1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 /* Portions Copyright 2007 Jeremy Teo */ 30 /* Portions Copyright 2010 Robert Milkowski */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/time.h> 35 #include <sys/sysmacros.h> 36 #include <sys/vfs.h> 37 #include <sys/uio_impl.h> 38 #include <sys/file.h> 39 #include <sys/stat.h> 40 #include <sys/kmem.h> 41 #include <sys/cmn_err.h> 42 #include <sys/errno.h> 43 #include <sys/zfs_dir.h> 44 #include <sys/zfs_acl.h> 45 #include <sys/zfs_ioctl.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/dmu.h> 48 #include <sys/dmu_objset.h> 49 #include <sys/spa.h> 50 #include <sys/txg.h> 51 #include <sys/dbuf.h> 52 #include <sys/policy.h> 53 #include <sys/zfs_vnops.h> 54 #include <sys/zfs_quota.h> 55 #include <sys/zfs_vfsops.h> 56 #include <sys/zfs_znode.h> 57 58 59 static ulong_t zfs_fsync_sync_cnt = 4; 60 61 int 62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr) 63 { 64 int error = 0; 65 zfsvfs_t *zfsvfs = ZTOZSB(zp); 66 67 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 68 69 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 70 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 71 goto out; 72 atomic_inc_32(&zp->z_sync_writes_cnt); 73 zil_commit(zfsvfs->z_log, zp->z_id); 74 atomic_dec_32(&zp->z_sync_writes_cnt); 75 zfs_exit(zfsvfs, FTAG); 76 } 77 out: 78 tsd_set(zfs_fsyncer_key, NULL); 79 80 return (error); 81 } 82 83 84 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 85 /* 86 * Lseek support for finding holes (cmd == SEEK_HOLE) and 87 * data (cmd == SEEK_DATA). "off" is an in/out parameter. 88 */ 89 static int 90 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off) 91 { 92 zfs_locked_range_t *lr; 93 uint64_t noff = (uint64_t)*off; /* new offset */ 94 uint64_t file_sz; 95 int error; 96 boolean_t hole; 97 98 file_sz = zp->z_size; 99 if (noff >= file_sz) { 100 return (SET_ERROR(ENXIO)); 101 } 102 103 if (cmd == F_SEEK_HOLE) 104 hole = B_TRUE; 105 else 106 hole = B_FALSE; 107 108 /* Flush any mmap()'d data to disk */ 109 if (zn_has_cached_data(zp)) 110 zn_flush_cached_data(zp, B_FALSE); 111 112 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER); 113 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff); 114 zfs_rangelock_exit(lr); 115 116 if (error == ESRCH) 117 return (SET_ERROR(ENXIO)); 118 119 /* File was dirty, so fall back to using generic logic */ 120 if (error == EBUSY) { 121 if (hole) 122 *off = file_sz; 123 124 return (0); 125 } 126 127 /* 128 * We could find a hole that begins after the logical end-of-file, 129 * because dmu_offset_next() only works on whole blocks. If the 130 * EOF falls mid-block, then indicate that the "virtual hole" 131 * at the end of the file begins at the logical EOF, rather than 132 * at the end of the last block. 133 */ 134 if (noff > file_sz) { 135 ASSERT(hole); 136 noff = file_sz; 137 } 138 139 if (noff < *off) 140 return (error); 141 *off = noff; 142 return (error); 143 } 144 145 int 146 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off) 147 { 148 zfsvfs_t *zfsvfs = ZTOZSB(zp); 149 int error; 150 151 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 152 return (error); 153 154 error = zfs_holey_common(zp, cmd, off); 155 156 zfs_exit(zfsvfs, FTAG); 157 return (error); 158 } 159 #endif /* SEEK_HOLE && SEEK_DATA */ 160 161 int 162 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr) 163 { 164 zfsvfs_t *zfsvfs = ZTOZSB(zp); 165 int error; 166 167 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 168 return (error); 169 170 if (flag & V_ACE_MASK) 171 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 172 else 173 error = zfs_zaccess_rwx(zp, mode, flag, cr); 174 175 zfs_exit(zfsvfs, FTAG); 176 return (error); 177 } 178 179 static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */ 180 181 /* 182 * Read bytes from specified file into supplied buffer. 183 * 184 * IN: zp - inode of file to be read from. 185 * uio - structure supplying read location, range info, 186 * and return buffer. 187 * ioflag - O_SYNC flags; used to provide FRSYNC semantics. 188 * O_DIRECT flag; used to bypass page cache. 189 * cr - credentials of caller. 190 * 191 * OUT: uio - updated offset and range, buffer filled. 192 * 193 * RETURN: 0 on success, error code on failure. 194 * 195 * Side Effects: 196 * inode - atime updated if byte count > 0 197 */ 198 int 199 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 200 { 201 (void) cr; 202 int error = 0; 203 boolean_t frsync = B_FALSE; 204 205 zfsvfs_t *zfsvfs = ZTOZSB(zp); 206 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 207 return (error); 208 209 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 210 zfs_exit(zfsvfs, FTAG); 211 return (SET_ERROR(EACCES)); 212 } 213 214 /* We don't copy out anything useful for directories. */ 215 if (Z_ISDIR(ZTOTYPE(zp))) { 216 zfs_exit(zfsvfs, FTAG); 217 return (SET_ERROR(EISDIR)); 218 } 219 220 /* 221 * Validate file offset 222 */ 223 if (zfs_uio_offset(uio) < (offset_t)0) { 224 zfs_exit(zfsvfs, FTAG); 225 return (SET_ERROR(EINVAL)); 226 } 227 228 /* 229 * Fasttrack empty reads 230 */ 231 if (zfs_uio_resid(uio) == 0) { 232 zfs_exit(zfsvfs, FTAG); 233 return (0); 234 } 235 236 #ifdef FRSYNC 237 /* 238 * If we're in FRSYNC mode, sync out this znode before reading it. 239 * Only do this for non-snapshots. 240 * 241 * Some platforms do not support FRSYNC and instead map it 242 * to O_SYNC, which results in unnecessary calls to zil_commit. We 243 * only honor FRSYNC requests on platforms which support it. 244 */ 245 frsync = !!(ioflag & FRSYNC); 246 #endif 247 if (zfsvfs->z_log && 248 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 249 zil_commit(zfsvfs->z_log, zp->z_id); 250 251 /* 252 * Lock the range against changes. 253 */ 254 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, 255 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER); 256 257 /* 258 * If we are reading past end-of-file we can skip 259 * to the end; but we might still need to set atime. 260 */ 261 if (zfs_uio_offset(uio) >= zp->z_size) { 262 error = 0; 263 goto out; 264 } 265 266 ASSERT(zfs_uio_offset(uio) < zp->z_size); 267 #if defined(__linux__) 268 ssize_t start_offset = zfs_uio_offset(uio); 269 #endif 270 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio)); 271 ssize_t start_resid = n; 272 273 while (n > 0) { 274 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size - 275 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size)); 276 #ifdef UIO_NOCOPY 277 if (zfs_uio_segflg(uio) == UIO_NOCOPY) 278 error = mappedread_sf(zp, nbytes, uio); 279 else 280 #endif 281 if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) { 282 error = mappedread(zp, nbytes, uio); 283 } else { 284 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 285 uio, nbytes); 286 } 287 288 if (error) { 289 /* convert checksum errors into IO errors */ 290 if (error == ECKSUM) 291 error = SET_ERROR(EIO); 292 293 #if defined(__linux__) 294 /* 295 * if we actually read some bytes, bubbling EFAULT 296 * up to become EAGAIN isn't what we want here... 297 * 298 * ...on Linux, at least. On FBSD, doing this breaks. 299 */ 300 if (error == EFAULT && 301 (zfs_uio_offset(uio) - start_offset) != 0) 302 error = 0; 303 #endif 304 break; 305 } 306 307 n -= nbytes; 308 } 309 310 int64_t nread = start_resid - n; 311 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread); 312 task_io_account_read(nread); 313 out: 314 zfs_rangelock_exit(lr); 315 316 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 317 zfs_exit(zfsvfs, FTAG); 318 return (error); 319 } 320 321 static void 322 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr, 323 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx) 324 { 325 zilog_t *zilog = zfsvfs->z_log; 326 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 327 328 ASSERT(clear_setid_bits_txgp != NULL); 329 ASSERT(tx != NULL); 330 331 /* 332 * Clear Set-UID/Set-GID bits on successful write if not 333 * privileged and at least one of the execute bits is set. 334 * 335 * It would be nice to do this after all writes have 336 * been done, but that would still expose the ISUID/ISGID 337 * to another app after the partial write is committed. 338 * 339 * Note: we don't call zfs_fuid_map_id() here because 340 * user 0 is not an ephemeral uid. 341 */ 342 mutex_enter(&zp->z_acl_lock); 343 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && 344 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 345 secpolicy_vnode_setid_retain(zp, cr, 346 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) { 347 uint64_t newmode; 348 349 zp->z_mode &= ~(S_ISUID | S_ISGID); 350 newmode = zp->z_mode; 351 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 352 (void *)&newmode, sizeof (uint64_t), tx); 353 354 mutex_exit(&zp->z_acl_lock); 355 356 /* 357 * Make sure SUID/SGID bits will be removed when we replay the 358 * log. If the setid bits are keep coming back, don't log more 359 * than one TX_SETATTR per transaction group. 360 */ 361 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) { 362 vattr_t va = {0}; 363 364 va.va_mask = ATTR_MODE; 365 va.va_nodeid = zp->z_id; 366 va.va_mode = newmode; 367 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va, 368 ATTR_MODE, NULL); 369 *clear_setid_bits_txgp = dmu_tx_get_txg(tx); 370 } 371 } else { 372 mutex_exit(&zp->z_acl_lock); 373 } 374 } 375 376 /* 377 * Write the bytes to a file. 378 * 379 * IN: zp - znode of file to be written to. 380 * uio - structure supplying write location, range info, 381 * and data buffer. 382 * ioflag - O_APPEND flag set if in append mode. 383 * O_DIRECT flag; used to bypass page cache. 384 * cr - credentials of caller. 385 * 386 * OUT: uio - updated offset and range. 387 * 388 * RETURN: 0 if success 389 * error code if failure 390 * 391 * Timestamps: 392 * ip - ctime|mtime updated if byte count > 0 393 */ 394 int 395 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 396 { 397 int error = 0, error1; 398 ssize_t start_resid = zfs_uio_resid(uio); 399 uint64_t clear_setid_bits_txg = 0; 400 401 /* 402 * Fasttrack empty write 403 */ 404 ssize_t n = start_resid; 405 if (n == 0) 406 return (0); 407 408 zfsvfs_t *zfsvfs = ZTOZSB(zp); 409 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 410 return (error); 411 412 sa_bulk_attr_t bulk[4]; 413 int count = 0; 414 uint64_t mtime[2], ctime[2]; 415 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 416 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 417 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 418 &zp->z_size, 8); 419 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 420 &zp->z_pflags, 8); 421 422 /* 423 * Callers might not be able to detect properly that we are read-only, 424 * so check it explicitly here. 425 */ 426 if (zfs_is_readonly(zfsvfs)) { 427 zfs_exit(zfsvfs, FTAG); 428 return (SET_ERROR(EROFS)); 429 } 430 431 /* 432 * If immutable or not appending then return EPERM. 433 * Intentionally allow ZFS_READONLY through here. 434 * See zfs_zaccess_common() 435 */ 436 if ((zp->z_pflags & ZFS_IMMUTABLE) || 437 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) && 438 (zfs_uio_offset(uio) < zp->z_size))) { 439 zfs_exit(zfsvfs, FTAG); 440 return (SET_ERROR(EPERM)); 441 } 442 443 /* 444 * Validate file offset 445 */ 446 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio); 447 if (woff < 0) { 448 zfs_exit(zfsvfs, FTAG); 449 return (SET_ERROR(EINVAL)); 450 } 451 452 const uint64_t max_blksz = zfsvfs->z_max_blksz; 453 454 /* 455 * Pre-fault the pages to ensure slow (eg NFS) pages 456 * don't hold up txg. 457 * Skip this if uio contains loaned arc_buf. 458 */ 459 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 460 zfs_exit(zfsvfs, FTAG); 461 return (SET_ERROR(EFAULT)); 462 } 463 464 /* 465 * If in append mode, set the io offset pointer to eof. 466 */ 467 zfs_locked_range_t *lr; 468 if (ioflag & O_APPEND) { 469 /* 470 * Obtain an appending range lock to guarantee file append 471 * semantics. We reset the write offset once we have the lock. 472 */ 473 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 474 woff = lr->lr_offset; 475 if (lr->lr_length == UINT64_MAX) { 476 /* 477 * We overlocked the file because this write will cause 478 * the file block size to increase. 479 * Note that zp_size cannot change with this lock held. 480 */ 481 woff = zp->z_size; 482 } 483 zfs_uio_setoffset(uio, woff); 484 } else { 485 /* 486 * Note that if the file block size will change as a result of 487 * this write, then this range lock will lock the entire file 488 * so that we can re-write the block safely. 489 */ 490 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 491 } 492 493 if (zn_rlimit_fsize(zp, uio)) { 494 zfs_rangelock_exit(lr); 495 zfs_exit(zfsvfs, FTAG); 496 return (SET_ERROR(EFBIG)); 497 } 498 499 const rlim64_t limit = MAXOFFSET_T; 500 501 if (woff >= limit) { 502 zfs_rangelock_exit(lr); 503 zfs_exit(zfsvfs, FTAG); 504 return (SET_ERROR(EFBIG)); 505 } 506 507 if (n > limit - woff) 508 n = limit - woff; 509 510 uint64_t end_size = MAX(zp->z_size, woff + n); 511 zilog_t *zilog = zfsvfs->z_log; 512 513 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 514 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp)); 515 const uint64_t projid = zp->z_projid; 516 517 /* 518 * Write the file in reasonable size chunks. Each chunk is written 519 * in a separate transaction; this keeps the intent log records small 520 * and allows us to do more fine-grained space accounting. 521 */ 522 while (n > 0) { 523 woff = zfs_uio_offset(uio); 524 525 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) || 526 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) || 527 (projid != ZFS_DEFAULT_PROJID && 528 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 529 projid))) { 530 error = SET_ERROR(EDQUOT); 531 break; 532 } 533 534 arc_buf_t *abuf = NULL; 535 if (n >= max_blksz && woff >= zp->z_size && 536 P2PHASE(woff, max_blksz) == 0 && 537 zp->z_blksz == max_blksz) { 538 /* 539 * This write covers a full block. "Borrow" a buffer 540 * from the dmu so that we can fill it before we enter 541 * a transaction. This avoids the possibility of 542 * holding up the transaction if the data copy hangs 543 * up on a pagefault (e.g., from an NFS server mapping). 544 */ 545 size_t cbytes; 546 547 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 548 max_blksz); 549 ASSERT(abuf != NULL); 550 ASSERT(arc_buf_size(abuf) == max_blksz); 551 if ((error = zfs_uiocopy(abuf->b_data, max_blksz, 552 UIO_WRITE, uio, &cbytes))) { 553 dmu_return_arcbuf(abuf); 554 break; 555 } 556 ASSERT3S(cbytes, ==, max_blksz); 557 } 558 559 /* 560 * Start a transaction. 561 */ 562 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 563 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 564 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); 565 DB_DNODE_ENTER(db); 566 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, 567 MIN(n, max_blksz)); 568 DB_DNODE_EXIT(db); 569 zfs_sa_upgrade_txholds(tx, zp); 570 error = dmu_tx_assign(tx, TXG_WAIT); 571 if (error) { 572 dmu_tx_abort(tx); 573 if (abuf != NULL) 574 dmu_return_arcbuf(abuf); 575 break; 576 } 577 578 /* 579 * NB: We must call zfs_clear_setid_bits_if_necessary before 580 * committing the transaction! 581 */ 582 583 /* 584 * If rangelock_enter() over-locked we grow the blocksize 585 * and then reduce the lock range. This will only happen 586 * on the first iteration since rangelock_reduce() will 587 * shrink down lr_length to the appropriate size. 588 */ 589 if (lr->lr_length == UINT64_MAX) { 590 uint64_t new_blksz; 591 592 if (zp->z_blksz > max_blksz) { 593 /* 594 * File's blocksize is already larger than the 595 * "recordsize" property. Only let it grow to 596 * the next power of 2. 597 */ 598 ASSERT(!ISP2(zp->z_blksz)); 599 new_blksz = MIN(end_size, 600 1 << highbit64(zp->z_blksz)); 601 } else { 602 new_blksz = MIN(end_size, max_blksz); 603 } 604 zfs_grow_blocksize(zp, new_blksz, tx); 605 zfs_rangelock_reduce(lr, woff, n); 606 } 607 608 /* 609 * XXX - should we really limit each write to z_max_blksz? 610 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 611 */ 612 const ssize_t nbytes = 613 MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 614 615 ssize_t tx_bytes; 616 if (abuf == NULL) { 617 tx_bytes = zfs_uio_resid(uio); 618 zfs_uio_fault_disable(uio, B_TRUE); 619 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 620 uio, nbytes, tx); 621 zfs_uio_fault_disable(uio, B_FALSE); 622 #ifdef __linux__ 623 if (error == EFAULT) { 624 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 625 cr, &clear_setid_bits_txg, tx); 626 dmu_tx_commit(tx); 627 /* 628 * Account for partial writes before 629 * continuing the loop. 630 * Update needs to occur before the next 631 * zfs_uio_prefaultpages, or prefaultpages may 632 * error, and we may break the loop early. 633 */ 634 if (tx_bytes != zfs_uio_resid(uio)) 635 n -= tx_bytes - zfs_uio_resid(uio); 636 if (zfs_uio_prefaultpages(MIN(n, max_blksz), 637 uio)) { 638 break; 639 } 640 continue; 641 } 642 #endif 643 /* 644 * On FreeBSD, EFAULT should be propagated back to the 645 * VFS, which will handle faulting and will retry. 646 */ 647 if (error != 0 && error != EFAULT) { 648 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 649 cr, &clear_setid_bits_txg, tx); 650 dmu_tx_commit(tx); 651 break; 652 } 653 tx_bytes -= zfs_uio_resid(uio); 654 } else { 655 /* Implied by abuf != NULL: */ 656 ASSERT3S(n, >=, max_blksz); 657 ASSERT0(P2PHASE(woff, max_blksz)); 658 /* 659 * We can simplify nbytes to MIN(n, max_blksz) since 660 * P2PHASE(woff, max_blksz) is 0, and knowing 661 * n >= max_blksz lets us simplify further: 662 */ 663 ASSERT3S(nbytes, ==, max_blksz); 664 /* 665 * Thus, we're writing a full block at a block-aligned 666 * offset and extending the file past EOF. 667 * 668 * dmu_assign_arcbuf_by_dbuf() will directly assign the 669 * arc buffer to a dbuf. 670 */ 671 error = dmu_assign_arcbuf_by_dbuf( 672 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 673 if (error != 0) { 674 /* 675 * XXX This might not be necessary if 676 * dmu_assign_arcbuf_by_dbuf is guaranteed 677 * to be atomic. 678 */ 679 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 680 cr, &clear_setid_bits_txg, tx); 681 dmu_return_arcbuf(abuf); 682 dmu_tx_commit(tx); 683 break; 684 } 685 ASSERT3S(nbytes, <=, zfs_uio_resid(uio)); 686 zfs_uioskip(uio, nbytes); 687 tx_bytes = nbytes; 688 } 689 if (tx_bytes && zn_has_cached_data(zp) && 690 !(ioflag & O_DIRECT)) { 691 update_pages(zp, woff, tx_bytes, zfsvfs->z_os); 692 } 693 694 /* 695 * If we made no progress, we're done. If we made even 696 * partial progress, update the znode and ZIL accordingly. 697 */ 698 if (tx_bytes == 0) { 699 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 700 (void *)&zp->z_size, sizeof (uint64_t), tx); 701 dmu_tx_commit(tx); 702 ASSERT(error != 0); 703 break; 704 } 705 706 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, 707 &clear_setid_bits_txg, tx); 708 709 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 710 711 /* 712 * Update the file size (zp_size) if it has changed; 713 * account for possible concurrent updates. 714 */ 715 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) { 716 (void) atomic_cas_64(&zp->z_size, end_size, 717 zfs_uio_offset(uio)); 718 ASSERT(error == 0 || error == EFAULT); 719 } 720 /* 721 * If we are replaying and eof is non zero then force 722 * the file size to the specified eof. Note, there's no 723 * concurrency during replay. 724 */ 725 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 726 zp->z_size = zfsvfs->z_replay_eof; 727 728 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 729 if (error1 != 0) 730 /* Avoid clobbering EFAULT. */ 731 error = error1; 732 733 /* 734 * NB: During replay, the TX_SETATTR record logged by 735 * zfs_clear_setid_bits_if_necessary must precede any of 736 * the TX_WRITE records logged here. 737 */ 738 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag, 739 NULL, NULL); 740 741 dmu_tx_commit(tx); 742 743 if (error != 0) 744 break; 745 ASSERT3S(tx_bytes, ==, nbytes); 746 n -= nbytes; 747 748 if (n > 0) { 749 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 750 error = SET_ERROR(EFAULT); 751 break; 752 } 753 } 754 } 755 756 zfs_znode_update_vfs(zp); 757 zfs_rangelock_exit(lr); 758 759 /* 760 * If we're in replay mode, or we made no progress, or the 761 * uio data is inaccessible return an error. Otherwise, it's 762 * at least a partial write, so it's successful. 763 */ 764 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid || 765 error == EFAULT) { 766 zfs_exit(zfsvfs, FTAG); 767 return (error); 768 } 769 770 if (ioflag & (O_SYNC | O_DSYNC) || 771 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 772 zil_commit(zilog, zp->z_id); 773 774 const int64_t nwritten = start_resid - zfs_uio_resid(uio); 775 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten); 776 task_io_account_write(nwritten); 777 778 zfs_exit(zfsvfs, FTAG); 779 return (0); 780 } 781 782 int 783 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 784 { 785 zfsvfs_t *zfsvfs = ZTOZSB(zp); 786 int error; 787 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 788 789 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 790 return (error); 791 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 792 zfs_exit(zfsvfs, FTAG); 793 794 return (error); 795 } 796 797 int 798 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 799 { 800 zfsvfs_t *zfsvfs = ZTOZSB(zp); 801 int error; 802 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 803 zilog_t *zilog = zfsvfs->z_log; 804 805 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 806 return (error); 807 808 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 809 810 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 811 zil_commit(zilog, 0); 812 813 zfs_exit(zfsvfs, FTAG); 814 return (error); 815 } 816 817 #ifdef ZFS_DEBUG 818 static int zil_fault_io = 0; 819 #endif 820 821 static void zfs_get_done(zgd_t *zgd, int error); 822 823 /* 824 * Get data to generate a TX_WRITE intent log record. 825 */ 826 int 827 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf, 828 struct lwb *lwb, zio_t *zio) 829 { 830 zfsvfs_t *zfsvfs = arg; 831 objset_t *os = zfsvfs->z_os; 832 znode_t *zp; 833 uint64_t object = lr->lr_foid; 834 uint64_t offset = lr->lr_offset; 835 uint64_t size = lr->lr_length; 836 dmu_buf_t *db; 837 zgd_t *zgd; 838 int error = 0; 839 uint64_t zp_gen; 840 841 ASSERT3P(lwb, !=, NULL); 842 ASSERT3P(zio, !=, NULL); 843 ASSERT3U(size, !=, 0); 844 845 /* 846 * Nothing to do if the file has been removed 847 */ 848 if (zfs_zget(zfsvfs, object, &zp) != 0) 849 return (SET_ERROR(ENOENT)); 850 if (zp->z_unlinked) { 851 /* 852 * Release the vnode asynchronously as we currently have the 853 * txg stopped from syncing. 854 */ 855 zfs_zrele_async(zp); 856 return (SET_ERROR(ENOENT)); 857 } 858 /* check if generation number matches */ 859 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 860 sizeof (zp_gen)) != 0) { 861 zfs_zrele_async(zp); 862 return (SET_ERROR(EIO)); 863 } 864 if (zp_gen != gen) { 865 zfs_zrele_async(zp); 866 return (SET_ERROR(ENOENT)); 867 } 868 869 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 870 zgd->zgd_lwb = lwb; 871 zgd->zgd_private = zp; 872 873 /* 874 * Write records come in two flavors: immediate and indirect. 875 * For small writes it's cheaper to store the data with the 876 * log record (immediate); for large writes it's cheaper to 877 * sync the data and get a pointer to it (indirect) so that 878 * we don't have to write the data twice. 879 */ 880 if (buf != NULL) { /* immediate write */ 881 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 882 offset, size, RL_READER); 883 /* test for truncation needs to be done while range locked */ 884 if (offset >= zp->z_size) { 885 error = SET_ERROR(ENOENT); 886 } else { 887 error = dmu_read(os, object, offset, size, buf, 888 DMU_READ_NO_PREFETCH); 889 } 890 ASSERT(error == 0 || error == ENOENT); 891 } else { /* indirect write */ 892 /* 893 * Have to lock the whole block to ensure when it's 894 * written out and its checksum is being calculated 895 * that no one can change the data. We need to re-check 896 * blocksize after we get the lock in case it's changed! 897 */ 898 for (;;) { 899 uint64_t blkoff; 900 size = zp->z_blksz; 901 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 902 offset -= blkoff; 903 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 904 offset, size, RL_READER); 905 if (zp->z_blksz == size) 906 break; 907 offset += blkoff; 908 zfs_rangelock_exit(zgd->zgd_lr); 909 } 910 /* test for truncation needs to be done while range locked */ 911 if (lr->lr_offset >= zp->z_size) 912 error = SET_ERROR(ENOENT); 913 #ifdef ZFS_DEBUG 914 if (zil_fault_io) { 915 error = SET_ERROR(EIO); 916 zil_fault_io = 0; 917 } 918 #endif 919 if (error == 0) 920 error = dmu_buf_hold(os, object, offset, zgd, &db, 921 DMU_READ_NO_PREFETCH); 922 923 if (error == 0) { 924 blkptr_t *bp = &lr->lr_blkptr; 925 926 zgd->zgd_db = db; 927 zgd->zgd_bp = bp; 928 929 ASSERT(db->db_offset == offset); 930 ASSERT(db->db_size == size); 931 932 error = dmu_sync(zio, lr->lr_common.lrc_txg, 933 zfs_get_done, zgd); 934 ASSERT(error || lr->lr_length <= size); 935 936 /* 937 * On success, we need to wait for the write I/O 938 * initiated by dmu_sync() to complete before we can 939 * release this dbuf. We will finish everything up 940 * in the zfs_get_done() callback. 941 */ 942 if (error == 0) 943 return (0); 944 945 if (error == EALREADY) { 946 lr->lr_common.lrc_txtype = TX_WRITE2; 947 /* 948 * TX_WRITE2 relies on the data previously 949 * written by the TX_WRITE that caused 950 * EALREADY. We zero out the BP because 951 * it is the old, currently-on-disk BP. 952 */ 953 zgd->zgd_bp = NULL; 954 BP_ZERO(bp); 955 error = 0; 956 } 957 } 958 } 959 960 zfs_get_done(zgd, error); 961 962 return (error); 963 } 964 965 966 static void 967 zfs_get_done(zgd_t *zgd, int error) 968 { 969 (void) error; 970 znode_t *zp = zgd->zgd_private; 971 972 if (zgd->zgd_db) 973 dmu_buf_rele(zgd->zgd_db, zgd); 974 975 zfs_rangelock_exit(zgd->zgd_lr); 976 977 /* 978 * Release the vnode asynchronously as we currently have the 979 * txg stopped from syncing. 980 */ 981 zfs_zrele_async(zp); 982 983 kmem_free(zgd, sizeof (zgd_t)); 984 } 985 986 EXPORT_SYMBOL(zfs_access); 987 EXPORT_SYMBOL(zfs_fsync); 988 EXPORT_SYMBOL(zfs_holey); 989 EXPORT_SYMBOL(zfs_read); 990 EXPORT_SYMBOL(zfs_write); 991 EXPORT_SYMBOL(zfs_getsecattr); 992 EXPORT_SYMBOL(zfs_setsecattr); 993 994 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW, 995 "Bytes to read per chunk"); 996