xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_vnops.c (revision 5e3190f700637fcfc1a52daeaa4a031fdd2557c7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
28  */
29 
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/uio_impl.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/cmn_err.h>
43 #include <sys/errno.h>
44 #include <sys/zfs_dir.h>
45 #include <sys/zfs_acl.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/spa.h>
51 #include <sys/txg.h>
52 #include <sys/dbuf.h>
53 #include <sys/policy.h>
54 #include <sys/zfeature.h>
55 #include <sys/zfs_vnops.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/zfs_vfsops.h>
58 #include <sys/zfs_znode.h>
59 
60 
61 static ulong_t zfs_fsync_sync_cnt = 4;
62 
63 int
64 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
65 {
66 	int error = 0;
67 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
68 
69 	(void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt);
70 
71 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
72 		if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
73 			goto out;
74 		atomic_inc_32(&zp->z_sync_writes_cnt);
75 		zil_commit(zfsvfs->z_log, zp->z_id);
76 		atomic_dec_32(&zp->z_sync_writes_cnt);
77 		zfs_exit(zfsvfs, FTAG);
78 	}
79 out:
80 	tsd_set(zfs_fsyncer_key, NULL);
81 
82 	return (error);
83 }
84 
85 
86 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
87 /*
88  * Lseek support for finding holes (cmd == SEEK_HOLE) and
89  * data (cmd == SEEK_DATA). "off" is an in/out parameter.
90  */
91 static int
92 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
93 {
94 	zfs_locked_range_t *lr;
95 	uint64_t noff = (uint64_t)*off; /* new offset */
96 	uint64_t file_sz;
97 	int error;
98 	boolean_t hole;
99 
100 	file_sz = zp->z_size;
101 	if (noff >= file_sz)  {
102 		return (SET_ERROR(ENXIO));
103 	}
104 
105 	if (cmd == F_SEEK_HOLE)
106 		hole = B_TRUE;
107 	else
108 		hole = B_FALSE;
109 
110 	/* Flush any mmap()'d data to disk */
111 	if (zn_has_cached_data(zp, 0, file_sz - 1))
112 		zn_flush_cached_data(zp, B_FALSE);
113 
114 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
115 	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
116 	zfs_rangelock_exit(lr);
117 
118 	if (error == ESRCH)
119 		return (SET_ERROR(ENXIO));
120 
121 	/* File was dirty, so fall back to using generic logic */
122 	if (error == EBUSY) {
123 		if (hole)
124 			*off = file_sz;
125 
126 		return (0);
127 	}
128 
129 	/*
130 	 * We could find a hole that begins after the logical end-of-file,
131 	 * because dmu_offset_next() only works on whole blocks.  If the
132 	 * EOF falls mid-block, then indicate that the "virtual hole"
133 	 * at the end of the file begins at the logical EOF, rather than
134 	 * at the end of the last block.
135 	 */
136 	if (noff > file_sz) {
137 		ASSERT(hole);
138 		noff = file_sz;
139 	}
140 
141 	if (noff < *off)
142 		return (error);
143 	*off = noff;
144 	return (error);
145 }
146 
147 int
148 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
149 {
150 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
151 	int error;
152 
153 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
154 		return (error);
155 
156 	error = zfs_holey_common(zp, cmd, off);
157 
158 	zfs_exit(zfsvfs, FTAG);
159 	return (error);
160 }
161 #endif /* SEEK_HOLE && SEEK_DATA */
162 
163 int
164 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
165 {
166 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
167 	int error;
168 
169 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
170 		return (error);
171 
172 	if (flag & V_ACE_MASK)
173 #if defined(__linux__)
174 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
175 		    zfs_init_idmap);
176 #else
177 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
178 		    NULL);
179 #endif
180 	else
181 #if defined(__linux__)
182 		error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
183 #else
184 		error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
185 #endif
186 
187 	zfs_exit(zfsvfs, FTAG);
188 	return (error);
189 }
190 
191 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
192 
193 /*
194  * Read bytes from specified file into supplied buffer.
195  *
196  *	IN:	zp	- inode of file to be read from.
197  *		uio	- structure supplying read location, range info,
198  *			  and return buffer.
199  *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
200  *			  O_DIRECT flag; used to bypass page cache.
201  *		cr	- credentials of caller.
202  *
203  *	OUT:	uio	- updated offset and range, buffer filled.
204  *
205  *	RETURN:	0 on success, error code on failure.
206  *
207  * Side Effects:
208  *	inode - atime updated if byte count > 0
209  */
210 int
211 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
212 {
213 	(void) cr;
214 	int error = 0;
215 	boolean_t frsync = B_FALSE;
216 
217 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
218 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
219 		return (error);
220 
221 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
222 		zfs_exit(zfsvfs, FTAG);
223 		return (SET_ERROR(EACCES));
224 	}
225 
226 	/* We don't copy out anything useful for directories. */
227 	if (Z_ISDIR(ZTOTYPE(zp))) {
228 		zfs_exit(zfsvfs, FTAG);
229 		return (SET_ERROR(EISDIR));
230 	}
231 
232 	/*
233 	 * Validate file offset
234 	 */
235 	if (zfs_uio_offset(uio) < (offset_t)0) {
236 		zfs_exit(zfsvfs, FTAG);
237 		return (SET_ERROR(EINVAL));
238 	}
239 
240 	/*
241 	 * Fasttrack empty reads
242 	 */
243 	if (zfs_uio_resid(uio) == 0) {
244 		zfs_exit(zfsvfs, FTAG);
245 		return (0);
246 	}
247 
248 #ifdef FRSYNC
249 	/*
250 	 * If we're in FRSYNC mode, sync out this znode before reading it.
251 	 * Only do this for non-snapshots.
252 	 *
253 	 * Some platforms do not support FRSYNC and instead map it
254 	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
255 	 * only honor FRSYNC requests on platforms which support it.
256 	 */
257 	frsync = !!(ioflag & FRSYNC);
258 #endif
259 	if (zfsvfs->z_log &&
260 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
261 		zil_commit(zfsvfs->z_log, zp->z_id);
262 
263 	/*
264 	 * Lock the range against changes.
265 	 */
266 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
267 	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
268 
269 	/*
270 	 * If we are reading past end-of-file we can skip
271 	 * to the end; but we might still need to set atime.
272 	 */
273 	if (zfs_uio_offset(uio) >= zp->z_size) {
274 		error = 0;
275 		goto out;
276 	}
277 
278 	ASSERT(zfs_uio_offset(uio) < zp->z_size);
279 #if defined(__linux__)
280 	ssize_t start_offset = zfs_uio_offset(uio);
281 #endif
282 	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
283 	ssize_t start_resid = n;
284 
285 	while (n > 0) {
286 		ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
287 		    P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
288 #ifdef UIO_NOCOPY
289 		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
290 			error = mappedread_sf(zp, nbytes, uio);
291 		else
292 #endif
293 		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
294 		    zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
295 			error = mappedread(zp, nbytes, uio);
296 		} else {
297 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
298 			    uio, nbytes);
299 		}
300 
301 		if (error) {
302 			/* convert checksum errors into IO errors */
303 			if (error == ECKSUM)
304 				error = SET_ERROR(EIO);
305 
306 #if defined(__linux__)
307 			/*
308 			 * if we actually read some bytes, bubbling EFAULT
309 			 * up to become EAGAIN isn't what we want here...
310 			 *
311 			 * ...on Linux, at least. On FBSD, doing this breaks.
312 			 */
313 			if (error == EFAULT &&
314 			    (zfs_uio_offset(uio) - start_offset) != 0)
315 				error = 0;
316 #endif
317 			break;
318 		}
319 
320 		n -= nbytes;
321 	}
322 
323 	int64_t nread = start_resid - n;
324 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
325 	task_io_account_read(nread);
326 out:
327 	zfs_rangelock_exit(lr);
328 
329 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
330 	zfs_exit(zfsvfs, FTAG);
331 	return (error);
332 }
333 
334 static void
335 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
336     uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
337 {
338 	zilog_t *zilog = zfsvfs->z_log;
339 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
340 
341 	ASSERT(clear_setid_bits_txgp != NULL);
342 	ASSERT(tx != NULL);
343 
344 	/*
345 	 * Clear Set-UID/Set-GID bits on successful write if not
346 	 * privileged and at least one of the execute bits is set.
347 	 *
348 	 * It would be nice to do this after all writes have
349 	 * been done, but that would still expose the ISUID/ISGID
350 	 * to another app after the partial write is committed.
351 	 *
352 	 * Note: we don't call zfs_fuid_map_id() here because
353 	 * user 0 is not an ephemeral uid.
354 	 */
355 	mutex_enter(&zp->z_acl_lock);
356 	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
357 	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
358 	    secpolicy_vnode_setid_retain(zp, cr,
359 	    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
360 		uint64_t newmode;
361 
362 		zp->z_mode &= ~(S_ISUID | S_ISGID);
363 		newmode = zp->z_mode;
364 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
365 		    (void *)&newmode, sizeof (uint64_t), tx);
366 
367 		mutex_exit(&zp->z_acl_lock);
368 
369 		/*
370 		 * Make sure SUID/SGID bits will be removed when we replay the
371 		 * log. If the setid bits are keep coming back, don't log more
372 		 * than one TX_SETATTR per transaction group.
373 		 */
374 		if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
375 			vattr_t va = {0};
376 
377 			va.va_mask = ATTR_MODE;
378 			va.va_nodeid = zp->z_id;
379 			va.va_mode = newmode;
380 			zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
381 			    ATTR_MODE, NULL);
382 			*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
383 		}
384 	} else {
385 		mutex_exit(&zp->z_acl_lock);
386 	}
387 }
388 
389 /*
390  * Write the bytes to a file.
391  *
392  *	IN:	zp	- znode of file to be written to.
393  *		uio	- structure supplying write location, range info,
394  *			  and data buffer.
395  *		ioflag	- O_APPEND flag set if in append mode.
396  *			  O_DIRECT flag; used to bypass page cache.
397  *		cr	- credentials of caller.
398  *
399  *	OUT:	uio	- updated offset and range.
400  *
401  *	RETURN:	0 if success
402  *		error code if failure
403  *
404  * Timestamps:
405  *	ip - ctime|mtime updated if byte count > 0
406  */
407 int
408 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
409 {
410 	int error = 0, error1;
411 	ssize_t start_resid = zfs_uio_resid(uio);
412 	uint64_t clear_setid_bits_txg = 0;
413 
414 	/*
415 	 * Fasttrack empty write
416 	 */
417 	ssize_t n = start_resid;
418 	if (n == 0)
419 		return (0);
420 
421 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
422 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
423 		return (error);
424 
425 	sa_bulk_attr_t bulk[4];
426 	int count = 0;
427 	uint64_t mtime[2], ctime[2];
428 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
429 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
430 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
431 	    &zp->z_size, 8);
432 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
433 	    &zp->z_pflags, 8);
434 
435 	/*
436 	 * Callers might not be able to detect properly that we are read-only,
437 	 * so check it explicitly here.
438 	 */
439 	if (zfs_is_readonly(zfsvfs)) {
440 		zfs_exit(zfsvfs, FTAG);
441 		return (SET_ERROR(EROFS));
442 	}
443 
444 	/*
445 	 * If immutable or not appending then return EPERM.
446 	 * Intentionally allow ZFS_READONLY through here.
447 	 * See zfs_zaccess_common()
448 	 */
449 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
450 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
451 	    (zfs_uio_offset(uio) < zp->z_size))) {
452 		zfs_exit(zfsvfs, FTAG);
453 		return (SET_ERROR(EPERM));
454 	}
455 
456 	/*
457 	 * Validate file offset
458 	 */
459 	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
460 	if (woff < 0) {
461 		zfs_exit(zfsvfs, FTAG);
462 		return (SET_ERROR(EINVAL));
463 	}
464 
465 	/*
466 	 * Pre-fault the pages to ensure slow (eg NFS) pages
467 	 * don't hold up txg.
468 	 */
469 	ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
470 	if (zfs_uio_prefaultpages(pfbytes, uio)) {
471 		zfs_exit(zfsvfs, FTAG);
472 		return (SET_ERROR(EFAULT));
473 	}
474 
475 	/*
476 	 * If in append mode, set the io offset pointer to eof.
477 	 */
478 	zfs_locked_range_t *lr;
479 	if (ioflag & O_APPEND) {
480 		/*
481 		 * Obtain an appending range lock to guarantee file append
482 		 * semantics.  We reset the write offset once we have the lock.
483 		 */
484 		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
485 		woff = lr->lr_offset;
486 		if (lr->lr_length == UINT64_MAX) {
487 			/*
488 			 * We overlocked the file because this write will cause
489 			 * the file block size to increase.
490 			 * Note that zp_size cannot change with this lock held.
491 			 */
492 			woff = zp->z_size;
493 		}
494 		zfs_uio_setoffset(uio, woff);
495 	} else {
496 		/*
497 		 * Note that if the file block size will change as a result of
498 		 * this write, then this range lock will lock the entire file
499 		 * so that we can re-write the block safely.
500 		 */
501 		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
502 	}
503 
504 	if (zn_rlimit_fsize_uio(zp, uio)) {
505 		zfs_rangelock_exit(lr);
506 		zfs_exit(zfsvfs, FTAG);
507 		return (SET_ERROR(EFBIG));
508 	}
509 
510 	const rlim64_t limit = MAXOFFSET_T;
511 
512 	if (woff >= limit) {
513 		zfs_rangelock_exit(lr);
514 		zfs_exit(zfsvfs, FTAG);
515 		return (SET_ERROR(EFBIG));
516 	}
517 
518 	if (n > limit - woff)
519 		n = limit - woff;
520 
521 	uint64_t end_size = MAX(zp->z_size, woff + n);
522 	zilog_t *zilog = zfsvfs->z_log;
523 
524 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
525 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
526 	const uint64_t projid = zp->z_projid;
527 
528 	/*
529 	 * Write the file in reasonable size chunks.  Each chunk is written
530 	 * in a separate transaction; this keeps the intent log records small
531 	 * and allows us to do more fine-grained space accounting.
532 	 */
533 	while (n > 0) {
534 		woff = zfs_uio_offset(uio);
535 
536 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
537 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
538 		    (projid != ZFS_DEFAULT_PROJID &&
539 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
540 		    projid))) {
541 			error = SET_ERROR(EDQUOT);
542 			break;
543 		}
544 
545 		uint64_t blksz;
546 		if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
547 			if (zp->z_blksz > zfsvfs->z_max_blksz &&
548 			    !ISP2(zp->z_blksz)) {
549 				/*
550 				 * File's blocksize is already larger than the
551 				 * "recordsize" property.  Only let it grow to
552 				 * the next power of 2.
553 				 */
554 				blksz = 1 << highbit64(zp->z_blksz);
555 			} else {
556 				blksz = zfsvfs->z_max_blksz;
557 			}
558 			blksz = MIN(blksz, P2ROUNDUP(end_size,
559 			    SPA_MINBLOCKSIZE));
560 			blksz = MAX(blksz, zp->z_blksz);
561 		} else {
562 			blksz = zp->z_blksz;
563 		}
564 
565 		arc_buf_t *abuf = NULL;
566 		ssize_t nbytes = n;
567 		if (n >= blksz && woff >= zp->z_size &&
568 		    P2PHASE(woff, blksz) == 0 &&
569 		    (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
570 			/*
571 			 * This write covers a full block.  "Borrow" a buffer
572 			 * from the dmu so that we can fill it before we enter
573 			 * a transaction.  This avoids the possibility of
574 			 * holding up the transaction if the data copy hangs
575 			 * up on a pagefault (e.g., from an NFS server mapping).
576 			 */
577 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
578 			    blksz);
579 			ASSERT(abuf != NULL);
580 			ASSERT(arc_buf_size(abuf) == blksz);
581 			if ((error = zfs_uiocopy(abuf->b_data, blksz,
582 			    UIO_WRITE, uio, &nbytes))) {
583 				dmu_return_arcbuf(abuf);
584 				break;
585 			}
586 			ASSERT3S(nbytes, ==, blksz);
587 		} else {
588 			nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
589 			    P2PHASE(woff, blksz));
590 			if (pfbytes < nbytes) {
591 				if (zfs_uio_prefaultpages(nbytes, uio)) {
592 					error = SET_ERROR(EFAULT);
593 					break;
594 				}
595 				pfbytes = nbytes;
596 			}
597 		}
598 
599 		/*
600 		 * Start a transaction.
601 		 */
602 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
603 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
604 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
605 		DB_DNODE_ENTER(db);
606 		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
607 		DB_DNODE_EXIT(db);
608 		zfs_sa_upgrade_txholds(tx, zp);
609 		error = dmu_tx_assign(tx, TXG_WAIT);
610 		if (error) {
611 			dmu_tx_abort(tx);
612 			if (abuf != NULL)
613 				dmu_return_arcbuf(abuf);
614 			break;
615 		}
616 
617 		/*
618 		 * NB: We must call zfs_clear_setid_bits_if_necessary before
619 		 * committing the transaction!
620 		 */
621 
622 		/*
623 		 * If rangelock_enter() over-locked we grow the blocksize
624 		 * and then reduce the lock range.  This will only happen
625 		 * on the first iteration since rangelock_reduce() will
626 		 * shrink down lr_length to the appropriate size.
627 		 */
628 		if (lr->lr_length == UINT64_MAX) {
629 			zfs_grow_blocksize(zp, blksz, tx);
630 			zfs_rangelock_reduce(lr, woff, n);
631 		}
632 
633 		ssize_t tx_bytes;
634 		if (abuf == NULL) {
635 			tx_bytes = zfs_uio_resid(uio);
636 			zfs_uio_fault_disable(uio, B_TRUE);
637 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
638 			    uio, nbytes, tx);
639 			zfs_uio_fault_disable(uio, B_FALSE);
640 #ifdef __linux__
641 			if (error == EFAULT) {
642 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
643 				    cr, &clear_setid_bits_txg, tx);
644 				dmu_tx_commit(tx);
645 				/*
646 				 * Account for partial writes before
647 				 * continuing the loop.
648 				 * Update needs to occur before the next
649 				 * zfs_uio_prefaultpages, or prefaultpages may
650 				 * error, and we may break the loop early.
651 				 */
652 				n -= tx_bytes - zfs_uio_resid(uio);
653 				pfbytes -= tx_bytes - zfs_uio_resid(uio);
654 				continue;
655 			}
656 #endif
657 			/*
658 			 * On FreeBSD, EFAULT should be propagated back to the
659 			 * VFS, which will handle faulting and will retry.
660 			 */
661 			if (error != 0 && error != EFAULT) {
662 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
663 				    cr, &clear_setid_bits_txg, tx);
664 				dmu_tx_commit(tx);
665 				break;
666 			}
667 			tx_bytes -= zfs_uio_resid(uio);
668 		} else {
669 			/*
670 			 * Thus, we're writing a full block at a block-aligned
671 			 * offset and extending the file past EOF.
672 			 *
673 			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
674 			 * arc buffer to a dbuf.
675 			 */
676 			error = dmu_assign_arcbuf_by_dbuf(
677 			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
678 			if (error != 0) {
679 				/*
680 				 * XXX This might not be necessary if
681 				 * dmu_assign_arcbuf_by_dbuf is guaranteed
682 				 * to be atomic.
683 				 */
684 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
685 				    cr, &clear_setid_bits_txg, tx);
686 				dmu_return_arcbuf(abuf);
687 				dmu_tx_commit(tx);
688 				break;
689 			}
690 			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
691 			zfs_uioskip(uio, nbytes);
692 			tx_bytes = nbytes;
693 		}
694 		if (tx_bytes &&
695 		    zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
696 		    !(ioflag & O_DIRECT)) {
697 			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
698 		}
699 
700 		/*
701 		 * If we made no progress, we're done.  If we made even
702 		 * partial progress, update the znode and ZIL accordingly.
703 		 */
704 		if (tx_bytes == 0) {
705 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
706 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
707 			dmu_tx_commit(tx);
708 			ASSERT(error != 0);
709 			break;
710 		}
711 
712 		zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
713 		    &clear_setid_bits_txg, tx);
714 
715 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
716 
717 		/*
718 		 * Update the file size (zp_size) if it has changed;
719 		 * account for possible concurrent updates.
720 		 */
721 		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
722 			(void) atomic_cas_64(&zp->z_size, end_size,
723 			    zfs_uio_offset(uio));
724 			ASSERT(error == 0 || error == EFAULT);
725 		}
726 		/*
727 		 * If we are replaying and eof is non zero then force
728 		 * the file size to the specified eof. Note, there's no
729 		 * concurrency during replay.
730 		 */
731 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
732 			zp->z_size = zfsvfs->z_replay_eof;
733 
734 		error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
735 		if (error1 != 0)
736 			/* Avoid clobbering EFAULT. */
737 			error = error1;
738 
739 		/*
740 		 * NB: During replay, the TX_SETATTR record logged by
741 		 * zfs_clear_setid_bits_if_necessary must precede any of
742 		 * the TX_WRITE records logged here.
743 		 */
744 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
745 		    NULL, NULL);
746 
747 		dmu_tx_commit(tx);
748 
749 		if (error != 0)
750 			break;
751 		ASSERT3S(tx_bytes, ==, nbytes);
752 		n -= nbytes;
753 		pfbytes -= nbytes;
754 	}
755 
756 	zfs_znode_update_vfs(zp);
757 	zfs_rangelock_exit(lr);
758 
759 	/*
760 	 * If we're in replay mode, or we made no progress, or the
761 	 * uio data is inaccessible return an error.  Otherwise, it's
762 	 * at least a partial write, so it's successful.
763 	 */
764 	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
765 	    error == EFAULT) {
766 		zfs_exit(zfsvfs, FTAG);
767 		return (error);
768 	}
769 
770 	if (ioflag & (O_SYNC | O_DSYNC) ||
771 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
772 		zil_commit(zilog, zp->z_id);
773 
774 	const int64_t nwritten = start_resid - zfs_uio_resid(uio);
775 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
776 	task_io_account_write(nwritten);
777 
778 	zfs_exit(zfsvfs, FTAG);
779 	return (0);
780 }
781 
782 int
783 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
784 {
785 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
786 	int error;
787 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
788 
789 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
790 		return (error);
791 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
792 	zfs_exit(zfsvfs, FTAG);
793 
794 	return (error);
795 }
796 
797 int
798 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
799 {
800 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
801 	int error;
802 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
803 	zilog_t	*zilog = zfsvfs->z_log;
804 
805 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
806 		return (error);
807 
808 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
809 
810 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
811 		zil_commit(zilog, 0);
812 
813 	zfs_exit(zfsvfs, FTAG);
814 	return (error);
815 }
816 
817 #ifdef ZFS_DEBUG
818 static int zil_fault_io = 0;
819 #endif
820 
821 static void zfs_get_done(zgd_t *zgd, int error);
822 
823 /*
824  * Get data to generate a TX_WRITE intent log record.
825  */
826 int
827 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
828     struct lwb *lwb, zio_t *zio)
829 {
830 	zfsvfs_t *zfsvfs = arg;
831 	objset_t *os = zfsvfs->z_os;
832 	znode_t *zp;
833 	uint64_t object = lr->lr_foid;
834 	uint64_t offset = lr->lr_offset;
835 	uint64_t size = lr->lr_length;
836 	dmu_buf_t *db;
837 	zgd_t *zgd;
838 	int error = 0;
839 	uint64_t zp_gen;
840 
841 	ASSERT3P(lwb, !=, NULL);
842 	ASSERT3U(size, !=, 0);
843 
844 	/*
845 	 * Nothing to do if the file has been removed
846 	 */
847 	if (zfs_zget(zfsvfs, object, &zp) != 0)
848 		return (SET_ERROR(ENOENT));
849 	if (zp->z_unlinked) {
850 		/*
851 		 * Release the vnode asynchronously as we currently have the
852 		 * txg stopped from syncing.
853 		 */
854 		zfs_zrele_async(zp);
855 		return (SET_ERROR(ENOENT));
856 	}
857 	/* check if generation number matches */
858 	if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
859 	    sizeof (zp_gen)) != 0) {
860 		zfs_zrele_async(zp);
861 		return (SET_ERROR(EIO));
862 	}
863 	if (zp_gen != gen) {
864 		zfs_zrele_async(zp);
865 		return (SET_ERROR(ENOENT));
866 	}
867 
868 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
869 	zgd->zgd_lwb = lwb;
870 	zgd->zgd_private = zp;
871 
872 	/*
873 	 * Write records come in two flavors: immediate and indirect.
874 	 * For small writes it's cheaper to store the data with the
875 	 * log record (immediate); for large writes it's cheaper to
876 	 * sync the data and get a pointer to it (indirect) so that
877 	 * we don't have to write the data twice.
878 	 */
879 	if (buf != NULL) { /* immediate write */
880 		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
881 		    offset, size, RL_READER);
882 		/* test for truncation needs to be done while range locked */
883 		if (offset >= zp->z_size) {
884 			error = SET_ERROR(ENOENT);
885 		} else {
886 			error = dmu_read(os, object, offset, size, buf,
887 			    DMU_READ_NO_PREFETCH);
888 		}
889 		ASSERT(error == 0 || error == ENOENT);
890 	} else { /* indirect write */
891 		ASSERT3P(zio, !=, NULL);
892 		/*
893 		 * Have to lock the whole block to ensure when it's
894 		 * written out and its checksum is being calculated
895 		 * that no one can change the data. We need to re-check
896 		 * blocksize after we get the lock in case it's changed!
897 		 */
898 		for (;;) {
899 			uint64_t blkoff;
900 			size = zp->z_blksz;
901 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
902 			offset -= blkoff;
903 			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
904 			    offset, size, RL_READER);
905 			if (zp->z_blksz == size)
906 				break;
907 			offset += blkoff;
908 			zfs_rangelock_exit(zgd->zgd_lr);
909 		}
910 		/* test for truncation needs to be done while range locked */
911 		if (lr->lr_offset >= zp->z_size)
912 			error = SET_ERROR(ENOENT);
913 #ifdef ZFS_DEBUG
914 		if (zil_fault_io) {
915 			error = SET_ERROR(EIO);
916 			zil_fault_io = 0;
917 		}
918 #endif
919 		if (error == 0)
920 			error = dmu_buf_hold_noread(os, object, offset, zgd,
921 			    &db);
922 
923 		if (error == 0) {
924 			blkptr_t *bp = &lr->lr_blkptr;
925 
926 			zgd->zgd_db = db;
927 			zgd->zgd_bp = bp;
928 
929 			ASSERT(db->db_offset == offset);
930 			ASSERT(db->db_size == size);
931 
932 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
933 			    zfs_get_done, zgd);
934 			ASSERT(error || lr->lr_length <= size);
935 
936 			/*
937 			 * On success, we need to wait for the write I/O
938 			 * initiated by dmu_sync() to complete before we can
939 			 * release this dbuf.  We will finish everything up
940 			 * in the zfs_get_done() callback.
941 			 */
942 			if (error == 0)
943 				return (0);
944 
945 			if (error == EALREADY) {
946 				lr->lr_common.lrc_txtype = TX_WRITE2;
947 				/*
948 				 * TX_WRITE2 relies on the data previously
949 				 * written by the TX_WRITE that caused
950 				 * EALREADY.  We zero out the BP because
951 				 * it is the old, currently-on-disk BP.
952 				 */
953 				zgd->zgd_bp = NULL;
954 				BP_ZERO(bp);
955 				error = 0;
956 			}
957 		}
958 	}
959 
960 	zfs_get_done(zgd, error);
961 
962 	return (error);
963 }
964 
965 
966 static void
967 zfs_get_done(zgd_t *zgd, int error)
968 {
969 	(void) error;
970 	znode_t *zp = zgd->zgd_private;
971 
972 	if (zgd->zgd_db)
973 		dmu_buf_rele(zgd->zgd_db, zgd);
974 
975 	zfs_rangelock_exit(zgd->zgd_lr);
976 
977 	/*
978 	 * Release the vnode asynchronously as we currently have the
979 	 * txg stopped from syncing.
980 	 */
981 	zfs_zrele_async(zp);
982 
983 	kmem_free(zgd, sizeof (zgd_t));
984 }
985 
986 static int
987 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
988 {
989 	int error;
990 
991 	/* Swap. Not sure if the order of zfs_enter()s is important. */
992 	if (zfsvfs1 > zfsvfs2) {
993 		zfsvfs_t *tmpzfsvfs;
994 
995 		tmpzfsvfs = zfsvfs2;
996 		zfsvfs2 = zfsvfs1;
997 		zfsvfs1 = tmpzfsvfs;
998 	}
999 
1000 	error = zfs_enter(zfsvfs1, tag);
1001 	if (error != 0)
1002 		return (error);
1003 	if (zfsvfs1 != zfsvfs2) {
1004 		error = zfs_enter(zfsvfs2, tag);
1005 		if (error != 0) {
1006 			zfs_exit(zfsvfs1, tag);
1007 			return (error);
1008 		}
1009 	}
1010 
1011 	return (0);
1012 }
1013 
1014 static void
1015 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1016 {
1017 
1018 	zfs_exit(zfsvfs1, tag);
1019 	if (zfsvfs1 != zfsvfs2)
1020 		zfs_exit(zfsvfs2, tag);
1021 }
1022 
1023 /*
1024  * We split each clone request in chunks that can fit into a single ZIL
1025  * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1026  * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1027  * us room for storing 1022 block pointers.
1028  *
1029  * On success, the function return the number of bytes copied in *lenp.
1030  * Note, it doesn't return how much bytes are left to be copied.
1031  * On errors which are caused by any file system limitations or
1032  * brt limitations `EINVAL` is returned. In the most cases a user
1033  * requested bad parameters, it could be possible to clone the file but
1034  * some parameters don't match the requirements.
1035  */
1036 int
1037 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1038     uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1039 {
1040 	zfsvfs_t	*inzfsvfs, *outzfsvfs;
1041 	objset_t	*inos, *outos;
1042 	zfs_locked_range_t *inlr, *outlr;
1043 	dmu_buf_impl_t	*db;
1044 	dmu_tx_t	*tx;
1045 	zilog_t		*zilog;
1046 	uint64_t	inoff, outoff, len, done;
1047 	uint64_t	outsize, size;
1048 	int		error;
1049 	int		count = 0;
1050 	sa_bulk_attr_t	bulk[3];
1051 	uint64_t	mtime[2], ctime[2];
1052 	uint64_t	uid, gid, projid;
1053 	blkptr_t	*bps;
1054 	size_t		maxblocks, nbps;
1055 	uint_t		inblksz;
1056 	uint64_t	clear_setid_bits_txg = 0;
1057 
1058 	inoff = *inoffp;
1059 	outoff = *outoffp;
1060 	len = *lenp;
1061 	done = 0;
1062 
1063 	inzfsvfs = ZTOZSB(inzp);
1064 	outzfsvfs = ZTOZSB(outzp);
1065 
1066 	/*
1067 	 * We need to call zfs_enter() potentially on two different datasets,
1068 	 * so we need a dedicated function for that.
1069 	 */
1070 	error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1071 	if (error != 0)
1072 		return (error);
1073 
1074 	inos = inzfsvfs->z_os;
1075 	outos = outzfsvfs->z_os;
1076 
1077 	/*
1078 	 * Both source and destination have to belong to the same storage pool.
1079 	 */
1080 	if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1081 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1082 		return (SET_ERROR(EXDEV));
1083 	}
1084 
1085 	/*
1086 	 * outos and inos belongs to the same storage pool.
1087 	 * see a few lines above, only one check.
1088 	 */
1089 	if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1090 	    SPA_FEATURE_BLOCK_CLONING)) {
1091 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1092 		return (SET_ERROR(EOPNOTSUPP));
1093 	}
1094 
1095 	ASSERT(!outzfsvfs->z_replay);
1096 
1097 	error = zfs_verify_zp(inzp);
1098 	if (error == 0)
1099 		error = zfs_verify_zp(outzp);
1100 	if (error != 0) {
1101 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1102 		return (error);
1103 	}
1104 
1105 	/*
1106 	 * We don't copy source file's flags that's why we don't allow to clone
1107 	 * files that are in quarantine.
1108 	 */
1109 	if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1110 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1111 		return (SET_ERROR(EACCES));
1112 	}
1113 
1114 	if (inoff >= inzp->z_size) {
1115 		*lenp = 0;
1116 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1117 		return (0);
1118 	}
1119 	if (len > inzp->z_size - inoff) {
1120 		len = inzp->z_size - inoff;
1121 	}
1122 	if (len == 0) {
1123 		*lenp = 0;
1124 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1125 		return (0);
1126 	}
1127 
1128 	/*
1129 	 * Callers might not be able to detect properly that we are read-only,
1130 	 * so check it explicitly here.
1131 	 */
1132 	if (zfs_is_readonly(outzfsvfs)) {
1133 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1134 		return (SET_ERROR(EROFS));
1135 	}
1136 
1137 	/*
1138 	 * If immutable or not appending then return EPERM.
1139 	 * Intentionally allow ZFS_READONLY through here.
1140 	 * See zfs_zaccess_common()
1141 	 */
1142 	if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1143 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1144 		return (SET_ERROR(EPERM));
1145 	}
1146 
1147 	/*
1148 	 * No overlapping if we are cloning within the same file.
1149 	 */
1150 	if (inzp == outzp) {
1151 		if (inoff < outoff + len && outoff < inoff + len) {
1152 			zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1153 			return (SET_ERROR(EINVAL));
1154 		}
1155 	}
1156 
1157 	/*
1158 	 * Maintain predictable lock order.
1159 	 */
1160 	if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1161 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1162 		    RL_READER);
1163 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1164 		    RL_WRITER);
1165 	} else {
1166 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1167 		    RL_WRITER);
1168 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1169 		    RL_READER);
1170 	}
1171 
1172 	inblksz = inzp->z_blksz;
1173 
1174 	/*
1175 	 * We cannot clone into files with different block size if we can't
1176 	 * grow it (block size is already bigger or more than one block).
1177 	 */
1178 	if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
1179 	    outzp->z_size > inblksz)) {
1180 		error = SET_ERROR(EINVAL);
1181 		goto unlock;
1182 	}
1183 
1184 	/*
1185 	 * Block size must be power-of-2 if destination offset != 0.
1186 	 * There can be no multiple blocks of non-power-of-2 size.
1187 	 */
1188 	if (outoff != 0 && !ISP2(inblksz)) {
1189 		error = SET_ERROR(EINVAL);
1190 		goto unlock;
1191 	}
1192 
1193 	/*
1194 	 * Offsets and len must be at block boundries.
1195 	 */
1196 	if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1197 		error = SET_ERROR(EINVAL);
1198 		goto unlock;
1199 	}
1200 	/*
1201 	 * Length must be multipe of blksz, except for the end of the file.
1202 	 */
1203 	if ((len % inblksz) != 0 &&
1204 	    (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1205 		error = SET_ERROR(EINVAL);
1206 		goto unlock;
1207 	}
1208 
1209 	/*
1210 	 * If we are copying only one block and it is smaller than recordsize
1211 	 * property, do not allow destination to grow beyond one block if it
1212 	 * is not there yet.  Otherwise the destination will get stuck with
1213 	 * that block size forever, that can be as small as 512 bytes, no
1214 	 * matter how big the destination grow later.
1215 	 */
1216 	if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
1217 	    outzp->z_size <= inblksz && outoff + len > inblksz) {
1218 		error = SET_ERROR(EINVAL);
1219 		goto unlock;
1220 	}
1221 
1222 	error = zn_rlimit_fsize(outoff + len);
1223 	if (error != 0) {
1224 		goto unlock;
1225 	}
1226 
1227 	if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1228 		error = SET_ERROR(EFBIG);
1229 		goto unlock;
1230 	}
1231 
1232 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1233 	    &mtime, 16);
1234 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1235 	    &ctime, 16);
1236 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1237 	    &outzp->z_size, 8);
1238 
1239 	zilog = outzfsvfs->z_log;
1240 	maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1241 	    sizeof (bps[0]);
1242 
1243 	uid = KUID_TO_SUID(ZTOUID(outzp));
1244 	gid = KGID_TO_SGID(ZTOGID(outzp));
1245 	projid = outzp->z_projid;
1246 
1247 	bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1248 
1249 	/*
1250 	 * Clone the file in reasonable size chunks.  Each chunk is cloned
1251 	 * in a separate transaction; this keeps the intent log records small
1252 	 * and allows us to do more fine-grained space accounting.
1253 	 */
1254 	while (len > 0) {
1255 		size = MIN(inblksz * maxblocks, len);
1256 
1257 		if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1258 		    uid) ||
1259 		    zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1260 		    gid) ||
1261 		    (projid != ZFS_DEFAULT_PROJID &&
1262 		    zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1263 		    projid))) {
1264 			error = SET_ERROR(EDQUOT);
1265 			break;
1266 		}
1267 
1268 		nbps = maxblocks;
1269 		error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
1270 		    &nbps);
1271 		if (error != 0) {
1272 			/*
1273 			 * If we are trying to clone a block that was created
1274 			 * in the current transaction group, error will be
1275 			 * EAGAIN here, which we can just return to the caller
1276 			 * so it can fallback if it likes.
1277 			 */
1278 			break;
1279 		}
1280 		/*
1281 		 * Encrypted data is fine as long as it comes from the same
1282 		 * dataset.
1283 		 * TODO: We want to extend it in the future to allow cloning to
1284 		 * datasets with the same keys, like clones or to be able to
1285 		 * clone a file from a snapshot of an encrypted dataset into the
1286 		 * dataset itself.
1287 		 */
1288 		if (BP_IS_PROTECTED(&bps[0])) {
1289 			if (inzfsvfs != outzfsvfs) {
1290 				error = SET_ERROR(EXDEV);
1291 				break;
1292 			}
1293 		}
1294 
1295 		/*
1296 		 * Start a transaction.
1297 		 */
1298 		tx = dmu_tx_create(outos);
1299 		dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1300 		db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1301 		DB_DNODE_ENTER(db);
1302 		dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1303 		DB_DNODE_EXIT(db);
1304 		zfs_sa_upgrade_txholds(tx, outzp);
1305 		error = dmu_tx_assign(tx, TXG_WAIT);
1306 		if (error != 0) {
1307 			dmu_tx_abort(tx);
1308 			break;
1309 		}
1310 
1311 		/*
1312 		 * Copy source znode's block size. This only happens on the
1313 		 * first iteration since zfs_rangelock_reduce() will shrink down
1314 		 * lr_len to the appropriate size.
1315 		 */
1316 		if (outlr->lr_length == UINT64_MAX) {
1317 			zfs_grow_blocksize(outzp, inblksz, tx);
1318 			/*
1319 			 * Round range lock up to the block boundary, so we
1320 			 * prevent appends until we are done.
1321 			 */
1322 			zfs_rangelock_reduce(outlr, outoff,
1323 			    ((len - 1) / inblksz + 1) * inblksz);
1324 		}
1325 
1326 		error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1327 		    bps, nbps, B_FALSE);
1328 		if (error != 0) {
1329 			dmu_tx_commit(tx);
1330 			break;
1331 		}
1332 
1333 		zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1334 		    &clear_setid_bits_txg, tx);
1335 
1336 		zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1337 
1338 		/*
1339 		 * Update the file size (zp_size) if it has changed;
1340 		 * account for possible concurrent updates.
1341 		 */
1342 		while ((outsize = outzp->z_size) < outoff + size) {
1343 			(void) atomic_cas_64(&outzp->z_size, outsize,
1344 			    outoff + size);
1345 		}
1346 
1347 		error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1348 
1349 		zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1350 		    size, inblksz, bps, nbps);
1351 
1352 		dmu_tx_commit(tx);
1353 
1354 		if (error != 0)
1355 			break;
1356 
1357 		inoff += size;
1358 		outoff += size;
1359 		len -= size;
1360 		done += size;
1361 	}
1362 
1363 	vmem_free(bps, sizeof (bps[0]) * maxblocks);
1364 	zfs_znode_update_vfs(outzp);
1365 
1366 unlock:
1367 	zfs_rangelock_exit(outlr);
1368 	zfs_rangelock_exit(inlr);
1369 
1370 	if (done > 0) {
1371 		/*
1372 		 * If we have made at least partial progress, reset the error.
1373 		 */
1374 		error = 0;
1375 
1376 		ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1377 
1378 		if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1379 			zil_commit(zilog, outzp->z_id);
1380 		}
1381 
1382 		*inoffp += done;
1383 		*outoffp += done;
1384 		*lenp = done;
1385 	} else {
1386 		/*
1387 		 * If we made no progress, there must be a good reason.
1388 		 * EOF is handled explicitly above, before the loop.
1389 		 */
1390 		ASSERT3S(error, !=, 0);
1391 	}
1392 
1393 	zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1394 
1395 	return (error);
1396 }
1397 
1398 /*
1399  * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1400  * but we cannot do that, because when replaying we don't have source znode
1401  * available. This is why we need a dedicated replay function.
1402  */
1403 int
1404 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1405     const blkptr_t *bps, size_t nbps)
1406 {
1407 	zfsvfs_t	*zfsvfs;
1408 	dmu_buf_impl_t	*db;
1409 	dmu_tx_t	*tx;
1410 	int		error;
1411 	int		count = 0;
1412 	sa_bulk_attr_t	bulk[3];
1413 	uint64_t	mtime[2], ctime[2];
1414 
1415 	ASSERT3U(off, <, MAXOFFSET_T);
1416 	ASSERT3U(len, >, 0);
1417 	ASSERT3U(nbps, >, 0);
1418 
1419 	zfsvfs = ZTOZSB(zp);
1420 
1421 	ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1422 	    SPA_FEATURE_BLOCK_CLONING));
1423 
1424 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1425 		return (error);
1426 
1427 	ASSERT(zfsvfs->z_replay);
1428 	ASSERT(!zfs_is_readonly(zfsvfs));
1429 
1430 	if ((off % blksz) != 0) {
1431 		zfs_exit(zfsvfs, FTAG);
1432 		return (SET_ERROR(EINVAL));
1433 	}
1434 
1435 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1436 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1437 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1438 	    &zp->z_size, 8);
1439 
1440 	/*
1441 	 * Start a transaction.
1442 	 */
1443 	tx = dmu_tx_create(zfsvfs->z_os);
1444 
1445 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1446 	db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1447 	DB_DNODE_ENTER(db);
1448 	dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1449 	DB_DNODE_EXIT(db);
1450 	zfs_sa_upgrade_txholds(tx, zp);
1451 	error = dmu_tx_assign(tx, TXG_WAIT);
1452 	if (error != 0) {
1453 		dmu_tx_abort(tx);
1454 		zfs_exit(zfsvfs, FTAG);
1455 		return (error);
1456 	}
1457 
1458 	if (zp->z_blksz < blksz)
1459 		zfs_grow_blocksize(zp, blksz, tx);
1460 
1461 	dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps, B_TRUE);
1462 
1463 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1464 
1465 	if (zp->z_size < off + len)
1466 		zp->z_size = off + len;
1467 
1468 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1469 
1470 	/*
1471 	 * zil_replaying() not only check if we are replaying ZIL, but also
1472 	 * updates the ZIL header to record replay progress.
1473 	 */
1474 	VERIFY(zil_replaying(zfsvfs->z_log, tx));
1475 
1476 	dmu_tx_commit(tx);
1477 
1478 	zfs_znode_update_vfs(zp);
1479 
1480 	zfs_exit(zfsvfs, FTAG);
1481 
1482 	return (error);
1483 }
1484 
1485 EXPORT_SYMBOL(zfs_access);
1486 EXPORT_SYMBOL(zfs_fsync);
1487 EXPORT_SYMBOL(zfs_holey);
1488 EXPORT_SYMBOL(zfs_read);
1489 EXPORT_SYMBOL(zfs_write);
1490 EXPORT_SYMBOL(zfs_getsecattr);
1491 EXPORT_SYMBOL(zfs_setsecattr);
1492 EXPORT_SYMBOL(zfs_clone_range);
1493 EXPORT_SYMBOL(zfs_clone_range_replay);
1494 
1495 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
1496 	"Bytes to read per chunk");
1497