1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/sysmacros.h> 37 #include <sys/vfs.h> 38 #include <sys/uio_impl.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/cmn_err.h> 43 #include <sys/errno.h> 44 #include <sys/zfs_dir.h> 45 #include <sys/zfs_acl.h> 46 #include <sys/zfs_ioctl.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/dmu.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/spa.h> 51 #include <sys/txg.h> 52 #include <sys/dbuf.h> 53 #include <sys/policy.h> 54 #include <sys/zfeature.h> 55 #include <sys/zfs_vnops.h> 56 #include <sys/zfs_quota.h> 57 #include <sys/zfs_vfsops.h> 58 #include <sys/zfs_znode.h> 59 60 61 static ulong_t zfs_fsync_sync_cnt = 4; 62 63 int 64 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr) 65 { 66 int error = 0; 67 zfsvfs_t *zfsvfs = ZTOZSB(zp); 68 69 (void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt); 70 71 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 72 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 73 goto out; 74 atomic_inc_32(&zp->z_sync_writes_cnt); 75 zil_commit(zfsvfs->z_log, zp->z_id); 76 atomic_dec_32(&zp->z_sync_writes_cnt); 77 zfs_exit(zfsvfs, FTAG); 78 } 79 out: 80 tsd_set(zfs_fsyncer_key, NULL); 81 82 return (error); 83 } 84 85 86 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 87 /* 88 * Lseek support for finding holes (cmd == SEEK_HOLE) and 89 * data (cmd == SEEK_DATA). "off" is an in/out parameter. 90 */ 91 static int 92 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off) 93 { 94 zfs_locked_range_t *lr; 95 uint64_t noff = (uint64_t)*off; /* new offset */ 96 uint64_t file_sz; 97 int error; 98 boolean_t hole; 99 100 file_sz = zp->z_size; 101 if (noff >= file_sz) { 102 return (SET_ERROR(ENXIO)); 103 } 104 105 if (cmd == F_SEEK_HOLE) 106 hole = B_TRUE; 107 else 108 hole = B_FALSE; 109 110 /* Flush any mmap()'d data to disk */ 111 if (zn_has_cached_data(zp, 0, file_sz - 1)) 112 zn_flush_cached_data(zp, B_FALSE); 113 114 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER); 115 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff); 116 zfs_rangelock_exit(lr); 117 118 if (error == ESRCH) 119 return (SET_ERROR(ENXIO)); 120 121 /* File was dirty, so fall back to using generic logic */ 122 if (error == EBUSY) { 123 if (hole) 124 *off = file_sz; 125 126 return (0); 127 } 128 129 /* 130 * We could find a hole that begins after the logical end-of-file, 131 * because dmu_offset_next() only works on whole blocks. If the 132 * EOF falls mid-block, then indicate that the "virtual hole" 133 * at the end of the file begins at the logical EOF, rather than 134 * at the end of the last block. 135 */ 136 if (noff > file_sz) { 137 ASSERT(hole); 138 noff = file_sz; 139 } 140 141 if (noff < *off) 142 return (error); 143 *off = noff; 144 return (error); 145 } 146 147 int 148 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off) 149 { 150 zfsvfs_t *zfsvfs = ZTOZSB(zp); 151 int error; 152 153 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 154 return (error); 155 156 error = zfs_holey_common(zp, cmd, off); 157 158 zfs_exit(zfsvfs, FTAG); 159 return (error); 160 } 161 #endif /* SEEK_HOLE && SEEK_DATA */ 162 163 int 164 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr) 165 { 166 zfsvfs_t *zfsvfs = ZTOZSB(zp); 167 int error; 168 169 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 170 return (error); 171 172 if (flag & V_ACE_MASK) 173 #if defined(__linux__) 174 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, 175 zfs_init_idmap); 176 #else 177 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, 178 NULL); 179 #endif 180 else 181 #if defined(__linux__) 182 error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap); 183 #else 184 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL); 185 #endif 186 187 zfs_exit(zfsvfs, FTAG); 188 return (error); 189 } 190 191 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */ 192 193 /* 194 * Read bytes from specified file into supplied buffer. 195 * 196 * IN: zp - inode of file to be read from. 197 * uio - structure supplying read location, range info, 198 * and return buffer. 199 * ioflag - O_SYNC flags; used to provide FRSYNC semantics. 200 * O_DIRECT flag; used to bypass page cache. 201 * cr - credentials of caller. 202 * 203 * OUT: uio - updated offset and range, buffer filled. 204 * 205 * RETURN: 0 on success, error code on failure. 206 * 207 * Side Effects: 208 * inode - atime updated if byte count > 0 209 */ 210 int 211 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 212 { 213 (void) cr; 214 int error = 0; 215 boolean_t frsync = B_FALSE; 216 217 zfsvfs_t *zfsvfs = ZTOZSB(zp); 218 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 219 return (error); 220 221 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 222 zfs_exit(zfsvfs, FTAG); 223 return (SET_ERROR(EACCES)); 224 } 225 226 /* We don't copy out anything useful for directories. */ 227 if (Z_ISDIR(ZTOTYPE(zp))) { 228 zfs_exit(zfsvfs, FTAG); 229 return (SET_ERROR(EISDIR)); 230 } 231 232 /* 233 * Validate file offset 234 */ 235 if (zfs_uio_offset(uio) < (offset_t)0) { 236 zfs_exit(zfsvfs, FTAG); 237 return (SET_ERROR(EINVAL)); 238 } 239 240 /* 241 * Fasttrack empty reads 242 */ 243 if (zfs_uio_resid(uio) == 0) { 244 zfs_exit(zfsvfs, FTAG); 245 return (0); 246 } 247 248 #ifdef FRSYNC 249 /* 250 * If we're in FRSYNC mode, sync out this znode before reading it. 251 * Only do this for non-snapshots. 252 * 253 * Some platforms do not support FRSYNC and instead map it 254 * to O_SYNC, which results in unnecessary calls to zil_commit. We 255 * only honor FRSYNC requests on platforms which support it. 256 */ 257 frsync = !!(ioflag & FRSYNC); 258 #endif 259 if (zfsvfs->z_log && 260 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 261 zil_commit(zfsvfs->z_log, zp->z_id); 262 263 /* 264 * Lock the range against changes. 265 */ 266 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, 267 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER); 268 269 /* 270 * If we are reading past end-of-file we can skip 271 * to the end; but we might still need to set atime. 272 */ 273 if (zfs_uio_offset(uio) >= zp->z_size) { 274 error = 0; 275 goto out; 276 } 277 278 ASSERT(zfs_uio_offset(uio) < zp->z_size); 279 #if defined(__linux__) 280 ssize_t start_offset = zfs_uio_offset(uio); 281 #endif 282 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio)); 283 ssize_t start_resid = n; 284 285 while (n > 0) { 286 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size - 287 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size)); 288 #ifdef UIO_NOCOPY 289 if (zfs_uio_segflg(uio) == UIO_NOCOPY) 290 error = mappedread_sf(zp, nbytes, uio); 291 else 292 #endif 293 if (zn_has_cached_data(zp, zfs_uio_offset(uio), 294 zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) { 295 error = mappedread(zp, nbytes, uio); 296 } else { 297 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 298 uio, nbytes); 299 } 300 301 if (error) { 302 /* convert checksum errors into IO errors */ 303 if (error == ECKSUM) 304 error = SET_ERROR(EIO); 305 306 #if defined(__linux__) 307 /* 308 * if we actually read some bytes, bubbling EFAULT 309 * up to become EAGAIN isn't what we want here... 310 * 311 * ...on Linux, at least. On FBSD, doing this breaks. 312 */ 313 if (error == EFAULT && 314 (zfs_uio_offset(uio) - start_offset) != 0) 315 error = 0; 316 #endif 317 break; 318 } 319 320 n -= nbytes; 321 } 322 323 int64_t nread = start_resid - n; 324 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread); 325 task_io_account_read(nread); 326 out: 327 zfs_rangelock_exit(lr); 328 329 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 330 zfs_exit(zfsvfs, FTAG); 331 return (error); 332 } 333 334 static void 335 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr, 336 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx) 337 { 338 zilog_t *zilog = zfsvfs->z_log; 339 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 340 341 ASSERT(clear_setid_bits_txgp != NULL); 342 ASSERT(tx != NULL); 343 344 /* 345 * Clear Set-UID/Set-GID bits on successful write if not 346 * privileged and at least one of the execute bits is set. 347 * 348 * It would be nice to do this after all writes have 349 * been done, but that would still expose the ISUID/ISGID 350 * to another app after the partial write is committed. 351 * 352 * Note: we don't call zfs_fuid_map_id() here because 353 * user 0 is not an ephemeral uid. 354 */ 355 mutex_enter(&zp->z_acl_lock); 356 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && 357 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 358 secpolicy_vnode_setid_retain(zp, cr, 359 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) { 360 uint64_t newmode; 361 362 zp->z_mode &= ~(S_ISUID | S_ISGID); 363 newmode = zp->z_mode; 364 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 365 (void *)&newmode, sizeof (uint64_t), tx); 366 367 mutex_exit(&zp->z_acl_lock); 368 369 /* 370 * Make sure SUID/SGID bits will be removed when we replay the 371 * log. If the setid bits are keep coming back, don't log more 372 * than one TX_SETATTR per transaction group. 373 */ 374 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) { 375 vattr_t va = {0}; 376 377 va.va_mask = ATTR_MODE; 378 va.va_nodeid = zp->z_id; 379 va.va_mode = newmode; 380 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va, 381 ATTR_MODE, NULL); 382 *clear_setid_bits_txgp = dmu_tx_get_txg(tx); 383 } 384 } else { 385 mutex_exit(&zp->z_acl_lock); 386 } 387 } 388 389 /* 390 * Write the bytes to a file. 391 * 392 * IN: zp - znode of file to be written to. 393 * uio - structure supplying write location, range info, 394 * and data buffer. 395 * ioflag - O_APPEND flag set if in append mode. 396 * O_DIRECT flag; used to bypass page cache. 397 * cr - credentials of caller. 398 * 399 * OUT: uio - updated offset and range. 400 * 401 * RETURN: 0 if success 402 * error code if failure 403 * 404 * Timestamps: 405 * ip - ctime|mtime updated if byte count > 0 406 */ 407 int 408 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 409 { 410 int error = 0, error1; 411 ssize_t start_resid = zfs_uio_resid(uio); 412 uint64_t clear_setid_bits_txg = 0; 413 414 /* 415 * Fasttrack empty write 416 */ 417 ssize_t n = start_resid; 418 if (n == 0) 419 return (0); 420 421 zfsvfs_t *zfsvfs = ZTOZSB(zp); 422 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 423 return (error); 424 425 sa_bulk_attr_t bulk[4]; 426 int count = 0; 427 uint64_t mtime[2], ctime[2]; 428 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 429 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 430 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 431 &zp->z_size, 8); 432 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 433 &zp->z_pflags, 8); 434 435 /* 436 * Callers might not be able to detect properly that we are read-only, 437 * so check it explicitly here. 438 */ 439 if (zfs_is_readonly(zfsvfs)) { 440 zfs_exit(zfsvfs, FTAG); 441 return (SET_ERROR(EROFS)); 442 } 443 444 /* 445 * If immutable or not appending then return EPERM. 446 * Intentionally allow ZFS_READONLY through here. 447 * See zfs_zaccess_common() 448 */ 449 if ((zp->z_pflags & ZFS_IMMUTABLE) || 450 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) && 451 (zfs_uio_offset(uio) < zp->z_size))) { 452 zfs_exit(zfsvfs, FTAG); 453 return (SET_ERROR(EPERM)); 454 } 455 456 /* 457 * Validate file offset 458 */ 459 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio); 460 if (woff < 0) { 461 zfs_exit(zfsvfs, FTAG); 462 return (SET_ERROR(EINVAL)); 463 } 464 465 /* 466 * Pre-fault the pages to ensure slow (eg NFS) pages 467 * don't hold up txg. 468 */ 469 ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1); 470 if (zfs_uio_prefaultpages(pfbytes, uio)) { 471 zfs_exit(zfsvfs, FTAG); 472 return (SET_ERROR(EFAULT)); 473 } 474 475 /* 476 * If in append mode, set the io offset pointer to eof. 477 */ 478 zfs_locked_range_t *lr; 479 if (ioflag & O_APPEND) { 480 /* 481 * Obtain an appending range lock to guarantee file append 482 * semantics. We reset the write offset once we have the lock. 483 */ 484 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 485 woff = lr->lr_offset; 486 if (lr->lr_length == UINT64_MAX) { 487 /* 488 * We overlocked the file because this write will cause 489 * the file block size to increase. 490 * Note that zp_size cannot change with this lock held. 491 */ 492 woff = zp->z_size; 493 } 494 zfs_uio_setoffset(uio, woff); 495 } else { 496 /* 497 * Note that if the file block size will change as a result of 498 * this write, then this range lock will lock the entire file 499 * so that we can re-write the block safely. 500 */ 501 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 502 } 503 504 if (zn_rlimit_fsize_uio(zp, uio)) { 505 zfs_rangelock_exit(lr); 506 zfs_exit(zfsvfs, FTAG); 507 return (SET_ERROR(EFBIG)); 508 } 509 510 const rlim64_t limit = MAXOFFSET_T; 511 512 if (woff >= limit) { 513 zfs_rangelock_exit(lr); 514 zfs_exit(zfsvfs, FTAG); 515 return (SET_ERROR(EFBIG)); 516 } 517 518 if (n > limit - woff) 519 n = limit - woff; 520 521 uint64_t end_size = MAX(zp->z_size, woff + n); 522 zilog_t *zilog = zfsvfs->z_log; 523 524 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 525 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp)); 526 const uint64_t projid = zp->z_projid; 527 528 /* 529 * Write the file in reasonable size chunks. Each chunk is written 530 * in a separate transaction; this keeps the intent log records small 531 * and allows us to do more fine-grained space accounting. 532 */ 533 while (n > 0) { 534 woff = zfs_uio_offset(uio); 535 536 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) || 537 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) || 538 (projid != ZFS_DEFAULT_PROJID && 539 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 540 projid))) { 541 error = SET_ERROR(EDQUOT); 542 break; 543 } 544 545 uint64_t blksz; 546 if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) { 547 if (zp->z_blksz > zfsvfs->z_max_blksz && 548 !ISP2(zp->z_blksz)) { 549 /* 550 * File's blocksize is already larger than the 551 * "recordsize" property. Only let it grow to 552 * the next power of 2. 553 */ 554 blksz = 1 << highbit64(zp->z_blksz); 555 } else { 556 blksz = zfsvfs->z_max_blksz; 557 } 558 blksz = MIN(blksz, P2ROUNDUP(end_size, 559 SPA_MINBLOCKSIZE)); 560 blksz = MAX(blksz, zp->z_blksz); 561 } else { 562 blksz = zp->z_blksz; 563 } 564 565 arc_buf_t *abuf = NULL; 566 ssize_t nbytes = n; 567 if (n >= blksz && woff >= zp->z_size && 568 P2PHASE(woff, blksz) == 0 && 569 (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) { 570 /* 571 * This write covers a full block. "Borrow" a buffer 572 * from the dmu so that we can fill it before we enter 573 * a transaction. This avoids the possibility of 574 * holding up the transaction if the data copy hangs 575 * up on a pagefault (e.g., from an NFS server mapping). 576 */ 577 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 578 blksz); 579 ASSERT(abuf != NULL); 580 ASSERT(arc_buf_size(abuf) == blksz); 581 if ((error = zfs_uiocopy(abuf->b_data, blksz, 582 UIO_WRITE, uio, &nbytes))) { 583 dmu_return_arcbuf(abuf); 584 break; 585 } 586 ASSERT3S(nbytes, ==, blksz); 587 } else { 588 nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) - 589 P2PHASE(woff, blksz)); 590 if (pfbytes < nbytes) { 591 if (zfs_uio_prefaultpages(nbytes, uio)) { 592 error = SET_ERROR(EFAULT); 593 break; 594 } 595 pfbytes = nbytes; 596 } 597 } 598 599 /* 600 * Start a transaction. 601 */ 602 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 603 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 604 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); 605 DB_DNODE_ENTER(db); 606 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes); 607 DB_DNODE_EXIT(db); 608 zfs_sa_upgrade_txholds(tx, zp); 609 error = dmu_tx_assign(tx, TXG_WAIT); 610 if (error) { 611 dmu_tx_abort(tx); 612 if (abuf != NULL) 613 dmu_return_arcbuf(abuf); 614 break; 615 } 616 617 /* 618 * NB: We must call zfs_clear_setid_bits_if_necessary before 619 * committing the transaction! 620 */ 621 622 /* 623 * If rangelock_enter() over-locked we grow the blocksize 624 * and then reduce the lock range. This will only happen 625 * on the first iteration since rangelock_reduce() will 626 * shrink down lr_length to the appropriate size. 627 */ 628 if (lr->lr_length == UINT64_MAX) { 629 zfs_grow_blocksize(zp, blksz, tx); 630 zfs_rangelock_reduce(lr, woff, n); 631 } 632 633 ssize_t tx_bytes; 634 if (abuf == NULL) { 635 tx_bytes = zfs_uio_resid(uio); 636 zfs_uio_fault_disable(uio, B_TRUE); 637 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 638 uio, nbytes, tx); 639 zfs_uio_fault_disable(uio, B_FALSE); 640 #ifdef __linux__ 641 if (error == EFAULT) { 642 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 643 cr, &clear_setid_bits_txg, tx); 644 dmu_tx_commit(tx); 645 /* 646 * Account for partial writes before 647 * continuing the loop. 648 * Update needs to occur before the next 649 * zfs_uio_prefaultpages, or prefaultpages may 650 * error, and we may break the loop early. 651 */ 652 n -= tx_bytes - zfs_uio_resid(uio); 653 pfbytes -= tx_bytes - zfs_uio_resid(uio); 654 continue; 655 } 656 #endif 657 /* 658 * On FreeBSD, EFAULT should be propagated back to the 659 * VFS, which will handle faulting and will retry. 660 */ 661 if (error != 0 && error != EFAULT) { 662 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 663 cr, &clear_setid_bits_txg, tx); 664 dmu_tx_commit(tx); 665 break; 666 } 667 tx_bytes -= zfs_uio_resid(uio); 668 } else { 669 /* 670 * Thus, we're writing a full block at a block-aligned 671 * offset and extending the file past EOF. 672 * 673 * dmu_assign_arcbuf_by_dbuf() will directly assign the 674 * arc buffer to a dbuf. 675 */ 676 error = dmu_assign_arcbuf_by_dbuf( 677 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 678 if (error != 0) { 679 /* 680 * XXX This might not be necessary if 681 * dmu_assign_arcbuf_by_dbuf is guaranteed 682 * to be atomic. 683 */ 684 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 685 cr, &clear_setid_bits_txg, tx); 686 dmu_return_arcbuf(abuf); 687 dmu_tx_commit(tx); 688 break; 689 } 690 ASSERT3S(nbytes, <=, zfs_uio_resid(uio)); 691 zfs_uioskip(uio, nbytes); 692 tx_bytes = nbytes; 693 } 694 if (tx_bytes && 695 zn_has_cached_data(zp, woff, woff + tx_bytes - 1) && 696 !(ioflag & O_DIRECT)) { 697 update_pages(zp, woff, tx_bytes, zfsvfs->z_os); 698 } 699 700 /* 701 * If we made no progress, we're done. If we made even 702 * partial progress, update the znode and ZIL accordingly. 703 */ 704 if (tx_bytes == 0) { 705 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 706 (void *)&zp->z_size, sizeof (uint64_t), tx); 707 dmu_tx_commit(tx); 708 ASSERT(error != 0); 709 break; 710 } 711 712 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, 713 &clear_setid_bits_txg, tx); 714 715 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 716 717 /* 718 * Update the file size (zp_size) if it has changed; 719 * account for possible concurrent updates. 720 */ 721 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) { 722 (void) atomic_cas_64(&zp->z_size, end_size, 723 zfs_uio_offset(uio)); 724 ASSERT(error == 0 || error == EFAULT); 725 } 726 /* 727 * If we are replaying and eof is non zero then force 728 * the file size to the specified eof. Note, there's no 729 * concurrency during replay. 730 */ 731 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 732 zp->z_size = zfsvfs->z_replay_eof; 733 734 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 735 if (error1 != 0) 736 /* Avoid clobbering EFAULT. */ 737 error = error1; 738 739 /* 740 * NB: During replay, the TX_SETATTR record logged by 741 * zfs_clear_setid_bits_if_necessary must precede any of 742 * the TX_WRITE records logged here. 743 */ 744 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag, 745 NULL, NULL); 746 747 dmu_tx_commit(tx); 748 749 if (error != 0) 750 break; 751 ASSERT3S(tx_bytes, ==, nbytes); 752 n -= nbytes; 753 pfbytes -= nbytes; 754 } 755 756 zfs_znode_update_vfs(zp); 757 zfs_rangelock_exit(lr); 758 759 /* 760 * If we're in replay mode, or we made no progress, or the 761 * uio data is inaccessible return an error. Otherwise, it's 762 * at least a partial write, so it's successful. 763 */ 764 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid || 765 error == EFAULT) { 766 zfs_exit(zfsvfs, FTAG); 767 return (error); 768 } 769 770 if (ioflag & (O_SYNC | O_DSYNC) || 771 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 772 zil_commit(zilog, zp->z_id); 773 774 const int64_t nwritten = start_resid - zfs_uio_resid(uio); 775 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten); 776 task_io_account_write(nwritten); 777 778 zfs_exit(zfsvfs, FTAG); 779 return (0); 780 } 781 782 int 783 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 784 { 785 zfsvfs_t *zfsvfs = ZTOZSB(zp); 786 int error; 787 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 788 789 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 790 return (error); 791 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 792 zfs_exit(zfsvfs, FTAG); 793 794 return (error); 795 } 796 797 int 798 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 799 { 800 zfsvfs_t *zfsvfs = ZTOZSB(zp); 801 int error; 802 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 803 zilog_t *zilog = zfsvfs->z_log; 804 805 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 806 return (error); 807 808 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 809 810 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 811 zil_commit(zilog, 0); 812 813 zfs_exit(zfsvfs, FTAG); 814 return (error); 815 } 816 817 #ifdef ZFS_DEBUG 818 static int zil_fault_io = 0; 819 #endif 820 821 static void zfs_get_done(zgd_t *zgd, int error); 822 823 /* 824 * Get data to generate a TX_WRITE intent log record. 825 */ 826 int 827 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf, 828 struct lwb *lwb, zio_t *zio) 829 { 830 zfsvfs_t *zfsvfs = arg; 831 objset_t *os = zfsvfs->z_os; 832 znode_t *zp; 833 uint64_t object = lr->lr_foid; 834 uint64_t offset = lr->lr_offset; 835 uint64_t size = lr->lr_length; 836 dmu_buf_t *db; 837 zgd_t *zgd; 838 int error = 0; 839 uint64_t zp_gen; 840 841 ASSERT3P(lwb, !=, NULL); 842 ASSERT3P(zio, !=, NULL); 843 ASSERT3U(size, !=, 0); 844 845 /* 846 * Nothing to do if the file has been removed 847 */ 848 if (zfs_zget(zfsvfs, object, &zp) != 0) 849 return (SET_ERROR(ENOENT)); 850 if (zp->z_unlinked) { 851 /* 852 * Release the vnode asynchronously as we currently have the 853 * txg stopped from syncing. 854 */ 855 zfs_zrele_async(zp); 856 return (SET_ERROR(ENOENT)); 857 } 858 /* check if generation number matches */ 859 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 860 sizeof (zp_gen)) != 0) { 861 zfs_zrele_async(zp); 862 return (SET_ERROR(EIO)); 863 } 864 if (zp_gen != gen) { 865 zfs_zrele_async(zp); 866 return (SET_ERROR(ENOENT)); 867 } 868 869 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 870 zgd->zgd_lwb = lwb; 871 zgd->zgd_private = zp; 872 873 /* 874 * Write records come in two flavors: immediate and indirect. 875 * For small writes it's cheaper to store the data with the 876 * log record (immediate); for large writes it's cheaper to 877 * sync the data and get a pointer to it (indirect) so that 878 * we don't have to write the data twice. 879 */ 880 if (buf != NULL) { /* immediate write */ 881 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 882 offset, size, RL_READER); 883 /* test for truncation needs to be done while range locked */ 884 if (offset >= zp->z_size) { 885 error = SET_ERROR(ENOENT); 886 } else { 887 error = dmu_read(os, object, offset, size, buf, 888 DMU_READ_NO_PREFETCH); 889 } 890 ASSERT(error == 0 || error == ENOENT); 891 } else { /* indirect write */ 892 /* 893 * Have to lock the whole block to ensure when it's 894 * written out and its checksum is being calculated 895 * that no one can change the data. We need to re-check 896 * blocksize after we get the lock in case it's changed! 897 */ 898 for (;;) { 899 uint64_t blkoff; 900 size = zp->z_blksz; 901 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 902 offset -= blkoff; 903 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 904 offset, size, RL_READER); 905 if (zp->z_blksz == size) 906 break; 907 offset += blkoff; 908 zfs_rangelock_exit(zgd->zgd_lr); 909 } 910 /* test for truncation needs to be done while range locked */ 911 if (lr->lr_offset >= zp->z_size) 912 error = SET_ERROR(ENOENT); 913 #ifdef ZFS_DEBUG 914 if (zil_fault_io) { 915 error = SET_ERROR(EIO); 916 zil_fault_io = 0; 917 } 918 #endif 919 if (error == 0) 920 error = dmu_buf_hold(os, object, offset, zgd, &db, 921 DMU_READ_NO_PREFETCH); 922 923 if (error == 0) { 924 blkptr_t *bp = &lr->lr_blkptr; 925 926 zgd->zgd_db = db; 927 zgd->zgd_bp = bp; 928 929 ASSERT(db->db_offset == offset); 930 ASSERT(db->db_size == size); 931 932 error = dmu_sync(zio, lr->lr_common.lrc_txg, 933 zfs_get_done, zgd); 934 ASSERT(error || lr->lr_length <= size); 935 936 /* 937 * On success, we need to wait for the write I/O 938 * initiated by dmu_sync() to complete before we can 939 * release this dbuf. We will finish everything up 940 * in the zfs_get_done() callback. 941 */ 942 if (error == 0) 943 return (0); 944 945 if (error == EALREADY) { 946 lr->lr_common.lrc_txtype = TX_WRITE2; 947 /* 948 * TX_WRITE2 relies on the data previously 949 * written by the TX_WRITE that caused 950 * EALREADY. We zero out the BP because 951 * it is the old, currently-on-disk BP. 952 */ 953 zgd->zgd_bp = NULL; 954 BP_ZERO(bp); 955 error = 0; 956 } 957 } 958 } 959 960 zfs_get_done(zgd, error); 961 962 return (error); 963 } 964 965 966 static void 967 zfs_get_done(zgd_t *zgd, int error) 968 { 969 (void) error; 970 znode_t *zp = zgd->zgd_private; 971 972 if (zgd->zgd_db) 973 dmu_buf_rele(zgd->zgd_db, zgd); 974 975 zfs_rangelock_exit(zgd->zgd_lr); 976 977 /* 978 * Release the vnode asynchronously as we currently have the 979 * txg stopped from syncing. 980 */ 981 zfs_zrele_async(zp); 982 983 kmem_free(zgd, sizeof (zgd_t)); 984 } 985 986 static int 987 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag) 988 { 989 int error; 990 991 /* Swap. Not sure if the order of zfs_enter()s is important. */ 992 if (zfsvfs1 > zfsvfs2) { 993 zfsvfs_t *tmpzfsvfs; 994 995 tmpzfsvfs = zfsvfs2; 996 zfsvfs2 = zfsvfs1; 997 zfsvfs1 = tmpzfsvfs; 998 } 999 1000 error = zfs_enter(zfsvfs1, tag); 1001 if (error != 0) 1002 return (error); 1003 if (zfsvfs1 != zfsvfs2) { 1004 error = zfs_enter(zfsvfs2, tag); 1005 if (error != 0) { 1006 zfs_exit(zfsvfs1, tag); 1007 return (error); 1008 } 1009 } 1010 1011 return (0); 1012 } 1013 1014 static void 1015 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag) 1016 { 1017 1018 zfs_exit(zfsvfs1, tag); 1019 if (zfsvfs1 != zfsvfs2) 1020 zfs_exit(zfsvfs2, tag); 1021 } 1022 1023 /* 1024 * We split each clone request in chunks that can fit into a single ZIL 1025 * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning 1026 * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives 1027 * us room for storing 1022 block pointers. 1028 * 1029 * On success, the function return the number of bytes copied in *lenp. 1030 * Note, it doesn't return how much bytes are left to be copied. 1031 */ 1032 int 1033 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp, 1034 uint64_t *outoffp, uint64_t *lenp, cred_t *cr) 1035 { 1036 zfsvfs_t *inzfsvfs, *outzfsvfs; 1037 objset_t *inos, *outos; 1038 zfs_locked_range_t *inlr, *outlr; 1039 dmu_buf_impl_t *db; 1040 dmu_tx_t *tx; 1041 zilog_t *zilog; 1042 uint64_t inoff, outoff, len, done; 1043 uint64_t outsize, size; 1044 int error; 1045 int count = 0; 1046 sa_bulk_attr_t bulk[3]; 1047 uint64_t mtime[2], ctime[2]; 1048 uint64_t uid, gid, projid; 1049 blkptr_t *bps; 1050 size_t maxblocks, nbps; 1051 uint_t inblksz; 1052 uint64_t clear_setid_bits_txg = 0; 1053 1054 inoff = *inoffp; 1055 outoff = *outoffp; 1056 len = *lenp; 1057 done = 0; 1058 1059 inzfsvfs = ZTOZSB(inzp); 1060 outzfsvfs = ZTOZSB(outzp); 1061 1062 /* 1063 * We need to call zfs_enter() potentially on two different datasets, 1064 * so we need a dedicated function for that. 1065 */ 1066 error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG); 1067 if (error != 0) 1068 return (error); 1069 1070 inos = inzfsvfs->z_os; 1071 outos = outzfsvfs->z_os; 1072 1073 /* 1074 * Both source and destination have to belong to the same storage pool. 1075 */ 1076 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) { 1077 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1078 return (SET_ERROR(EXDEV)); 1079 } 1080 1081 ASSERT(!outzfsvfs->z_replay); 1082 1083 error = zfs_verify_zp(inzp); 1084 if (error == 0) 1085 error = zfs_verify_zp(outzp); 1086 if (error != 0) { 1087 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1088 return (error); 1089 } 1090 1091 if (!spa_feature_is_enabled(dmu_objset_spa(outos), 1092 SPA_FEATURE_BLOCK_CLONING)) { 1093 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1094 return (SET_ERROR(EXDEV)); 1095 } 1096 1097 /* 1098 * We don't copy source file's flags that's why we don't allow to clone 1099 * files that are in quarantine. 1100 */ 1101 if (inzp->z_pflags & ZFS_AV_QUARANTINED) { 1102 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1103 return (SET_ERROR(EACCES)); 1104 } 1105 1106 if (inoff >= inzp->z_size) { 1107 *lenp = 0; 1108 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1109 return (0); 1110 } 1111 if (len > inzp->z_size - inoff) { 1112 len = inzp->z_size - inoff; 1113 } 1114 if (len == 0) { 1115 *lenp = 0; 1116 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1117 return (0); 1118 } 1119 1120 /* 1121 * Callers might not be able to detect properly that we are read-only, 1122 * so check it explicitly here. 1123 */ 1124 if (zfs_is_readonly(outzfsvfs)) { 1125 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1126 return (SET_ERROR(EROFS)); 1127 } 1128 1129 /* 1130 * If immutable or not appending then return EPERM. 1131 * Intentionally allow ZFS_READONLY through here. 1132 * See zfs_zaccess_common() 1133 */ 1134 if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) { 1135 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1136 return (SET_ERROR(EPERM)); 1137 } 1138 1139 /* 1140 * No overlapping if we are cloning within the same file. 1141 */ 1142 if (inzp == outzp) { 1143 if (inoff < outoff + len && outoff < inoff + len) { 1144 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1145 return (SET_ERROR(EINVAL)); 1146 } 1147 } 1148 1149 /* 1150 * Maintain predictable lock order. 1151 */ 1152 if (inzp < outzp || (inzp == outzp && inoff < outoff)) { 1153 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len, 1154 RL_READER); 1155 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len, 1156 RL_WRITER); 1157 } else { 1158 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len, 1159 RL_WRITER); 1160 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len, 1161 RL_READER); 1162 } 1163 1164 inblksz = inzp->z_blksz; 1165 1166 /* 1167 * We cannot clone into files with different block size. 1168 */ 1169 if (inblksz != outzp->z_blksz && outzp->z_size > inblksz) { 1170 error = SET_ERROR(EXDEV); 1171 goto unlock; 1172 } 1173 1174 /* 1175 * Offsets and len must be at block boundries. 1176 */ 1177 if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) { 1178 error = SET_ERROR(EXDEV); 1179 goto unlock; 1180 } 1181 /* 1182 * Length must be multipe of blksz, except for the end of the file. 1183 */ 1184 if ((len % inblksz) != 0 && 1185 (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) { 1186 error = SET_ERROR(EXDEV); 1187 goto unlock; 1188 } 1189 1190 error = zn_rlimit_fsize(outoff + len); 1191 if (error != 0) { 1192 goto unlock; 1193 } 1194 1195 if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) { 1196 error = SET_ERROR(EFBIG); 1197 goto unlock; 1198 } 1199 1200 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL, 1201 &mtime, 16); 1202 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL, 1203 &ctime, 16); 1204 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL, 1205 &outzp->z_size, 8); 1206 1207 zilog = outzfsvfs->z_log; 1208 maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) / 1209 sizeof (bps[0]); 1210 1211 uid = KUID_TO_SUID(ZTOUID(outzp)); 1212 gid = KGID_TO_SGID(ZTOGID(outzp)); 1213 projid = outzp->z_projid; 1214 1215 bps = kmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP); 1216 1217 /* 1218 * Clone the file in reasonable size chunks. Each chunk is cloned 1219 * in a separate transaction; this keeps the intent log records small 1220 * and allows us to do more fine-grained space accounting. 1221 */ 1222 while (len > 0) { 1223 size = MIN(inblksz * maxblocks, len); 1224 1225 if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT, 1226 uid) || 1227 zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT, 1228 gid) || 1229 (projid != ZFS_DEFAULT_PROJID && 1230 zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT, 1231 projid))) { 1232 error = SET_ERROR(EDQUOT); 1233 break; 1234 } 1235 1236 nbps = maxblocks; 1237 error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps, 1238 &nbps); 1239 if (error != 0) { 1240 /* 1241 * If we are tyring to clone a block that was created 1242 * in the current transaction group. Return an error, 1243 * so the caller can fallback to just copying the data. 1244 */ 1245 if (error == EAGAIN) { 1246 error = SET_ERROR(EXDEV); 1247 } 1248 break; 1249 } 1250 /* 1251 * Encrypted data is fine as long as it comes from the same 1252 * dataset. 1253 * TODO: We want to extend it in the future to allow cloning to 1254 * datasets with the same keys, like clones or to be able to 1255 * clone a file from a snapshot of an encrypted dataset into the 1256 * dataset itself. 1257 */ 1258 if (BP_IS_PROTECTED(&bps[0])) { 1259 if (inzfsvfs != outzfsvfs) { 1260 error = SET_ERROR(EXDEV); 1261 break; 1262 } 1263 } 1264 1265 /* 1266 * Start a transaction. 1267 */ 1268 tx = dmu_tx_create(outos); 1269 dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE); 1270 db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl); 1271 DB_DNODE_ENTER(db); 1272 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size); 1273 DB_DNODE_EXIT(db); 1274 zfs_sa_upgrade_txholds(tx, outzp); 1275 error = dmu_tx_assign(tx, TXG_WAIT); 1276 if (error != 0) { 1277 dmu_tx_abort(tx); 1278 break; 1279 } 1280 1281 /* 1282 * Copy source znode's block size. This only happens on the 1283 * first iteration since zfs_rangelock_reduce() will shrink down 1284 * lr_len to the appropriate size. 1285 */ 1286 if (outlr->lr_length == UINT64_MAX) { 1287 zfs_grow_blocksize(outzp, inblksz, tx); 1288 /* 1289 * Round range lock up to the block boundary, so we 1290 * prevent appends until we are done. 1291 */ 1292 zfs_rangelock_reduce(outlr, outoff, 1293 ((len - 1) / inblksz + 1) * inblksz); 1294 } 1295 1296 error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx, 1297 bps, nbps, B_FALSE); 1298 if (error != 0) { 1299 dmu_tx_commit(tx); 1300 break; 1301 } 1302 1303 zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr, 1304 &clear_setid_bits_txg, tx); 1305 1306 zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime); 1307 1308 /* 1309 * Update the file size (zp_size) if it has changed; 1310 * account for possible concurrent updates. 1311 */ 1312 while ((outsize = outzp->z_size) < outoff + size) { 1313 (void) atomic_cas_64(&outzp->z_size, outsize, 1314 outoff + size); 1315 } 1316 1317 error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx); 1318 1319 zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff, 1320 size, inblksz, bps, nbps); 1321 1322 dmu_tx_commit(tx); 1323 1324 if (error != 0) 1325 break; 1326 1327 inoff += size; 1328 outoff += size; 1329 len -= size; 1330 done += size; 1331 } 1332 1333 kmem_free(bps, sizeof (bps[0]) * maxblocks); 1334 zfs_znode_update_vfs(outzp); 1335 1336 unlock: 1337 zfs_rangelock_exit(outlr); 1338 zfs_rangelock_exit(inlr); 1339 1340 if (done > 0) { 1341 /* 1342 * If we have made at least partial progress, reset the error. 1343 */ 1344 error = 0; 1345 1346 ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp); 1347 1348 if (outos->os_sync == ZFS_SYNC_ALWAYS) { 1349 zil_commit(zilog, outzp->z_id); 1350 } 1351 1352 *inoffp += done; 1353 *outoffp += done; 1354 *lenp = done; 1355 } 1356 1357 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1358 1359 return (error); 1360 } 1361 1362 /* 1363 * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(), 1364 * but we cannot do that, because when replaying we don't have source znode 1365 * available. This is why we need a dedicated replay function. 1366 */ 1367 int 1368 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz, 1369 const blkptr_t *bps, size_t nbps) 1370 { 1371 zfsvfs_t *zfsvfs; 1372 dmu_buf_impl_t *db; 1373 dmu_tx_t *tx; 1374 int error; 1375 int count = 0; 1376 sa_bulk_attr_t bulk[3]; 1377 uint64_t mtime[2], ctime[2]; 1378 1379 ASSERT3U(off, <, MAXOFFSET_T); 1380 ASSERT3U(len, >, 0); 1381 ASSERT3U(nbps, >, 0); 1382 1383 zfsvfs = ZTOZSB(zp); 1384 1385 ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os), 1386 SPA_FEATURE_BLOCK_CLONING)); 1387 1388 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 1389 return (error); 1390 1391 ASSERT(zfsvfs->z_replay); 1392 ASSERT(!zfs_is_readonly(zfsvfs)); 1393 1394 if ((off % blksz) != 0) { 1395 zfs_exit(zfsvfs, FTAG); 1396 return (SET_ERROR(EINVAL)); 1397 } 1398 1399 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 1400 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 1401 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1402 &zp->z_size, 8); 1403 1404 /* 1405 * Start a transaction. 1406 */ 1407 tx = dmu_tx_create(zfsvfs->z_os); 1408 1409 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1410 db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); 1411 DB_DNODE_ENTER(db); 1412 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len); 1413 DB_DNODE_EXIT(db); 1414 zfs_sa_upgrade_txholds(tx, zp); 1415 error = dmu_tx_assign(tx, TXG_WAIT); 1416 if (error != 0) { 1417 dmu_tx_abort(tx); 1418 zfs_exit(zfsvfs, FTAG); 1419 return (error); 1420 } 1421 1422 if (zp->z_blksz < blksz) 1423 zfs_grow_blocksize(zp, blksz, tx); 1424 1425 dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps, B_TRUE); 1426 1427 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 1428 1429 if (zp->z_size < off + len) 1430 zp->z_size = off + len; 1431 1432 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1433 1434 /* 1435 * zil_replaying() not only check if we are replaying ZIL, but also 1436 * updates the ZIL header to record replay progress. 1437 */ 1438 VERIFY(zil_replaying(zfsvfs->z_log, tx)); 1439 1440 dmu_tx_commit(tx); 1441 1442 zfs_znode_update_vfs(zp); 1443 1444 zfs_exit(zfsvfs, FTAG); 1445 1446 return (error); 1447 } 1448 1449 EXPORT_SYMBOL(zfs_access); 1450 EXPORT_SYMBOL(zfs_fsync); 1451 EXPORT_SYMBOL(zfs_holey); 1452 EXPORT_SYMBOL(zfs_read); 1453 EXPORT_SYMBOL(zfs_write); 1454 EXPORT_SYMBOL(zfs_getsecattr); 1455 EXPORT_SYMBOL(zfs_setsecattr); 1456 EXPORT_SYMBOL(zfs_clone_range); 1457 EXPORT_SYMBOL(zfs_clone_range_replay); 1458 1459 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW, 1460 "Bytes to read per chunk"); 1461