xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_vnops.c (revision 59144db3fca192c4637637dfe6b5a5d98632cd47)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
28  */
29 
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/uio_impl.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/cmn_err.h>
43 #include <sys/errno.h>
44 #include <sys/zfs_dir.h>
45 #include <sys/zfs_acl.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/dsl_crypt.h>
51 #include <sys/spa.h>
52 #include <sys/txg.h>
53 #include <sys/dbuf.h>
54 #include <sys/policy.h>
55 #include <sys/zfeature.h>
56 #include <sys/zfs_vnops.h>
57 #include <sys/zfs_quota.h>
58 #include <sys/zfs_vfsops.h>
59 #include <sys/zfs_znode.h>
60 
61 /*
62  * Enable the experimental block cloning feature.  If this setting is 0, then
63  * even if feature@block_cloning is enabled, attempts to clone blocks will act
64  * as though the feature is disabled.
65  */
66 int zfs_bclone_enabled = 1;
67 
68 /*
69  * When set zfs_clone_range() waits for dirty data to be written to disk.
70  * This allows the clone operation to reliably succeed when a file is modified
71  * and then immediately cloned. For small files this may be slower than making
72  * a copy of the file and is therefore not the default.  However, in certain
73  * scenarios this behavior may be desirable so a tunable is provided.
74  */
75 static int zfs_bclone_wait_dirty = 0;
76 
77 /*
78  * Maximum bytes to read per chunk in zfs_read().
79  */
80 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024;
81 
82 int
83 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
84 {
85 	int error = 0;
86 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
87 
88 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
89 		if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
90 			return (error);
91 		atomic_inc_32(&zp->z_sync_writes_cnt);
92 		zil_commit(zfsvfs->z_log, zp->z_id);
93 		atomic_dec_32(&zp->z_sync_writes_cnt);
94 		zfs_exit(zfsvfs, FTAG);
95 	}
96 	return (error);
97 }
98 
99 
100 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
101 /*
102  * Lseek support for finding holes (cmd == SEEK_HOLE) and
103  * data (cmd == SEEK_DATA). "off" is an in/out parameter.
104  */
105 static int
106 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
107 {
108 	zfs_locked_range_t *lr;
109 	uint64_t noff = (uint64_t)*off; /* new offset */
110 	uint64_t file_sz;
111 	int error;
112 	boolean_t hole;
113 
114 	file_sz = zp->z_size;
115 	if (noff >= file_sz)  {
116 		return (SET_ERROR(ENXIO));
117 	}
118 
119 	if (cmd == F_SEEK_HOLE)
120 		hole = B_TRUE;
121 	else
122 		hole = B_FALSE;
123 
124 	/* Flush any mmap()'d data to disk */
125 	if (zn_has_cached_data(zp, 0, file_sz - 1))
126 		zn_flush_cached_data(zp, B_TRUE);
127 
128 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
129 	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
130 	zfs_rangelock_exit(lr);
131 
132 	if (error == ESRCH)
133 		return (SET_ERROR(ENXIO));
134 
135 	/* File was dirty, so fall back to using generic logic */
136 	if (error == EBUSY) {
137 		if (hole)
138 			*off = file_sz;
139 
140 		return (0);
141 	}
142 
143 	/*
144 	 * We could find a hole that begins after the logical end-of-file,
145 	 * because dmu_offset_next() only works on whole blocks.  If the
146 	 * EOF falls mid-block, then indicate that the "virtual hole"
147 	 * at the end of the file begins at the logical EOF, rather than
148 	 * at the end of the last block.
149 	 */
150 	if (noff > file_sz) {
151 		ASSERT(hole);
152 		noff = file_sz;
153 	}
154 
155 	if (noff < *off)
156 		return (error);
157 	*off = noff;
158 	return (error);
159 }
160 
161 int
162 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
163 {
164 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
165 	int error;
166 
167 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
168 		return (error);
169 
170 	error = zfs_holey_common(zp, cmd, off);
171 
172 	zfs_exit(zfsvfs, FTAG);
173 	return (error);
174 }
175 #endif /* SEEK_HOLE && SEEK_DATA */
176 
177 int
178 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
179 {
180 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
181 	int error;
182 
183 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
184 		return (error);
185 
186 	if (flag & V_ACE_MASK)
187 #if defined(__linux__)
188 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
189 		    zfs_init_idmap);
190 #else
191 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
192 		    NULL);
193 #endif
194 	else
195 #if defined(__linux__)
196 		error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
197 #else
198 		error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
199 #endif
200 
201 	zfs_exit(zfsvfs, FTAG);
202 	return (error);
203 }
204 
205 /*
206  * Read bytes from specified file into supplied buffer.
207  *
208  *	IN:	zp	- inode of file to be read from.
209  *		uio	- structure supplying read location, range info,
210  *			  and return buffer.
211  *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
212  *			  O_DIRECT flag; used to bypass page cache.
213  *		cr	- credentials of caller.
214  *
215  *	OUT:	uio	- updated offset and range, buffer filled.
216  *
217  *	RETURN:	0 on success, error code on failure.
218  *
219  * Side Effects:
220  *	inode - atime updated if byte count > 0
221  */
222 int
223 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
224 {
225 	(void) cr;
226 	int error = 0;
227 	boolean_t frsync = B_FALSE;
228 
229 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
230 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
231 		return (error);
232 
233 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
234 		zfs_exit(zfsvfs, FTAG);
235 		return (SET_ERROR(EACCES));
236 	}
237 
238 	/* We don't copy out anything useful for directories. */
239 	if (Z_ISDIR(ZTOTYPE(zp))) {
240 		zfs_exit(zfsvfs, FTAG);
241 		return (SET_ERROR(EISDIR));
242 	}
243 
244 	/*
245 	 * Validate file offset
246 	 */
247 	if (zfs_uio_offset(uio) < (offset_t)0) {
248 		zfs_exit(zfsvfs, FTAG);
249 		return (SET_ERROR(EINVAL));
250 	}
251 
252 	/*
253 	 * Fasttrack empty reads
254 	 */
255 	if (zfs_uio_resid(uio) == 0) {
256 		zfs_exit(zfsvfs, FTAG);
257 		return (0);
258 	}
259 
260 #ifdef FRSYNC
261 	/*
262 	 * If we're in FRSYNC mode, sync out this znode before reading it.
263 	 * Only do this for non-snapshots.
264 	 *
265 	 * Some platforms do not support FRSYNC and instead map it
266 	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
267 	 * only honor FRSYNC requests on platforms which support it.
268 	 */
269 	frsync = !!(ioflag & FRSYNC);
270 #endif
271 	if (zfsvfs->z_log &&
272 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
273 		zil_commit(zfsvfs->z_log, zp->z_id);
274 
275 	/*
276 	 * Lock the range against changes.
277 	 */
278 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
279 	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
280 
281 	/*
282 	 * If we are reading past end-of-file we can skip
283 	 * to the end; but we might still need to set atime.
284 	 */
285 	if (zfs_uio_offset(uio) >= zp->z_size) {
286 		error = 0;
287 		goto out;
288 	}
289 
290 	ASSERT(zfs_uio_offset(uio) < zp->z_size);
291 #if defined(__linux__)
292 	ssize_t start_offset = zfs_uio_offset(uio);
293 #endif
294 	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
295 	ssize_t start_resid = n;
296 
297 	while (n > 0) {
298 		ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
299 		    P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
300 #ifdef UIO_NOCOPY
301 		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
302 			error = mappedread_sf(zp, nbytes, uio);
303 		else
304 #endif
305 		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
306 		    zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
307 			error = mappedread(zp, nbytes, uio);
308 		} else {
309 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
310 			    uio, nbytes);
311 		}
312 
313 		if (error) {
314 			/* convert checksum errors into IO errors */
315 			if (error == ECKSUM)
316 				error = SET_ERROR(EIO);
317 
318 #if defined(__linux__)
319 			/*
320 			 * if we actually read some bytes, bubbling EFAULT
321 			 * up to become EAGAIN isn't what we want here...
322 			 *
323 			 * ...on Linux, at least. On FBSD, doing this breaks.
324 			 */
325 			if (error == EFAULT &&
326 			    (zfs_uio_offset(uio) - start_offset) != 0)
327 				error = 0;
328 #endif
329 			break;
330 		}
331 
332 		n -= nbytes;
333 	}
334 
335 	int64_t nread = start_resid - n;
336 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
337 	task_io_account_read(nread);
338 out:
339 	zfs_rangelock_exit(lr);
340 
341 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
342 	zfs_exit(zfsvfs, FTAG);
343 	return (error);
344 }
345 
346 static void
347 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
348     uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
349 {
350 	zilog_t *zilog = zfsvfs->z_log;
351 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
352 
353 	ASSERT(clear_setid_bits_txgp != NULL);
354 	ASSERT(tx != NULL);
355 
356 	/*
357 	 * Clear Set-UID/Set-GID bits on successful write if not
358 	 * privileged and at least one of the execute bits is set.
359 	 *
360 	 * It would be nice to do this after all writes have
361 	 * been done, but that would still expose the ISUID/ISGID
362 	 * to another app after the partial write is committed.
363 	 *
364 	 * Note: we don't call zfs_fuid_map_id() here because
365 	 * user 0 is not an ephemeral uid.
366 	 */
367 	mutex_enter(&zp->z_acl_lock);
368 	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
369 	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
370 	    secpolicy_vnode_setid_retain(zp, cr,
371 	    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
372 		uint64_t newmode;
373 
374 		zp->z_mode &= ~(S_ISUID | S_ISGID);
375 		newmode = zp->z_mode;
376 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
377 		    (void *)&newmode, sizeof (uint64_t), tx);
378 
379 		mutex_exit(&zp->z_acl_lock);
380 
381 		/*
382 		 * Make sure SUID/SGID bits will be removed when we replay the
383 		 * log. If the setid bits are keep coming back, don't log more
384 		 * than one TX_SETATTR per transaction group.
385 		 */
386 		if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
387 			vattr_t va = {0};
388 
389 			va.va_mask = ATTR_MODE;
390 			va.va_nodeid = zp->z_id;
391 			va.va_mode = newmode;
392 			zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
393 			    ATTR_MODE, NULL);
394 			*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
395 		}
396 	} else {
397 		mutex_exit(&zp->z_acl_lock);
398 	}
399 }
400 
401 /*
402  * Write the bytes to a file.
403  *
404  *	IN:	zp	- znode of file to be written to.
405  *		uio	- structure supplying write location, range info,
406  *			  and data buffer.
407  *		ioflag	- O_APPEND flag set if in append mode.
408  *			  O_DIRECT flag; used to bypass page cache.
409  *		cr	- credentials of caller.
410  *
411  *	OUT:	uio	- updated offset and range.
412  *
413  *	RETURN:	0 if success
414  *		error code if failure
415  *
416  * Timestamps:
417  *	ip - ctime|mtime updated if byte count > 0
418  */
419 int
420 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
421 {
422 	int error = 0, error1;
423 	ssize_t start_resid = zfs_uio_resid(uio);
424 	uint64_t clear_setid_bits_txg = 0;
425 
426 	/*
427 	 * Fasttrack empty write
428 	 */
429 	ssize_t n = start_resid;
430 	if (n == 0)
431 		return (0);
432 
433 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
434 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
435 		return (error);
436 
437 	sa_bulk_attr_t bulk[4];
438 	int count = 0;
439 	uint64_t mtime[2], ctime[2];
440 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
441 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
442 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
443 	    &zp->z_size, 8);
444 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
445 	    &zp->z_pflags, 8);
446 
447 	/*
448 	 * Callers might not be able to detect properly that we are read-only,
449 	 * so check it explicitly here.
450 	 */
451 	if (zfs_is_readonly(zfsvfs)) {
452 		zfs_exit(zfsvfs, FTAG);
453 		return (SET_ERROR(EROFS));
454 	}
455 
456 	/*
457 	 * If immutable or not appending then return EPERM.
458 	 * Intentionally allow ZFS_READONLY through here.
459 	 * See zfs_zaccess_common()
460 	 */
461 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
462 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
463 	    (zfs_uio_offset(uio) < zp->z_size))) {
464 		zfs_exit(zfsvfs, FTAG);
465 		return (SET_ERROR(EPERM));
466 	}
467 
468 	/*
469 	 * Validate file offset
470 	 */
471 	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
472 	if (woff < 0) {
473 		zfs_exit(zfsvfs, FTAG);
474 		return (SET_ERROR(EINVAL));
475 	}
476 
477 	/*
478 	 * Pre-fault the pages to ensure slow (eg NFS) pages
479 	 * don't hold up txg.
480 	 */
481 	ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
482 	if (zfs_uio_prefaultpages(pfbytes, uio)) {
483 		zfs_exit(zfsvfs, FTAG);
484 		return (SET_ERROR(EFAULT));
485 	}
486 
487 	/*
488 	 * If in append mode, set the io offset pointer to eof.
489 	 */
490 	zfs_locked_range_t *lr;
491 	if (ioflag & O_APPEND) {
492 		/*
493 		 * Obtain an appending range lock to guarantee file append
494 		 * semantics.  We reset the write offset once we have the lock.
495 		 */
496 		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
497 		woff = lr->lr_offset;
498 		if (lr->lr_length == UINT64_MAX) {
499 			/*
500 			 * We overlocked the file because this write will cause
501 			 * the file block size to increase.
502 			 * Note that zp_size cannot change with this lock held.
503 			 */
504 			woff = zp->z_size;
505 		}
506 		zfs_uio_setoffset(uio, woff);
507 	} else {
508 		/*
509 		 * Note that if the file block size will change as a result of
510 		 * this write, then this range lock will lock the entire file
511 		 * so that we can re-write the block safely.
512 		 */
513 		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
514 	}
515 
516 	if (zn_rlimit_fsize_uio(zp, uio)) {
517 		zfs_rangelock_exit(lr);
518 		zfs_exit(zfsvfs, FTAG);
519 		return (SET_ERROR(EFBIG));
520 	}
521 
522 	const rlim64_t limit = MAXOFFSET_T;
523 
524 	if (woff >= limit) {
525 		zfs_rangelock_exit(lr);
526 		zfs_exit(zfsvfs, FTAG);
527 		return (SET_ERROR(EFBIG));
528 	}
529 
530 	if (n > limit - woff)
531 		n = limit - woff;
532 
533 	uint64_t end_size = MAX(zp->z_size, woff + n);
534 	zilog_t *zilog = zfsvfs->z_log;
535 	boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) ||
536 	    (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);
537 
538 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
539 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
540 	const uint64_t projid = zp->z_projid;
541 
542 	/*
543 	 * Write the file in reasonable size chunks.  Each chunk is written
544 	 * in a separate transaction; this keeps the intent log records small
545 	 * and allows us to do more fine-grained space accounting.
546 	 */
547 	while (n > 0) {
548 		woff = zfs_uio_offset(uio);
549 
550 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
551 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
552 		    (projid != ZFS_DEFAULT_PROJID &&
553 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
554 		    projid))) {
555 			error = SET_ERROR(EDQUOT);
556 			break;
557 		}
558 
559 		uint64_t blksz;
560 		if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
561 			if (zp->z_blksz > zfsvfs->z_max_blksz &&
562 			    !ISP2(zp->z_blksz)) {
563 				/*
564 				 * File's blocksize is already larger than the
565 				 * "recordsize" property.  Only let it grow to
566 				 * the next power of 2.
567 				 */
568 				blksz = 1 << highbit64(zp->z_blksz);
569 			} else {
570 				blksz = zfsvfs->z_max_blksz;
571 			}
572 			blksz = MIN(blksz, P2ROUNDUP(end_size,
573 			    SPA_MINBLOCKSIZE));
574 			blksz = MAX(blksz, zp->z_blksz);
575 		} else {
576 			blksz = zp->z_blksz;
577 		}
578 
579 		arc_buf_t *abuf = NULL;
580 		ssize_t nbytes = n;
581 		if (n >= blksz && woff >= zp->z_size &&
582 		    P2PHASE(woff, blksz) == 0 &&
583 		    (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
584 			/*
585 			 * This write covers a full block.  "Borrow" a buffer
586 			 * from the dmu so that we can fill it before we enter
587 			 * a transaction.  This avoids the possibility of
588 			 * holding up the transaction if the data copy hangs
589 			 * up on a pagefault (e.g., from an NFS server mapping).
590 			 */
591 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
592 			    blksz);
593 			ASSERT(abuf != NULL);
594 			ASSERT(arc_buf_size(abuf) == blksz);
595 			if ((error = zfs_uiocopy(abuf->b_data, blksz,
596 			    UIO_WRITE, uio, &nbytes))) {
597 				dmu_return_arcbuf(abuf);
598 				break;
599 			}
600 			ASSERT3S(nbytes, ==, blksz);
601 		} else {
602 			nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
603 			    P2PHASE(woff, blksz));
604 			if (pfbytes < nbytes) {
605 				if (zfs_uio_prefaultpages(nbytes, uio)) {
606 					error = SET_ERROR(EFAULT);
607 					break;
608 				}
609 				pfbytes = nbytes;
610 			}
611 		}
612 
613 		/*
614 		 * Start a transaction.
615 		 */
616 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
617 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
618 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
619 		DB_DNODE_ENTER(db);
620 		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
621 		DB_DNODE_EXIT(db);
622 		zfs_sa_upgrade_txholds(tx, zp);
623 		error = dmu_tx_assign(tx, TXG_WAIT);
624 		if (error) {
625 			dmu_tx_abort(tx);
626 			if (abuf != NULL)
627 				dmu_return_arcbuf(abuf);
628 			break;
629 		}
630 
631 		/*
632 		 * NB: We must call zfs_clear_setid_bits_if_necessary before
633 		 * committing the transaction!
634 		 */
635 
636 		/*
637 		 * If rangelock_enter() over-locked we grow the blocksize
638 		 * and then reduce the lock range.  This will only happen
639 		 * on the first iteration since rangelock_reduce() will
640 		 * shrink down lr_length to the appropriate size.
641 		 */
642 		if (lr->lr_length == UINT64_MAX) {
643 			zfs_grow_blocksize(zp, blksz, tx);
644 			zfs_rangelock_reduce(lr, woff, n);
645 		}
646 
647 		ssize_t tx_bytes;
648 		if (abuf == NULL) {
649 			tx_bytes = zfs_uio_resid(uio);
650 			zfs_uio_fault_disable(uio, B_TRUE);
651 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
652 			    uio, nbytes, tx);
653 			zfs_uio_fault_disable(uio, B_FALSE);
654 #ifdef __linux__
655 			if (error == EFAULT) {
656 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
657 				    cr, &clear_setid_bits_txg, tx);
658 				dmu_tx_commit(tx);
659 				/*
660 				 * Account for partial writes before
661 				 * continuing the loop.
662 				 * Update needs to occur before the next
663 				 * zfs_uio_prefaultpages, or prefaultpages may
664 				 * error, and we may break the loop early.
665 				 */
666 				n -= tx_bytes - zfs_uio_resid(uio);
667 				pfbytes -= tx_bytes - zfs_uio_resid(uio);
668 				continue;
669 			}
670 #endif
671 			/*
672 			 * On FreeBSD, EFAULT should be propagated back to the
673 			 * VFS, which will handle faulting and will retry.
674 			 */
675 			if (error != 0 && error != EFAULT) {
676 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
677 				    cr, &clear_setid_bits_txg, tx);
678 				dmu_tx_commit(tx);
679 				break;
680 			}
681 			tx_bytes -= zfs_uio_resid(uio);
682 		} else {
683 			/*
684 			 * Thus, we're writing a full block at a block-aligned
685 			 * offset and extending the file past EOF.
686 			 *
687 			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
688 			 * arc buffer to a dbuf.
689 			 */
690 			error = dmu_assign_arcbuf_by_dbuf(
691 			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
692 			if (error != 0) {
693 				/*
694 				 * XXX This might not be necessary if
695 				 * dmu_assign_arcbuf_by_dbuf is guaranteed
696 				 * to be atomic.
697 				 */
698 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
699 				    cr, &clear_setid_bits_txg, tx);
700 				dmu_return_arcbuf(abuf);
701 				dmu_tx_commit(tx);
702 				break;
703 			}
704 			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
705 			zfs_uioskip(uio, nbytes);
706 			tx_bytes = nbytes;
707 		}
708 		if (tx_bytes &&
709 		    zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
710 		    !(ioflag & O_DIRECT)) {
711 			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
712 		}
713 
714 		/*
715 		 * If we made no progress, we're done.  If we made even
716 		 * partial progress, update the znode and ZIL accordingly.
717 		 */
718 		if (tx_bytes == 0) {
719 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
720 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
721 			dmu_tx_commit(tx);
722 			ASSERT(error != 0);
723 			break;
724 		}
725 
726 		zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
727 		    &clear_setid_bits_txg, tx);
728 
729 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
730 
731 		/*
732 		 * Update the file size (zp_size) if it has changed;
733 		 * account for possible concurrent updates.
734 		 */
735 		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
736 			(void) atomic_cas_64(&zp->z_size, end_size,
737 			    zfs_uio_offset(uio));
738 			ASSERT(error == 0 || error == EFAULT);
739 		}
740 		/*
741 		 * If we are replaying and eof is non zero then force
742 		 * the file size to the specified eof. Note, there's no
743 		 * concurrency during replay.
744 		 */
745 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
746 			zp->z_size = zfsvfs->z_replay_eof;
747 
748 		error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
749 		if (error1 != 0)
750 			/* Avoid clobbering EFAULT. */
751 			error = error1;
752 
753 		/*
754 		 * NB: During replay, the TX_SETATTR record logged by
755 		 * zfs_clear_setid_bits_if_necessary must precede any of
756 		 * the TX_WRITE records logged here.
757 		 */
758 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit,
759 		    NULL, NULL);
760 
761 		dmu_tx_commit(tx);
762 
763 		if (error != 0)
764 			break;
765 		ASSERT3S(tx_bytes, ==, nbytes);
766 		n -= nbytes;
767 		pfbytes -= nbytes;
768 	}
769 
770 	zfs_znode_update_vfs(zp);
771 	zfs_rangelock_exit(lr);
772 
773 	/*
774 	 * If we're in replay mode, or we made no progress, or the
775 	 * uio data is inaccessible return an error.  Otherwise, it's
776 	 * at least a partial write, so it's successful.
777 	 */
778 	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
779 	    error == EFAULT) {
780 		zfs_exit(zfsvfs, FTAG);
781 		return (error);
782 	}
783 
784 	if (commit)
785 		zil_commit(zilog, zp->z_id);
786 
787 	const int64_t nwritten = start_resid - zfs_uio_resid(uio);
788 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
789 	task_io_account_write(nwritten);
790 
791 	zfs_exit(zfsvfs, FTAG);
792 	return (0);
793 }
794 
795 int
796 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
797 {
798 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
799 	int error;
800 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
801 
802 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
803 		return (error);
804 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
805 	zfs_exit(zfsvfs, FTAG);
806 
807 	return (error);
808 }
809 
810 int
811 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
812 {
813 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
814 	int error;
815 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
816 	zilog_t	*zilog;
817 
818 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
819 		return (error);
820 	zilog = zfsvfs->z_log;
821 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
822 
823 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
824 		zil_commit(zilog, 0);
825 
826 	zfs_exit(zfsvfs, FTAG);
827 	return (error);
828 }
829 
830 #ifdef ZFS_DEBUG
831 static int zil_fault_io = 0;
832 #endif
833 
834 static void zfs_get_done(zgd_t *zgd, int error);
835 
836 /*
837  * Get data to generate a TX_WRITE intent log record.
838  */
839 int
840 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
841     struct lwb *lwb, zio_t *zio)
842 {
843 	zfsvfs_t *zfsvfs = arg;
844 	objset_t *os = zfsvfs->z_os;
845 	znode_t *zp;
846 	uint64_t object = lr->lr_foid;
847 	uint64_t offset = lr->lr_offset;
848 	uint64_t size = lr->lr_length;
849 	dmu_buf_t *db;
850 	zgd_t *zgd;
851 	int error = 0;
852 	uint64_t zp_gen;
853 
854 	ASSERT3P(lwb, !=, NULL);
855 	ASSERT3U(size, !=, 0);
856 
857 	/*
858 	 * Nothing to do if the file has been removed
859 	 */
860 	if (zfs_zget(zfsvfs, object, &zp) != 0)
861 		return (SET_ERROR(ENOENT));
862 	if (zp->z_unlinked) {
863 		/*
864 		 * Release the vnode asynchronously as we currently have the
865 		 * txg stopped from syncing.
866 		 */
867 		zfs_zrele_async(zp);
868 		return (SET_ERROR(ENOENT));
869 	}
870 	/* check if generation number matches */
871 	if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
872 	    sizeof (zp_gen)) != 0) {
873 		zfs_zrele_async(zp);
874 		return (SET_ERROR(EIO));
875 	}
876 	if (zp_gen != gen) {
877 		zfs_zrele_async(zp);
878 		return (SET_ERROR(ENOENT));
879 	}
880 
881 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
882 	zgd->zgd_lwb = lwb;
883 	zgd->zgd_private = zp;
884 
885 	/*
886 	 * Write records come in two flavors: immediate and indirect.
887 	 * For small writes it's cheaper to store the data with the
888 	 * log record (immediate); for large writes it's cheaper to
889 	 * sync the data and get a pointer to it (indirect) so that
890 	 * we don't have to write the data twice.
891 	 */
892 	if (buf != NULL) { /* immediate write */
893 		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
894 		    offset, size, RL_READER);
895 		/* test for truncation needs to be done while range locked */
896 		if (offset >= zp->z_size) {
897 			error = SET_ERROR(ENOENT);
898 		} else {
899 			error = dmu_read(os, object, offset, size, buf,
900 			    DMU_READ_NO_PREFETCH);
901 		}
902 		ASSERT(error == 0 || error == ENOENT);
903 	} else { /* indirect write */
904 		ASSERT3P(zio, !=, NULL);
905 		/*
906 		 * Have to lock the whole block to ensure when it's
907 		 * written out and its checksum is being calculated
908 		 * that no one can change the data. We need to re-check
909 		 * blocksize after we get the lock in case it's changed!
910 		 */
911 		for (;;) {
912 			uint64_t blkoff;
913 			size = zp->z_blksz;
914 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
915 			offset -= blkoff;
916 			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
917 			    offset, size, RL_READER);
918 			if (zp->z_blksz == size)
919 				break;
920 			offset += blkoff;
921 			zfs_rangelock_exit(zgd->zgd_lr);
922 		}
923 		/* test for truncation needs to be done while range locked */
924 		if (lr->lr_offset >= zp->z_size)
925 			error = SET_ERROR(ENOENT);
926 #ifdef ZFS_DEBUG
927 		if (zil_fault_io) {
928 			error = SET_ERROR(EIO);
929 			zil_fault_io = 0;
930 		}
931 #endif
932 		if (error == 0)
933 			error = dmu_buf_hold_noread(os, object, offset, zgd,
934 			    &db);
935 
936 		if (error == 0) {
937 			blkptr_t *bp = &lr->lr_blkptr;
938 
939 			zgd->zgd_db = db;
940 			zgd->zgd_bp = bp;
941 
942 			ASSERT(db->db_offset == offset);
943 			ASSERT(db->db_size == size);
944 
945 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
946 			    zfs_get_done, zgd);
947 			ASSERT(error || lr->lr_length <= size);
948 
949 			/*
950 			 * On success, we need to wait for the write I/O
951 			 * initiated by dmu_sync() to complete before we can
952 			 * release this dbuf.  We will finish everything up
953 			 * in the zfs_get_done() callback.
954 			 */
955 			if (error == 0)
956 				return (0);
957 
958 			if (error == EALREADY) {
959 				lr->lr_common.lrc_txtype = TX_WRITE2;
960 				/*
961 				 * TX_WRITE2 relies on the data previously
962 				 * written by the TX_WRITE that caused
963 				 * EALREADY.  We zero out the BP because
964 				 * it is the old, currently-on-disk BP.
965 				 */
966 				zgd->zgd_bp = NULL;
967 				BP_ZERO(bp);
968 				error = 0;
969 			}
970 		}
971 	}
972 
973 	zfs_get_done(zgd, error);
974 
975 	return (error);
976 }
977 
978 
979 static void
980 zfs_get_done(zgd_t *zgd, int error)
981 {
982 	(void) error;
983 	znode_t *zp = zgd->zgd_private;
984 
985 	if (zgd->zgd_db)
986 		dmu_buf_rele(zgd->zgd_db, zgd);
987 
988 	zfs_rangelock_exit(zgd->zgd_lr);
989 
990 	/*
991 	 * Release the vnode asynchronously as we currently have the
992 	 * txg stopped from syncing.
993 	 */
994 	zfs_zrele_async(zp);
995 
996 	kmem_free(zgd, sizeof (zgd_t));
997 }
998 
999 static int
1000 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1001 {
1002 	int error;
1003 
1004 	/* Swap. Not sure if the order of zfs_enter()s is important. */
1005 	if (zfsvfs1 > zfsvfs2) {
1006 		zfsvfs_t *tmpzfsvfs;
1007 
1008 		tmpzfsvfs = zfsvfs2;
1009 		zfsvfs2 = zfsvfs1;
1010 		zfsvfs1 = tmpzfsvfs;
1011 	}
1012 
1013 	error = zfs_enter(zfsvfs1, tag);
1014 	if (error != 0)
1015 		return (error);
1016 	if (zfsvfs1 != zfsvfs2) {
1017 		error = zfs_enter(zfsvfs2, tag);
1018 		if (error != 0) {
1019 			zfs_exit(zfsvfs1, tag);
1020 			return (error);
1021 		}
1022 	}
1023 
1024 	return (0);
1025 }
1026 
1027 static void
1028 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1029 {
1030 
1031 	zfs_exit(zfsvfs1, tag);
1032 	if (zfsvfs1 != zfsvfs2)
1033 		zfs_exit(zfsvfs2, tag);
1034 }
1035 
1036 /*
1037  * We split each clone request in chunks that can fit into a single ZIL
1038  * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1039  * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1040  * us room for storing 1022 block pointers.
1041  *
1042  * On success, the function return the number of bytes copied in *lenp.
1043  * Note, it doesn't return how much bytes are left to be copied.
1044  * On errors which are caused by any file system limitations or
1045  * brt limitations `EINVAL` is returned. In the most cases a user
1046  * requested bad parameters, it could be possible to clone the file but
1047  * some parameters don't match the requirements.
1048  */
1049 int
1050 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1051     uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1052 {
1053 	zfsvfs_t	*inzfsvfs, *outzfsvfs;
1054 	objset_t	*inos, *outos;
1055 	zfs_locked_range_t *inlr, *outlr;
1056 	dmu_buf_impl_t	*db;
1057 	dmu_tx_t	*tx;
1058 	zilog_t		*zilog;
1059 	uint64_t	inoff, outoff, len, done;
1060 	uint64_t	outsize, size;
1061 	int		error;
1062 	int		count = 0;
1063 	sa_bulk_attr_t	bulk[3];
1064 	uint64_t	mtime[2], ctime[2];
1065 	uint64_t	uid, gid, projid;
1066 	blkptr_t	*bps;
1067 	size_t		maxblocks, nbps;
1068 	uint_t		inblksz;
1069 	uint64_t	clear_setid_bits_txg = 0;
1070 	uint64_t	last_synced_txg = 0;
1071 
1072 	inoff = *inoffp;
1073 	outoff = *outoffp;
1074 	len = *lenp;
1075 	done = 0;
1076 
1077 	inzfsvfs = ZTOZSB(inzp);
1078 	outzfsvfs = ZTOZSB(outzp);
1079 
1080 	/*
1081 	 * We need to call zfs_enter() potentially on two different datasets,
1082 	 * so we need a dedicated function for that.
1083 	 */
1084 	error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1085 	if (error != 0)
1086 		return (error);
1087 
1088 	inos = inzfsvfs->z_os;
1089 	outos = outzfsvfs->z_os;
1090 
1091 	/*
1092 	 * Both source and destination have to belong to the same storage pool.
1093 	 */
1094 	if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1095 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1096 		return (SET_ERROR(EXDEV));
1097 	}
1098 
1099 	/*
1100 	 * outos and inos belongs to the same storage pool.
1101 	 * see a few lines above, only one check.
1102 	 */
1103 	if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1104 	    SPA_FEATURE_BLOCK_CLONING)) {
1105 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1106 		return (SET_ERROR(EOPNOTSUPP));
1107 	}
1108 
1109 	ASSERT(!outzfsvfs->z_replay);
1110 
1111 	/*
1112 	 * Block cloning from an unencrypted dataset into an encrypted
1113 	 * dataset and vice versa is not supported.
1114 	 */
1115 	if (inos->os_encrypted != outos->os_encrypted) {
1116 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1117 		return (SET_ERROR(EXDEV));
1118 	}
1119 
1120 	/*
1121 	 * Cloning across encrypted datasets is possible only if they
1122 	 * share the same master key.
1123 	 */
1124 	if (inos != outos && inos->os_encrypted &&
1125 	    !dmu_objset_crypto_key_equal(inos, outos)) {
1126 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1127 		return (SET_ERROR(EXDEV));
1128 	}
1129 
1130 	error = zfs_verify_zp(inzp);
1131 	if (error == 0)
1132 		error = zfs_verify_zp(outzp);
1133 	if (error != 0) {
1134 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1135 		return (error);
1136 	}
1137 
1138 	/*
1139 	 * We don't copy source file's flags that's why we don't allow to clone
1140 	 * files that are in quarantine.
1141 	 */
1142 	if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1143 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1144 		return (SET_ERROR(EACCES));
1145 	}
1146 
1147 	if (inoff >= inzp->z_size) {
1148 		*lenp = 0;
1149 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1150 		return (0);
1151 	}
1152 	if (len > inzp->z_size - inoff) {
1153 		len = inzp->z_size - inoff;
1154 	}
1155 	if (len == 0) {
1156 		*lenp = 0;
1157 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1158 		return (0);
1159 	}
1160 
1161 	/*
1162 	 * Callers might not be able to detect properly that we are read-only,
1163 	 * so check it explicitly here.
1164 	 */
1165 	if (zfs_is_readonly(outzfsvfs)) {
1166 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1167 		return (SET_ERROR(EROFS));
1168 	}
1169 
1170 	/*
1171 	 * If immutable or not appending then return EPERM.
1172 	 * Intentionally allow ZFS_READONLY through here.
1173 	 * See zfs_zaccess_common()
1174 	 */
1175 	if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1176 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1177 		return (SET_ERROR(EPERM));
1178 	}
1179 
1180 	/*
1181 	 * No overlapping if we are cloning within the same file.
1182 	 */
1183 	if (inzp == outzp) {
1184 		if (inoff < outoff + len && outoff < inoff + len) {
1185 			zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1186 			return (SET_ERROR(EINVAL));
1187 		}
1188 	}
1189 
1190 	/* Flush any mmap()'d data to disk */
1191 	if (zn_has_cached_data(inzp, inoff, inoff + len - 1))
1192 		zn_flush_cached_data(inzp, B_TRUE);
1193 
1194 	/*
1195 	 * Maintain predictable lock order.
1196 	 */
1197 	if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1198 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1199 		    RL_READER);
1200 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1201 		    RL_WRITER);
1202 	} else {
1203 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1204 		    RL_WRITER);
1205 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1206 		    RL_READER);
1207 	}
1208 
1209 	inblksz = inzp->z_blksz;
1210 
1211 	/*
1212 	 * We cannot clone into a file with different block size if we can't
1213 	 * grow it (block size is already bigger, has more than one block, or
1214 	 * not locked for growth).  There are other possible reasons for the
1215 	 * grow to fail, but we cover what we can before opening transaction
1216 	 * and the rest detect after we try to do it.
1217 	 */
1218 	if (inblksz < outzp->z_blksz) {
1219 		error = SET_ERROR(EINVAL);
1220 		goto unlock;
1221 	}
1222 	if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
1223 	    outlr->lr_length != UINT64_MAX)) {
1224 		error = SET_ERROR(EINVAL);
1225 		goto unlock;
1226 	}
1227 
1228 	/*
1229 	 * Block size must be power-of-2 if destination offset != 0.
1230 	 * There can be no multiple blocks of non-power-of-2 size.
1231 	 */
1232 	if (outoff != 0 && !ISP2(inblksz)) {
1233 		error = SET_ERROR(EINVAL);
1234 		goto unlock;
1235 	}
1236 
1237 	/*
1238 	 * Offsets and len must be at block boundries.
1239 	 */
1240 	if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1241 		error = SET_ERROR(EINVAL);
1242 		goto unlock;
1243 	}
1244 	/*
1245 	 * Length must be multipe of blksz, except for the end of the file.
1246 	 */
1247 	if ((len % inblksz) != 0 &&
1248 	    (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1249 		error = SET_ERROR(EINVAL);
1250 		goto unlock;
1251 	}
1252 
1253 	/*
1254 	 * If we are copying only one block and it is smaller than recordsize
1255 	 * property, do not allow destination to grow beyond one block if it
1256 	 * is not there yet.  Otherwise the destination will get stuck with
1257 	 * that block size forever, that can be as small as 512 bytes, no
1258 	 * matter how big the destination grow later.
1259 	 */
1260 	if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
1261 	    outzp->z_size <= inblksz && outoff + len > inblksz) {
1262 		error = SET_ERROR(EINVAL);
1263 		goto unlock;
1264 	}
1265 
1266 	error = zn_rlimit_fsize(outoff + len);
1267 	if (error != 0) {
1268 		goto unlock;
1269 	}
1270 
1271 	if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1272 		error = SET_ERROR(EFBIG);
1273 		goto unlock;
1274 	}
1275 
1276 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1277 	    &mtime, 16);
1278 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1279 	    &ctime, 16);
1280 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1281 	    &outzp->z_size, 8);
1282 
1283 	zilog = outzfsvfs->z_log;
1284 	maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1285 	    sizeof (bps[0]);
1286 
1287 	uid = KUID_TO_SUID(ZTOUID(outzp));
1288 	gid = KGID_TO_SGID(ZTOGID(outzp));
1289 	projid = outzp->z_projid;
1290 
1291 	bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1292 
1293 	/*
1294 	 * Clone the file in reasonable size chunks.  Each chunk is cloned
1295 	 * in a separate transaction; this keeps the intent log records small
1296 	 * and allows us to do more fine-grained space accounting.
1297 	 */
1298 	while (len > 0) {
1299 		size = MIN(inblksz * maxblocks, len);
1300 
1301 		if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1302 		    uid) ||
1303 		    zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1304 		    gid) ||
1305 		    (projid != ZFS_DEFAULT_PROJID &&
1306 		    zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1307 		    projid))) {
1308 			error = SET_ERROR(EDQUOT);
1309 			break;
1310 		}
1311 
1312 		nbps = maxblocks;
1313 		last_synced_txg = spa_last_synced_txg(dmu_objset_spa(inos));
1314 		error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
1315 		    &nbps);
1316 		if (error != 0) {
1317 			/*
1318 			 * If we are trying to clone a block that was created
1319 			 * in the current transaction group, the error will be
1320 			 * EAGAIN here.  Based on zfs_bclone_wait_dirty either
1321 			 * return a shortened range to the caller so it can
1322 			 * fallback, or wait for the next TXG and check again.
1323 			 */
1324 			if (error == EAGAIN && zfs_bclone_wait_dirty) {
1325 				txg_wait_synced(dmu_objset_pool(inos),
1326 				    last_synced_txg + 1);
1327 				continue;
1328 			}
1329 
1330 			break;
1331 		}
1332 
1333 		/*
1334 		 * Start a transaction.
1335 		 */
1336 		tx = dmu_tx_create(outos);
1337 		dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1338 		db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1339 		DB_DNODE_ENTER(db);
1340 		dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1341 		DB_DNODE_EXIT(db);
1342 		zfs_sa_upgrade_txholds(tx, outzp);
1343 		error = dmu_tx_assign(tx, TXG_WAIT);
1344 		if (error != 0) {
1345 			dmu_tx_abort(tx);
1346 			break;
1347 		}
1348 
1349 		/*
1350 		 * Copy source znode's block size. This is done only if the
1351 		 * whole znode is locked (see zfs_rangelock_cb()) and only
1352 		 * on the first iteration since zfs_rangelock_reduce() will
1353 		 * shrink down lr_length to the appropriate size.
1354 		 */
1355 		if (outlr->lr_length == UINT64_MAX) {
1356 			zfs_grow_blocksize(outzp, inblksz, tx);
1357 
1358 			/*
1359 			 * Block growth may fail for many reasons we can not
1360 			 * predict here.  If it happen the cloning is doomed.
1361 			 */
1362 			if (inblksz != outzp->z_blksz) {
1363 				error = SET_ERROR(EINVAL);
1364 				dmu_tx_abort(tx);
1365 				break;
1366 			}
1367 
1368 			/*
1369 			 * Round range lock up to the block boundary, so we
1370 			 * prevent appends until we are done.
1371 			 */
1372 			zfs_rangelock_reduce(outlr, outoff,
1373 			    ((len - 1) / inblksz + 1) * inblksz);
1374 		}
1375 
1376 		error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1377 		    bps, nbps);
1378 		if (error != 0) {
1379 			dmu_tx_commit(tx);
1380 			break;
1381 		}
1382 
1383 		if (zn_has_cached_data(outzp, outoff, outoff + size - 1)) {
1384 			update_pages(outzp, outoff, size, outos);
1385 		}
1386 
1387 		zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1388 		    &clear_setid_bits_txg, tx);
1389 
1390 		zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1391 
1392 		/*
1393 		 * Update the file size (zp_size) if it has changed;
1394 		 * account for possible concurrent updates.
1395 		 */
1396 		while ((outsize = outzp->z_size) < outoff + size) {
1397 			(void) atomic_cas_64(&outzp->z_size, outsize,
1398 			    outoff + size);
1399 		}
1400 
1401 		error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1402 
1403 		zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1404 		    size, inblksz, bps, nbps);
1405 
1406 		dmu_tx_commit(tx);
1407 
1408 		if (error != 0)
1409 			break;
1410 
1411 		inoff += size;
1412 		outoff += size;
1413 		len -= size;
1414 		done += size;
1415 	}
1416 
1417 	vmem_free(bps, sizeof (bps[0]) * maxblocks);
1418 	zfs_znode_update_vfs(outzp);
1419 
1420 unlock:
1421 	zfs_rangelock_exit(outlr);
1422 	zfs_rangelock_exit(inlr);
1423 
1424 	if (done > 0) {
1425 		/*
1426 		 * If we have made at least partial progress, reset the error.
1427 		 */
1428 		error = 0;
1429 
1430 		ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1431 
1432 		if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1433 			zil_commit(zilog, outzp->z_id);
1434 		}
1435 
1436 		*inoffp += done;
1437 		*outoffp += done;
1438 		*lenp = done;
1439 	} else {
1440 		/*
1441 		 * If we made no progress, there must be a good reason.
1442 		 * EOF is handled explicitly above, before the loop.
1443 		 */
1444 		ASSERT3S(error, !=, 0);
1445 	}
1446 
1447 	zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1448 
1449 	return (error);
1450 }
1451 
1452 /*
1453  * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1454  * but we cannot do that, because when replaying we don't have source znode
1455  * available. This is why we need a dedicated replay function.
1456  */
1457 int
1458 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1459     const blkptr_t *bps, size_t nbps)
1460 {
1461 	zfsvfs_t	*zfsvfs;
1462 	dmu_buf_impl_t	*db;
1463 	dmu_tx_t	*tx;
1464 	int		error;
1465 	int		count = 0;
1466 	sa_bulk_attr_t	bulk[3];
1467 	uint64_t	mtime[2], ctime[2];
1468 
1469 	ASSERT3U(off, <, MAXOFFSET_T);
1470 	ASSERT3U(len, >, 0);
1471 	ASSERT3U(nbps, >, 0);
1472 
1473 	zfsvfs = ZTOZSB(zp);
1474 
1475 	ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1476 	    SPA_FEATURE_BLOCK_CLONING));
1477 
1478 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1479 		return (error);
1480 
1481 	ASSERT(zfsvfs->z_replay);
1482 	ASSERT(!zfs_is_readonly(zfsvfs));
1483 
1484 	if ((off % blksz) != 0) {
1485 		zfs_exit(zfsvfs, FTAG);
1486 		return (SET_ERROR(EINVAL));
1487 	}
1488 
1489 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1490 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1491 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1492 	    &zp->z_size, 8);
1493 
1494 	/*
1495 	 * Start a transaction.
1496 	 */
1497 	tx = dmu_tx_create(zfsvfs->z_os);
1498 
1499 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1500 	db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1501 	DB_DNODE_ENTER(db);
1502 	dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1503 	DB_DNODE_EXIT(db);
1504 	zfs_sa_upgrade_txholds(tx, zp);
1505 	error = dmu_tx_assign(tx, TXG_WAIT);
1506 	if (error != 0) {
1507 		dmu_tx_abort(tx);
1508 		zfs_exit(zfsvfs, FTAG);
1509 		return (error);
1510 	}
1511 
1512 	if (zp->z_blksz < blksz)
1513 		zfs_grow_blocksize(zp, blksz, tx);
1514 
1515 	dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps);
1516 
1517 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1518 
1519 	if (zp->z_size < off + len)
1520 		zp->z_size = off + len;
1521 
1522 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1523 
1524 	/*
1525 	 * zil_replaying() not only check if we are replaying ZIL, but also
1526 	 * updates the ZIL header to record replay progress.
1527 	 */
1528 	VERIFY(zil_replaying(zfsvfs->z_log, tx));
1529 
1530 	dmu_tx_commit(tx);
1531 
1532 	zfs_znode_update_vfs(zp);
1533 
1534 	zfs_exit(zfsvfs, FTAG);
1535 
1536 	return (error);
1537 }
1538 
1539 EXPORT_SYMBOL(zfs_access);
1540 EXPORT_SYMBOL(zfs_fsync);
1541 EXPORT_SYMBOL(zfs_holey);
1542 EXPORT_SYMBOL(zfs_read);
1543 EXPORT_SYMBOL(zfs_write);
1544 EXPORT_SYMBOL(zfs_getsecattr);
1545 EXPORT_SYMBOL(zfs_setsecattr);
1546 EXPORT_SYMBOL(zfs_clone_range);
1547 EXPORT_SYMBOL(zfs_clone_range_replay);
1548 
1549 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
1550 	"Bytes to read per chunk");
1551 
1552 ZFS_MODULE_PARAM(zfs, zfs_, bclone_enabled, INT, ZMOD_RW,
1553 	"Enable block cloning");
1554 
1555 ZFS_MODULE_PARAM(zfs, zfs_, bclone_wait_dirty, INT, ZMOD_RW,
1556 	"Wait for dirty blocks when cloning");
1557