1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 /* Portions Copyright 2007 Jeremy Teo */ 30 /* Portions Copyright 2010 Robert Milkowski */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/time.h> 35 #include <sys/sysmacros.h> 36 #include <sys/vfs.h> 37 #include <sys/uio_impl.h> 38 #include <sys/file.h> 39 #include <sys/stat.h> 40 #include <sys/kmem.h> 41 #include <sys/cmn_err.h> 42 #include <sys/errno.h> 43 #include <sys/zfs_dir.h> 44 #include <sys/zfs_acl.h> 45 #include <sys/zfs_ioctl.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/dmu.h> 48 #include <sys/dmu_objset.h> 49 #include <sys/spa.h> 50 #include <sys/txg.h> 51 #include <sys/dbuf.h> 52 #include <sys/policy.h> 53 #include <sys/zfs_vnops.h> 54 #include <sys/zfs_quota.h> 55 #include <sys/zfs_vfsops.h> 56 #include <sys/zfs_znode.h> 57 58 59 static ulong_t zfs_fsync_sync_cnt = 4; 60 61 int 62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr) 63 { 64 int error = 0; 65 zfsvfs_t *zfsvfs = ZTOZSB(zp); 66 67 (void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt); 68 69 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 70 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 71 goto out; 72 atomic_inc_32(&zp->z_sync_writes_cnt); 73 zil_commit(zfsvfs->z_log, zp->z_id); 74 atomic_dec_32(&zp->z_sync_writes_cnt); 75 zfs_exit(zfsvfs, FTAG); 76 } 77 out: 78 tsd_set(zfs_fsyncer_key, NULL); 79 80 return (error); 81 } 82 83 84 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 85 /* 86 * Lseek support for finding holes (cmd == SEEK_HOLE) and 87 * data (cmd == SEEK_DATA). "off" is an in/out parameter. 88 */ 89 static int 90 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off) 91 { 92 zfs_locked_range_t *lr; 93 uint64_t noff = (uint64_t)*off; /* new offset */ 94 uint64_t file_sz; 95 int error; 96 boolean_t hole; 97 98 file_sz = zp->z_size; 99 if (noff >= file_sz) { 100 return (SET_ERROR(ENXIO)); 101 } 102 103 if (cmd == F_SEEK_HOLE) 104 hole = B_TRUE; 105 else 106 hole = B_FALSE; 107 108 /* Flush any mmap()'d data to disk */ 109 if (zn_has_cached_data(zp, 0, file_sz - 1)) 110 zn_flush_cached_data(zp, B_FALSE); 111 112 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER); 113 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff); 114 zfs_rangelock_exit(lr); 115 116 if (error == ESRCH) 117 return (SET_ERROR(ENXIO)); 118 119 /* File was dirty, so fall back to using generic logic */ 120 if (error == EBUSY) { 121 if (hole) 122 *off = file_sz; 123 124 return (0); 125 } 126 127 /* 128 * We could find a hole that begins after the logical end-of-file, 129 * because dmu_offset_next() only works on whole blocks. If the 130 * EOF falls mid-block, then indicate that the "virtual hole" 131 * at the end of the file begins at the logical EOF, rather than 132 * at the end of the last block. 133 */ 134 if (noff > file_sz) { 135 ASSERT(hole); 136 noff = file_sz; 137 } 138 139 if (noff < *off) 140 return (error); 141 *off = noff; 142 return (error); 143 } 144 145 int 146 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off) 147 { 148 zfsvfs_t *zfsvfs = ZTOZSB(zp); 149 int error; 150 151 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 152 return (error); 153 154 error = zfs_holey_common(zp, cmd, off); 155 156 zfs_exit(zfsvfs, FTAG); 157 return (error); 158 } 159 #endif /* SEEK_HOLE && SEEK_DATA */ 160 161 int 162 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr) 163 { 164 zfsvfs_t *zfsvfs = ZTOZSB(zp); 165 int error; 166 167 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 168 return (error); 169 170 if (flag & V_ACE_MASK) 171 #if defined(__linux__) 172 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, 173 kcred->user_ns); 174 #else 175 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, 176 NULL); 177 #endif 178 else 179 #if defined(__linux__) 180 error = zfs_zaccess_rwx(zp, mode, flag, cr, kcred->user_ns); 181 #else 182 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL); 183 #endif 184 185 zfs_exit(zfsvfs, FTAG); 186 return (error); 187 } 188 189 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */ 190 191 /* 192 * Read bytes from specified file into supplied buffer. 193 * 194 * IN: zp - inode of file to be read from. 195 * uio - structure supplying read location, range info, 196 * and return buffer. 197 * ioflag - O_SYNC flags; used to provide FRSYNC semantics. 198 * O_DIRECT flag; used to bypass page cache. 199 * cr - credentials of caller. 200 * 201 * OUT: uio - updated offset and range, buffer filled. 202 * 203 * RETURN: 0 on success, error code on failure. 204 * 205 * Side Effects: 206 * inode - atime updated if byte count > 0 207 */ 208 int 209 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 210 { 211 (void) cr; 212 int error = 0; 213 boolean_t frsync = B_FALSE; 214 215 zfsvfs_t *zfsvfs = ZTOZSB(zp); 216 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 217 return (error); 218 219 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 220 zfs_exit(zfsvfs, FTAG); 221 return (SET_ERROR(EACCES)); 222 } 223 224 /* We don't copy out anything useful for directories. */ 225 if (Z_ISDIR(ZTOTYPE(zp))) { 226 zfs_exit(zfsvfs, FTAG); 227 return (SET_ERROR(EISDIR)); 228 } 229 230 /* 231 * Validate file offset 232 */ 233 if (zfs_uio_offset(uio) < (offset_t)0) { 234 zfs_exit(zfsvfs, FTAG); 235 return (SET_ERROR(EINVAL)); 236 } 237 238 /* 239 * Fasttrack empty reads 240 */ 241 if (zfs_uio_resid(uio) == 0) { 242 zfs_exit(zfsvfs, FTAG); 243 return (0); 244 } 245 246 #ifdef FRSYNC 247 /* 248 * If we're in FRSYNC mode, sync out this znode before reading it. 249 * Only do this for non-snapshots. 250 * 251 * Some platforms do not support FRSYNC and instead map it 252 * to O_SYNC, which results in unnecessary calls to zil_commit. We 253 * only honor FRSYNC requests on platforms which support it. 254 */ 255 frsync = !!(ioflag & FRSYNC); 256 #endif 257 if (zfsvfs->z_log && 258 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 259 zil_commit(zfsvfs->z_log, zp->z_id); 260 261 /* 262 * Lock the range against changes. 263 */ 264 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, 265 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER); 266 267 /* 268 * If we are reading past end-of-file we can skip 269 * to the end; but we might still need to set atime. 270 */ 271 if (zfs_uio_offset(uio) >= zp->z_size) { 272 error = 0; 273 goto out; 274 } 275 276 ASSERT(zfs_uio_offset(uio) < zp->z_size); 277 #if defined(__linux__) 278 ssize_t start_offset = zfs_uio_offset(uio); 279 #endif 280 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio)); 281 ssize_t start_resid = n; 282 283 while (n > 0) { 284 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size - 285 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size)); 286 #ifdef UIO_NOCOPY 287 if (zfs_uio_segflg(uio) == UIO_NOCOPY) 288 error = mappedread_sf(zp, nbytes, uio); 289 else 290 #endif 291 if (zn_has_cached_data(zp, zfs_uio_offset(uio), 292 zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) { 293 error = mappedread(zp, nbytes, uio); 294 } else { 295 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 296 uio, nbytes); 297 } 298 299 if (error) { 300 /* convert checksum errors into IO errors */ 301 if (error == ECKSUM) 302 error = SET_ERROR(EIO); 303 304 #if defined(__linux__) 305 /* 306 * if we actually read some bytes, bubbling EFAULT 307 * up to become EAGAIN isn't what we want here... 308 * 309 * ...on Linux, at least. On FBSD, doing this breaks. 310 */ 311 if (error == EFAULT && 312 (zfs_uio_offset(uio) - start_offset) != 0) 313 error = 0; 314 #endif 315 break; 316 } 317 318 n -= nbytes; 319 } 320 321 int64_t nread = start_resid - n; 322 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread); 323 task_io_account_read(nread); 324 out: 325 zfs_rangelock_exit(lr); 326 327 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 328 zfs_exit(zfsvfs, FTAG); 329 return (error); 330 } 331 332 static void 333 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr, 334 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx) 335 { 336 zilog_t *zilog = zfsvfs->z_log; 337 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 338 339 ASSERT(clear_setid_bits_txgp != NULL); 340 ASSERT(tx != NULL); 341 342 /* 343 * Clear Set-UID/Set-GID bits on successful write if not 344 * privileged and at least one of the execute bits is set. 345 * 346 * It would be nice to do this after all writes have 347 * been done, but that would still expose the ISUID/ISGID 348 * to another app after the partial write is committed. 349 * 350 * Note: we don't call zfs_fuid_map_id() here because 351 * user 0 is not an ephemeral uid. 352 */ 353 mutex_enter(&zp->z_acl_lock); 354 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && 355 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 356 secpolicy_vnode_setid_retain(zp, cr, 357 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) { 358 uint64_t newmode; 359 360 zp->z_mode &= ~(S_ISUID | S_ISGID); 361 newmode = zp->z_mode; 362 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 363 (void *)&newmode, sizeof (uint64_t), tx); 364 365 mutex_exit(&zp->z_acl_lock); 366 367 /* 368 * Make sure SUID/SGID bits will be removed when we replay the 369 * log. If the setid bits are keep coming back, don't log more 370 * than one TX_SETATTR per transaction group. 371 */ 372 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) { 373 vattr_t va = {0}; 374 375 va.va_mask = ATTR_MODE; 376 va.va_nodeid = zp->z_id; 377 va.va_mode = newmode; 378 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va, 379 ATTR_MODE, NULL); 380 *clear_setid_bits_txgp = dmu_tx_get_txg(tx); 381 } 382 } else { 383 mutex_exit(&zp->z_acl_lock); 384 } 385 } 386 387 /* 388 * Write the bytes to a file. 389 * 390 * IN: zp - znode of file to be written to. 391 * uio - structure supplying write location, range info, 392 * and data buffer. 393 * ioflag - O_APPEND flag set if in append mode. 394 * O_DIRECT flag; used to bypass page cache. 395 * cr - credentials of caller. 396 * 397 * OUT: uio - updated offset and range. 398 * 399 * RETURN: 0 if success 400 * error code if failure 401 * 402 * Timestamps: 403 * ip - ctime|mtime updated if byte count > 0 404 */ 405 int 406 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 407 { 408 int error = 0, error1; 409 ssize_t start_resid = zfs_uio_resid(uio); 410 uint64_t clear_setid_bits_txg = 0; 411 412 /* 413 * Fasttrack empty write 414 */ 415 ssize_t n = start_resid; 416 if (n == 0) 417 return (0); 418 419 zfsvfs_t *zfsvfs = ZTOZSB(zp); 420 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 421 return (error); 422 423 sa_bulk_attr_t bulk[4]; 424 int count = 0; 425 uint64_t mtime[2], ctime[2]; 426 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 427 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 428 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 429 &zp->z_size, 8); 430 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 431 &zp->z_pflags, 8); 432 433 /* 434 * Callers might not be able to detect properly that we are read-only, 435 * so check it explicitly here. 436 */ 437 if (zfs_is_readonly(zfsvfs)) { 438 zfs_exit(zfsvfs, FTAG); 439 return (SET_ERROR(EROFS)); 440 } 441 442 /* 443 * If immutable or not appending then return EPERM. 444 * Intentionally allow ZFS_READONLY through here. 445 * See zfs_zaccess_common() 446 */ 447 if ((zp->z_pflags & ZFS_IMMUTABLE) || 448 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) && 449 (zfs_uio_offset(uio) < zp->z_size))) { 450 zfs_exit(zfsvfs, FTAG); 451 return (SET_ERROR(EPERM)); 452 } 453 454 /* 455 * Validate file offset 456 */ 457 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio); 458 if (woff < 0) { 459 zfs_exit(zfsvfs, FTAG); 460 return (SET_ERROR(EINVAL)); 461 } 462 463 const uint64_t max_blksz = zfsvfs->z_max_blksz; 464 465 /* 466 * Pre-fault the pages to ensure slow (eg NFS) pages 467 * don't hold up txg. 468 * Skip this if uio contains loaned arc_buf. 469 */ 470 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 471 zfs_exit(zfsvfs, FTAG); 472 return (SET_ERROR(EFAULT)); 473 } 474 475 /* 476 * If in append mode, set the io offset pointer to eof. 477 */ 478 zfs_locked_range_t *lr; 479 if (ioflag & O_APPEND) { 480 /* 481 * Obtain an appending range lock to guarantee file append 482 * semantics. We reset the write offset once we have the lock. 483 */ 484 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 485 woff = lr->lr_offset; 486 if (lr->lr_length == UINT64_MAX) { 487 /* 488 * We overlocked the file because this write will cause 489 * the file block size to increase. 490 * Note that zp_size cannot change with this lock held. 491 */ 492 woff = zp->z_size; 493 } 494 zfs_uio_setoffset(uio, woff); 495 } else { 496 /* 497 * Note that if the file block size will change as a result of 498 * this write, then this range lock will lock the entire file 499 * so that we can re-write the block safely. 500 */ 501 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 502 } 503 504 if (zn_rlimit_fsize(zp, uio)) { 505 zfs_rangelock_exit(lr); 506 zfs_exit(zfsvfs, FTAG); 507 return (SET_ERROR(EFBIG)); 508 } 509 510 const rlim64_t limit = MAXOFFSET_T; 511 512 if (woff >= limit) { 513 zfs_rangelock_exit(lr); 514 zfs_exit(zfsvfs, FTAG); 515 return (SET_ERROR(EFBIG)); 516 } 517 518 if (n > limit - woff) 519 n = limit - woff; 520 521 uint64_t end_size = MAX(zp->z_size, woff + n); 522 zilog_t *zilog = zfsvfs->z_log; 523 524 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 525 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp)); 526 const uint64_t projid = zp->z_projid; 527 528 /* 529 * Write the file in reasonable size chunks. Each chunk is written 530 * in a separate transaction; this keeps the intent log records small 531 * and allows us to do more fine-grained space accounting. 532 */ 533 while (n > 0) { 534 woff = zfs_uio_offset(uio); 535 536 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) || 537 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) || 538 (projid != ZFS_DEFAULT_PROJID && 539 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 540 projid))) { 541 error = SET_ERROR(EDQUOT); 542 break; 543 } 544 545 arc_buf_t *abuf = NULL; 546 if (n >= max_blksz && woff >= zp->z_size && 547 P2PHASE(woff, max_blksz) == 0 && 548 zp->z_blksz == max_blksz) { 549 /* 550 * This write covers a full block. "Borrow" a buffer 551 * from the dmu so that we can fill it before we enter 552 * a transaction. This avoids the possibility of 553 * holding up the transaction if the data copy hangs 554 * up on a pagefault (e.g., from an NFS server mapping). 555 */ 556 size_t cbytes; 557 558 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 559 max_blksz); 560 ASSERT(abuf != NULL); 561 ASSERT(arc_buf_size(abuf) == max_blksz); 562 if ((error = zfs_uiocopy(abuf->b_data, max_blksz, 563 UIO_WRITE, uio, &cbytes))) { 564 dmu_return_arcbuf(abuf); 565 break; 566 } 567 ASSERT3S(cbytes, ==, max_blksz); 568 } 569 570 /* 571 * Start a transaction. 572 */ 573 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 574 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 575 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); 576 DB_DNODE_ENTER(db); 577 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, 578 MIN(n, max_blksz)); 579 DB_DNODE_EXIT(db); 580 zfs_sa_upgrade_txholds(tx, zp); 581 error = dmu_tx_assign(tx, TXG_WAIT); 582 if (error) { 583 dmu_tx_abort(tx); 584 if (abuf != NULL) 585 dmu_return_arcbuf(abuf); 586 break; 587 } 588 589 /* 590 * NB: We must call zfs_clear_setid_bits_if_necessary before 591 * committing the transaction! 592 */ 593 594 /* 595 * If rangelock_enter() over-locked we grow the blocksize 596 * and then reduce the lock range. This will only happen 597 * on the first iteration since rangelock_reduce() will 598 * shrink down lr_length to the appropriate size. 599 */ 600 if (lr->lr_length == UINT64_MAX) { 601 uint64_t new_blksz; 602 603 if (zp->z_blksz > max_blksz) { 604 /* 605 * File's blocksize is already larger than the 606 * "recordsize" property. Only let it grow to 607 * the next power of 2. 608 */ 609 ASSERT(!ISP2(zp->z_blksz)); 610 new_blksz = MIN(end_size, 611 1 << highbit64(zp->z_blksz)); 612 } else { 613 new_blksz = MIN(end_size, max_blksz); 614 } 615 zfs_grow_blocksize(zp, new_blksz, tx); 616 zfs_rangelock_reduce(lr, woff, n); 617 } 618 619 /* 620 * XXX - should we really limit each write to z_max_blksz? 621 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 622 */ 623 const ssize_t nbytes = 624 MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 625 626 ssize_t tx_bytes; 627 if (abuf == NULL) { 628 tx_bytes = zfs_uio_resid(uio); 629 zfs_uio_fault_disable(uio, B_TRUE); 630 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 631 uio, nbytes, tx); 632 zfs_uio_fault_disable(uio, B_FALSE); 633 #ifdef __linux__ 634 if (error == EFAULT) { 635 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 636 cr, &clear_setid_bits_txg, tx); 637 dmu_tx_commit(tx); 638 /* 639 * Account for partial writes before 640 * continuing the loop. 641 * Update needs to occur before the next 642 * zfs_uio_prefaultpages, or prefaultpages may 643 * error, and we may break the loop early. 644 */ 645 if (tx_bytes != zfs_uio_resid(uio)) 646 n -= tx_bytes - zfs_uio_resid(uio); 647 if (zfs_uio_prefaultpages(MIN(n, max_blksz), 648 uio)) { 649 break; 650 } 651 continue; 652 } 653 #endif 654 /* 655 * On FreeBSD, EFAULT should be propagated back to the 656 * VFS, which will handle faulting and will retry. 657 */ 658 if (error != 0 && error != EFAULT) { 659 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 660 cr, &clear_setid_bits_txg, tx); 661 dmu_tx_commit(tx); 662 break; 663 } 664 tx_bytes -= zfs_uio_resid(uio); 665 } else { 666 /* Implied by abuf != NULL: */ 667 ASSERT3S(n, >=, max_blksz); 668 ASSERT0(P2PHASE(woff, max_blksz)); 669 /* 670 * We can simplify nbytes to MIN(n, max_blksz) since 671 * P2PHASE(woff, max_blksz) is 0, and knowing 672 * n >= max_blksz lets us simplify further: 673 */ 674 ASSERT3S(nbytes, ==, max_blksz); 675 /* 676 * Thus, we're writing a full block at a block-aligned 677 * offset and extending the file past EOF. 678 * 679 * dmu_assign_arcbuf_by_dbuf() will directly assign the 680 * arc buffer to a dbuf. 681 */ 682 error = dmu_assign_arcbuf_by_dbuf( 683 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 684 if (error != 0) { 685 /* 686 * XXX This might not be necessary if 687 * dmu_assign_arcbuf_by_dbuf is guaranteed 688 * to be atomic. 689 */ 690 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 691 cr, &clear_setid_bits_txg, tx); 692 dmu_return_arcbuf(abuf); 693 dmu_tx_commit(tx); 694 break; 695 } 696 ASSERT3S(nbytes, <=, zfs_uio_resid(uio)); 697 zfs_uioskip(uio, nbytes); 698 tx_bytes = nbytes; 699 } 700 if (tx_bytes && 701 zn_has_cached_data(zp, woff, woff + tx_bytes - 1) && 702 !(ioflag & O_DIRECT)) { 703 update_pages(zp, woff, tx_bytes, zfsvfs->z_os); 704 } 705 706 /* 707 * If we made no progress, we're done. If we made even 708 * partial progress, update the znode and ZIL accordingly. 709 */ 710 if (tx_bytes == 0) { 711 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 712 (void *)&zp->z_size, sizeof (uint64_t), tx); 713 dmu_tx_commit(tx); 714 ASSERT(error != 0); 715 break; 716 } 717 718 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, 719 &clear_setid_bits_txg, tx); 720 721 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 722 723 /* 724 * Update the file size (zp_size) if it has changed; 725 * account for possible concurrent updates. 726 */ 727 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) { 728 (void) atomic_cas_64(&zp->z_size, end_size, 729 zfs_uio_offset(uio)); 730 ASSERT(error == 0 || error == EFAULT); 731 } 732 /* 733 * If we are replaying and eof is non zero then force 734 * the file size to the specified eof. Note, there's no 735 * concurrency during replay. 736 */ 737 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 738 zp->z_size = zfsvfs->z_replay_eof; 739 740 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 741 if (error1 != 0) 742 /* Avoid clobbering EFAULT. */ 743 error = error1; 744 745 /* 746 * NB: During replay, the TX_SETATTR record logged by 747 * zfs_clear_setid_bits_if_necessary must precede any of 748 * the TX_WRITE records logged here. 749 */ 750 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag, 751 NULL, NULL); 752 753 dmu_tx_commit(tx); 754 755 if (error != 0) 756 break; 757 ASSERT3S(tx_bytes, ==, nbytes); 758 n -= nbytes; 759 760 if (n > 0) { 761 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 762 error = SET_ERROR(EFAULT); 763 break; 764 } 765 } 766 } 767 768 zfs_znode_update_vfs(zp); 769 zfs_rangelock_exit(lr); 770 771 /* 772 * If we're in replay mode, or we made no progress, or the 773 * uio data is inaccessible return an error. Otherwise, it's 774 * at least a partial write, so it's successful. 775 */ 776 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid || 777 error == EFAULT) { 778 zfs_exit(zfsvfs, FTAG); 779 return (error); 780 } 781 782 if (ioflag & (O_SYNC | O_DSYNC) || 783 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 784 zil_commit(zilog, zp->z_id); 785 786 const int64_t nwritten = start_resid - zfs_uio_resid(uio); 787 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten); 788 task_io_account_write(nwritten); 789 790 zfs_exit(zfsvfs, FTAG); 791 return (0); 792 } 793 794 int 795 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 796 { 797 zfsvfs_t *zfsvfs = ZTOZSB(zp); 798 int error; 799 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 800 801 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 802 return (error); 803 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 804 zfs_exit(zfsvfs, FTAG); 805 806 return (error); 807 } 808 809 int 810 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 811 { 812 zfsvfs_t *zfsvfs = ZTOZSB(zp); 813 int error; 814 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 815 zilog_t *zilog = zfsvfs->z_log; 816 817 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 818 return (error); 819 820 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 821 822 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 823 zil_commit(zilog, 0); 824 825 zfs_exit(zfsvfs, FTAG); 826 return (error); 827 } 828 829 #ifdef ZFS_DEBUG 830 static int zil_fault_io = 0; 831 #endif 832 833 static void zfs_get_done(zgd_t *zgd, int error); 834 835 /* 836 * Get data to generate a TX_WRITE intent log record. 837 */ 838 int 839 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf, 840 struct lwb *lwb, zio_t *zio) 841 { 842 zfsvfs_t *zfsvfs = arg; 843 objset_t *os = zfsvfs->z_os; 844 znode_t *zp; 845 uint64_t object = lr->lr_foid; 846 uint64_t offset = lr->lr_offset; 847 uint64_t size = lr->lr_length; 848 dmu_buf_t *db; 849 zgd_t *zgd; 850 int error = 0; 851 uint64_t zp_gen; 852 853 ASSERT3P(lwb, !=, NULL); 854 ASSERT3P(zio, !=, NULL); 855 ASSERT3U(size, !=, 0); 856 857 /* 858 * Nothing to do if the file has been removed 859 */ 860 if (zfs_zget(zfsvfs, object, &zp) != 0) 861 return (SET_ERROR(ENOENT)); 862 if (zp->z_unlinked) { 863 /* 864 * Release the vnode asynchronously as we currently have the 865 * txg stopped from syncing. 866 */ 867 zfs_zrele_async(zp); 868 return (SET_ERROR(ENOENT)); 869 } 870 /* check if generation number matches */ 871 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 872 sizeof (zp_gen)) != 0) { 873 zfs_zrele_async(zp); 874 return (SET_ERROR(EIO)); 875 } 876 if (zp_gen != gen) { 877 zfs_zrele_async(zp); 878 return (SET_ERROR(ENOENT)); 879 } 880 881 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 882 zgd->zgd_lwb = lwb; 883 zgd->zgd_private = zp; 884 885 /* 886 * Write records come in two flavors: immediate and indirect. 887 * For small writes it's cheaper to store the data with the 888 * log record (immediate); for large writes it's cheaper to 889 * sync the data and get a pointer to it (indirect) so that 890 * we don't have to write the data twice. 891 */ 892 if (buf != NULL) { /* immediate write */ 893 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 894 offset, size, RL_READER); 895 /* test for truncation needs to be done while range locked */ 896 if (offset >= zp->z_size) { 897 error = SET_ERROR(ENOENT); 898 } else { 899 error = dmu_read(os, object, offset, size, buf, 900 DMU_READ_NO_PREFETCH); 901 } 902 ASSERT(error == 0 || error == ENOENT); 903 } else { /* indirect write */ 904 /* 905 * Have to lock the whole block to ensure when it's 906 * written out and its checksum is being calculated 907 * that no one can change the data. We need to re-check 908 * blocksize after we get the lock in case it's changed! 909 */ 910 for (;;) { 911 uint64_t blkoff; 912 size = zp->z_blksz; 913 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 914 offset -= blkoff; 915 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 916 offset, size, RL_READER); 917 if (zp->z_blksz == size) 918 break; 919 offset += blkoff; 920 zfs_rangelock_exit(zgd->zgd_lr); 921 } 922 /* test for truncation needs to be done while range locked */ 923 if (lr->lr_offset >= zp->z_size) 924 error = SET_ERROR(ENOENT); 925 #ifdef ZFS_DEBUG 926 if (zil_fault_io) { 927 error = SET_ERROR(EIO); 928 zil_fault_io = 0; 929 } 930 #endif 931 if (error == 0) 932 error = dmu_buf_hold(os, object, offset, zgd, &db, 933 DMU_READ_NO_PREFETCH); 934 935 if (error == 0) { 936 blkptr_t *bp = &lr->lr_blkptr; 937 938 zgd->zgd_db = db; 939 zgd->zgd_bp = bp; 940 941 ASSERT(db->db_offset == offset); 942 ASSERT(db->db_size == size); 943 944 error = dmu_sync(zio, lr->lr_common.lrc_txg, 945 zfs_get_done, zgd); 946 ASSERT(error || lr->lr_length <= size); 947 948 /* 949 * On success, we need to wait for the write I/O 950 * initiated by dmu_sync() to complete before we can 951 * release this dbuf. We will finish everything up 952 * in the zfs_get_done() callback. 953 */ 954 if (error == 0) 955 return (0); 956 957 if (error == EALREADY) { 958 lr->lr_common.lrc_txtype = TX_WRITE2; 959 /* 960 * TX_WRITE2 relies on the data previously 961 * written by the TX_WRITE that caused 962 * EALREADY. We zero out the BP because 963 * it is the old, currently-on-disk BP. 964 */ 965 zgd->zgd_bp = NULL; 966 BP_ZERO(bp); 967 error = 0; 968 } 969 } 970 } 971 972 zfs_get_done(zgd, error); 973 974 return (error); 975 } 976 977 978 static void 979 zfs_get_done(zgd_t *zgd, int error) 980 { 981 (void) error; 982 znode_t *zp = zgd->zgd_private; 983 984 if (zgd->zgd_db) 985 dmu_buf_rele(zgd->zgd_db, zgd); 986 987 zfs_rangelock_exit(zgd->zgd_lr); 988 989 /* 990 * Release the vnode asynchronously as we currently have the 991 * txg stopped from syncing. 992 */ 993 zfs_zrele_async(zp); 994 995 kmem_free(zgd, sizeof (zgd_t)); 996 } 997 998 EXPORT_SYMBOL(zfs_access); 999 EXPORT_SYMBOL(zfs_fsync); 1000 EXPORT_SYMBOL(zfs_holey); 1001 EXPORT_SYMBOL(zfs_read); 1002 EXPORT_SYMBOL(zfs_write); 1003 EXPORT_SYMBOL(zfs_getsecattr); 1004 EXPORT_SYMBOL(zfs_setsecattr); 1005 1006 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW, 1007 "Bytes to read per chunk"); 1008