1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 /* Portions Copyright 2007 Jeremy Teo */ 30 /* Portions Copyright 2010 Robert Milkowski */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/time.h> 35 #include <sys/sysmacros.h> 36 #include <sys/vfs.h> 37 #include <sys/uio_impl.h> 38 #include <sys/file.h> 39 #include <sys/stat.h> 40 #include <sys/kmem.h> 41 #include <sys/cmn_err.h> 42 #include <sys/errno.h> 43 #include <sys/zfs_dir.h> 44 #include <sys/zfs_acl.h> 45 #include <sys/zfs_ioctl.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/dmu.h> 48 #include <sys/dmu_objset.h> 49 #include <sys/spa.h> 50 #include <sys/txg.h> 51 #include <sys/dbuf.h> 52 #include <sys/policy.h> 53 #include <sys/zfs_vnops.h> 54 #include <sys/zfs_quota.h> 55 #include <sys/zfs_vfsops.h> 56 #include <sys/zfs_znode.h> 57 58 59 static ulong_t zfs_fsync_sync_cnt = 4; 60 61 int 62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr) 63 { 64 zfsvfs_t *zfsvfs = ZTOZSB(zp); 65 66 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 67 68 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 69 ZFS_ENTER(zfsvfs); 70 ZFS_VERIFY_ZP(zp); 71 zil_commit(zfsvfs->z_log, zp->z_id); 72 ZFS_EXIT(zfsvfs); 73 } 74 tsd_set(zfs_fsyncer_key, NULL); 75 76 return (0); 77 } 78 79 80 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 81 /* 82 * Lseek support for finding holes (cmd == SEEK_HOLE) and 83 * data (cmd == SEEK_DATA). "off" is an in/out parameter. 84 */ 85 static int 86 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off) 87 { 88 zfs_locked_range_t *lr; 89 uint64_t noff = (uint64_t)*off; /* new offset */ 90 uint64_t file_sz; 91 int error; 92 boolean_t hole; 93 94 file_sz = zp->z_size; 95 if (noff >= file_sz) { 96 return (SET_ERROR(ENXIO)); 97 } 98 99 if (cmd == F_SEEK_HOLE) 100 hole = B_TRUE; 101 else 102 hole = B_FALSE; 103 104 /* Flush any mmap()'d data to disk */ 105 if (zn_has_cached_data(zp)) 106 zn_flush_cached_data(zp, B_FALSE); 107 108 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER); 109 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff); 110 zfs_rangelock_exit(lr); 111 112 if (error == ESRCH) 113 return (SET_ERROR(ENXIO)); 114 115 /* File was dirty, so fall back to using generic logic */ 116 if (error == EBUSY) { 117 if (hole) 118 *off = file_sz; 119 120 return (0); 121 } 122 123 /* 124 * We could find a hole that begins after the logical end-of-file, 125 * because dmu_offset_next() only works on whole blocks. If the 126 * EOF falls mid-block, then indicate that the "virtual hole" 127 * at the end of the file begins at the logical EOF, rather than 128 * at the end of the last block. 129 */ 130 if (noff > file_sz) { 131 ASSERT(hole); 132 noff = file_sz; 133 } 134 135 if (noff < *off) 136 return (error); 137 *off = noff; 138 return (error); 139 } 140 141 int 142 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off) 143 { 144 zfsvfs_t *zfsvfs = ZTOZSB(zp); 145 int error; 146 147 ZFS_ENTER(zfsvfs); 148 ZFS_VERIFY_ZP(zp); 149 150 error = zfs_holey_common(zp, cmd, off); 151 152 ZFS_EXIT(zfsvfs); 153 return (error); 154 } 155 #endif /* SEEK_HOLE && SEEK_DATA */ 156 157 /*ARGSUSED*/ 158 int 159 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr) 160 { 161 zfsvfs_t *zfsvfs = ZTOZSB(zp); 162 int error; 163 164 ZFS_ENTER(zfsvfs); 165 ZFS_VERIFY_ZP(zp); 166 167 if (flag & V_ACE_MASK) 168 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 169 else 170 error = zfs_zaccess_rwx(zp, mode, flag, cr); 171 172 ZFS_EXIT(zfsvfs); 173 return (error); 174 } 175 176 static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */ 177 178 /* 179 * Read bytes from specified file into supplied buffer. 180 * 181 * IN: zp - inode of file to be read from. 182 * uio - structure supplying read location, range info, 183 * and return buffer. 184 * ioflag - O_SYNC flags; used to provide FRSYNC semantics. 185 * O_DIRECT flag; used to bypass page cache. 186 * cr - credentials of caller. 187 * 188 * OUT: uio - updated offset and range, buffer filled. 189 * 190 * RETURN: 0 on success, error code on failure. 191 * 192 * Side Effects: 193 * inode - atime updated if byte count > 0 194 */ 195 /* ARGSUSED */ 196 int 197 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 198 { 199 int error = 0; 200 boolean_t frsync = B_FALSE; 201 202 zfsvfs_t *zfsvfs = ZTOZSB(zp); 203 ZFS_ENTER(zfsvfs); 204 ZFS_VERIFY_ZP(zp); 205 206 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 207 ZFS_EXIT(zfsvfs); 208 return (SET_ERROR(EACCES)); 209 } 210 211 /* We don't copy out anything useful for directories. */ 212 if (Z_ISDIR(ZTOTYPE(zp))) { 213 ZFS_EXIT(zfsvfs); 214 return (SET_ERROR(EISDIR)); 215 } 216 217 /* 218 * Validate file offset 219 */ 220 if (zfs_uio_offset(uio) < (offset_t)0) { 221 ZFS_EXIT(zfsvfs); 222 return (SET_ERROR(EINVAL)); 223 } 224 225 /* 226 * Fasttrack empty reads 227 */ 228 if (zfs_uio_resid(uio) == 0) { 229 ZFS_EXIT(zfsvfs); 230 return (0); 231 } 232 233 #ifdef FRSYNC 234 /* 235 * If we're in FRSYNC mode, sync out this znode before reading it. 236 * Only do this for non-snapshots. 237 * 238 * Some platforms do not support FRSYNC and instead map it 239 * to O_SYNC, which results in unnecessary calls to zil_commit. We 240 * only honor FRSYNC requests on platforms which support it. 241 */ 242 frsync = !!(ioflag & FRSYNC); 243 #endif 244 if (zfsvfs->z_log && 245 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 246 zil_commit(zfsvfs->z_log, zp->z_id); 247 248 /* 249 * Lock the range against changes. 250 */ 251 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, 252 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER); 253 254 /* 255 * If we are reading past end-of-file we can skip 256 * to the end; but we might still need to set atime. 257 */ 258 if (zfs_uio_offset(uio) >= zp->z_size) { 259 error = 0; 260 goto out; 261 } 262 263 ASSERT(zfs_uio_offset(uio) < zp->z_size); 264 #if defined(__linux__) 265 ssize_t start_offset = zfs_uio_offset(uio); 266 #endif 267 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio)); 268 ssize_t start_resid = n; 269 270 while (n > 0) { 271 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size - 272 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size)); 273 #ifdef UIO_NOCOPY 274 if (zfs_uio_segflg(uio) == UIO_NOCOPY) 275 error = mappedread_sf(zp, nbytes, uio); 276 else 277 #endif 278 if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) { 279 error = mappedread(zp, nbytes, uio); 280 } else { 281 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 282 uio, nbytes); 283 } 284 285 if (error) { 286 /* convert checksum errors into IO errors */ 287 if (error == ECKSUM) 288 error = SET_ERROR(EIO); 289 290 #if defined(__linux__) 291 /* 292 * if we actually read some bytes, bubbling EFAULT 293 * up to become EAGAIN isn't what we want here... 294 * 295 * ...on Linux, at least. On FBSD, doing this breaks. 296 */ 297 if (error == EFAULT && 298 (zfs_uio_offset(uio) - start_offset) != 0) 299 error = 0; 300 #endif 301 break; 302 } 303 304 n -= nbytes; 305 } 306 307 int64_t nread = start_resid - n; 308 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread); 309 task_io_account_read(nread); 310 out: 311 zfs_rangelock_exit(lr); 312 313 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 314 ZFS_EXIT(zfsvfs); 315 return (error); 316 } 317 318 /* 319 * Write the bytes to a file. 320 * 321 * IN: zp - znode of file to be written to. 322 * uio - structure supplying write location, range info, 323 * and data buffer. 324 * ioflag - O_APPEND flag set if in append mode. 325 * O_DIRECT flag; used to bypass page cache. 326 * cr - credentials of caller. 327 * 328 * OUT: uio - updated offset and range. 329 * 330 * RETURN: 0 if success 331 * error code if failure 332 * 333 * Timestamps: 334 * ip - ctime|mtime updated if byte count > 0 335 */ 336 337 /* ARGSUSED */ 338 int 339 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 340 { 341 int error = 0, error1; 342 ssize_t start_resid = zfs_uio_resid(uio); 343 344 /* 345 * Fasttrack empty write 346 */ 347 ssize_t n = start_resid; 348 if (n == 0) 349 return (0); 350 351 zfsvfs_t *zfsvfs = ZTOZSB(zp); 352 ZFS_ENTER(zfsvfs); 353 ZFS_VERIFY_ZP(zp); 354 355 sa_bulk_attr_t bulk[4]; 356 int count = 0; 357 uint64_t mtime[2], ctime[2]; 358 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 359 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 360 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 361 &zp->z_size, 8); 362 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 363 &zp->z_pflags, 8); 364 365 /* 366 * Callers might not be able to detect properly that we are read-only, 367 * so check it explicitly here. 368 */ 369 if (zfs_is_readonly(zfsvfs)) { 370 ZFS_EXIT(zfsvfs); 371 return (SET_ERROR(EROFS)); 372 } 373 374 /* 375 * If immutable or not appending then return EPERM. 376 * Intentionally allow ZFS_READONLY through here. 377 * See zfs_zaccess_common() 378 */ 379 if ((zp->z_pflags & ZFS_IMMUTABLE) || 380 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) && 381 (zfs_uio_offset(uio) < zp->z_size))) { 382 ZFS_EXIT(zfsvfs); 383 return (SET_ERROR(EPERM)); 384 } 385 386 /* 387 * Validate file offset 388 */ 389 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio); 390 if (woff < 0) { 391 ZFS_EXIT(zfsvfs); 392 return (SET_ERROR(EINVAL)); 393 } 394 395 const uint64_t max_blksz = zfsvfs->z_max_blksz; 396 397 /* 398 * Pre-fault the pages to ensure slow (eg NFS) pages 399 * don't hold up txg. 400 * Skip this if uio contains loaned arc_buf. 401 */ 402 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 403 ZFS_EXIT(zfsvfs); 404 return (SET_ERROR(EFAULT)); 405 } 406 407 /* 408 * If in append mode, set the io offset pointer to eof. 409 */ 410 zfs_locked_range_t *lr; 411 if (ioflag & O_APPEND) { 412 /* 413 * Obtain an appending range lock to guarantee file append 414 * semantics. We reset the write offset once we have the lock. 415 */ 416 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 417 woff = lr->lr_offset; 418 if (lr->lr_length == UINT64_MAX) { 419 /* 420 * We overlocked the file because this write will cause 421 * the file block size to increase. 422 * Note that zp_size cannot change with this lock held. 423 */ 424 woff = zp->z_size; 425 } 426 zfs_uio_setoffset(uio, woff); 427 } else { 428 /* 429 * Note that if the file block size will change as a result of 430 * this write, then this range lock will lock the entire file 431 * so that we can re-write the block safely. 432 */ 433 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 434 } 435 436 if (zn_rlimit_fsize(zp, uio)) { 437 zfs_rangelock_exit(lr); 438 ZFS_EXIT(zfsvfs); 439 return (SET_ERROR(EFBIG)); 440 } 441 442 const rlim64_t limit = MAXOFFSET_T; 443 444 if (woff >= limit) { 445 zfs_rangelock_exit(lr); 446 ZFS_EXIT(zfsvfs); 447 return (SET_ERROR(EFBIG)); 448 } 449 450 if (n > limit - woff) 451 n = limit - woff; 452 453 uint64_t end_size = MAX(zp->z_size, woff + n); 454 zilog_t *zilog = zfsvfs->z_log; 455 456 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 457 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp)); 458 const uint64_t projid = zp->z_projid; 459 460 /* 461 * Write the file in reasonable size chunks. Each chunk is written 462 * in a separate transaction; this keeps the intent log records small 463 * and allows us to do more fine-grained space accounting. 464 */ 465 while (n > 0) { 466 woff = zfs_uio_offset(uio); 467 468 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) || 469 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) || 470 (projid != ZFS_DEFAULT_PROJID && 471 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 472 projid))) { 473 error = SET_ERROR(EDQUOT); 474 break; 475 } 476 477 arc_buf_t *abuf = NULL; 478 if (n >= max_blksz && woff >= zp->z_size && 479 P2PHASE(woff, max_blksz) == 0 && 480 zp->z_blksz == max_blksz) { 481 /* 482 * This write covers a full block. "Borrow" a buffer 483 * from the dmu so that we can fill it before we enter 484 * a transaction. This avoids the possibility of 485 * holding up the transaction if the data copy hangs 486 * up on a pagefault (e.g., from an NFS server mapping). 487 */ 488 size_t cbytes; 489 490 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 491 max_blksz); 492 ASSERT(abuf != NULL); 493 ASSERT(arc_buf_size(abuf) == max_blksz); 494 if ((error = zfs_uiocopy(abuf->b_data, max_blksz, 495 UIO_WRITE, uio, &cbytes))) { 496 dmu_return_arcbuf(abuf); 497 break; 498 } 499 ASSERT3S(cbytes, ==, max_blksz); 500 } 501 502 /* 503 * Start a transaction. 504 */ 505 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 506 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 507 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); 508 DB_DNODE_ENTER(db); 509 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, 510 MIN(n, max_blksz)); 511 DB_DNODE_EXIT(db); 512 zfs_sa_upgrade_txholds(tx, zp); 513 error = dmu_tx_assign(tx, TXG_WAIT); 514 if (error) { 515 dmu_tx_abort(tx); 516 if (abuf != NULL) 517 dmu_return_arcbuf(abuf); 518 break; 519 } 520 521 /* 522 * If rangelock_enter() over-locked we grow the blocksize 523 * and then reduce the lock range. This will only happen 524 * on the first iteration since rangelock_reduce() will 525 * shrink down lr_length to the appropriate size. 526 */ 527 if (lr->lr_length == UINT64_MAX) { 528 uint64_t new_blksz; 529 530 if (zp->z_blksz > max_blksz) { 531 /* 532 * File's blocksize is already larger than the 533 * "recordsize" property. Only let it grow to 534 * the next power of 2. 535 */ 536 ASSERT(!ISP2(zp->z_blksz)); 537 new_blksz = MIN(end_size, 538 1 << highbit64(zp->z_blksz)); 539 } else { 540 new_blksz = MIN(end_size, max_blksz); 541 } 542 zfs_grow_blocksize(zp, new_blksz, tx); 543 zfs_rangelock_reduce(lr, woff, n); 544 } 545 546 /* 547 * XXX - should we really limit each write to z_max_blksz? 548 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 549 */ 550 const ssize_t nbytes = 551 MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 552 553 ssize_t tx_bytes; 554 if (abuf == NULL) { 555 tx_bytes = zfs_uio_resid(uio); 556 zfs_uio_fault_disable(uio, B_TRUE); 557 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 558 uio, nbytes, tx); 559 zfs_uio_fault_disable(uio, B_FALSE); 560 #ifdef __linux__ 561 if (error == EFAULT) { 562 dmu_tx_commit(tx); 563 /* 564 * Account for partial writes before 565 * continuing the loop. 566 * Update needs to occur before the next 567 * zfs_uio_prefaultpages, or prefaultpages may 568 * error, and we may break the loop early. 569 */ 570 if (tx_bytes != zfs_uio_resid(uio)) 571 n -= tx_bytes - zfs_uio_resid(uio); 572 if (zfs_uio_prefaultpages(MIN(n, max_blksz), 573 uio)) { 574 break; 575 } 576 continue; 577 } 578 #endif 579 /* 580 * On FreeBSD, EFAULT should be propagated back to the 581 * VFS, which will handle faulting and will retry. 582 */ 583 if (error != 0 && error != EFAULT) { 584 dmu_tx_commit(tx); 585 break; 586 } 587 tx_bytes -= zfs_uio_resid(uio); 588 } else { 589 /* Implied by abuf != NULL: */ 590 ASSERT3S(n, >=, max_blksz); 591 ASSERT0(P2PHASE(woff, max_blksz)); 592 /* 593 * We can simplify nbytes to MIN(n, max_blksz) since 594 * P2PHASE(woff, max_blksz) is 0, and knowing 595 * n >= max_blksz lets us simplify further: 596 */ 597 ASSERT3S(nbytes, ==, max_blksz); 598 /* 599 * Thus, we're writing a full block at a block-aligned 600 * offset and extending the file past EOF. 601 * 602 * dmu_assign_arcbuf_by_dbuf() will directly assign the 603 * arc buffer to a dbuf. 604 */ 605 error = dmu_assign_arcbuf_by_dbuf( 606 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 607 if (error != 0) { 608 dmu_return_arcbuf(abuf); 609 dmu_tx_commit(tx); 610 break; 611 } 612 ASSERT3S(nbytes, <=, zfs_uio_resid(uio)); 613 zfs_uioskip(uio, nbytes); 614 tx_bytes = nbytes; 615 } 616 if (tx_bytes && zn_has_cached_data(zp) && 617 !(ioflag & O_DIRECT)) { 618 update_pages(zp, woff, tx_bytes, zfsvfs->z_os); 619 } 620 621 /* 622 * If we made no progress, we're done. If we made even 623 * partial progress, update the znode and ZIL accordingly. 624 */ 625 if (tx_bytes == 0) { 626 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 627 (void *)&zp->z_size, sizeof (uint64_t), tx); 628 dmu_tx_commit(tx); 629 ASSERT(error != 0); 630 break; 631 } 632 633 /* 634 * Clear Set-UID/Set-GID bits on successful write if not 635 * privileged and at least one of the execute bits is set. 636 * 637 * It would be nice to do this after all writes have 638 * been done, but that would still expose the ISUID/ISGID 639 * to another app after the partial write is committed. 640 * 641 * Note: we don't call zfs_fuid_map_id() here because 642 * user 0 is not an ephemeral uid. 643 */ 644 mutex_enter(&zp->z_acl_lock); 645 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 646 (S_IXUSR >> 6))) != 0 && 647 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 648 secpolicy_vnode_setid_retain(zp, cr, 649 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) { 650 uint64_t newmode; 651 zp->z_mode &= ~(S_ISUID | S_ISGID); 652 newmode = zp->z_mode; 653 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 654 (void *)&newmode, sizeof (uint64_t), tx); 655 } 656 mutex_exit(&zp->z_acl_lock); 657 658 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 659 660 /* 661 * Update the file size (zp_size) if it has changed; 662 * account for possible concurrent updates. 663 */ 664 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) { 665 (void) atomic_cas_64(&zp->z_size, end_size, 666 zfs_uio_offset(uio)); 667 ASSERT(error == 0 || error == EFAULT); 668 } 669 /* 670 * If we are replaying and eof is non zero then force 671 * the file size to the specified eof. Note, there's no 672 * concurrency during replay. 673 */ 674 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 675 zp->z_size = zfsvfs->z_replay_eof; 676 677 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 678 if (error1 != 0) 679 /* Avoid clobbering EFAULT. */ 680 error = error1; 681 682 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag, 683 NULL, NULL); 684 dmu_tx_commit(tx); 685 686 if (error != 0) 687 break; 688 ASSERT3S(tx_bytes, ==, nbytes); 689 n -= nbytes; 690 691 if (n > 0) { 692 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 693 error = SET_ERROR(EFAULT); 694 break; 695 } 696 } 697 } 698 699 zfs_znode_update_vfs(zp); 700 zfs_rangelock_exit(lr); 701 702 /* 703 * If we're in replay mode, or we made no progress, or the 704 * uio data is inaccessible return an error. Otherwise, it's 705 * at least a partial write, so it's successful. 706 */ 707 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid || 708 error == EFAULT) { 709 ZFS_EXIT(zfsvfs); 710 return (error); 711 } 712 713 if (ioflag & (O_SYNC | O_DSYNC) || 714 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 715 zil_commit(zilog, zp->z_id); 716 717 const int64_t nwritten = start_resid - zfs_uio_resid(uio); 718 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten); 719 task_io_account_write(nwritten); 720 721 ZFS_EXIT(zfsvfs); 722 return (0); 723 } 724 725 /*ARGSUSED*/ 726 int 727 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 728 { 729 zfsvfs_t *zfsvfs = ZTOZSB(zp); 730 int error; 731 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 732 733 ZFS_ENTER(zfsvfs); 734 ZFS_VERIFY_ZP(zp); 735 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 736 ZFS_EXIT(zfsvfs); 737 738 return (error); 739 } 740 741 /*ARGSUSED*/ 742 int 743 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 744 { 745 zfsvfs_t *zfsvfs = ZTOZSB(zp); 746 int error; 747 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 748 zilog_t *zilog = zfsvfs->z_log; 749 750 ZFS_ENTER(zfsvfs); 751 ZFS_VERIFY_ZP(zp); 752 753 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 754 755 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 756 zil_commit(zilog, 0); 757 758 ZFS_EXIT(zfsvfs); 759 return (error); 760 } 761 762 #ifdef ZFS_DEBUG 763 static int zil_fault_io = 0; 764 #endif 765 766 static void zfs_get_done(zgd_t *zgd, int error); 767 768 /* 769 * Get data to generate a TX_WRITE intent log record. 770 */ 771 int 772 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf, 773 struct lwb *lwb, zio_t *zio) 774 { 775 zfsvfs_t *zfsvfs = arg; 776 objset_t *os = zfsvfs->z_os; 777 znode_t *zp; 778 uint64_t object = lr->lr_foid; 779 uint64_t offset = lr->lr_offset; 780 uint64_t size = lr->lr_length; 781 dmu_buf_t *db; 782 zgd_t *zgd; 783 int error = 0; 784 uint64_t zp_gen; 785 786 ASSERT3P(lwb, !=, NULL); 787 ASSERT3P(zio, !=, NULL); 788 ASSERT3U(size, !=, 0); 789 790 /* 791 * Nothing to do if the file has been removed 792 */ 793 if (zfs_zget(zfsvfs, object, &zp) != 0) 794 return (SET_ERROR(ENOENT)); 795 if (zp->z_unlinked) { 796 /* 797 * Release the vnode asynchronously as we currently have the 798 * txg stopped from syncing. 799 */ 800 zfs_zrele_async(zp); 801 return (SET_ERROR(ENOENT)); 802 } 803 /* check if generation number matches */ 804 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 805 sizeof (zp_gen)) != 0) { 806 zfs_zrele_async(zp); 807 return (SET_ERROR(EIO)); 808 } 809 if (zp_gen != gen) { 810 zfs_zrele_async(zp); 811 return (SET_ERROR(ENOENT)); 812 } 813 814 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 815 zgd->zgd_lwb = lwb; 816 zgd->zgd_private = zp; 817 818 /* 819 * Write records come in two flavors: immediate and indirect. 820 * For small writes it's cheaper to store the data with the 821 * log record (immediate); for large writes it's cheaper to 822 * sync the data and get a pointer to it (indirect) so that 823 * we don't have to write the data twice. 824 */ 825 if (buf != NULL) { /* immediate write */ 826 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 827 offset, size, RL_READER); 828 /* test for truncation needs to be done while range locked */ 829 if (offset >= zp->z_size) { 830 error = SET_ERROR(ENOENT); 831 } else { 832 error = dmu_read(os, object, offset, size, buf, 833 DMU_READ_NO_PREFETCH); 834 } 835 ASSERT(error == 0 || error == ENOENT); 836 } else { /* indirect write */ 837 /* 838 * Have to lock the whole block to ensure when it's 839 * written out and its checksum is being calculated 840 * that no one can change the data. We need to re-check 841 * blocksize after we get the lock in case it's changed! 842 */ 843 for (;;) { 844 uint64_t blkoff; 845 size = zp->z_blksz; 846 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 847 offset -= blkoff; 848 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 849 offset, size, RL_READER); 850 if (zp->z_blksz == size) 851 break; 852 offset += blkoff; 853 zfs_rangelock_exit(zgd->zgd_lr); 854 } 855 /* test for truncation needs to be done while range locked */ 856 if (lr->lr_offset >= zp->z_size) 857 error = SET_ERROR(ENOENT); 858 #ifdef ZFS_DEBUG 859 if (zil_fault_io) { 860 error = SET_ERROR(EIO); 861 zil_fault_io = 0; 862 } 863 #endif 864 if (error == 0) 865 error = dmu_buf_hold(os, object, offset, zgd, &db, 866 DMU_READ_NO_PREFETCH); 867 868 if (error == 0) { 869 blkptr_t *bp = &lr->lr_blkptr; 870 871 zgd->zgd_db = db; 872 zgd->zgd_bp = bp; 873 874 ASSERT(db->db_offset == offset); 875 ASSERT(db->db_size == size); 876 877 error = dmu_sync(zio, lr->lr_common.lrc_txg, 878 zfs_get_done, zgd); 879 ASSERT(error || lr->lr_length <= size); 880 881 /* 882 * On success, we need to wait for the write I/O 883 * initiated by dmu_sync() to complete before we can 884 * release this dbuf. We will finish everything up 885 * in the zfs_get_done() callback. 886 */ 887 if (error == 0) 888 return (0); 889 890 if (error == EALREADY) { 891 lr->lr_common.lrc_txtype = TX_WRITE2; 892 /* 893 * TX_WRITE2 relies on the data previously 894 * written by the TX_WRITE that caused 895 * EALREADY. We zero out the BP because 896 * it is the old, currently-on-disk BP. 897 */ 898 zgd->zgd_bp = NULL; 899 BP_ZERO(bp); 900 error = 0; 901 } 902 } 903 } 904 905 zfs_get_done(zgd, error); 906 907 return (error); 908 } 909 910 911 /* ARGSUSED */ 912 static void 913 zfs_get_done(zgd_t *zgd, int error) 914 { 915 znode_t *zp = zgd->zgd_private; 916 917 if (zgd->zgd_db) 918 dmu_buf_rele(zgd->zgd_db, zgd); 919 920 zfs_rangelock_exit(zgd->zgd_lr); 921 922 /* 923 * Release the vnode asynchronously as we currently have the 924 * txg stopped from syncing. 925 */ 926 zfs_zrele_async(zp); 927 928 kmem_free(zgd, sizeof (zgd_t)); 929 } 930 931 EXPORT_SYMBOL(zfs_access); 932 EXPORT_SYMBOL(zfs_fsync); 933 EXPORT_SYMBOL(zfs_holey); 934 EXPORT_SYMBOL(zfs_read); 935 EXPORT_SYMBOL(zfs_write); 936 EXPORT_SYMBOL(zfs_getsecattr); 937 EXPORT_SYMBOL(zfs_setsecattr); 938 939 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW, 940 "Bytes to read per chunk"); 941