1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 /* Portions Copyright 2007 Jeremy Teo */ 30 /* Portions Copyright 2010 Robert Milkowski */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/time.h> 35 #include <sys/sysmacros.h> 36 #include <sys/vfs.h> 37 #include <sys/uio_impl.h> 38 #include <sys/file.h> 39 #include <sys/stat.h> 40 #include <sys/kmem.h> 41 #include <sys/cmn_err.h> 42 #include <sys/errno.h> 43 #include <sys/zfs_dir.h> 44 #include <sys/zfs_acl.h> 45 #include <sys/zfs_ioctl.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/dmu.h> 48 #include <sys/dmu_objset.h> 49 #include <sys/spa.h> 50 #include <sys/txg.h> 51 #include <sys/dbuf.h> 52 #include <sys/policy.h> 53 #include <sys/zfs_vnops.h> 54 #include <sys/zfs_quota.h> 55 #include <sys/zfs_vfsops.h> 56 #include <sys/zfs_znode.h> 57 58 59 static ulong_t zfs_fsync_sync_cnt = 4; 60 61 int 62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr) 63 { 64 zfsvfs_t *zfsvfs = ZTOZSB(zp); 65 66 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 67 68 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 69 ZFS_ENTER(zfsvfs); 70 ZFS_VERIFY_ZP(zp); 71 zil_commit(zfsvfs->z_log, zp->z_id); 72 ZFS_EXIT(zfsvfs); 73 } 74 tsd_set(zfs_fsyncer_key, NULL); 75 76 return (0); 77 } 78 79 80 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 81 /* 82 * Lseek support for finding holes (cmd == SEEK_HOLE) and 83 * data (cmd == SEEK_DATA). "off" is an in/out parameter. 84 */ 85 static int 86 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off) 87 { 88 zfs_locked_range_t *lr; 89 uint64_t noff = (uint64_t)*off; /* new offset */ 90 uint64_t file_sz; 91 int error; 92 boolean_t hole; 93 94 file_sz = zp->z_size; 95 if (noff >= file_sz) { 96 return (SET_ERROR(ENXIO)); 97 } 98 99 if (cmd == F_SEEK_HOLE) 100 hole = B_TRUE; 101 else 102 hole = B_FALSE; 103 104 /* Flush any mmap()'d data to disk */ 105 if (zn_has_cached_data(zp)) 106 zn_flush_cached_data(zp, B_FALSE); 107 108 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER); 109 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff); 110 zfs_rangelock_exit(lr); 111 112 if (error == ESRCH) 113 return (SET_ERROR(ENXIO)); 114 115 /* File was dirty, so fall back to using generic logic */ 116 if (error == EBUSY) { 117 if (hole) 118 *off = file_sz; 119 120 return (0); 121 } 122 123 /* 124 * We could find a hole that begins after the logical end-of-file, 125 * because dmu_offset_next() only works on whole blocks. If the 126 * EOF falls mid-block, then indicate that the "virtual hole" 127 * at the end of the file begins at the logical EOF, rather than 128 * at the end of the last block. 129 */ 130 if (noff > file_sz) { 131 ASSERT(hole); 132 noff = file_sz; 133 } 134 135 if (noff < *off) 136 return (error); 137 *off = noff; 138 return (error); 139 } 140 141 int 142 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off) 143 { 144 zfsvfs_t *zfsvfs = ZTOZSB(zp); 145 int error; 146 147 ZFS_ENTER(zfsvfs); 148 ZFS_VERIFY_ZP(zp); 149 150 error = zfs_holey_common(zp, cmd, off); 151 152 ZFS_EXIT(zfsvfs); 153 return (error); 154 } 155 #endif /* SEEK_HOLE && SEEK_DATA */ 156 157 int 158 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr) 159 { 160 zfsvfs_t *zfsvfs = ZTOZSB(zp); 161 int error; 162 163 ZFS_ENTER(zfsvfs); 164 ZFS_VERIFY_ZP(zp); 165 166 if (flag & V_ACE_MASK) 167 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 168 else 169 error = zfs_zaccess_rwx(zp, mode, flag, cr); 170 171 ZFS_EXIT(zfsvfs); 172 return (error); 173 } 174 175 static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */ 176 177 /* 178 * Read bytes from specified file into supplied buffer. 179 * 180 * IN: zp - inode of file to be read from. 181 * uio - structure supplying read location, range info, 182 * and return buffer. 183 * ioflag - O_SYNC flags; used to provide FRSYNC semantics. 184 * O_DIRECT flag; used to bypass page cache. 185 * cr - credentials of caller. 186 * 187 * OUT: uio - updated offset and range, buffer filled. 188 * 189 * RETURN: 0 on success, error code on failure. 190 * 191 * Side Effects: 192 * inode - atime updated if byte count > 0 193 */ 194 int 195 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 196 { 197 (void) cr; 198 int error = 0; 199 boolean_t frsync = B_FALSE; 200 201 zfsvfs_t *zfsvfs = ZTOZSB(zp); 202 ZFS_ENTER(zfsvfs); 203 ZFS_VERIFY_ZP(zp); 204 205 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 206 ZFS_EXIT(zfsvfs); 207 return (SET_ERROR(EACCES)); 208 } 209 210 /* We don't copy out anything useful for directories. */ 211 if (Z_ISDIR(ZTOTYPE(zp))) { 212 ZFS_EXIT(zfsvfs); 213 return (SET_ERROR(EISDIR)); 214 } 215 216 /* 217 * Validate file offset 218 */ 219 if (zfs_uio_offset(uio) < (offset_t)0) { 220 ZFS_EXIT(zfsvfs); 221 return (SET_ERROR(EINVAL)); 222 } 223 224 /* 225 * Fasttrack empty reads 226 */ 227 if (zfs_uio_resid(uio) == 0) { 228 ZFS_EXIT(zfsvfs); 229 return (0); 230 } 231 232 #ifdef FRSYNC 233 /* 234 * If we're in FRSYNC mode, sync out this znode before reading it. 235 * Only do this for non-snapshots. 236 * 237 * Some platforms do not support FRSYNC and instead map it 238 * to O_SYNC, which results in unnecessary calls to zil_commit. We 239 * only honor FRSYNC requests on platforms which support it. 240 */ 241 frsync = !!(ioflag & FRSYNC); 242 #endif 243 if (zfsvfs->z_log && 244 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 245 zil_commit(zfsvfs->z_log, zp->z_id); 246 247 /* 248 * Lock the range against changes. 249 */ 250 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, 251 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER); 252 253 /* 254 * If we are reading past end-of-file we can skip 255 * to the end; but we might still need to set atime. 256 */ 257 if (zfs_uio_offset(uio) >= zp->z_size) { 258 error = 0; 259 goto out; 260 } 261 262 ASSERT(zfs_uio_offset(uio) < zp->z_size); 263 #if defined(__linux__) 264 ssize_t start_offset = zfs_uio_offset(uio); 265 #endif 266 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio)); 267 ssize_t start_resid = n; 268 269 while (n > 0) { 270 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size - 271 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size)); 272 #ifdef UIO_NOCOPY 273 if (zfs_uio_segflg(uio) == UIO_NOCOPY) 274 error = mappedread_sf(zp, nbytes, uio); 275 else 276 #endif 277 if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) { 278 error = mappedread(zp, nbytes, uio); 279 } else { 280 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 281 uio, nbytes); 282 } 283 284 if (error) { 285 /* convert checksum errors into IO errors */ 286 if (error == ECKSUM) 287 error = SET_ERROR(EIO); 288 289 #if defined(__linux__) 290 /* 291 * if we actually read some bytes, bubbling EFAULT 292 * up to become EAGAIN isn't what we want here... 293 * 294 * ...on Linux, at least. On FBSD, doing this breaks. 295 */ 296 if (error == EFAULT && 297 (zfs_uio_offset(uio) - start_offset) != 0) 298 error = 0; 299 #endif 300 break; 301 } 302 303 n -= nbytes; 304 } 305 306 int64_t nread = start_resid - n; 307 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread); 308 task_io_account_read(nread); 309 out: 310 zfs_rangelock_exit(lr); 311 312 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 313 ZFS_EXIT(zfsvfs); 314 return (error); 315 } 316 317 static void 318 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr, 319 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx) 320 { 321 zilog_t *zilog = zfsvfs->z_log; 322 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 323 324 ASSERT(clear_setid_bits_txgp != NULL); 325 ASSERT(tx != NULL); 326 327 /* 328 * Clear Set-UID/Set-GID bits on successful write if not 329 * privileged and at least one of the execute bits is set. 330 * 331 * It would be nice to do this after all writes have 332 * been done, but that would still expose the ISUID/ISGID 333 * to another app after the partial write is committed. 334 * 335 * Note: we don't call zfs_fuid_map_id() here because 336 * user 0 is not an ephemeral uid. 337 */ 338 mutex_enter(&zp->z_acl_lock); 339 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && 340 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 341 secpolicy_vnode_setid_retain(zp, cr, 342 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) { 343 uint64_t newmode; 344 345 zp->z_mode &= ~(S_ISUID | S_ISGID); 346 newmode = zp->z_mode; 347 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 348 (void *)&newmode, sizeof (uint64_t), tx); 349 350 mutex_exit(&zp->z_acl_lock); 351 352 /* 353 * Make sure SUID/SGID bits will be removed when we replay the 354 * log. If the setid bits are keep coming back, don't log more 355 * than one TX_SETATTR per transaction group. 356 */ 357 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) { 358 vattr_t va; 359 360 bzero(&va, sizeof (va)); 361 va.va_mask = AT_MODE; 362 va.va_nodeid = zp->z_id; 363 va.va_mode = newmode; 364 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va, AT_MODE, 365 NULL); 366 *clear_setid_bits_txgp = dmu_tx_get_txg(tx); 367 } 368 } else { 369 mutex_exit(&zp->z_acl_lock); 370 } 371 } 372 373 /* 374 * Write the bytes to a file. 375 * 376 * IN: zp - znode of file to be written to. 377 * uio - structure supplying write location, range info, 378 * and data buffer. 379 * ioflag - O_APPEND flag set if in append mode. 380 * O_DIRECT flag; used to bypass page cache. 381 * cr - credentials of caller. 382 * 383 * OUT: uio - updated offset and range. 384 * 385 * RETURN: 0 if success 386 * error code if failure 387 * 388 * Timestamps: 389 * ip - ctime|mtime updated if byte count > 0 390 */ 391 int 392 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 393 { 394 int error = 0, error1; 395 ssize_t start_resid = zfs_uio_resid(uio); 396 uint64_t clear_setid_bits_txg = 0; 397 398 /* 399 * Fasttrack empty write 400 */ 401 ssize_t n = start_resid; 402 if (n == 0) 403 return (0); 404 405 zfsvfs_t *zfsvfs = ZTOZSB(zp); 406 ZFS_ENTER(zfsvfs); 407 ZFS_VERIFY_ZP(zp); 408 409 sa_bulk_attr_t bulk[4]; 410 int count = 0; 411 uint64_t mtime[2], ctime[2]; 412 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 413 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 414 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 415 &zp->z_size, 8); 416 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 417 &zp->z_pflags, 8); 418 419 /* 420 * Callers might not be able to detect properly that we are read-only, 421 * so check it explicitly here. 422 */ 423 if (zfs_is_readonly(zfsvfs)) { 424 ZFS_EXIT(zfsvfs); 425 return (SET_ERROR(EROFS)); 426 } 427 428 /* 429 * If immutable or not appending then return EPERM. 430 * Intentionally allow ZFS_READONLY through here. 431 * See zfs_zaccess_common() 432 */ 433 if ((zp->z_pflags & ZFS_IMMUTABLE) || 434 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) && 435 (zfs_uio_offset(uio) < zp->z_size))) { 436 ZFS_EXIT(zfsvfs); 437 return (SET_ERROR(EPERM)); 438 } 439 440 /* 441 * Validate file offset 442 */ 443 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio); 444 if (woff < 0) { 445 ZFS_EXIT(zfsvfs); 446 return (SET_ERROR(EINVAL)); 447 } 448 449 const uint64_t max_blksz = zfsvfs->z_max_blksz; 450 451 /* 452 * Pre-fault the pages to ensure slow (eg NFS) pages 453 * don't hold up txg. 454 * Skip this if uio contains loaned arc_buf. 455 */ 456 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 457 ZFS_EXIT(zfsvfs); 458 return (SET_ERROR(EFAULT)); 459 } 460 461 /* 462 * If in append mode, set the io offset pointer to eof. 463 */ 464 zfs_locked_range_t *lr; 465 if (ioflag & O_APPEND) { 466 /* 467 * Obtain an appending range lock to guarantee file append 468 * semantics. We reset the write offset once we have the lock. 469 */ 470 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 471 woff = lr->lr_offset; 472 if (lr->lr_length == UINT64_MAX) { 473 /* 474 * We overlocked the file because this write will cause 475 * the file block size to increase. 476 * Note that zp_size cannot change with this lock held. 477 */ 478 woff = zp->z_size; 479 } 480 zfs_uio_setoffset(uio, woff); 481 } else { 482 /* 483 * Note that if the file block size will change as a result of 484 * this write, then this range lock will lock the entire file 485 * so that we can re-write the block safely. 486 */ 487 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 488 } 489 490 if (zn_rlimit_fsize(zp, uio)) { 491 zfs_rangelock_exit(lr); 492 ZFS_EXIT(zfsvfs); 493 return (SET_ERROR(EFBIG)); 494 } 495 496 const rlim64_t limit = MAXOFFSET_T; 497 498 if (woff >= limit) { 499 zfs_rangelock_exit(lr); 500 ZFS_EXIT(zfsvfs); 501 return (SET_ERROR(EFBIG)); 502 } 503 504 if (n > limit - woff) 505 n = limit - woff; 506 507 uint64_t end_size = MAX(zp->z_size, woff + n); 508 zilog_t *zilog = zfsvfs->z_log; 509 510 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 511 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp)); 512 const uint64_t projid = zp->z_projid; 513 514 /* 515 * Write the file in reasonable size chunks. Each chunk is written 516 * in a separate transaction; this keeps the intent log records small 517 * and allows us to do more fine-grained space accounting. 518 */ 519 while (n > 0) { 520 woff = zfs_uio_offset(uio); 521 522 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) || 523 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) || 524 (projid != ZFS_DEFAULT_PROJID && 525 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 526 projid))) { 527 error = SET_ERROR(EDQUOT); 528 break; 529 } 530 531 arc_buf_t *abuf = NULL; 532 if (n >= max_blksz && woff >= zp->z_size && 533 P2PHASE(woff, max_blksz) == 0 && 534 zp->z_blksz == max_blksz) { 535 /* 536 * This write covers a full block. "Borrow" a buffer 537 * from the dmu so that we can fill it before we enter 538 * a transaction. This avoids the possibility of 539 * holding up the transaction if the data copy hangs 540 * up on a pagefault (e.g., from an NFS server mapping). 541 */ 542 size_t cbytes; 543 544 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 545 max_blksz); 546 ASSERT(abuf != NULL); 547 ASSERT(arc_buf_size(abuf) == max_blksz); 548 if ((error = zfs_uiocopy(abuf->b_data, max_blksz, 549 UIO_WRITE, uio, &cbytes))) { 550 dmu_return_arcbuf(abuf); 551 break; 552 } 553 ASSERT3S(cbytes, ==, max_blksz); 554 } 555 556 /* 557 * Start a transaction. 558 */ 559 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 560 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 561 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); 562 DB_DNODE_ENTER(db); 563 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, 564 MIN(n, max_blksz)); 565 DB_DNODE_EXIT(db); 566 zfs_sa_upgrade_txholds(tx, zp); 567 error = dmu_tx_assign(tx, TXG_WAIT); 568 if (error) { 569 dmu_tx_abort(tx); 570 if (abuf != NULL) 571 dmu_return_arcbuf(abuf); 572 break; 573 } 574 575 /* 576 * NB: We must call zfs_clear_setid_bits_if_necessary before 577 * committing the transaction! 578 */ 579 580 /* 581 * If rangelock_enter() over-locked we grow the blocksize 582 * and then reduce the lock range. This will only happen 583 * on the first iteration since rangelock_reduce() will 584 * shrink down lr_length to the appropriate size. 585 */ 586 if (lr->lr_length == UINT64_MAX) { 587 uint64_t new_blksz; 588 589 if (zp->z_blksz > max_blksz) { 590 /* 591 * File's blocksize is already larger than the 592 * "recordsize" property. Only let it grow to 593 * the next power of 2. 594 */ 595 ASSERT(!ISP2(zp->z_blksz)); 596 new_blksz = MIN(end_size, 597 1 << highbit64(zp->z_blksz)); 598 } else { 599 new_blksz = MIN(end_size, max_blksz); 600 } 601 zfs_grow_blocksize(zp, new_blksz, tx); 602 zfs_rangelock_reduce(lr, woff, n); 603 } 604 605 /* 606 * XXX - should we really limit each write to z_max_blksz? 607 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 608 */ 609 const ssize_t nbytes = 610 MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 611 612 ssize_t tx_bytes; 613 if (abuf == NULL) { 614 tx_bytes = zfs_uio_resid(uio); 615 zfs_uio_fault_disable(uio, B_TRUE); 616 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 617 uio, nbytes, tx); 618 zfs_uio_fault_disable(uio, B_FALSE); 619 #ifdef __linux__ 620 if (error == EFAULT) { 621 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 622 cr, &clear_setid_bits_txg, tx); 623 dmu_tx_commit(tx); 624 /* 625 * Account for partial writes before 626 * continuing the loop. 627 * Update needs to occur before the next 628 * zfs_uio_prefaultpages, or prefaultpages may 629 * error, and we may break the loop early. 630 */ 631 if (tx_bytes != zfs_uio_resid(uio)) 632 n -= tx_bytes - zfs_uio_resid(uio); 633 if (zfs_uio_prefaultpages(MIN(n, max_blksz), 634 uio)) { 635 break; 636 } 637 continue; 638 } 639 #endif 640 /* 641 * On FreeBSD, EFAULT should be propagated back to the 642 * VFS, which will handle faulting and will retry. 643 */ 644 if (error != 0 && error != EFAULT) { 645 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 646 cr, &clear_setid_bits_txg, tx); 647 dmu_tx_commit(tx); 648 break; 649 } 650 tx_bytes -= zfs_uio_resid(uio); 651 } else { 652 /* Implied by abuf != NULL: */ 653 ASSERT3S(n, >=, max_blksz); 654 ASSERT0(P2PHASE(woff, max_blksz)); 655 /* 656 * We can simplify nbytes to MIN(n, max_blksz) since 657 * P2PHASE(woff, max_blksz) is 0, and knowing 658 * n >= max_blksz lets us simplify further: 659 */ 660 ASSERT3S(nbytes, ==, max_blksz); 661 /* 662 * Thus, we're writing a full block at a block-aligned 663 * offset and extending the file past EOF. 664 * 665 * dmu_assign_arcbuf_by_dbuf() will directly assign the 666 * arc buffer to a dbuf. 667 */ 668 error = dmu_assign_arcbuf_by_dbuf( 669 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 670 if (error != 0) { 671 /* 672 * XXX This might not be necessary if 673 * dmu_assign_arcbuf_by_dbuf is guaranteed 674 * to be atomic. 675 */ 676 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 677 cr, &clear_setid_bits_txg, tx); 678 dmu_return_arcbuf(abuf); 679 dmu_tx_commit(tx); 680 break; 681 } 682 ASSERT3S(nbytes, <=, zfs_uio_resid(uio)); 683 zfs_uioskip(uio, nbytes); 684 tx_bytes = nbytes; 685 } 686 if (tx_bytes && zn_has_cached_data(zp) && 687 !(ioflag & O_DIRECT)) { 688 update_pages(zp, woff, tx_bytes, zfsvfs->z_os); 689 } 690 691 /* 692 * If we made no progress, we're done. If we made even 693 * partial progress, update the znode and ZIL accordingly. 694 */ 695 if (tx_bytes == 0) { 696 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 697 (void *)&zp->z_size, sizeof (uint64_t), tx); 698 dmu_tx_commit(tx); 699 ASSERT(error != 0); 700 break; 701 } 702 703 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, 704 &clear_setid_bits_txg, tx); 705 706 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 707 708 /* 709 * Update the file size (zp_size) if it has changed; 710 * account for possible concurrent updates. 711 */ 712 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) { 713 (void) atomic_cas_64(&zp->z_size, end_size, 714 zfs_uio_offset(uio)); 715 ASSERT(error == 0 || error == EFAULT); 716 } 717 /* 718 * If we are replaying and eof is non zero then force 719 * the file size to the specified eof. Note, there's no 720 * concurrency during replay. 721 */ 722 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 723 zp->z_size = zfsvfs->z_replay_eof; 724 725 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 726 if (error1 != 0) 727 /* Avoid clobbering EFAULT. */ 728 error = error1; 729 730 /* 731 * NB: During replay, the TX_SETATTR record logged by 732 * zfs_clear_setid_bits_if_necessary must precede any of 733 * the TX_WRITE records logged here. 734 */ 735 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag, 736 NULL, NULL); 737 738 dmu_tx_commit(tx); 739 740 if (error != 0) 741 break; 742 ASSERT3S(tx_bytes, ==, nbytes); 743 n -= nbytes; 744 745 if (n > 0) { 746 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 747 error = SET_ERROR(EFAULT); 748 break; 749 } 750 } 751 } 752 753 zfs_znode_update_vfs(zp); 754 zfs_rangelock_exit(lr); 755 756 /* 757 * If we're in replay mode, or we made no progress, or the 758 * uio data is inaccessible return an error. Otherwise, it's 759 * at least a partial write, so it's successful. 760 */ 761 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid || 762 error == EFAULT) { 763 ZFS_EXIT(zfsvfs); 764 return (error); 765 } 766 767 if (ioflag & (O_SYNC | O_DSYNC) || 768 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 769 zil_commit(zilog, zp->z_id); 770 771 const int64_t nwritten = start_resid - zfs_uio_resid(uio); 772 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten); 773 task_io_account_write(nwritten); 774 775 ZFS_EXIT(zfsvfs); 776 return (0); 777 } 778 779 int 780 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 781 { 782 zfsvfs_t *zfsvfs = ZTOZSB(zp); 783 int error; 784 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 785 786 ZFS_ENTER(zfsvfs); 787 ZFS_VERIFY_ZP(zp); 788 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 789 ZFS_EXIT(zfsvfs); 790 791 return (error); 792 } 793 794 int 795 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 796 { 797 zfsvfs_t *zfsvfs = ZTOZSB(zp); 798 int error; 799 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 800 zilog_t *zilog = zfsvfs->z_log; 801 802 ZFS_ENTER(zfsvfs); 803 ZFS_VERIFY_ZP(zp); 804 805 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 806 807 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 808 zil_commit(zilog, 0); 809 810 ZFS_EXIT(zfsvfs); 811 return (error); 812 } 813 814 #ifdef ZFS_DEBUG 815 static int zil_fault_io = 0; 816 #endif 817 818 static void zfs_get_done(zgd_t *zgd, int error); 819 820 /* 821 * Get data to generate a TX_WRITE intent log record. 822 */ 823 int 824 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf, 825 struct lwb *lwb, zio_t *zio) 826 { 827 zfsvfs_t *zfsvfs = arg; 828 objset_t *os = zfsvfs->z_os; 829 znode_t *zp; 830 uint64_t object = lr->lr_foid; 831 uint64_t offset = lr->lr_offset; 832 uint64_t size = lr->lr_length; 833 dmu_buf_t *db; 834 zgd_t *zgd; 835 int error = 0; 836 uint64_t zp_gen; 837 838 ASSERT3P(lwb, !=, NULL); 839 ASSERT3P(zio, !=, NULL); 840 ASSERT3U(size, !=, 0); 841 842 /* 843 * Nothing to do if the file has been removed 844 */ 845 if (zfs_zget(zfsvfs, object, &zp) != 0) 846 return (SET_ERROR(ENOENT)); 847 if (zp->z_unlinked) { 848 /* 849 * Release the vnode asynchronously as we currently have the 850 * txg stopped from syncing. 851 */ 852 zfs_zrele_async(zp); 853 return (SET_ERROR(ENOENT)); 854 } 855 /* check if generation number matches */ 856 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 857 sizeof (zp_gen)) != 0) { 858 zfs_zrele_async(zp); 859 return (SET_ERROR(EIO)); 860 } 861 if (zp_gen != gen) { 862 zfs_zrele_async(zp); 863 return (SET_ERROR(ENOENT)); 864 } 865 866 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 867 zgd->zgd_lwb = lwb; 868 zgd->zgd_private = zp; 869 870 /* 871 * Write records come in two flavors: immediate and indirect. 872 * For small writes it's cheaper to store the data with the 873 * log record (immediate); for large writes it's cheaper to 874 * sync the data and get a pointer to it (indirect) so that 875 * we don't have to write the data twice. 876 */ 877 if (buf != NULL) { /* immediate write */ 878 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 879 offset, size, RL_READER); 880 /* test for truncation needs to be done while range locked */ 881 if (offset >= zp->z_size) { 882 error = SET_ERROR(ENOENT); 883 } else { 884 error = dmu_read(os, object, offset, size, buf, 885 DMU_READ_NO_PREFETCH); 886 } 887 ASSERT(error == 0 || error == ENOENT); 888 } else { /* indirect write */ 889 /* 890 * Have to lock the whole block to ensure when it's 891 * written out and its checksum is being calculated 892 * that no one can change the data. We need to re-check 893 * blocksize after we get the lock in case it's changed! 894 */ 895 for (;;) { 896 uint64_t blkoff; 897 size = zp->z_blksz; 898 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 899 offset -= blkoff; 900 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 901 offset, size, RL_READER); 902 if (zp->z_blksz == size) 903 break; 904 offset += blkoff; 905 zfs_rangelock_exit(zgd->zgd_lr); 906 } 907 /* test for truncation needs to be done while range locked */ 908 if (lr->lr_offset >= zp->z_size) 909 error = SET_ERROR(ENOENT); 910 #ifdef ZFS_DEBUG 911 if (zil_fault_io) { 912 error = SET_ERROR(EIO); 913 zil_fault_io = 0; 914 } 915 #endif 916 if (error == 0) 917 error = dmu_buf_hold(os, object, offset, zgd, &db, 918 DMU_READ_NO_PREFETCH); 919 920 if (error == 0) { 921 blkptr_t *bp = &lr->lr_blkptr; 922 923 zgd->zgd_db = db; 924 zgd->zgd_bp = bp; 925 926 ASSERT(db->db_offset == offset); 927 ASSERT(db->db_size == size); 928 929 error = dmu_sync(zio, lr->lr_common.lrc_txg, 930 zfs_get_done, zgd); 931 ASSERT(error || lr->lr_length <= size); 932 933 /* 934 * On success, we need to wait for the write I/O 935 * initiated by dmu_sync() to complete before we can 936 * release this dbuf. We will finish everything up 937 * in the zfs_get_done() callback. 938 */ 939 if (error == 0) 940 return (0); 941 942 if (error == EALREADY) { 943 lr->lr_common.lrc_txtype = TX_WRITE2; 944 /* 945 * TX_WRITE2 relies on the data previously 946 * written by the TX_WRITE that caused 947 * EALREADY. We zero out the BP because 948 * it is the old, currently-on-disk BP. 949 */ 950 zgd->zgd_bp = NULL; 951 BP_ZERO(bp); 952 error = 0; 953 } 954 } 955 } 956 957 zfs_get_done(zgd, error); 958 959 return (error); 960 } 961 962 963 static void 964 zfs_get_done(zgd_t *zgd, int error) 965 { 966 (void) error; 967 znode_t *zp = zgd->zgd_private; 968 969 if (zgd->zgd_db) 970 dmu_buf_rele(zgd->zgd_db, zgd); 971 972 zfs_rangelock_exit(zgd->zgd_lr); 973 974 /* 975 * Release the vnode asynchronously as we currently have the 976 * txg stopped from syncing. 977 */ 978 zfs_zrele_async(zp); 979 980 kmem_free(zgd, sizeof (zgd_t)); 981 } 982 983 EXPORT_SYMBOL(zfs_access); 984 EXPORT_SYMBOL(zfs_fsync); 985 EXPORT_SYMBOL(zfs_holey); 986 EXPORT_SYMBOL(zfs_read); 987 EXPORT_SYMBOL(zfs_write); 988 EXPORT_SYMBOL(zfs_getsecattr); 989 EXPORT_SYMBOL(zfs_setsecattr); 990 991 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW, 992 "Bytes to read per chunk"); 993