xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_vnops.c (revision d30a1689f5b37e78ea189232a8b94a7011dc0dc8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/uio_impl.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/cmn_err.h>
42 #include <sys/errno.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zfs_acl.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/dmu.h>
48 #include <sys/dmu_objset.h>
49 #include <sys/spa.h>
50 #include <sys/txg.h>
51 #include <sys/dbuf.h>
52 #include <sys/policy.h>
53 #include <sys/zfs_vnops.h>
54 #include <sys/zfs_quota.h>
55 #include <sys/zfs_vfsops.h>
56 #include <sys/zfs_znode.h>
57 
58 
59 static ulong_t zfs_fsync_sync_cnt = 4;
60 
61 int
62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
63 {
64 	int error = 0;
65 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
66 
67 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
68 
69 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
70 		if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
71 			goto out;
72 		atomic_inc_32(&zp->z_sync_writes_cnt);
73 		zil_commit(zfsvfs->z_log, zp->z_id);
74 		atomic_dec_32(&zp->z_sync_writes_cnt);
75 		zfs_exit(zfsvfs, FTAG);
76 	}
77 out:
78 	tsd_set(zfs_fsyncer_key, NULL);
79 
80 	return (error);
81 }
82 
83 
84 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
85 /*
86  * Lseek support for finding holes (cmd == SEEK_HOLE) and
87  * data (cmd == SEEK_DATA). "off" is an in/out parameter.
88  */
89 static int
90 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
91 {
92 	zfs_locked_range_t *lr;
93 	uint64_t noff = (uint64_t)*off; /* new offset */
94 	uint64_t file_sz;
95 	int error;
96 	boolean_t hole;
97 
98 	file_sz = zp->z_size;
99 	if (noff >= file_sz)  {
100 		return (SET_ERROR(ENXIO));
101 	}
102 
103 	if (cmd == F_SEEK_HOLE)
104 		hole = B_TRUE;
105 	else
106 		hole = B_FALSE;
107 
108 	/* Flush any mmap()'d data to disk */
109 	if (zn_has_cached_data(zp))
110 		zn_flush_cached_data(zp, B_FALSE);
111 
112 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER);
113 	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
114 	zfs_rangelock_exit(lr);
115 
116 	if (error == ESRCH)
117 		return (SET_ERROR(ENXIO));
118 
119 	/* File was dirty, so fall back to using generic logic */
120 	if (error == EBUSY) {
121 		if (hole)
122 			*off = file_sz;
123 
124 		return (0);
125 	}
126 
127 	/*
128 	 * We could find a hole that begins after the logical end-of-file,
129 	 * because dmu_offset_next() only works on whole blocks.  If the
130 	 * EOF falls mid-block, then indicate that the "virtual hole"
131 	 * at the end of the file begins at the logical EOF, rather than
132 	 * at the end of the last block.
133 	 */
134 	if (noff > file_sz) {
135 		ASSERT(hole);
136 		noff = file_sz;
137 	}
138 
139 	if (noff < *off)
140 		return (error);
141 	*off = noff;
142 	return (error);
143 }
144 
145 int
146 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
147 {
148 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
149 	int error;
150 
151 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
152 		return (error);
153 
154 	error = zfs_holey_common(zp, cmd, off);
155 
156 	zfs_exit(zfsvfs, FTAG);
157 	return (error);
158 }
159 #endif /* SEEK_HOLE && SEEK_DATA */
160 
161 int
162 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
163 {
164 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
165 	int error;
166 
167 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
168 		return (error);
169 
170 	if (flag & V_ACE_MASK)
171 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
172 	else
173 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
174 
175 	zfs_exit(zfsvfs, FTAG);
176 	return (error);
177 }
178 
179 static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
180 
181 /*
182  * Read bytes from specified file into supplied buffer.
183  *
184  *	IN:	zp	- inode of file to be read from.
185  *		uio	- structure supplying read location, range info,
186  *			  and return buffer.
187  *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
188  *			  O_DIRECT flag; used to bypass page cache.
189  *		cr	- credentials of caller.
190  *
191  *	OUT:	uio	- updated offset and range, buffer filled.
192  *
193  *	RETURN:	0 on success, error code on failure.
194  *
195  * Side Effects:
196  *	inode - atime updated if byte count > 0
197  */
198 int
199 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
200 {
201 	(void) cr;
202 	int error = 0;
203 	boolean_t frsync = B_FALSE;
204 
205 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
206 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
207 		return (error);
208 
209 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
210 		zfs_exit(zfsvfs, FTAG);
211 		return (SET_ERROR(EACCES));
212 	}
213 
214 	/* We don't copy out anything useful for directories. */
215 	if (Z_ISDIR(ZTOTYPE(zp))) {
216 		zfs_exit(zfsvfs, FTAG);
217 		return (SET_ERROR(EISDIR));
218 	}
219 
220 	/*
221 	 * Validate file offset
222 	 */
223 	if (zfs_uio_offset(uio) < (offset_t)0) {
224 		zfs_exit(zfsvfs, FTAG);
225 		return (SET_ERROR(EINVAL));
226 	}
227 
228 	/*
229 	 * Fasttrack empty reads
230 	 */
231 	if (zfs_uio_resid(uio) == 0) {
232 		zfs_exit(zfsvfs, FTAG);
233 		return (0);
234 	}
235 
236 #ifdef FRSYNC
237 	/*
238 	 * If we're in FRSYNC mode, sync out this znode before reading it.
239 	 * Only do this for non-snapshots.
240 	 *
241 	 * Some platforms do not support FRSYNC and instead map it
242 	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
243 	 * only honor FRSYNC requests on platforms which support it.
244 	 */
245 	frsync = !!(ioflag & FRSYNC);
246 #endif
247 	if (zfsvfs->z_log &&
248 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
249 		zil_commit(zfsvfs->z_log, zp->z_id);
250 
251 	/*
252 	 * Lock the range against changes.
253 	 */
254 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
255 	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
256 
257 	/*
258 	 * If we are reading past end-of-file we can skip
259 	 * to the end; but we might still need to set atime.
260 	 */
261 	if (zfs_uio_offset(uio) >= zp->z_size) {
262 		error = 0;
263 		goto out;
264 	}
265 
266 	ASSERT(zfs_uio_offset(uio) < zp->z_size);
267 #if defined(__linux__)
268 	ssize_t start_offset = zfs_uio_offset(uio);
269 #endif
270 	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
271 	ssize_t start_resid = n;
272 
273 	while (n > 0) {
274 		ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
275 		    P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
276 #ifdef UIO_NOCOPY
277 		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
278 			error = mappedread_sf(zp, nbytes, uio);
279 		else
280 #endif
281 		if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
282 			error = mappedread(zp, nbytes, uio);
283 		} else {
284 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
285 			    uio, nbytes);
286 		}
287 
288 		if (error) {
289 			/* convert checksum errors into IO errors */
290 			if (error == ECKSUM)
291 				error = SET_ERROR(EIO);
292 
293 #if defined(__linux__)
294 			/*
295 			 * if we actually read some bytes, bubbling EFAULT
296 			 * up to become EAGAIN isn't what we want here...
297 			 *
298 			 * ...on Linux, at least. On FBSD, doing this breaks.
299 			 */
300 			if (error == EFAULT &&
301 			    (zfs_uio_offset(uio) - start_offset) != 0)
302 				error = 0;
303 #endif
304 			break;
305 		}
306 
307 		n -= nbytes;
308 	}
309 
310 	int64_t nread = start_resid - n;
311 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
312 	task_io_account_read(nread);
313 out:
314 	zfs_rangelock_exit(lr);
315 
316 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
317 	zfs_exit(zfsvfs, FTAG);
318 	return (error);
319 }
320 
321 static void
322 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
323     uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
324 {
325 	zilog_t *zilog = zfsvfs->z_log;
326 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
327 
328 	ASSERT(clear_setid_bits_txgp != NULL);
329 	ASSERT(tx != NULL);
330 
331 	/*
332 	 * Clear Set-UID/Set-GID bits on successful write if not
333 	 * privileged and at least one of the execute bits is set.
334 	 *
335 	 * It would be nice to do this after all writes have
336 	 * been done, but that would still expose the ISUID/ISGID
337 	 * to another app after the partial write is committed.
338 	 *
339 	 * Note: we don't call zfs_fuid_map_id() here because
340 	 * user 0 is not an ephemeral uid.
341 	 */
342 	mutex_enter(&zp->z_acl_lock);
343 	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
344 	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
345 	    secpolicy_vnode_setid_retain(zp, cr,
346 	    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
347 		uint64_t newmode;
348 
349 		zp->z_mode &= ~(S_ISUID | S_ISGID);
350 		newmode = zp->z_mode;
351 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
352 		    (void *)&newmode, sizeof (uint64_t), tx);
353 
354 		mutex_exit(&zp->z_acl_lock);
355 
356 		/*
357 		 * Make sure SUID/SGID bits will be removed when we replay the
358 		 * log. If the setid bits are keep coming back, don't log more
359 		 * than one TX_SETATTR per transaction group.
360 		 */
361 		if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
362 			vattr_t va = {0};
363 
364 			va.va_mask = ATTR_MODE;
365 			va.va_nodeid = zp->z_id;
366 			va.va_mode = newmode;
367 			zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
368 			    ATTR_MODE, NULL);
369 			*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
370 		}
371 	} else {
372 		mutex_exit(&zp->z_acl_lock);
373 	}
374 }
375 
376 /*
377  * Write the bytes to a file.
378  *
379  *	IN:	zp	- znode of file to be written to.
380  *		uio	- structure supplying write location, range info,
381  *			  and data buffer.
382  *		ioflag	- O_APPEND flag set if in append mode.
383  *			  O_DIRECT flag; used to bypass page cache.
384  *		cr	- credentials of caller.
385  *
386  *	OUT:	uio	- updated offset and range.
387  *
388  *	RETURN:	0 if success
389  *		error code if failure
390  *
391  * Timestamps:
392  *	ip - ctime|mtime updated if byte count > 0
393  */
394 int
395 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
396 {
397 	int error = 0, error1;
398 	ssize_t start_resid = zfs_uio_resid(uio);
399 	uint64_t clear_setid_bits_txg = 0;
400 
401 	/*
402 	 * Fasttrack empty write
403 	 */
404 	ssize_t n = start_resid;
405 	if (n == 0)
406 		return (0);
407 
408 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
409 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
410 		return (error);
411 
412 	sa_bulk_attr_t bulk[4];
413 	int count = 0;
414 	uint64_t mtime[2], ctime[2];
415 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
416 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
417 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
418 	    &zp->z_size, 8);
419 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
420 	    &zp->z_pflags, 8);
421 
422 	/*
423 	 * Callers might not be able to detect properly that we are read-only,
424 	 * so check it explicitly here.
425 	 */
426 	if (zfs_is_readonly(zfsvfs)) {
427 		zfs_exit(zfsvfs, FTAG);
428 		return (SET_ERROR(EROFS));
429 	}
430 
431 	/*
432 	 * If immutable or not appending then return EPERM.
433 	 * Intentionally allow ZFS_READONLY through here.
434 	 * See zfs_zaccess_common()
435 	 */
436 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
437 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
438 	    (zfs_uio_offset(uio) < zp->z_size))) {
439 		zfs_exit(zfsvfs, FTAG);
440 		return (SET_ERROR(EPERM));
441 	}
442 
443 	/*
444 	 * Validate file offset
445 	 */
446 	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
447 	if (woff < 0) {
448 		zfs_exit(zfsvfs, FTAG);
449 		return (SET_ERROR(EINVAL));
450 	}
451 
452 	const uint64_t max_blksz = zfsvfs->z_max_blksz;
453 
454 	/*
455 	 * Pre-fault the pages to ensure slow (eg NFS) pages
456 	 * don't hold up txg.
457 	 * Skip this if uio contains loaned arc_buf.
458 	 */
459 	if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
460 		zfs_exit(zfsvfs, FTAG);
461 		return (SET_ERROR(EFAULT));
462 	}
463 
464 	/*
465 	 * If in append mode, set the io offset pointer to eof.
466 	 */
467 	zfs_locked_range_t *lr;
468 	if (ioflag & O_APPEND) {
469 		/*
470 		 * Obtain an appending range lock to guarantee file append
471 		 * semantics.  We reset the write offset once we have the lock.
472 		 */
473 		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
474 		woff = lr->lr_offset;
475 		if (lr->lr_length == UINT64_MAX) {
476 			/*
477 			 * We overlocked the file because this write will cause
478 			 * the file block size to increase.
479 			 * Note that zp_size cannot change with this lock held.
480 			 */
481 			woff = zp->z_size;
482 		}
483 		zfs_uio_setoffset(uio, woff);
484 	} else {
485 		/*
486 		 * Note that if the file block size will change as a result of
487 		 * this write, then this range lock will lock the entire file
488 		 * so that we can re-write the block safely.
489 		 */
490 		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
491 	}
492 
493 	if (zn_rlimit_fsize(zp, uio)) {
494 		zfs_rangelock_exit(lr);
495 		zfs_exit(zfsvfs, FTAG);
496 		return (SET_ERROR(EFBIG));
497 	}
498 
499 	const rlim64_t limit = MAXOFFSET_T;
500 
501 	if (woff >= limit) {
502 		zfs_rangelock_exit(lr);
503 		zfs_exit(zfsvfs, FTAG);
504 		return (SET_ERROR(EFBIG));
505 	}
506 
507 	if (n > limit - woff)
508 		n = limit - woff;
509 
510 	uint64_t end_size = MAX(zp->z_size, woff + n);
511 	zilog_t *zilog = zfsvfs->z_log;
512 
513 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
514 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
515 	const uint64_t projid = zp->z_projid;
516 
517 	/*
518 	 * Write the file in reasonable size chunks.  Each chunk is written
519 	 * in a separate transaction; this keeps the intent log records small
520 	 * and allows us to do more fine-grained space accounting.
521 	 */
522 	while (n > 0) {
523 		woff = zfs_uio_offset(uio);
524 
525 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
526 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
527 		    (projid != ZFS_DEFAULT_PROJID &&
528 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
529 		    projid))) {
530 			error = SET_ERROR(EDQUOT);
531 			break;
532 		}
533 
534 		arc_buf_t *abuf = NULL;
535 		if (n >= max_blksz && woff >= zp->z_size &&
536 		    P2PHASE(woff, max_blksz) == 0 &&
537 		    zp->z_blksz == max_blksz) {
538 			/*
539 			 * This write covers a full block.  "Borrow" a buffer
540 			 * from the dmu so that we can fill it before we enter
541 			 * a transaction.  This avoids the possibility of
542 			 * holding up the transaction if the data copy hangs
543 			 * up on a pagefault (e.g., from an NFS server mapping).
544 			 */
545 			size_t cbytes;
546 
547 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
548 			    max_blksz);
549 			ASSERT(abuf != NULL);
550 			ASSERT(arc_buf_size(abuf) == max_blksz);
551 			if ((error = zfs_uiocopy(abuf->b_data, max_blksz,
552 			    UIO_WRITE, uio, &cbytes))) {
553 				dmu_return_arcbuf(abuf);
554 				break;
555 			}
556 			ASSERT3S(cbytes, ==, max_blksz);
557 		}
558 
559 		/*
560 		 * Start a transaction.
561 		 */
562 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
563 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
564 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
565 		DB_DNODE_ENTER(db);
566 		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
567 		    MIN(n, max_blksz));
568 		DB_DNODE_EXIT(db);
569 		zfs_sa_upgrade_txholds(tx, zp);
570 		error = dmu_tx_assign(tx, TXG_WAIT);
571 		if (error) {
572 			dmu_tx_abort(tx);
573 			if (abuf != NULL)
574 				dmu_return_arcbuf(abuf);
575 			break;
576 		}
577 
578 		/*
579 		 * NB: We must call zfs_clear_setid_bits_if_necessary before
580 		 * committing the transaction!
581 		 */
582 
583 		/*
584 		 * If rangelock_enter() over-locked we grow the blocksize
585 		 * and then reduce the lock range.  This will only happen
586 		 * on the first iteration since rangelock_reduce() will
587 		 * shrink down lr_length to the appropriate size.
588 		 */
589 		if (lr->lr_length == UINT64_MAX) {
590 			uint64_t new_blksz;
591 
592 			if (zp->z_blksz > max_blksz) {
593 				/*
594 				 * File's blocksize is already larger than the
595 				 * "recordsize" property.  Only let it grow to
596 				 * the next power of 2.
597 				 */
598 				ASSERT(!ISP2(zp->z_blksz));
599 				new_blksz = MIN(end_size,
600 				    1 << highbit64(zp->z_blksz));
601 			} else {
602 				new_blksz = MIN(end_size, max_blksz);
603 			}
604 			zfs_grow_blocksize(zp, new_blksz, tx);
605 			zfs_rangelock_reduce(lr, woff, n);
606 		}
607 
608 		/*
609 		 * XXX - should we really limit each write to z_max_blksz?
610 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
611 		 */
612 		const ssize_t nbytes =
613 		    MIN(n, max_blksz - P2PHASE(woff, max_blksz));
614 
615 		ssize_t tx_bytes;
616 		if (abuf == NULL) {
617 			tx_bytes = zfs_uio_resid(uio);
618 			zfs_uio_fault_disable(uio, B_TRUE);
619 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
620 			    uio, nbytes, tx);
621 			zfs_uio_fault_disable(uio, B_FALSE);
622 #ifdef __linux__
623 			if (error == EFAULT) {
624 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
625 				    cr, &clear_setid_bits_txg, tx);
626 				dmu_tx_commit(tx);
627 				/*
628 				 * Account for partial writes before
629 				 * continuing the loop.
630 				 * Update needs to occur before the next
631 				 * zfs_uio_prefaultpages, or prefaultpages may
632 				 * error, and we may break the loop early.
633 				 */
634 				if (tx_bytes != zfs_uio_resid(uio))
635 					n -= tx_bytes - zfs_uio_resid(uio);
636 				if (zfs_uio_prefaultpages(MIN(n, max_blksz),
637 				    uio)) {
638 					break;
639 				}
640 				continue;
641 			}
642 #endif
643 			/*
644 			 * On FreeBSD, EFAULT should be propagated back to the
645 			 * VFS, which will handle faulting and will retry.
646 			 */
647 			if (error != 0 && error != EFAULT) {
648 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
649 				    cr, &clear_setid_bits_txg, tx);
650 				dmu_tx_commit(tx);
651 				break;
652 			}
653 			tx_bytes -= zfs_uio_resid(uio);
654 		} else {
655 			/* Implied by abuf != NULL: */
656 			ASSERT3S(n, >=, max_blksz);
657 			ASSERT0(P2PHASE(woff, max_blksz));
658 			/*
659 			 * We can simplify nbytes to MIN(n, max_blksz) since
660 			 * P2PHASE(woff, max_blksz) is 0, and knowing
661 			 * n >= max_blksz lets us simplify further:
662 			 */
663 			ASSERT3S(nbytes, ==, max_blksz);
664 			/*
665 			 * Thus, we're writing a full block at a block-aligned
666 			 * offset and extending the file past EOF.
667 			 *
668 			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
669 			 * arc buffer to a dbuf.
670 			 */
671 			error = dmu_assign_arcbuf_by_dbuf(
672 			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
673 			if (error != 0) {
674 				/*
675 				 * XXX This might not be necessary if
676 				 * dmu_assign_arcbuf_by_dbuf is guaranteed
677 				 * to be atomic.
678 				 */
679 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
680 				    cr, &clear_setid_bits_txg, tx);
681 				dmu_return_arcbuf(abuf);
682 				dmu_tx_commit(tx);
683 				break;
684 			}
685 			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
686 			zfs_uioskip(uio, nbytes);
687 			tx_bytes = nbytes;
688 		}
689 		if (tx_bytes && zn_has_cached_data(zp) &&
690 		    !(ioflag & O_DIRECT)) {
691 			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
692 		}
693 
694 		/*
695 		 * If we made no progress, we're done.  If we made even
696 		 * partial progress, update the znode and ZIL accordingly.
697 		 */
698 		if (tx_bytes == 0) {
699 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
700 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
701 			dmu_tx_commit(tx);
702 			ASSERT(error != 0);
703 			break;
704 		}
705 
706 		zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
707 		    &clear_setid_bits_txg, tx);
708 
709 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
710 
711 		/*
712 		 * Update the file size (zp_size) if it has changed;
713 		 * account for possible concurrent updates.
714 		 */
715 		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
716 			(void) atomic_cas_64(&zp->z_size, end_size,
717 			    zfs_uio_offset(uio));
718 			ASSERT(error == 0 || error == EFAULT);
719 		}
720 		/*
721 		 * If we are replaying and eof is non zero then force
722 		 * the file size to the specified eof. Note, there's no
723 		 * concurrency during replay.
724 		 */
725 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
726 			zp->z_size = zfsvfs->z_replay_eof;
727 
728 		error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
729 		if (error1 != 0)
730 			/* Avoid clobbering EFAULT. */
731 			error = error1;
732 
733 		/*
734 		 * NB: During replay, the TX_SETATTR record logged by
735 		 * zfs_clear_setid_bits_if_necessary must precede any of
736 		 * the TX_WRITE records logged here.
737 		 */
738 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
739 		    NULL, NULL);
740 
741 		dmu_tx_commit(tx);
742 
743 		if (error != 0)
744 			break;
745 		ASSERT3S(tx_bytes, ==, nbytes);
746 		n -= nbytes;
747 
748 		if (n > 0) {
749 			if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
750 				error = SET_ERROR(EFAULT);
751 				break;
752 			}
753 		}
754 	}
755 
756 	zfs_znode_update_vfs(zp);
757 	zfs_rangelock_exit(lr);
758 
759 	/*
760 	 * If we're in replay mode, or we made no progress, or the
761 	 * uio data is inaccessible return an error.  Otherwise, it's
762 	 * at least a partial write, so it's successful.
763 	 */
764 	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
765 	    error == EFAULT) {
766 		zfs_exit(zfsvfs, FTAG);
767 		return (error);
768 	}
769 
770 	if (ioflag & (O_SYNC | O_DSYNC) ||
771 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
772 		zil_commit(zilog, zp->z_id);
773 
774 	const int64_t nwritten = start_resid - zfs_uio_resid(uio);
775 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
776 	task_io_account_write(nwritten);
777 
778 	zfs_exit(zfsvfs, FTAG);
779 	return (0);
780 }
781 
782 int
783 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
784 {
785 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
786 	int error;
787 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
788 
789 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
790 		return (error);
791 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
792 	zfs_exit(zfsvfs, FTAG);
793 
794 	return (error);
795 }
796 
797 int
798 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
799 {
800 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
801 	int error;
802 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
803 	zilog_t	*zilog = zfsvfs->z_log;
804 
805 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
806 		return (error);
807 
808 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
809 
810 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
811 		zil_commit(zilog, 0);
812 
813 	zfs_exit(zfsvfs, FTAG);
814 	return (error);
815 }
816 
817 #ifdef ZFS_DEBUG
818 static int zil_fault_io = 0;
819 #endif
820 
821 static void zfs_get_done(zgd_t *zgd, int error);
822 
823 /*
824  * Get data to generate a TX_WRITE intent log record.
825  */
826 int
827 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
828     struct lwb *lwb, zio_t *zio)
829 {
830 	zfsvfs_t *zfsvfs = arg;
831 	objset_t *os = zfsvfs->z_os;
832 	znode_t *zp;
833 	uint64_t object = lr->lr_foid;
834 	uint64_t offset = lr->lr_offset;
835 	uint64_t size = lr->lr_length;
836 	dmu_buf_t *db;
837 	zgd_t *zgd;
838 	int error = 0;
839 	uint64_t zp_gen;
840 
841 	ASSERT3P(lwb, !=, NULL);
842 	ASSERT3P(zio, !=, NULL);
843 	ASSERT3U(size, !=, 0);
844 
845 	/*
846 	 * Nothing to do if the file has been removed
847 	 */
848 	if (zfs_zget(zfsvfs, object, &zp) != 0)
849 		return (SET_ERROR(ENOENT));
850 	if (zp->z_unlinked) {
851 		/*
852 		 * Release the vnode asynchronously as we currently have the
853 		 * txg stopped from syncing.
854 		 */
855 		zfs_zrele_async(zp);
856 		return (SET_ERROR(ENOENT));
857 	}
858 	/* check if generation number matches */
859 	if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
860 	    sizeof (zp_gen)) != 0) {
861 		zfs_zrele_async(zp);
862 		return (SET_ERROR(EIO));
863 	}
864 	if (zp_gen != gen) {
865 		zfs_zrele_async(zp);
866 		return (SET_ERROR(ENOENT));
867 	}
868 
869 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
870 	zgd->zgd_lwb = lwb;
871 	zgd->zgd_private = zp;
872 
873 	/*
874 	 * Write records come in two flavors: immediate and indirect.
875 	 * For small writes it's cheaper to store the data with the
876 	 * log record (immediate); for large writes it's cheaper to
877 	 * sync the data and get a pointer to it (indirect) so that
878 	 * we don't have to write the data twice.
879 	 */
880 	if (buf != NULL) { /* immediate write */
881 		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
882 		    offset, size, RL_READER);
883 		/* test for truncation needs to be done while range locked */
884 		if (offset >= zp->z_size) {
885 			error = SET_ERROR(ENOENT);
886 		} else {
887 			error = dmu_read(os, object, offset, size, buf,
888 			    DMU_READ_NO_PREFETCH);
889 		}
890 		ASSERT(error == 0 || error == ENOENT);
891 	} else { /* indirect write */
892 		/*
893 		 * Have to lock the whole block to ensure when it's
894 		 * written out and its checksum is being calculated
895 		 * that no one can change the data. We need to re-check
896 		 * blocksize after we get the lock in case it's changed!
897 		 */
898 		for (;;) {
899 			uint64_t blkoff;
900 			size = zp->z_blksz;
901 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
902 			offset -= blkoff;
903 			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
904 			    offset, size, RL_READER);
905 			if (zp->z_blksz == size)
906 				break;
907 			offset += blkoff;
908 			zfs_rangelock_exit(zgd->zgd_lr);
909 		}
910 		/* test for truncation needs to be done while range locked */
911 		if (lr->lr_offset >= zp->z_size)
912 			error = SET_ERROR(ENOENT);
913 #ifdef ZFS_DEBUG
914 		if (zil_fault_io) {
915 			error = SET_ERROR(EIO);
916 			zil_fault_io = 0;
917 		}
918 #endif
919 		if (error == 0)
920 			error = dmu_buf_hold(os, object, offset, zgd, &db,
921 			    DMU_READ_NO_PREFETCH);
922 
923 		if (error == 0) {
924 			blkptr_t *bp = &lr->lr_blkptr;
925 
926 			zgd->zgd_db = db;
927 			zgd->zgd_bp = bp;
928 
929 			ASSERT(db->db_offset == offset);
930 			ASSERT(db->db_size == size);
931 
932 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
933 			    zfs_get_done, zgd);
934 			ASSERT(error || lr->lr_length <= size);
935 
936 			/*
937 			 * On success, we need to wait for the write I/O
938 			 * initiated by dmu_sync() to complete before we can
939 			 * release this dbuf.  We will finish everything up
940 			 * in the zfs_get_done() callback.
941 			 */
942 			if (error == 0)
943 				return (0);
944 
945 			if (error == EALREADY) {
946 				lr->lr_common.lrc_txtype = TX_WRITE2;
947 				/*
948 				 * TX_WRITE2 relies on the data previously
949 				 * written by the TX_WRITE that caused
950 				 * EALREADY.  We zero out the BP because
951 				 * it is the old, currently-on-disk BP.
952 				 */
953 				zgd->zgd_bp = NULL;
954 				BP_ZERO(bp);
955 				error = 0;
956 			}
957 		}
958 	}
959 
960 	zfs_get_done(zgd, error);
961 
962 	return (error);
963 }
964 
965 
966 static void
967 zfs_get_done(zgd_t *zgd, int error)
968 {
969 	(void) error;
970 	znode_t *zp = zgd->zgd_private;
971 
972 	if (zgd->zgd_db)
973 		dmu_buf_rele(zgd->zgd_db, zgd);
974 
975 	zfs_rangelock_exit(zgd->zgd_lr);
976 
977 	/*
978 	 * Release the vnode asynchronously as we currently have the
979 	 * txg stopped from syncing.
980 	 */
981 	zfs_zrele_async(zp);
982 
983 	kmem_free(zgd, sizeof (zgd_t));
984 }
985 
986 EXPORT_SYMBOL(zfs_access);
987 EXPORT_SYMBOL(zfs_fsync);
988 EXPORT_SYMBOL(zfs_holey);
989 EXPORT_SYMBOL(zfs_read);
990 EXPORT_SYMBOL(zfs_write);
991 EXPORT_SYMBOL(zfs_getsecattr);
992 EXPORT_SYMBOL(zfs_setsecattr);
993 
994 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW,
995 	"Bytes to read per chunk");
996