xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_vnops.c (revision 87b759f0fa1f7554d50ce640c40138512bbded44)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
28  */
29 
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/cmn_err.h>
42 #include <sys/errno.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zfs_acl.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/dmu.h>
48 #include <sys/dmu_objset.h>
49 #include <sys/dsl_crypt.h>
50 #include <sys/spa.h>
51 #include <sys/txg.h>
52 #include <sys/dbuf.h>
53 #include <sys/policy.h>
54 #include <sys/zfeature.h>
55 #include <sys/zfs_vnops.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/zfs_vfsops.h>
58 #include <sys/zfs_znode.h>
59 
60 /*
61  * Enable the experimental block cloning feature.  If this setting is 0, then
62  * even if feature@block_cloning is enabled, attempts to clone blocks will act
63  * as though the feature is disabled.
64  */
65 int zfs_bclone_enabled = 1;
66 
67 /*
68  * When set zfs_clone_range() waits for dirty data to be written to disk.
69  * This allows the clone operation to reliably succeed when a file is modified
70  * and then immediately cloned. For small files this may be slower than making
71  * a copy of the file and is therefore not the default.  However, in certain
72  * scenarios this behavior may be desirable so a tunable is provided.
73  */
74 static int zfs_bclone_wait_dirty = 0;
75 
76 /*
77  * Enable Direct I/O. If this setting is 0, then all I/O requests will be
78  * directed through the ARC acting as though the dataset property direct was
79  * set to disabled.
80  */
81 static int zfs_dio_enabled = 0;
82 
83 
84 /*
85  * Maximum bytes to read per chunk in zfs_read().
86  */
87 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024;
88 
89 int
90 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
91 {
92 	int error = 0;
93 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
94 
95 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
96 		if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
97 			return (error);
98 		atomic_inc_32(&zp->z_sync_writes_cnt);
99 		zil_commit(zfsvfs->z_log, zp->z_id);
100 		atomic_dec_32(&zp->z_sync_writes_cnt);
101 		zfs_exit(zfsvfs, FTAG);
102 	}
103 	return (error);
104 }
105 
106 
107 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
108 /*
109  * Lseek support for finding holes (cmd == SEEK_HOLE) and
110  * data (cmd == SEEK_DATA). "off" is an in/out parameter.
111  */
112 static int
113 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
114 {
115 	zfs_locked_range_t *lr;
116 	uint64_t noff = (uint64_t)*off; /* new offset */
117 	uint64_t file_sz;
118 	int error;
119 	boolean_t hole;
120 
121 	file_sz = zp->z_size;
122 	if (noff >= file_sz)  {
123 		return (SET_ERROR(ENXIO));
124 	}
125 
126 	if (cmd == F_SEEK_HOLE)
127 		hole = B_TRUE;
128 	else
129 		hole = B_FALSE;
130 
131 	/* Flush any mmap()'d data to disk */
132 	if (zn_has_cached_data(zp, 0, file_sz - 1))
133 		zn_flush_cached_data(zp, B_TRUE);
134 
135 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
136 	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
137 	zfs_rangelock_exit(lr);
138 
139 	if (error == ESRCH)
140 		return (SET_ERROR(ENXIO));
141 
142 	/* File was dirty, so fall back to using generic logic */
143 	if (error == EBUSY) {
144 		if (hole)
145 			*off = file_sz;
146 
147 		return (0);
148 	}
149 
150 	/*
151 	 * We could find a hole that begins after the logical end-of-file,
152 	 * because dmu_offset_next() only works on whole blocks.  If the
153 	 * EOF falls mid-block, then indicate that the "virtual hole"
154 	 * at the end of the file begins at the logical EOF, rather than
155 	 * at the end of the last block.
156 	 */
157 	if (noff > file_sz) {
158 		ASSERT(hole);
159 		noff = file_sz;
160 	}
161 
162 	if (noff < *off)
163 		return (error);
164 	*off = noff;
165 	return (error);
166 }
167 
168 int
169 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
170 {
171 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
172 	int error;
173 
174 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
175 		return (error);
176 
177 	error = zfs_holey_common(zp, cmd, off);
178 
179 	zfs_exit(zfsvfs, FTAG);
180 	return (error);
181 }
182 #endif /* SEEK_HOLE && SEEK_DATA */
183 
184 int
185 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
186 {
187 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
188 	int error;
189 
190 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
191 		return (error);
192 
193 	if (flag & V_ACE_MASK)
194 #if defined(__linux__)
195 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
196 		    zfs_init_idmap);
197 #else
198 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
199 		    NULL);
200 #endif
201 	else
202 #if defined(__linux__)
203 		error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
204 #else
205 		error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
206 #endif
207 
208 	zfs_exit(zfsvfs, FTAG);
209 	return (error);
210 }
211 
212 /*
213  * Determine if Direct I/O has been requested (either via the O_DIRECT flag or
214  * the "direct" dataset property). When inherited by the property only apply
215  * the O_DIRECT flag to correctly aligned IO requests. The rational for this
216  * is it allows the property to be safely set on a dataset without forcing
217  * all of the applications to be aware of the alignment restrictions. When
218  * O_DIRECT is explicitly requested by an application return EINVAL if the
219  * request is unaligned.  In all cases, if the range for this request has
220  * been mmap'ed then we will perform buffered I/O to keep the mapped region
221  * synhronized with the ARC.
222  *
223  * It is possible that a file's pages could be mmap'ed after it is checked
224  * here. If so, that is handled coorarding in zfs_write(). See comments in the
225  * following area for how this is handled:
226  * zfs_write() -> update_pages()
227  */
228 static int
229 zfs_setup_direct(struct znode *zp, zfs_uio_t *uio, zfs_uio_rw_t rw,
230     int *ioflagp)
231 {
232 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
233 	objset_t *os = zfsvfs->z_os;
234 	int ioflag = *ioflagp;
235 	int error = 0;
236 
237 	if (!zfs_dio_enabled || os->os_direct == ZFS_DIRECT_DISABLED ||
238 	    zn_has_cached_data(zp, zfs_uio_offset(uio),
239 	    zfs_uio_offset(uio) + zfs_uio_resid(uio) - 1)) {
240 		/*
241 		 * Direct I/O is disabled or the region is mmap'ed. In either
242 		 * case the I/O request will just directed through the ARC.
243 		 */
244 		ioflag &= ~O_DIRECT;
245 		goto out;
246 	} else if (os->os_direct == ZFS_DIRECT_ALWAYS &&
247 	    zfs_uio_page_aligned(uio) &&
248 	    zfs_uio_aligned(uio, PAGE_SIZE)) {
249 		if ((rw == UIO_WRITE && zfs_uio_resid(uio) >= zp->z_blksz) ||
250 		    (rw == UIO_READ)) {
251 			ioflag |= O_DIRECT;
252 		}
253 	} else if (os->os_direct == ZFS_DIRECT_ALWAYS && (ioflag & O_DIRECT)) {
254 		/*
255 		 * Direct I/O was requested through the direct=always, but it
256 		 * is not properly PAGE_SIZE aligned. The request will be
257 		 * directed through the ARC.
258 		 */
259 		ioflag &= ~O_DIRECT;
260 	}
261 
262 	if (ioflag & O_DIRECT) {
263 		if (!zfs_uio_page_aligned(uio) ||
264 		    !zfs_uio_aligned(uio, PAGE_SIZE)) {
265 			error = SET_ERROR(EINVAL);
266 			goto out;
267 		}
268 
269 		error = zfs_uio_get_dio_pages_alloc(uio, rw);
270 		if (error) {
271 			goto out;
272 		}
273 	}
274 
275 	IMPLY(ioflag & O_DIRECT, uio->uio_extflg & UIO_DIRECT);
276 	ASSERT0(error);
277 
278 out:
279 	*ioflagp = ioflag;
280 	return (error);
281 }
282 
283 /*
284  * Read bytes from specified file into supplied buffer.
285  *
286  *	IN:	zp	- inode of file to be read from.
287  *		uio	- structure supplying read location, range info,
288  *			  and return buffer.
289  *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
290  *			  O_DIRECT flag; used to bypass page cache.
291  *		cr	- credentials of caller.
292  *
293  *	OUT:	uio	- updated offset and range, buffer filled.
294  *
295  *	RETURN:	0 on success, error code on failure.
296  *
297  * Side Effects:
298  *	inode - atime updated if byte count > 0
299  */
300 int
301 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
302 {
303 	(void) cr;
304 	int error = 0;
305 	boolean_t frsync = B_FALSE;
306 
307 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
308 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
309 		return (error);
310 
311 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
312 		zfs_exit(zfsvfs, FTAG);
313 		return (SET_ERROR(EACCES));
314 	}
315 
316 	/* We don't copy out anything useful for directories. */
317 	if (Z_ISDIR(ZTOTYPE(zp))) {
318 		zfs_exit(zfsvfs, FTAG);
319 		return (SET_ERROR(EISDIR));
320 	}
321 
322 	/*
323 	 * Validate file offset
324 	 */
325 	if (zfs_uio_offset(uio) < (offset_t)0) {
326 		zfs_exit(zfsvfs, FTAG);
327 		return (SET_ERROR(EINVAL));
328 	}
329 
330 	/*
331 	 * Fasttrack empty reads
332 	 */
333 	if (zfs_uio_resid(uio) == 0) {
334 		zfs_exit(zfsvfs, FTAG);
335 		return (0);
336 	}
337 
338 #ifdef FRSYNC
339 	/*
340 	 * If we're in FRSYNC mode, sync out this znode before reading it.
341 	 * Only do this for non-snapshots.
342 	 *
343 	 * Some platforms do not support FRSYNC and instead map it
344 	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
345 	 * only honor FRSYNC requests on platforms which support it.
346 	 */
347 	frsync = !!(ioflag & FRSYNC);
348 #endif
349 	if (zfsvfs->z_log &&
350 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
351 		zil_commit(zfsvfs->z_log, zp->z_id);
352 
353 	/*
354 	 * Lock the range against changes.
355 	 */
356 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
357 	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
358 
359 	/*
360 	 * If we are reading past end-of-file we can skip
361 	 * to the end; but we might still need to set atime.
362 	 */
363 	if (zfs_uio_offset(uio) >= zp->z_size) {
364 		error = 0;
365 		goto out;
366 	}
367 	ASSERT(zfs_uio_offset(uio) < zp->z_size);
368 
369 	/*
370 	 * Setting up Direct I/O if requested.
371 	 */
372 	error = zfs_setup_direct(zp, uio, UIO_READ, &ioflag);
373 	if (error) {
374 		goto out;
375 	}
376 
377 #if defined(__linux__)
378 	ssize_t start_offset = zfs_uio_offset(uio);
379 #endif
380 	ssize_t chunk_size = zfs_vnops_read_chunk_size;
381 	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
382 	ssize_t start_resid = n;
383 	ssize_t dio_remaining_resid = 0;
384 
385 	if (uio->uio_extflg & UIO_DIRECT) {
386 		/*
387 		 * All pages for an O_DIRECT request ahve already been mapped
388 		 * so there's no compelling reason to handle this uio in
389 		 * smaller chunks.
390 		 */
391 		chunk_size = DMU_MAX_ACCESS;
392 
393 		/*
394 		 * In the event that the O_DIRECT request is reading the entire
395 		 * file, it is possible file's length is not page sized
396 		 * aligned. However, lower layers expect that the Direct I/O
397 		 * request is page-aligned. In this case, as much of the file
398 		 * that can be read using Direct I/O happens and the remaining
399 		 * amount will be read through the ARC.
400 		 *
401 		 * This is still consistent with the semantics of Direct I/O in
402 		 * ZFS as at a minimum the I/O request must be page-aligned.
403 		 */
404 		dio_remaining_resid = n - P2ALIGN_TYPED(n, PAGE_SIZE, ssize_t);
405 		if (dio_remaining_resid != 0)
406 			n -= dio_remaining_resid;
407 	}
408 
409 	while (n > 0) {
410 		ssize_t nbytes = MIN(n, chunk_size -
411 		    P2PHASE(zfs_uio_offset(uio), chunk_size));
412 #ifdef UIO_NOCOPY
413 		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
414 			error = mappedread_sf(zp, nbytes, uio);
415 		else
416 #endif
417 		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
418 		    zfs_uio_offset(uio) + nbytes - 1)) {
419 			error = mappedread(zp, nbytes, uio);
420 		} else {
421 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
422 			    uio, nbytes);
423 		}
424 
425 		if (error) {
426 			/* convert checksum errors into IO errors */
427 			if (error == ECKSUM)
428 				error = SET_ERROR(EIO);
429 
430 #if defined(__linux__)
431 			/*
432 			 * if we actually read some bytes, bubbling EFAULT
433 			 * up to become EAGAIN isn't what we want here...
434 			 *
435 			 * ...on Linux, at least. On FBSD, doing this breaks.
436 			 */
437 			if (error == EFAULT &&
438 			    (zfs_uio_offset(uio) - start_offset) != 0)
439 				error = 0;
440 #endif
441 			break;
442 		}
443 
444 		n -= nbytes;
445 	}
446 
447 	if (error == 0 && (uio->uio_extflg & UIO_DIRECT) &&
448 	    dio_remaining_resid != 0) {
449 		/*
450 		 * Temporarily remove the UIO_DIRECT flag from the UIO so the
451 		 * remainder of the file can be read using the ARC.
452 		 */
453 		uio->uio_extflg &= ~UIO_DIRECT;
454 
455 		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
456 		    zfs_uio_offset(uio) + dio_remaining_resid - 1)) {
457 			error = mappedread(zp, dio_remaining_resid, uio);
458 		} else {
459 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio,
460 			    dio_remaining_resid);
461 		}
462 		uio->uio_extflg |= UIO_DIRECT;
463 
464 		if (error != 0)
465 			n += dio_remaining_resid;
466 	} else if (error && (uio->uio_extflg & UIO_DIRECT)) {
467 		n += dio_remaining_resid;
468 	}
469 	int64_t nread = start_resid - n;
470 
471 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
472 out:
473 	zfs_rangelock_exit(lr);
474 
475 	/*
476 	 * Cleanup for Direct I/O if requested.
477 	 */
478 	if (uio->uio_extflg & UIO_DIRECT)
479 		zfs_uio_free_dio_pages(uio, UIO_READ);
480 
481 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
482 	zfs_exit(zfsvfs, FTAG);
483 	return (error);
484 }
485 
486 static void
487 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
488     uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
489 {
490 	zilog_t *zilog = zfsvfs->z_log;
491 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
492 
493 	ASSERT(clear_setid_bits_txgp != NULL);
494 	ASSERT(tx != NULL);
495 
496 	/*
497 	 * Clear Set-UID/Set-GID bits on successful write if not
498 	 * privileged and at least one of the execute bits is set.
499 	 *
500 	 * It would be nice to do this after all writes have
501 	 * been done, but that would still expose the ISUID/ISGID
502 	 * to another app after the partial write is committed.
503 	 *
504 	 * Note: we don't call zfs_fuid_map_id() here because
505 	 * user 0 is not an ephemeral uid.
506 	 */
507 	mutex_enter(&zp->z_acl_lock);
508 	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
509 	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
510 	    secpolicy_vnode_setid_retain(zp, cr,
511 	    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
512 		uint64_t newmode;
513 
514 		zp->z_mode &= ~(S_ISUID | S_ISGID);
515 		newmode = zp->z_mode;
516 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
517 		    (void *)&newmode, sizeof (uint64_t), tx);
518 
519 		mutex_exit(&zp->z_acl_lock);
520 
521 		/*
522 		 * Make sure SUID/SGID bits will be removed when we replay the
523 		 * log. If the setid bits are keep coming back, don't log more
524 		 * than one TX_SETATTR per transaction group.
525 		 */
526 		if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
527 			vattr_t va = {0};
528 
529 			va.va_mask = ATTR_MODE;
530 			va.va_nodeid = zp->z_id;
531 			va.va_mode = newmode;
532 			zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
533 			    ATTR_MODE, NULL);
534 			*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
535 		}
536 	} else {
537 		mutex_exit(&zp->z_acl_lock);
538 	}
539 }
540 
541 /*
542  * Write the bytes to a file.
543  *
544  *	IN:	zp	- znode of file to be written to.
545  *		uio	- structure supplying write location, range info,
546  *			  and data buffer.
547  *		ioflag	- O_APPEND flag set if in append mode.
548  *			  O_DIRECT flag; used to bypass page cache.
549  *		cr	- credentials of caller.
550  *
551  *	OUT:	uio	- updated offset and range.
552  *
553  *	RETURN:	0 if success
554  *		error code if failure
555  *
556  * Timestamps:
557  *	ip - ctime|mtime updated if byte count > 0
558  */
559 int
560 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
561 {
562 	int error = 0, error1;
563 	ssize_t start_resid = zfs_uio_resid(uio);
564 	uint64_t clear_setid_bits_txg = 0;
565 	boolean_t o_direct_defer = B_FALSE;
566 
567 	/*
568 	 * Fasttrack empty write
569 	 */
570 	ssize_t n = start_resid;
571 	if (n == 0)
572 		return (0);
573 
574 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
575 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
576 		return (error);
577 
578 	sa_bulk_attr_t bulk[4];
579 	int count = 0;
580 	uint64_t mtime[2], ctime[2];
581 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
582 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
583 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
584 	    &zp->z_size, 8);
585 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
586 	    &zp->z_pflags, 8);
587 
588 	/*
589 	 * Callers might not be able to detect properly that we are read-only,
590 	 * so check it explicitly here.
591 	 */
592 	if (zfs_is_readonly(zfsvfs)) {
593 		zfs_exit(zfsvfs, FTAG);
594 		return (SET_ERROR(EROFS));
595 	}
596 
597 	/*
598 	 * If immutable or not appending then return EPERM.
599 	 * Intentionally allow ZFS_READONLY through here.
600 	 * See zfs_zaccess_common()
601 	 */
602 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
603 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
604 	    (zfs_uio_offset(uio) < zp->z_size))) {
605 		zfs_exit(zfsvfs, FTAG);
606 		return (SET_ERROR(EPERM));
607 	}
608 
609 	/*
610 	 * Validate file offset
611 	 */
612 	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
613 	if (woff < 0) {
614 		zfs_exit(zfsvfs, FTAG);
615 		return (SET_ERROR(EINVAL));
616 	}
617 
618 	/*
619 	 * Setting up Direct I/O if requested.
620 	 */
621 	error = zfs_setup_direct(zp, uio, UIO_WRITE, &ioflag);
622 	if (error) {
623 		zfs_exit(zfsvfs, FTAG);
624 		return (SET_ERROR(error));
625 	}
626 
627 	/*
628 	 * Pre-fault the pages to ensure slow (eg NFS) pages
629 	 * don't hold up txg.
630 	 */
631 	ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
632 	if (zfs_uio_prefaultpages(pfbytes, uio)) {
633 		zfs_exit(zfsvfs, FTAG);
634 		return (SET_ERROR(EFAULT));
635 	}
636 
637 	/*
638 	 * If in append mode, set the io offset pointer to eof.
639 	 */
640 	zfs_locked_range_t *lr;
641 	if (ioflag & O_APPEND) {
642 		/*
643 		 * Obtain an appending range lock to guarantee file append
644 		 * semantics.  We reset the write offset once we have the lock.
645 		 */
646 		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
647 		woff = lr->lr_offset;
648 		if (lr->lr_length == UINT64_MAX) {
649 			/*
650 			 * We overlocked the file because this write will cause
651 			 * the file block size to increase.
652 			 * Note that zp_size cannot change with this lock held.
653 			 */
654 			woff = zp->z_size;
655 		}
656 		zfs_uio_setoffset(uio, woff);
657 		/*
658 		 * We need to update the starting offset as well because it is
659 		 * set previously in the ZPL (Linux) and VNOPS (FreeBSD)
660 		 * layers.
661 		 */
662 		zfs_uio_setsoffset(uio, woff);
663 	} else {
664 		/*
665 		 * Note that if the file block size will change as a result of
666 		 * this write, then this range lock will lock the entire file
667 		 * so that we can re-write the block safely.
668 		 */
669 		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
670 	}
671 
672 	if (zn_rlimit_fsize_uio(zp, uio)) {
673 		zfs_rangelock_exit(lr);
674 		zfs_exit(zfsvfs, FTAG);
675 		return (SET_ERROR(EFBIG));
676 	}
677 
678 	const rlim64_t limit = MAXOFFSET_T;
679 
680 	if (woff >= limit) {
681 		zfs_rangelock_exit(lr);
682 		zfs_exit(zfsvfs, FTAG);
683 		return (SET_ERROR(EFBIG));
684 	}
685 
686 	if (n > limit - woff)
687 		n = limit - woff;
688 
689 	uint64_t end_size = MAX(zp->z_size, woff + n);
690 	zilog_t *zilog = zfsvfs->z_log;
691 	boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) ||
692 	    (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);
693 
694 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
695 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
696 	const uint64_t projid = zp->z_projid;
697 
698 	/*
699 	 * In the event we are increasing the file block size
700 	 * (lr_length == UINT64_MAX), we will direct the write to the ARC.
701 	 * Because zfs_grow_blocksize() will read from the ARC in order to
702 	 * grow the dbuf, we avoid doing Direct I/O here as that would cause
703 	 * data written to disk to be overwritten by data in the ARC during
704 	 * the sync phase. Besides writing data twice to disk, we also
705 	 * want to avoid consistency concerns between data in the the ARC and
706 	 * on disk while growing the file's blocksize.
707 	 *
708 	 * We will only temporarily remove Direct I/O and put it back after
709 	 * we have grown the blocksize. We do this in the event a request
710 	 * is larger than max_blksz, so further requests to
711 	 * dmu_write_uio_dbuf() will still issue the requests using Direct
712 	 * IO.
713 	 *
714 	 * As an example:
715 	 * The first block to file is being written as a 4k request with
716 	 * a recorsize of 1K. The first 1K issued in the loop below will go
717 	 * through the ARC; however, the following 3 1K requests will
718 	 * use Direct I/O.
719 	 */
720 	if (uio->uio_extflg & UIO_DIRECT && lr->lr_length == UINT64_MAX) {
721 		uio->uio_extflg &= ~UIO_DIRECT;
722 		o_direct_defer = B_TRUE;
723 	}
724 
725 	/*
726 	 * Write the file in reasonable size chunks.  Each chunk is written
727 	 * in a separate transaction; this keeps the intent log records small
728 	 * and allows us to do more fine-grained space accounting.
729 	 */
730 	while (n > 0) {
731 		woff = zfs_uio_offset(uio);
732 
733 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
734 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
735 		    (projid != ZFS_DEFAULT_PROJID &&
736 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
737 		    projid))) {
738 			error = SET_ERROR(EDQUOT);
739 			break;
740 		}
741 
742 		uint64_t blksz;
743 		if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
744 			if (zp->z_blksz > zfsvfs->z_max_blksz &&
745 			    !ISP2(zp->z_blksz)) {
746 				/*
747 				 * File's blocksize is already larger than the
748 				 * "recordsize" property.  Only let it grow to
749 				 * the next power of 2.
750 				 */
751 				blksz = 1 << highbit64(zp->z_blksz);
752 			} else {
753 				blksz = zfsvfs->z_max_blksz;
754 			}
755 			blksz = MIN(blksz, P2ROUNDUP(end_size,
756 			    SPA_MINBLOCKSIZE));
757 			blksz = MAX(blksz, zp->z_blksz);
758 		} else {
759 			blksz = zp->z_blksz;
760 		}
761 
762 		arc_buf_t *abuf = NULL;
763 		ssize_t nbytes = n;
764 		if (n >= blksz && woff >= zp->z_size &&
765 		    P2PHASE(woff, blksz) == 0 &&
766 		    !(uio->uio_extflg & UIO_DIRECT) &&
767 		    (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
768 			/*
769 			 * This write covers a full block.  "Borrow" a buffer
770 			 * from the dmu so that we can fill it before we enter
771 			 * a transaction.  This avoids the possibility of
772 			 * holding up the transaction if the data copy hangs
773 			 * up on a pagefault (e.g., from an NFS server mapping).
774 			 */
775 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
776 			    blksz);
777 			ASSERT(abuf != NULL);
778 			ASSERT(arc_buf_size(abuf) == blksz);
779 			if ((error = zfs_uiocopy(abuf->b_data, blksz,
780 			    UIO_WRITE, uio, &nbytes))) {
781 				dmu_return_arcbuf(abuf);
782 				break;
783 			}
784 			ASSERT3S(nbytes, ==, blksz);
785 		} else {
786 			nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
787 			    P2PHASE(woff, blksz));
788 			if (pfbytes < nbytes) {
789 				if (zfs_uio_prefaultpages(nbytes, uio)) {
790 					error = SET_ERROR(EFAULT);
791 					break;
792 				}
793 				pfbytes = nbytes;
794 			}
795 		}
796 
797 		/*
798 		 * Start a transaction.
799 		 */
800 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
801 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
802 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
803 		DB_DNODE_ENTER(db);
804 		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
805 		DB_DNODE_EXIT(db);
806 		zfs_sa_upgrade_txholds(tx, zp);
807 		error = dmu_tx_assign(tx, TXG_WAIT);
808 		if (error) {
809 			dmu_tx_abort(tx);
810 			if (abuf != NULL)
811 				dmu_return_arcbuf(abuf);
812 			break;
813 		}
814 
815 		/*
816 		 * NB: We must call zfs_clear_setid_bits_if_necessary before
817 		 * committing the transaction!
818 		 */
819 
820 		/*
821 		 * If rangelock_enter() over-locked we grow the blocksize
822 		 * and then reduce the lock range.  This will only happen
823 		 * on the first iteration since rangelock_reduce() will
824 		 * shrink down lr_length to the appropriate size.
825 		 */
826 		if (lr->lr_length == UINT64_MAX) {
827 			zfs_grow_blocksize(zp, blksz, tx);
828 			zfs_rangelock_reduce(lr, woff, n);
829 		}
830 
831 		ssize_t tx_bytes;
832 		if (abuf == NULL) {
833 			tx_bytes = zfs_uio_resid(uio);
834 			zfs_uio_fault_disable(uio, B_TRUE);
835 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
836 			    uio, nbytes, tx);
837 			zfs_uio_fault_disable(uio, B_FALSE);
838 #ifdef __linux__
839 			if (error == EFAULT) {
840 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
841 				    cr, &clear_setid_bits_txg, tx);
842 				dmu_tx_commit(tx);
843 				/*
844 				 * Account for partial writes before
845 				 * continuing the loop.
846 				 * Update needs to occur before the next
847 				 * zfs_uio_prefaultpages, or prefaultpages may
848 				 * error, and we may break the loop early.
849 				 */
850 				n -= tx_bytes - zfs_uio_resid(uio);
851 				pfbytes -= tx_bytes - zfs_uio_resid(uio);
852 				continue;
853 			}
854 #endif
855 			/*
856 			 * On FreeBSD, EFAULT should be propagated back to the
857 			 * VFS, which will handle faulting and will retry.
858 			 */
859 			if (error != 0 && error != EFAULT) {
860 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
861 				    cr, &clear_setid_bits_txg, tx);
862 				dmu_tx_commit(tx);
863 				break;
864 			}
865 			tx_bytes -= zfs_uio_resid(uio);
866 		} else {
867 			/*
868 			 * Thus, we're writing a full block at a block-aligned
869 			 * offset and extending the file past EOF.
870 			 *
871 			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
872 			 * arc buffer to a dbuf.
873 			 */
874 			error = dmu_assign_arcbuf_by_dbuf(
875 			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
876 			if (error != 0) {
877 				/*
878 				 * XXX This might not be necessary if
879 				 * dmu_assign_arcbuf_by_dbuf is guaranteed
880 				 * to be atomic.
881 				 */
882 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
883 				    cr, &clear_setid_bits_txg, tx);
884 				dmu_return_arcbuf(abuf);
885 				dmu_tx_commit(tx);
886 				break;
887 			}
888 			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
889 			zfs_uioskip(uio, nbytes);
890 			tx_bytes = nbytes;
891 		}
892 		/*
893 		 * There is a window where a file's pages can be mmap'ed after
894 		 * zfs_setup_direct() is called. This is due to the fact that
895 		 * the rangelock in this function is acquired after calling
896 		 * zfs_setup_direct(). This is done so that
897 		 * zfs_uio_prefaultpages() does not attempt to fault in pages
898 		 * on Linux for Direct I/O requests. This is not necessary as
899 		 * the pages are pinned in memory and can not be faulted out.
900 		 * Ideally, the rangelock would be held before calling
901 		 * zfs_setup_direct() and zfs_uio_prefaultpages(); however,
902 		 * this can lead to a deadlock as zfs_getpage() also acquires
903 		 * the rangelock as a RL_WRITER and prefaulting the pages can
904 		 * lead to zfs_getpage() being called.
905 		 *
906 		 * In the case of the pages being mapped after
907 		 * zfs_setup_direct() is called, the call to update_pages()
908 		 * will still be made to make sure there is consistency between
909 		 * the ARC and the Linux page cache. This is an ufortunate
910 		 * situation as the data will be read back into the ARC after
911 		 * the Direct I/O write has completed, but this is the penality
912 		 * for writing to a mmap'ed region of a file using Direct I/O.
913 		 */
914 		if (tx_bytes &&
915 		    zn_has_cached_data(zp, woff, woff + tx_bytes - 1)) {
916 			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
917 		}
918 
919 		/*
920 		 * If we made no progress, we're done.  If we made even
921 		 * partial progress, update the znode and ZIL accordingly.
922 		 */
923 		if (tx_bytes == 0) {
924 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
925 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
926 			dmu_tx_commit(tx);
927 			ASSERT(error != 0);
928 			break;
929 		}
930 
931 		zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
932 		    &clear_setid_bits_txg, tx);
933 
934 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
935 
936 		/*
937 		 * Update the file size (zp_size) if it has changed;
938 		 * account for possible concurrent updates.
939 		 */
940 		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
941 			(void) atomic_cas_64(&zp->z_size, end_size,
942 			    zfs_uio_offset(uio));
943 			ASSERT(error == 0 || error == EFAULT);
944 		}
945 		/*
946 		 * If we are replaying and eof is non zero then force
947 		 * the file size to the specified eof. Note, there's no
948 		 * concurrency during replay.
949 		 */
950 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
951 			zp->z_size = zfsvfs->z_replay_eof;
952 
953 		error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
954 		if (error1 != 0)
955 			/* Avoid clobbering EFAULT. */
956 			error = error1;
957 
958 		/*
959 		 * NB: During replay, the TX_SETATTR record logged by
960 		 * zfs_clear_setid_bits_if_necessary must precede any of
961 		 * the TX_WRITE records logged here.
962 		 */
963 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit,
964 		    uio->uio_extflg & UIO_DIRECT ? B_TRUE : B_FALSE, NULL,
965 		    NULL);
966 
967 		dmu_tx_commit(tx);
968 
969 		/*
970 		 * Direct I/O was deferred in order to grow the first block.
971 		 * At this point it can be re-enabled for subsequent writes.
972 		 */
973 		if (o_direct_defer) {
974 			ASSERT(ioflag & O_DIRECT);
975 			uio->uio_extflg |= UIO_DIRECT;
976 			o_direct_defer = B_FALSE;
977 		}
978 
979 		if (error != 0)
980 			break;
981 		ASSERT3S(tx_bytes, ==, nbytes);
982 		n -= nbytes;
983 		pfbytes -= nbytes;
984 	}
985 
986 	if (o_direct_defer) {
987 		ASSERT(ioflag & O_DIRECT);
988 		uio->uio_extflg |= UIO_DIRECT;
989 		o_direct_defer = B_FALSE;
990 	}
991 
992 	zfs_znode_update_vfs(zp);
993 	zfs_rangelock_exit(lr);
994 
995 	/*
996 	 * Cleanup for Direct I/O if requested.
997 	 */
998 	if (uio->uio_extflg & UIO_DIRECT)
999 		zfs_uio_free_dio_pages(uio, UIO_WRITE);
1000 
1001 	/*
1002 	 * If we're in replay mode, or we made no progress, or the
1003 	 * uio data is inaccessible return an error.  Otherwise, it's
1004 	 * at least a partial write, so it's successful.
1005 	 */
1006 	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
1007 	    error == EFAULT) {
1008 		zfs_exit(zfsvfs, FTAG);
1009 		return (error);
1010 	}
1011 
1012 	if (commit)
1013 		zil_commit(zilog, zp->z_id);
1014 
1015 	int64_t nwritten = start_resid - zfs_uio_resid(uio);
1016 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
1017 
1018 	zfs_exit(zfsvfs, FTAG);
1019 	return (0);
1020 }
1021 
1022 int
1023 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
1024 {
1025 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1026 	int error;
1027 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1028 
1029 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1030 		return (error);
1031 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
1032 	zfs_exit(zfsvfs, FTAG);
1033 
1034 	return (error);
1035 }
1036 
1037 int
1038 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
1039 {
1040 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1041 	int error;
1042 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1043 	zilog_t	*zilog;
1044 
1045 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1046 		return (error);
1047 	zilog = zfsvfs->z_log;
1048 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
1049 
1050 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1051 		zil_commit(zilog, 0);
1052 
1053 	zfs_exit(zfsvfs, FTAG);
1054 	return (error);
1055 }
1056 
1057 #ifdef ZFS_DEBUG
1058 static int zil_fault_io = 0;
1059 #endif
1060 
1061 static void zfs_get_done(zgd_t *zgd, int error);
1062 
1063 /*
1064  * Get data to generate a TX_WRITE intent log record.
1065  */
1066 int
1067 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
1068     struct lwb *lwb, zio_t *zio)
1069 {
1070 	zfsvfs_t *zfsvfs = arg;
1071 	objset_t *os = zfsvfs->z_os;
1072 	znode_t *zp;
1073 	uint64_t object = lr->lr_foid;
1074 	uint64_t offset = lr->lr_offset;
1075 	uint64_t size = lr->lr_length;
1076 	zgd_t *zgd;
1077 	int error = 0;
1078 	uint64_t zp_gen;
1079 
1080 	ASSERT3P(lwb, !=, NULL);
1081 	ASSERT3U(size, !=, 0);
1082 
1083 	/*
1084 	 * Nothing to do if the file has been removed
1085 	 */
1086 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1087 		return (SET_ERROR(ENOENT));
1088 	if (zp->z_unlinked) {
1089 		/*
1090 		 * Release the vnode asynchronously as we currently have the
1091 		 * txg stopped from syncing.
1092 		 */
1093 		zfs_zrele_async(zp);
1094 		return (SET_ERROR(ENOENT));
1095 	}
1096 	/* check if generation number matches */
1097 	if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1098 	    sizeof (zp_gen)) != 0) {
1099 		zfs_zrele_async(zp);
1100 		return (SET_ERROR(EIO));
1101 	}
1102 	if (zp_gen != gen) {
1103 		zfs_zrele_async(zp);
1104 		return (SET_ERROR(ENOENT));
1105 	}
1106 
1107 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1108 	zgd->zgd_lwb = lwb;
1109 	zgd->zgd_private = zp;
1110 
1111 	/*
1112 	 * Write records come in two flavors: immediate and indirect.
1113 	 * For small writes it's cheaper to store the data with the
1114 	 * log record (immediate); for large writes it's cheaper to
1115 	 * sync the data and get a pointer to it (indirect) so that
1116 	 * we don't have to write the data twice.
1117 	 */
1118 	if (buf != NULL) { /* immediate write */
1119 		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, offset,
1120 		    size, RL_READER);
1121 		/* test for truncation needs to be done while range locked */
1122 		if (offset >= zp->z_size) {
1123 			error = SET_ERROR(ENOENT);
1124 		} else {
1125 			error = dmu_read(os, object, offset, size, buf,
1126 			    DMU_READ_NO_PREFETCH);
1127 		}
1128 		ASSERT(error == 0 || error == ENOENT);
1129 	} else { /* indirect write */
1130 		ASSERT3P(zio, !=, NULL);
1131 		/*
1132 		 * Have to lock the whole block to ensure when it's
1133 		 * written out and its checksum is being calculated
1134 		 * that no one can change the data. We need to re-check
1135 		 * blocksize after we get the lock in case it's changed!
1136 		 */
1137 		for (;;) {
1138 			uint64_t blkoff;
1139 			size = zp->z_blksz;
1140 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1141 			offset -= blkoff;
1142 			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
1143 			    offset, size, RL_READER);
1144 			if (zp->z_blksz == size)
1145 				break;
1146 			offset += blkoff;
1147 			zfs_rangelock_exit(zgd->zgd_lr);
1148 		}
1149 		/* test for truncation needs to be done while range locked */
1150 		if (lr->lr_offset >= zp->z_size)
1151 			error = SET_ERROR(ENOENT);
1152 #ifdef ZFS_DEBUG
1153 		if (zil_fault_io) {
1154 			error = SET_ERROR(EIO);
1155 			zil_fault_io = 0;
1156 		}
1157 #endif
1158 
1159 		dmu_buf_t *dbp;
1160 		if (error == 0)
1161 			error = dmu_buf_hold_noread(os, object, offset, zgd,
1162 			    &dbp);
1163 
1164 		if (error == 0) {
1165 			zgd->zgd_db = dbp;
1166 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp;
1167 			boolean_t direct_write = B_FALSE;
1168 			mutex_enter(&db->db_mtx);
1169 			dbuf_dirty_record_t *dr =
1170 			    dbuf_find_dirty_eq(db, lr->lr_common.lrc_txg);
1171 			if (dr != NULL && dr->dt.dl.dr_diowrite)
1172 				direct_write = B_TRUE;
1173 			mutex_exit(&db->db_mtx);
1174 
1175 			/*
1176 			 * All Direct I/O writes will have already completed and
1177 			 * the block pointer can be immediately stored in the
1178 			 * log record.
1179 			 */
1180 			if (direct_write) {
1181 				/*
1182 				 * A Direct I/O write always covers an entire
1183 				 * block.
1184 				 */
1185 				ASSERT3U(dbp->db_size, ==, zp->z_blksz);
1186 				lr->lr_blkptr = dr->dt.dl.dr_overridden_by;
1187 				zfs_get_done(zgd, 0);
1188 				return (0);
1189 			}
1190 
1191 			blkptr_t *bp = &lr->lr_blkptr;
1192 			zgd->zgd_bp = bp;
1193 
1194 			ASSERT3U(dbp->db_offset, ==, offset);
1195 			ASSERT3U(dbp->db_size, ==, size);
1196 
1197 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1198 			    zfs_get_done, zgd);
1199 			ASSERT(error || lr->lr_length <= size);
1200 
1201 			/*
1202 			 * On success, we need to wait for the write I/O
1203 			 * initiated by dmu_sync() to complete before we can
1204 			 * release this dbuf.  We will finish everything up
1205 			 * in the zfs_get_done() callback.
1206 			 */
1207 			if (error == 0)
1208 				return (0);
1209 
1210 			if (error == EALREADY) {
1211 				lr->lr_common.lrc_txtype = TX_WRITE2;
1212 				/*
1213 				 * TX_WRITE2 relies on the data previously
1214 				 * written by the TX_WRITE that caused
1215 				 * EALREADY.  We zero out the BP because
1216 				 * it is the old, currently-on-disk BP.
1217 				 */
1218 				zgd->zgd_bp = NULL;
1219 				BP_ZERO(bp);
1220 				error = 0;
1221 			}
1222 		}
1223 	}
1224 
1225 	zfs_get_done(zgd, error);
1226 
1227 	return (error);
1228 }
1229 
1230 static void
1231 zfs_get_done(zgd_t *zgd, int error)
1232 {
1233 	(void) error;
1234 	znode_t *zp = zgd->zgd_private;
1235 
1236 	if (zgd->zgd_db)
1237 		dmu_buf_rele(zgd->zgd_db, zgd);
1238 
1239 	zfs_rangelock_exit(zgd->zgd_lr);
1240 
1241 	/*
1242 	 * Release the vnode asynchronously as we currently have the
1243 	 * txg stopped from syncing.
1244 	 */
1245 	zfs_zrele_async(zp);
1246 
1247 	kmem_free(zgd, sizeof (zgd_t));
1248 }
1249 
1250 static int
1251 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1252 {
1253 	int error;
1254 
1255 	/* Swap. Not sure if the order of zfs_enter()s is important. */
1256 	if (zfsvfs1 > zfsvfs2) {
1257 		zfsvfs_t *tmpzfsvfs;
1258 
1259 		tmpzfsvfs = zfsvfs2;
1260 		zfsvfs2 = zfsvfs1;
1261 		zfsvfs1 = tmpzfsvfs;
1262 	}
1263 
1264 	error = zfs_enter(zfsvfs1, tag);
1265 	if (error != 0)
1266 		return (error);
1267 	if (zfsvfs1 != zfsvfs2) {
1268 		error = zfs_enter(zfsvfs2, tag);
1269 		if (error != 0) {
1270 			zfs_exit(zfsvfs1, tag);
1271 			return (error);
1272 		}
1273 	}
1274 
1275 	return (0);
1276 }
1277 
1278 static void
1279 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1280 {
1281 
1282 	zfs_exit(zfsvfs1, tag);
1283 	if (zfsvfs1 != zfsvfs2)
1284 		zfs_exit(zfsvfs2, tag);
1285 }
1286 
1287 /*
1288  * We split each clone request in chunks that can fit into a single ZIL
1289  * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1290  * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1291  * us room for storing 1022 block pointers.
1292  *
1293  * On success, the function return the number of bytes copied in *lenp.
1294  * Note, it doesn't return how much bytes are left to be copied.
1295  * On errors which are caused by any file system limitations or
1296  * brt limitations `EINVAL` is returned. In the most cases a user
1297  * requested bad parameters, it could be possible to clone the file but
1298  * some parameters don't match the requirements.
1299  */
1300 int
1301 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1302     uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1303 {
1304 	zfsvfs_t	*inzfsvfs, *outzfsvfs;
1305 	objset_t	*inos, *outos;
1306 	zfs_locked_range_t *inlr, *outlr;
1307 	dmu_buf_impl_t	*db;
1308 	dmu_tx_t	*tx;
1309 	zilog_t		*zilog;
1310 	uint64_t	inoff, outoff, len, done;
1311 	uint64_t	outsize, size;
1312 	int		error;
1313 	int		count = 0;
1314 	sa_bulk_attr_t	bulk[3];
1315 	uint64_t	mtime[2], ctime[2];
1316 	uint64_t	uid, gid, projid;
1317 	blkptr_t	*bps;
1318 	size_t		maxblocks, nbps;
1319 	uint_t		inblksz;
1320 	uint64_t	clear_setid_bits_txg = 0;
1321 	uint64_t	last_synced_txg = 0;
1322 
1323 	inoff = *inoffp;
1324 	outoff = *outoffp;
1325 	len = *lenp;
1326 	done = 0;
1327 
1328 	inzfsvfs = ZTOZSB(inzp);
1329 	outzfsvfs = ZTOZSB(outzp);
1330 
1331 	/*
1332 	 * We need to call zfs_enter() potentially on two different datasets,
1333 	 * so we need a dedicated function for that.
1334 	 */
1335 	error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1336 	if (error != 0)
1337 		return (error);
1338 
1339 	inos = inzfsvfs->z_os;
1340 	outos = outzfsvfs->z_os;
1341 
1342 	/*
1343 	 * Both source and destination have to belong to the same storage pool.
1344 	 */
1345 	if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1346 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1347 		return (SET_ERROR(EXDEV));
1348 	}
1349 
1350 	/*
1351 	 * outos and inos belongs to the same storage pool.
1352 	 * see a few lines above, only one check.
1353 	 */
1354 	if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1355 	    SPA_FEATURE_BLOCK_CLONING)) {
1356 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1357 		return (SET_ERROR(EOPNOTSUPP));
1358 	}
1359 
1360 	ASSERT(!outzfsvfs->z_replay);
1361 
1362 	/*
1363 	 * Block cloning from an unencrypted dataset into an encrypted
1364 	 * dataset and vice versa is not supported.
1365 	 */
1366 	if (inos->os_encrypted != outos->os_encrypted) {
1367 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1368 		return (SET_ERROR(EXDEV));
1369 	}
1370 
1371 	/*
1372 	 * Cloning across encrypted datasets is possible only if they
1373 	 * share the same master key.
1374 	 */
1375 	if (inos != outos && inos->os_encrypted &&
1376 	    !dmu_objset_crypto_key_equal(inos, outos)) {
1377 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1378 		return (SET_ERROR(EXDEV));
1379 	}
1380 
1381 	error = zfs_verify_zp(inzp);
1382 	if (error == 0)
1383 		error = zfs_verify_zp(outzp);
1384 	if (error != 0) {
1385 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1386 		return (error);
1387 	}
1388 
1389 	/*
1390 	 * We don't copy source file's flags that's why we don't allow to clone
1391 	 * files that are in quarantine.
1392 	 */
1393 	if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1394 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1395 		return (SET_ERROR(EACCES));
1396 	}
1397 
1398 	if (inoff >= inzp->z_size) {
1399 		*lenp = 0;
1400 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1401 		return (0);
1402 	}
1403 	if (len > inzp->z_size - inoff) {
1404 		len = inzp->z_size - inoff;
1405 	}
1406 	if (len == 0) {
1407 		*lenp = 0;
1408 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1409 		return (0);
1410 	}
1411 
1412 	/*
1413 	 * Callers might not be able to detect properly that we are read-only,
1414 	 * so check it explicitly here.
1415 	 */
1416 	if (zfs_is_readonly(outzfsvfs)) {
1417 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1418 		return (SET_ERROR(EROFS));
1419 	}
1420 
1421 	/*
1422 	 * If immutable or not appending then return EPERM.
1423 	 * Intentionally allow ZFS_READONLY through here.
1424 	 * See zfs_zaccess_common()
1425 	 */
1426 	if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1427 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1428 		return (SET_ERROR(EPERM));
1429 	}
1430 
1431 	/*
1432 	 * No overlapping if we are cloning within the same file.
1433 	 */
1434 	if (inzp == outzp) {
1435 		if (inoff < outoff + len && outoff < inoff + len) {
1436 			zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1437 			return (SET_ERROR(EINVAL));
1438 		}
1439 	}
1440 
1441 	/* Flush any mmap()'d data to disk */
1442 	if (zn_has_cached_data(inzp, inoff, inoff + len - 1))
1443 		zn_flush_cached_data(inzp, B_TRUE);
1444 
1445 	/*
1446 	 * Maintain predictable lock order.
1447 	 */
1448 	if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1449 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1450 		    RL_READER);
1451 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1452 		    RL_WRITER);
1453 	} else {
1454 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1455 		    RL_WRITER);
1456 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1457 		    RL_READER);
1458 	}
1459 
1460 	inblksz = inzp->z_blksz;
1461 
1462 	/*
1463 	 * We cannot clone into a file with different block size if we can't
1464 	 * grow it (block size is already bigger, has more than one block, or
1465 	 * not locked for growth).  There are other possible reasons for the
1466 	 * grow to fail, but we cover what we can before opening transaction
1467 	 * and the rest detect after we try to do it.
1468 	 */
1469 	if (inblksz < outzp->z_blksz) {
1470 		error = SET_ERROR(EINVAL);
1471 		goto unlock;
1472 	}
1473 	if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
1474 	    outlr->lr_length != UINT64_MAX)) {
1475 		error = SET_ERROR(EINVAL);
1476 		goto unlock;
1477 	}
1478 
1479 	/*
1480 	 * Block size must be power-of-2 if destination offset != 0.
1481 	 * There can be no multiple blocks of non-power-of-2 size.
1482 	 */
1483 	if (outoff != 0 && !ISP2(inblksz)) {
1484 		error = SET_ERROR(EINVAL);
1485 		goto unlock;
1486 	}
1487 
1488 	/*
1489 	 * Offsets and len must be at block boundries.
1490 	 */
1491 	if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1492 		error = SET_ERROR(EINVAL);
1493 		goto unlock;
1494 	}
1495 	/*
1496 	 * Length must be multipe of blksz, except for the end of the file.
1497 	 */
1498 	if ((len % inblksz) != 0 &&
1499 	    (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1500 		error = SET_ERROR(EINVAL);
1501 		goto unlock;
1502 	}
1503 
1504 	/*
1505 	 * If we are copying only one block and it is smaller than recordsize
1506 	 * property, do not allow destination to grow beyond one block if it
1507 	 * is not there yet.  Otherwise the destination will get stuck with
1508 	 * that block size forever, that can be as small as 512 bytes, no
1509 	 * matter how big the destination grow later.
1510 	 */
1511 	if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
1512 	    outzp->z_size <= inblksz && outoff + len > inblksz) {
1513 		error = SET_ERROR(EINVAL);
1514 		goto unlock;
1515 	}
1516 
1517 	error = zn_rlimit_fsize(outoff + len);
1518 	if (error != 0) {
1519 		goto unlock;
1520 	}
1521 
1522 	if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1523 		error = SET_ERROR(EFBIG);
1524 		goto unlock;
1525 	}
1526 
1527 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1528 	    &mtime, 16);
1529 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1530 	    &ctime, 16);
1531 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1532 	    &outzp->z_size, 8);
1533 
1534 	zilog = outzfsvfs->z_log;
1535 	maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1536 	    sizeof (bps[0]);
1537 
1538 	uid = KUID_TO_SUID(ZTOUID(outzp));
1539 	gid = KGID_TO_SGID(ZTOGID(outzp));
1540 	projid = outzp->z_projid;
1541 
1542 	bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1543 
1544 	/*
1545 	 * Clone the file in reasonable size chunks.  Each chunk is cloned
1546 	 * in a separate transaction; this keeps the intent log records small
1547 	 * and allows us to do more fine-grained space accounting.
1548 	 */
1549 	while (len > 0) {
1550 		size = MIN(inblksz * maxblocks, len);
1551 
1552 		if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1553 		    uid) ||
1554 		    zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1555 		    gid) ||
1556 		    (projid != ZFS_DEFAULT_PROJID &&
1557 		    zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1558 		    projid))) {
1559 			error = SET_ERROR(EDQUOT);
1560 			break;
1561 		}
1562 
1563 		nbps = maxblocks;
1564 		last_synced_txg = spa_last_synced_txg(dmu_objset_spa(inos));
1565 		error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
1566 		    &nbps);
1567 		if (error != 0) {
1568 			/*
1569 			 * If we are trying to clone a block that was created
1570 			 * in the current transaction group, the error will be
1571 			 * EAGAIN here.  Based on zfs_bclone_wait_dirty either
1572 			 * return a shortened range to the caller so it can
1573 			 * fallback, or wait for the next TXG and check again.
1574 			 */
1575 			if (error == EAGAIN && zfs_bclone_wait_dirty) {
1576 				txg_wait_synced(dmu_objset_pool(inos),
1577 				    last_synced_txg + 1);
1578 				continue;
1579 			}
1580 
1581 			break;
1582 		}
1583 
1584 		/*
1585 		 * Start a transaction.
1586 		 */
1587 		tx = dmu_tx_create(outos);
1588 		dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1589 		db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1590 		DB_DNODE_ENTER(db);
1591 		dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1592 		DB_DNODE_EXIT(db);
1593 		zfs_sa_upgrade_txholds(tx, outzp);
1594 		error = dmu_tx_assign(tx, TXG_WAIT);
1595 		if (error != 0) {
1596 			dmu_tx_abort(tx);
1597 			break;
1598 		}
1599 
1600 		/*
1601 		 * Copy source znode's block size. This is done only if the
1602 		 * whole znode is locked (see zfs_rangelock_cb()) and only
1603 		 * on the first iteration since zfs_rangelock_reduce() will
1604 		 * shrink down lr_length to the appropriate size.
1605 		 */
1606 		if (outlr->lr_length == UINT64_MAX) {
1607 			zfs_grow_blocksize(outzp, inblksz, tx);
1608 
1609 			/*
1610 			 * Block growth may fail for many reasons we can not
1611 			 * predict here.  If it happen the cloning is doomed.
1612 			 */
1613 			if (inblksz != outzp->z_blksz) {
1614 				error = SET_ERROR(EINVAL);
1615 				dmu_tx_abort(tx);
1616 				break;
1617 			}
1618 
1619 			/*
1620 			 * Round range lock up to the block boundary, so we
1621 			 * prevent appends until we are done.
1622 			 */
1623 			zfs_rangelock_reduce(outlr, outoff,
1624 			    ((len - 1) / inblksz + 1) * inblksz);
1625 		}
1626 
1627 		error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1628 		    bps, nbps);
1629 		if (error != 0) {
1630 			dmu_tx_commit(tx);
1631 			break;
1632 		}
1633 
1634 		if (zn_has_cached_data(outzp, outoff, outoff + size - 1)) {
1635 			update_pages(outzp, outoff, size, outos);
1636 		}
1637 
1638 		zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1639 		    &clear_setid_bits_txg, tx);
1640 
1641 		zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1642 
1643 		/*
1644 		 * Update the file size (zp_size) if it has changed;
1645 		 * account for possible concurrent updates.
1646 		 */
1647 		while ((outsize = outzp->z_size) < outoff + size) {
1648 			(void) atomic_cas_64(&outzp->z_size, outsize,
1649 			    outoff + size);
1650 		}
1651 
1652 		error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1653 
1654 		zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1655 		    size, inblksz, bps, nbps);
1656 
1657 		dmu_tx_commit(tx);
1658 
1659 		if (error != 0)
1660 			break;
1661 
1662 		inoff += size;
1663 		outoff += size;
1664 		len -= size;
1665 		done += size;
1666 
1667 		if (issig()) {
1668 			error = SET_ERROR(EINTR);
1669 			break;
1670 		}
1671 	}
1672 
1673 	vmem_free(bps, sizeof (bps[0]) * maxblocks);
1674 	zfs_znode_update_vfs(outzp);
1675 
1676 unlock:
1677 	zfs_rangelock_exit(outlr);
1678 	zfs_rangelock_exit(inlr);
1679 
1680 	if (done > 0) {
1681 		/*
1682 		 * If we have made at least partial progress, reset the error.
1683 		 */
1684 		error = 0;
1685 
1686 		ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1687 
1688 		if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1689 			zil_commit(zilog, outzp->z_id);
1690 		}
1691 
1692 		*inoffp += done;
1693 		*outoffp += done;
1694 		*lenp = done;
1695 	} else {
1696 		/*
1697 		 * If we made no progress, there must be a good reason.
1698 		 * EOF is handled explicitly above, before the loop.
1699 		 */
1700 		ASSERT3S(error, !=, 0);
1701 	}
1702 
1703 	zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1704 
1705 	return (error);
1706 }
1707 
1708 /*
1709  * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1710  * but we cannot do that, because when replaying we don't have source znode
1711  * available. This is why we need a dedicated replay function.
1712  */
1713 int
1714 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1715     const blkptr_t *bps, size_t nbps)
1716 {
1717 	zfsvfs_t	*zfsvfs;
1718 	dmu_buf_impl_t	*db;
1719 	dmu_tx_t	*tx;
1720 	int		error;
1721 	int		count = 0;
1722 	sa_bulk_attr_t	bulk[3];
1723 	uint64_t	mtime[2], ctime[2];
1724 
1725 	ASSERT3U(off, <, MAXOFFSET_T);
1726 	ASSERT3U(len, >, 0);
1727 	ASSERT3U(nbps, >, 0);
1728 
1729 	zfsvfs = ZTOZSB(zp);
1730 
1731 	ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1732 	    SPA_FEATURE_BLOCK_CLONING));
1733 
1734 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1735 		return (error);
1736 
1737 	ASSERT(zfsvfs->z_replay);
1738 	ASSERT(!zfs_is_readonly(zfsvfs));
1739 
1740 	if ((off % blksz) != 0) {
1741 		zfs_exit(zfsvfs, FTAG);
1742 		return (SET_ERROR(EINVAL));
1743 	}
1744 
1745 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1746 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1747 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1748 	    &zp->z_size, 8);
1749 
1750 	/*
1751 	 * Start a transaction.
1752 	 */
1753 	tx = dmu_tx_create(zfsvfs->z_os);
1754 
1755 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1756 	db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1757 	DB_DNODE_ENTER(db);
1758 	dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1759 	DB_DNODE_EXIT(db);
1760 	zfs_sa_upgrade_txholds(tx, zp);
1761 	error = dmu_tx_assign(tx, TXG_WAIT);
1762 	if (error != 0) {
1763 		dmu_tx_abort(tx);
1764 		zfs_exit(zfsvfs, FTAG);
1765 		return (error);
1766 	}
1767 
1768 	if (zp->z_blksz < blksz)
1769 		zfs_grow_blocksize(zp, blksz, tx);
1770 
1771 	dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps);
1772 
1773 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1774 
1775 	if (zp->z_size < off + len)
1776 		zp->z_size = off + len;
1777 
1778 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1779 
1780 	/*
1781 	 * zil_replaying() not only check if we are replaying ZIL, but also
1782 	 * updates the ZIL header to record replay progress.
1783 	 */
1784 	VERIFY(zil_replaying(zfsvfs->z_log, tx));
1785 
1786 	dmu_tx_commit(tx);
1787 
1788 	zfs_znode_update_vfs(zp);
1789 
1790 	zfs_exit(zfsvfs, FTAG);
1791 
1792 	return (error);
1793 }
1794 
1795 EXPORT_SYMBOL(zfs_access);
1796 EXPORT_SYMBOL(zfs_fsync);
1797 EXPORT_SYMBOL(zfs_holey);
1798 EXPORT_SYMBOL(zfs_read);
1799 EXPORT_SYMBOL(zfs_write);
1800 EXPORT_SYMBOL(zfs_getsecattr);
1801 EXPORT_SYMBOL(zfs_setsecattr);
1802 EXPORT_SYMBOL(zfs_clone_range);
1803 EXPORT_SYMBOL(zfs_clone_range_replay);
1804 
1805 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
1806 	"Bytes to read per chunk");
1807 
1808 ZFS_MODULE_PARAM(zfs, zfs_, bclone_enabled, INT, ZMOD_RW,
1809 	"Enable block cloning");
1810 
1811 ZFS_MODULE_PARAM(zfs, zfs_, bclone_wait_dirty, INT, ZMOD_RW,
1812 	"Wait for dirty blocks when cloning");
1813 
1814 ZFS_MODULE_PARAM(zfs, zfs_, dio_enabled, INT, ZMOD_RW,
1815 	"Enable Direct I/O");
1816