->z_os;
1369 outos = outzfsvfs->z_os;
1370
1371 /*
1372 * Both source and destination have to belong to the same storage pool.
1373 */
1374 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1375 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1376 return (SET_ERROR(EXDEV));
1377 }
1378
1379 /*
1380 * outos and inos belongs to the same storage pool.
1381 * see a few lines above, only one check.
1382 */
1383 if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1384 SPA_FEATURE_BLOCK_CLONING)) {
1385 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1386 return (SET_ERROR(EOPNOTSUPP));
1387 }
1388
1389 ASSERT(!outzfsvfs->z_replay);
1390
1391 /*
1392 * Block cloning from an unencrypted dataset into an encrypted
1393 * dataset and vice versa is not supported.
1394 */
1395 if (inos->os_encrypted != outos->os_encrypted) {
1396 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1397 return (SET_ERROR(EXDEV));
1398 }
1399
1400 /*
1401 * Cloning across encrypted datasets is possible only if they
1402 * share the same master key.
1403 */
1404 if (inos != outos && inos->os_encrypted &&
1405 !dmu_objset_crypto_key_equal(inos, outos)) {
1406 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1407 return (SET_ERROR(EXDEV));
1408 }
1409
1410 error = zfs_verify_zp(inzp);
1411 if (error == 0)
1412 error = zfs_verify_zp(outzp);
1413 if (error != 0) {
1414 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1415 return (error);
1416 }
1417
1418 /*
1419 * We don't copy source file's flags that's why we don't allow to clone
1420 * files that are in quarantine.
1421 */
1422 if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1423 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1424 return (SET_ERROR(EACCES));
1425 }
1426
1427 if (inoff >= inzp->z_size) {
1428 *lenp = 0;
1429 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1430 return (0);
1431 }
1432 if (len > inzp->z_size - inoff) {
1433 len = inzp->z_size - inoff;
1434 }
1435 if (len == 0) {
1436 *lenp = 0;
1437 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1438 return (0);
1439 }
1440
1441 /*
1442 * Callers might not be able to detect properly that we are read-only,
1443 * so check it explicitly here.
1444 */
1445 if (zfs_is_readonly(outzfsvfs)) {
1446 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1447 return (SET_ERROR(EROFS));
1448 }
1449
1450 /*
1451 * If immutable or not appending then return EPERM.
1452 * Intentionally allow ZFS_READONLY through here.
1453 * See zfs_zaccess_common()
1454 */
1455 if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1456 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1457 return (SET_ERROR(EPERM));
1458 }
1459
1460 /*
1461 * No overlapping if we are cloning within the same file.
1462 */
1463 if (inzp == outzp) {
1464 if (inoff < outoff + len && outoff < inoff + len) {
1465 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1466 return (SET_ERROR(EINVAL));
1467 }
1468 }
1469
1470 /* Flush any mmap()'d data to disk */
1471 if (zn_has_cached_data(inzp, inoff, inoff + len - 1))
1472 zn_flush_cached_data(inzp, B_TRUE);
1473
1474 /*
1475 * Maintain predictable lock order.
1476 */
1477 if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1478 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1479 RL_READER);
1480 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1481 RL_WRITER);
1482 } else {
1483 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1484 RL_WRITER);
1485 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1486 RL_READER);
1487 }
1488
1489 inblksz = inzp->z_blksz;
1490
1491 /*
1492 * We cannot clone into a file with different block size if we can't
1493 * grow it (block size is already bigger, has more than one block, or
1494 * not locked for growth). There are other possible reasons for the
1495 * grow to fail, but we cover what we can before opening transaction
1496 * and the rest detect after we try to do it.
1497 */
1498 if (inblksz < outzp->z_blksz) {
1499 error = SET_ERROR(EINVAL);
1500 goto unlock;
1501 }
1502 if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
1503 outlr->lr_length != UINT64_MAX)) {
1504 error = SET_ERROR(EINVAL);
1505 goto unlock;
1506 }
1507
1508 /*
1509 * Block size must be power-of-2 if destination offset != 0.
1510 * There can be no multiple blocks of non-power-of-2 size.
1511 */
1512 if (outoff != 0 && !ISP2(inblksz)) {
1513 error = SET_ERROR(EINVAL);
1514 goto unlock;
1515 }
1516
1517 /*
1518 * Offsets and len must be at block boundries.
1519 */
1520 if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1521 error = SET_ERROR(EINVAL);
1522 goto unlock;
1523 }
1524 /*
1525 * Length must be multipe of blksz, except for the end of the file.
1526 */
1527 if ((len % inblksz) != 0 &&
1528 (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1529 error = SET_ERROR(EINVAL);
1530 goto unlock;
1531 }
1532
1533 /*
1534 * If we are copying only one block and it is smaller than recordsize
1535 * property, do not allow destination to grow beyond one block if it
1536 * is not there yet. Otherwise the destination will get stuck with
1537 * that block size forever, that can be as small as 512 bytes, no
1538 * matter how big the destination grow later.
1539 */
1540 if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
1541 outzp->z_size <= inblksz && outoff + len > inblksz) {
1542 error = SET_ERROR(EINVAL);
1543 goto unlock;
1544 }
1545
1546 error = zn_rlimit_fsize(outoff + len);
1547 if (error != 0) {
1548 goto unlock;
1549 }
1550
1551 if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1552 error = SET_ERROR(EFBIG);
1553 goto unlock;
1554 }
1555
1556 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1557 &mtime, 16);
1558 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1559 &ctime, 16);
1560 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1561 &outzp->z_size, 8);
1562
1563 zilog = outzfsvfs->z_log;
1564 maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1565 sizeof (bps[0]);
1566
1567 uid = KUID_TO_SUID(ZTOUID(outzp));
1568 gid = KGID_TO_SGID(ZTOGID(outzp));
1569 projid = outzp->z_projid;
1570
1571 bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1572
1573 /*
1574 * Clone the file in reasonable size chunks. Each chunk is cloned
1575 * in a separate transaction; this keeps the intent log records small
1576 * and allows us to do more fine-grained space accounting.
1577 */
1578 while (len > 0) {
1579 size = MIN(inblksz * maxblocks, len);
1580
1581 if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1582 uid) ||
1583 zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1584 gid) ||
1585 (projid != ZFS_DEFAULT_PROJID &&
1586 zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1587 projid))) {
1588 error = SET_ERROR(EDQUOT);
1589 break;
1590 }
1591
1592 nbps = maxblocks;
1593 last_synced_txg = spa_last_synced_txg(dmu_objset_spa(inos));
1594 error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
1595 &nbps);
1596 if (error != 0) {
1597 /*
1598 * If we are trying to clone a block that was created
1599 * in the current transaction group, the error will be
1600 * EAGAIN here. Based on zfs_bclone_wait_dirty either
1601 * return a shortened range to the caller so it can
1602 * fallback, or wait for the next TXG and check again.
1603 */
1604 if (error == EAGAIN && zfs_bclone_wait_dirty) {
1605 txg_wait_synced(dmu_objset_pool(inos),
1606 last_synced_txg + 1);
1607 continue;
1608 }
1609
1610 break;
1611 }
1612
1613 /*
1614 * Start a transaction.
1615 */
1616 tx = dmu_tx_create(outos);
1617 dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1618 db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1619 DB_DNODE_ENTER(db);
1620 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1621 DB_DNODE_EXIT(db);
1622 zfs_sa_upgrade_txholds(tx, outzp);
1623 error = dmu_tx_assign(tx, TXG_WAIT);
1624 if (error != 0) {
1625 dmu_tx_abort(tx);
1626 break;
1627 }
1628
1629 /*
1630 * Copy source znode's block size. This is done only if the
1631 * whole znode is locked (see zfs_rangelock_cb()) and only
1632 * on the first iteration since zfs_rangelock_reduce() will
1633 * shrink down lr_length to the appropriate size.
1634 */
1635 if (outlr->lr_length == UINT64_MAX) {
1636 zfs_grow_blocksize(outzp, inblksz, tx);
1637
1638 /*
1639 * Block growth may fail for many reasons we can not
1640 * predict here. If it happen the cloning is doomed.
1641 */
1642 if (inblksz != outzp->z_blksz) {
1643 error = SET_ERROR(EINVAL);
1644 dmu_tx_abort(tx);
1645 break;
1646 }
1647
1648 /*
1649 * Round range lock up to the block boundary, so we
1650 * prevent appends until we are done.
1651 */
1652 zfs_rangelock_reduce(outlr, outoff,
1653 ((len - 1) / inblksz + 1) * inblksz);
1654 }
1655
1656 error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1657 bps, nbps);
1658 if (error != 0) {
1659 dmu_tx_commit(tx);
1660 break;
1661 }
1662
1663 if (zn_has_cached_data(outzp, outoff, outoff + size - 1)) {
1664 update_pages(outzp, outoff, size, outos);
1665 }
1666
1667 zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1668 &clear_setid_bits_txg, tx);
1669
1670 zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1671
1672 /*
1673 * Update the file size (zp_size) if it has changed;
1674 * account for possible concurrent updates.
1675 */
1676 while ((outsize = outzp->z_size) < outoff + size) {
1677 (void) atomic_cas_64(&outzp->z_size, outsize,
1678 outoff + size);
1679 }
1680
1681 error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1682
1683 zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1684 size, inblksz, bps, nbps);
1685
1686 dmu_tx_commit(tx);
1687
1688 if (error != 0)
1689 break;
1690
1691 inoff += size;
1692 outoff += size;
1693 len -= size;
1694 done += size;
1695
1696 if (issig()) {
1697 error = SET_ERROR(EINTR);
1698 break;
1699 }
1700 }
1701
1702 vmem_free(bps, sizeof (bps[0]) * maxblocks);
1703 zfs_znode_update_vfs(outzp);
1704
1705 unlock:
1706 zfs_rangelock_exit(outlr);
1707 zfs_rangelock_exit(inlr);
1708
1709 if (done > 0) {
1710 /*
1711 * If we have made at least partial progress, reset the error.
1712 */
1713 error = 0;
1714
1715 ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1716
1717 if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1718 zil_commit(zilog, outzp->z_id);
1719 }
1720
1721 *inoffp += done;
1722 *outoffp += done;
1723 *lenp = done;
1724 } else {
1725 /*
1726 * If we made no progress, there must be a good reason.
1727 * EOF is handled explicitly above, before the loop.
1728 */
1729 ASSERT3S(error, !=, 0);
1730 }
1731
1732 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1733
1734 return (error);
1735 }
1736
1737 /*
1738 * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1739 * but we cannot do that, because when replaying we don't have source znode
1740 * available. This is why we need a dedicated replay function.
1741 */
1742 int
zfs_clone_range_replay(znode_t * zp,uint64_t off,uint64_t len,uint64_t blksz,const blkptr_t * bps,size_t nbps)1743 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1744 const blkptr_t *bps, size_t nbps)
1745 {
1746 zfsvfs_t *zfsvfs;
1747 dmu_buf_impl_t *db;
1748 dmu_tx_t *tx;
1749 int error;
1750 int count = 0;
1751 sa_bulk_attr_t bulk[3];
1752 uint64_t mtime[2], ctime[2];
1753
1754 ASSERT3U(off, <, MAXOFFSET_T);
1755 ASSERT3U(len, >, 0);
1756 ASSERT3U(nbps, >, 0);
1757
1758 zfsvfs = ZTOZSB(zp);
1759
1760 ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1761 SPA_FEATURE_BLOCK_CLONING));
1762
1763 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1764 return (error);
1765
1766 ASSERT(zfsvfs->z_replay);
1767 ASSERT(!zfs_is_readonly(zfsvfs));
1768
1769 if ((off % blksz) != 0) {
1770 zfs_exit(zfsvfs, FTAG);
1771 return (SET_ERROR(EINVAL));
1772 }
1773
1774 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1775 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1776 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1777 &zp->z_size, 8);
1778
1779 /*
1780 * Start a transaction.
1781 */
1782 tx = dmu_tx_create(zfsvfs->z_os);
1783
1784 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1785 db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1786 DB_DNODE_ENTER(db);
1787 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1788 DB_DNODE_EXIT(db);
1789 zfs_sa_upgrade_txholds(tx, zp);
1790 error = dmu_tx_assign(tx, TXG_WAIT);
1791 if (error != 0) {
1792 dmu_tx_abort(tx);
1793 zfs_exit(zfsvfs, FTAG);
1794 return (error);
1795 }
1796
1797 if (zp->z_blksz < blksz)
1798 zfs_grow_blocksize(zp, blksz, tx);
1799
1800 dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps);
1801
1802 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1803
1804 if (zp->z_size < off + len)
1805 zp->z_size = off + len;
1806
1807 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1808
1809 /*
1810 * zil_replaying() not only check if we are replaying ZIL, but also
1811 * updates the ZIL header to record replay progress.
1812 */
1813 VERIFY(zil_replaying(zfsvfs->z_log, tx));
1814
1815 dmu_tx_commit(tx);
1816
1817 zfs_znode_update_vfs(zp);
1818
1819 zfs_exit(zfsvfs, FTAG);
1820
1821 return (error);
1822 }
1823
1824 EXPORT_SYMBOL(zfs_access);
1825 EXPORT_SYMBOL(zfs_fsync);
1826 EXPORT_SYMBOL(zfs_holey);
1827 EXPORT_SYMBOL(zfs_read);
1828 EXPORT_SYMBOL(zfs_write);
1829 EXPORT_SYMBOL(zfs_getsecattr);
1830 EXPORT_SYMBOL(zfs_setsecattr);
1831 EXPORT_SYMBOL(zfs_clone_range);
1832 EXPORT_SYMBOL(zfs_clone_range_replay);
1833
1834 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
1835 "Bytes to read per chunk");
1836
1837 ZFS_MODULE_PARAM(zfs, zfs_, bclone_enabled, INT, ZMOD_RW,
1838 "Enable block cloning");
1839
1840 ZFS_MODULE_PARAM(zfs, zfs_, bclone_wait_dirty, INT, ZMOD_RW,
1841 "Wait for dirty blocks when cloning");
1842
1843 ZFS_MODULE_PARAM(zfs, zfs_, dio_enabled, INT, ZMOD_RW,
1844 "Enable Direct I/O");
1845