xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_vnops.c (revision 2008043f386721d58158e37e0d7e50df8095942d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
28  */
29 
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/uio_impl.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/cmn_err.h>
43 #include <sys/errno.h>
44 #include <sys/zfs_dir.h>
45 #include <sys/zfs_acl.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/spa.h>
51 #include <sys/txg.h>
52 #include <sys/dbuf.h>
53 #include <sys/policy.h>
54 #include <sys/zfeature.h>
55 #include <sys/zfs_vnops.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/zfs_vfsops.h>
58 #include <sys/zfs_znode.h>
59 
60 
61 int
62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
63 {
64 	int error = 0;
65 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
66 
67 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
68 		if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
69 			return (error);
70 		atomic_inc_32(&zp->z_sync_writes_cnt);
71 		zil_commit(zfsvfs->z_log, zp->z_id);
72 		atomic_dec_32(&zp->z_sync_writes_cnt);
73 		zfs_exit(zfsvfs, FTAG);
74 	}
75 	return (error);
76 }
77 
78 
79 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
80 /*
81  * Lseek support for finding holes (cmd == SEEK_HOLE) and
82  * data (cmd == SEEK_DATA). "off" is an in/out parameter.
83  */
84 static int
85 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
86 {
87 	zfs_locked_range_t *lr;
88 	uint64_t noff = (uint64_t)*off; /* new offset */
89 	uint64_t file_sz;
90 	int error;
91 	boolean_t hole;
92 
93 	file_sz = zp->z_size;
94 	if (noff >= file_sz)  {
95 		return (SET_ERROR(ENXIO));
96 	}
97 
98 	if (cmd == F_SEEK_HOLE)
99 		hole = B_TRUE;
100 	else
101 		hole = B_FALSE;
102 
103 	/* Flush any mmap()'d data to disk */
104 	if (zn_has_cached_data(zp, 0, file_sz - 1))
105 		zn_flush_cached_data(zp, B_FALSE);
106 
107 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
108 	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
109 	zfs_rangelock_exit(lr);
110 
111 	if (error == ESRCH)
112 		return (SET_ERROR(ENXIO));
113 
114 	/* File was dirty, so fall back to using generic logic */
115 	if (error == EBUSY) {
116 		if (hole)
117 			*off = file_sz;
118 
119 		return (0);
120 	}
121 
122 	/*
123 	 * We could find a hole that begins after the logical end-of-file,
124 	 * because dmu_offset_next() only works on whole blocks.  If the
125 	 * EOF falls mid-block, then indicate that the "virtual hole"
126 	 * at the end of the file begins at the logical EOF, rather than
127 	 * at the end of the last block.
128 	 */
129 	if (noff > file_sz) {
130 		ASSERT(hole);
131 		noff = file_sz;
132 	}
133 
134 	if (noff < *off)
135 		return (error);
136 	*off = noff;
137 	return (error);
138 }
139 
140 int
141 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
142 {
143 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
144 	int error;
145 
146 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
147 		return (error);
148 
149 	error = zfs_holey_common(zp, cmd, off);
150 
151 	zfs_exit(zfsvfs, FTAG);
152 	return (error);
153 }
154 #endif /* SEEK_HOLE && SEEK_DATA */
155 
156 int
157 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
158 {
159 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
160 	int error;
161 
162 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
163 		return (error);
164 
165 	if (flag & V_ACE_MASK)
166 #if defined(__linux__)
167 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
168 		    zfs_init_idmap);
169 #else
170 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
171 		    NULL);
172 #endif
173 	else
174 #if defined(__linux__)
175 		error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
176 #else
177 		error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
178 #endif
179 
180 	zfs_exit(zfsvfs, FTAG);
181 	return (error);
182 }
183 
184 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
185 
186 /*
187  * Read bytes from specified file into supplied buffer.
188  *
189  *	IN:	zp	- inode of file to be read from.
190  *		uio	- structure supplying read location, range info,
191  *			  and return buffer.
192  *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
193  *			  O_DIRECT flag; used to bypass page cache.
194  *		cr	- credentials of caller.
195  *
196  *	OUT:	uio	- updated offset and range, buffer filled.
197  *
198  *	RETURN:	0 on success, error code on failure.
199  *
200  * Side Effects:
201  *	inode - atime updated if byte count > 0
202  */
203 int
204 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
205 {
206 	(void) cr;
207 	int error = 0;
208 	boolean_t frsync = B_FALSE;
209 
210 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
211 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
212 		return (error);
213 
214 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
215 		zfs_exit(zfsvfs, FTAG);
216 		return (SET_ERROR(EACCES));
217 	}
218 
219 	/* We don't copy out anything useful for directories. */
220 	if (Z_ISDIR(ZTOTYPE(zp))) {
221 		zfs_exit(zfsvfs, FTAG);
222 		return (SET_ERROR(EISDIR));
223 	}
224 
225 	/*
226 	 * Validate file offset
227 	 */
228 	if (zfs_uio_offset(uio) < (offset_t)0) {
229 		zfs_exit(zfsvfs, FTAG);
230 		return (SET_ERROR(EINVAL));
231 	}
232 
233 	/*
234 	 * Fasttrack empty reads
235 	 */
236 	if (zfs_uio_resid(uio) == 0) {
237 		zfs_exit(zfsvfs, FTAG);
238 		return (0);
239 	}
240 
241 #ifdef FRSYNC
242 	/*
243 	 * If we're in FRSYNC mode, sync out this znode before reading it.
244 	 * Only do this for non-snapshots.
245 	 *
246 	 * Some platforms do not support FRSYNC and instead map it
247 	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
248 	 * only honor FRSYNC requests on platforms which support it.
249 	 */
250 	frsync = !!(ioflag & FRSYNC);
251 #endif
252 	if (zfsvfs->z_log &&
253 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
254 		zil_commit(zfsvfs->z_log, zp->z_id);
255 
256 	/*
257 	 * Lock the range against changes.
258 	 */
259 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
260 	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
261 
262 	/*
263 	 * If we are reading past end-of-file we can skip
264 	 * to the end; but we might still need to set atime.
265 	 */
266 	if (zfs_uio_offset(uio) >= zp->z_size) {
267 		error = 0;
268 		goto out;
269 	}
270 
271 	ASSERT(zfs_uio_offset(uio) < zp->z_size);
272 #if defined(__linux__)
273 	ssize_t start_offset = zfs_uio_offset(uio);
274 #endif
275 	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
276 	ssize_t start_resid = n;
277 
278 	while (n > 0) {
279 		ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
280 		    P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
281 #ifdef UIO_NOCOPY
282 		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
283 			error = mappedread_sf(zp, nbytes, uio);
284 		else
285 #endif
286 		if (zn_has_cached_data(zp, zfs_uio_offset(uio),
287 		    zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
288 			error = mappedread(zp, nbytes, uio);
289 		} else {
290 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
291 			    uio, nbytes);
292 		}
293 
294 		if (error) {
295 			/* convert checksum errors into IO errors */
296 			if (error == ECKSUM)
297 				error = SET_ERROR(EIO);
298 
299 #if defined(__linux__)
300 			/*
301 			 * if we actually read some bytes, bubbling EFAULT
302 			 * up to become EAGAIN isn't what we want here...
303 			 *
304 			 * ...on Linux, at least. On FBSD, doing this breaks.
305 			 */
306 			if (error == EFAULT &&
307 			    (zfs_uio_offset(uio) - start_offset) != 0)
308 				error = 0;
309 #endif
310 			break;
311 		}
312 
313 		n -= nbytes;
314 	}
315 
316 	int64_t nread = start_resid - n;
317 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
318 	task_io_account_read(nread);
319 out:
320 	zfs_rangelock_exit(lr);
321 
322 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
323 	zfs_exit(zfsvfs, FTAG);
324 	return (error);
325 }
326 
327 static void
328 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
329     uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
330 {
331 	zilog_t *zilog = zfsvfs->z_log;
332 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
333 
334 	ASSERT(clear_setid_bits_txgp != NULL);
335 	ASSERT(tx != NULL);
336 
337 	/*
338 	 * Clear Set-UID/Set-GID bits on successful write if not
339 	 * privileged and at least one of the execute bits is set.
340 	 *
341 	 * It would be nice to do this after all writes have
342 	 * been done, but that would still expose the ISUID/ISGID
343 	 * to another app after the partial write is committed.
344 	 *
345 	 * Note: we don't call zfs_fuid_map_id() here because
346 	 * user 0 is not an ephemeral uid.
347 	 */
348 	mutex_enter(&zp->z_acl_lock);
349 	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
350 	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
351 	    secpolicy_vnode_setid_retain(zp, cr,
352 	    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
353 		uint64_t newmode;
354 
355 		zp->z_mode &= ~(S_ISUID | S_ISGID);
356 		newmode = zp->z_mode;
357 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
358 		    (void *)&newmode, sizeof (uint64_t), tx);
359 
360 		mutex_exit(&zp->z_acl_lock);
361 
362 		/*
363 		 * Make sure SUID/SGID bits will be removed when we replay the
364 		 * log. If the setid bits are keep coming back, don't log more
365 		 * than one TX_SETATTR per transaction group.
366 		 */
367 		if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
368 			vattr_t va = {0};
369 
370 			va.va_mask = ATTR_MODE;
371 			va.va_nodeid = zp->z_id;
372 			va.va_mode = newmode;
373 			zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
374 			    ATTR_MODE, NULL);
375 			*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
376 		}
377 	} else {
378 		mutex_exit(&zp->z_acl_lock);
379 	}
380 }
381 
382 /*
383  * Write the bytes to a file.
384  *
385  *	IN:	zp	- znode of file to be written to.
386  *		uio	- structure supplying write location, range info,
387  *			  and data buffer.
388  *		ioflag	- O_APPEND flag set if in append mode.
389  *			  O_DIRECT flag; used to bypass page cache.
390  *		cr	- credentials of caller.
391  *
392  *	OUT:	uio	- updated offset and range.
393  *
394  *	RETURN:	0 if success
395  *		error code if failure
396  *
397  * Timestamps:
398  *	ip - ctime|mtime updated if byte count > 0
399  */
400 int
401 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
402 {
403 	int error = 0, error1;
404 	ssize_t start_resid = zfs_uio_resid(uio);
405 	uint64_t clear_setid_bits_txg = 0;
406 
407 	/*
408 	 * Fasttrack empty write
409 	 */
410 	ssize_t n = start_resid;
411 	if (n == 0)
412 		return (0);
413 
414 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
415 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
416 		return (error);
417 
418 	sa_bulk_attr_t bulk[4];
419 	int count = 0;
420 	uint64_t mtime[2], ctime[2];
421 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
422 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
423 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
424 	    &zp->z_size, 8);
425 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
426 	    &zp->z_pflags, 8);
427 
428 	/*
429 	 * Callers might not be able to detect properly that we are read-only,
430 	 * so check it explicitly here.
431 	 */
432 	if (zfs_is_readonly(zfsvfs)) {
433 		zfs_exit(zfsvfs, FTAG);
434 		return (SET_ERROR(EROFS));
435 	}
436 
437 	/*
438 	 * If immutable or not appending then return EPERM.
439 	 * Intentionally allow ZFS_READONLY through here.
440 	 * See zfs_zaccess_common()
441 	 */
442 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
443 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
444 	    (zfs_uio_offset(uio) < zp->z_size))) {
445 		zfs_exit(zfsvfs, FTAG);
446 		return (SET_ERROR(EPERM));
447 	}
448 
449 	/*
450 	 * Validate file offset
451 	 */
452 	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
453 	if (woff < 0) {
454 		zfs_exit(zfsvfs, FTAG);
455 		return (SET_ERROR(EINVAL));
456 	}
457 
458 	/*
459 	 * Pre-fault the pages to ensure slow (eg NFS) pages
460 	 * don't hold up txg.
461 	 */
462 	ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
463 	if (zfs_uio_prefaultpages(pfbytes, uio)) {
464 		zfs_exit(zfsvfs, FTAG);
465 		return (SET_ERROR(EFAULT));
466 	}
467 
468 	/*
469 	 * If in append mode, set the io offset pointer to eof.
470 	 */
471 	zfs_locked_range_t *lr;
472 	if (ioflag & O_APPEND) {
473 		/*
474 		 * Obtain an appending range lock to guarantee file append
475 		 * semantics.  We reset the write offset once we have the lock.
476 		 */
477 		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
478 		woff = lr->lr_offset;
479 		if (lr->lr_length == UINT64_MAX) {
480 			/*
481 			 * We overlocked the file because this write will cause
482 			 * the file block size to increase.
483 			 * Note that zp_size cannot change with this lock held.
484 			 */
485 			woff = zp->z_size;
486 		}
487 		zfs_uio_setoffset(uio, woff);
488 	} else {
489 		/*
490 		 * Note that if the file block size will change as a result of
491 		 * this write, then this range lock will lock the entire file
492 		 * so that we can re-write the block safely.
493 		 */
494 		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
495 	}
496 
497 	if (zn_rlimit_fsize_uio(zp, uio)) {
498 		zfs_rangelock_exit(lr);
499 		zfs_exit(zfsvfs, FTAG);
500 		return (SET_ERROR(EFBIG));
501 	}
502 
503 	const rlim64_t limit = MAXOFFSET_T;
504 
505 	if (woff >= limit) {
506 		zfs_rangelock_exit(lr);
507 		zfs_exit(zfsvfs, FTAG);
508 		return (SET_ERROR(EFBIG));
509 	}
510 
511 	if (n > limit - woff)
512 		n = limit - woff;
513 
514 	uint64_t end_size = MAX(zp->z_size, woff + n);
515 	zilog_t *zilog = zfsvfs->z_log;
516 	boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) ||
517 	    (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);
518 
519 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
520 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
521 	const uint64_t projid = zp->z_projid;
522 
523 	/*
524 	 * Write the file in reasonable size chunks.  Each chunk is written
525 	 * in a separate transaction; this keeps the intent log records small
526 	 * and allows us to do more fine-grained space accounting.
527 	 */
528 	while (n > 0) {
529 		woff = zfs_uio_offset(uio);
530 
531 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
532 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
533 		    (projid != ZFS_DEFAULT_PROJID &&
534 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
535 		    projid))) {
536 			error = SET_ERROR(EDQUOT);
537 			break;
538 		}
539 
540 		uint64_t blksz;
541 		if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
542 			if (zp->z_blksz > zfsvfs->z_max_blksz &&
543 			    !ISP2(zp->z_blksz)) {
544 				/*
545 				 * File's blocksize is already larger than the
546 				 * "recordsize" property.  Only let it grow to
547 				 * the next power of 2.
548 				 */
549 				blksz = 1 << highbit64(zp->z_blksz);
550 			} else {
551 				blksz = zfsvfs->z_max_blksz;
552 			}
553 			blksz = MIN(blksz, P2ROUNDUP(end_size,
554 			    SPA_MINBLOCKSIZE));
555 			blksz = MAX(blksz, zp->z_blksz);
556 		} else {
557 			blksz = zp->z_blksz;
558 		}
559 
560 		arc_buf_t *abuf = NULL;
561 		ssize_t nbytes = n;
562 		if (n >= blksz && woff >= zp->z_size &&
563 		    P2PHASE(woff, blksz) == 0 &&
564 		    (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
565 			/*
566 			 * This write covers a full block.  "Borrow" a buffer
567 			 * from the dmu so that we can fill it before we enter
568 			 * a transaction.  This avoids the possibility of
569 			 * holding up the transaction if the data copy hangs
570 			 * up on a pagefault (e.g., from an NFS server mapping).
571 			 */
572 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
573 			    blksz);
574 			ASSERT(abuf != NULL);
575 			ASSERT(arc_buf_size(abuf) == blksz);
576 			if ((error = zfs_uiocopy(abuf->b_data, blksz,
577 			    UIO_WRITE, uio, &nbytes))) {
578 				dmu_return_arcbuf(abuf);
579 				break;
580 			}
581 			ASSERT3S(nbytes, ==, blksz);
582 		} else {
583 			nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
584 			    P2PHASE(woff, blksz));
585 			if (pfbytes < nbytes) {
586 				if (zfs_uio_prefaultpages(nbytes, uio)) {
587 					error = SET_ERROR(EFAULT);
588 					break;
589 				}
590 				pfbytes = nbytes;
591 			}
592 		}
593 
594 		/*
595 		 * Start a transaction.
596 		 */
597 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
598 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
599 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
600 		DB_DNODE_ENTER(db);
601 		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
602 		DB_DNODE_EXIT(db);
603 		zfs_sa_upgrade_txholds(tx, zp);
604 		error = dmu_tx_assign(tx, TXG_WAIT);
605 		if (error) {
606 			dmu_tx_abort(tx);
607 			if (abuf != NULL)
608 				dmu_return_arcbuf(abuf);
609 			break;
610 		}
611 
612 		/*
613 		 * NB: We must call zfs_clear_setid_bits_if_necessary before
614 		 * committing the transaction!
615 		 */
616 
617 		/*
618 		 * If rangelock_enter() over-locked we grow the blocksize
619 		 * and then reduce the lock range.  This will only happen
620 		 * on the first iteration since rangelock_reduce() will
621 		 * shrink down lr_length to the appropriate size.
622 		 */
623 		if (lr->lr_length == UINT64_MAX) {
624 			zfs_grow_blocksize(zp, blksz, tx);
625 			zfs_rangelock_reduce(lr, woff, n);
626 		}
627 
628 		ssize_t tx_bytes;
629 		if (abuf == NULL) {
630 			tx_bytes = zfs_uio_resid(uio);
631 			zfs_uio_fault_disable(uio, B_TRUE);
632 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
633 			    uio, nbytes, tx);
634 			zfs_uio_fault_disable(uio, B_FALSE);
635 #ifdef __linux__
636 			if (error == EFAULT) {
637 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
638 				    cr, &clear_setid_bits_txg, tx);
639 				dmu_tx_commit(tx);
640 				/*
641 				 * Account for partial writes before
642 				 * continuing the loop.
643 				 * Update needs to occur before the next
644 				 * zfs_uio_prefaultpages, or prefaultpages may
645 				 * error, and we may break the loop early.
646 				 */
647 				n -= tx_bytes - zfs_uio_resid(uio);
648 				pfbytes -= tx_bytes - zfs_uio_resid(uio);
649 				continue;
650 			}
651 #endif
652 			/*
653 			 * On FreeBSD, EFAULT should be propagated back to the
654 			 * VFS, which will handle faulting and will retry.
655 			 */
656 			if (error != 0 && error != EFAULT) {
657 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
658 				    cr, &clear_setid_bits_txg, tx);
659 				dmu_tx_commit(tx);
660 				break;
661 			}
662 			tx_bytes -= zfs_uio_resid(uio);
663 		} else {
664 			/*
665 			 * Thus, we're writing a full block at a block-aligned
666 			 * offset and extending the file past EOF.
667 			 *
668 			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
669 			 * arc buffer to a dbuf.
670 			 */
671 			error = dmu_assign_arcbuf_by_dbuf(
672 			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
673 			if (error != 0) {
674 				/*
675 				 * XXX This might not be necessary if
676 				 * dmu_assign_arcbuf_by_dbuf is guaranteed
677 				 * to be atomic.
678 				 */
679 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
680 				    cr, &clear_setid_bits_txg, tx);
681 				dmu_return_arcbuf(abuf);
682 				dmu_tx_commit(tx);
683 				break;
684 			}
685 			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
686 			zfs_uioskip(uio, nbytes);
687 			tx_bytes = nbytes;
688 		}
689 		if (tx_bytes &&
690 		    zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
691 		    !(ioflag & O_DIRECT)) {
692 			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
693 		}
694 
695 		/*
696 		 * If we made no progress, we're done.  If we made even
697 		 * partial progress, update the znode and ZIL accordingly.
698 		 */
699 		if (tx_bytes == 0) {
700 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
701 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
702 			dmu_tx_commit(tx);
703 			ASSERT(error != 0);
704 			break;
705 		}
706 
707 		zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
708 		    &clear_setid_bits_txg, tx);
709 
710 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
711 
712 		/*
713 		 * Update the file size (zp_size) if it has changed;
714 		 * account for possible concurrent updates.
715 		 */
716 		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
717 			(void) atomic_cas_64(&zp->z_size, end_size,
718 			    zfs_uio_offset(uio));
719 			ASSERT(error == 0 || error == EFAULT);
720 		}
721 		/*
722 		 * If we are replaying and eof is non zero then force
723 		 * the file size to the specified eof. Note, there's no
724 		 * concurrency during replay.
725 		 */
726 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
727 			zp->z_size = zfsvfs->z_replay_eof;
728 
729 		error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
730 		if (error1 != 0)
731 			/* Avoid clobbering EFAULT. */
732 			error = error1;
733 
734 		/*
735 		 * NB: During replay, the TX_SETATTR record logged by
736 		 * zfs_clear_setid_bits_if_necessary must precede any of
737 		 * the TX_WRITE records logged here.
738 		 */
739 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit,
740 		    NULL, NULL);
741 
742 		dmu_tx_commit(tx);
743 
744 		if (error != 0)
745 			break;
746 		ASSERT3S(tx_bytes, ==, nbytes);
747 		n -= nbytes;
748 		pfbytes -= nbytes;
749 	}
750 
751 	zfs_znode_update_vfs(zp);
752 	zfs_rangelock_exit(lr);
753 
754 	/*
755 	 * If we're in replay mode, or we made no progress, or the
756 	 * uio data is inaccessible return an error.  Otherwise, it's
757 	 * at least a partial write, so it's successful.
758 	 */
759 	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
760 	    error == EFAULT) {
761 		zfs_exit(zfsvfs, FTAG);
762 		return (error);
763 	}
764 
765 	if (commit)
766 		zil_commit(zilog, zp->z_id);
767 
768 	const int64_t nwritten = start_resid - zfs_uio_resid(uio);
769 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
770 	task_io_account_write(nwritten);
771 
772 	zfs_exit(zfsvfs, FTAG);
773 	return (0);
774 }
775 
776 int
777 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
778 {
779 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
780 	int error;
781 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
782 
783 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
784 		return (error);
785 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
786 	zfs_exit(zfsvfs, FTAG);
787 
788 	return (error);
789 }
790 
791 int
792 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
793 {
794 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
795 	int error;
796 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
797 	zilog_t	*zilog = zfsvfs->z_log;
798 
799 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
800 		return (error);
801 
802 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
803 
804 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
805 		zil_commit(zilog, 0);
806 
807 	zfs_exit(zfsvfs, FTAG);
808 	return (error);
809 }
810 
811 #ifdef ZFS_DEBUG
812 static int zil_fault_io = 0;
813 #endif
814 
815 static void zfs_get_done(zgd_t *zgd, int error);
816 
817 /*
818  * Get data to generate a TX_WRITE intent log record.
819  */
820 int
821 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
822     struct lwb *lwb, zio_t *zio)
823 {
824 	zfsvfs_t *zfsvfs = arg;
825 	objset_t *os = zfsvfs->z_os;
826 	znode_t *zp;
827 	uint64_t object = lr->lr_foid;
828 	uint64_t offset = lr->lr_offset;
829 	uint64_t size = lr->lr_length;
830 	dmu_buf_t *db;
831 	zgd_t *zgd;
832 	int error = 0;
833 	uint64_t zp_gen;
834 
835 	ASSERT3P(lwb, !=, NULL);
836 	ASSERT3U(size, !=, 0);
837 
838 	/*
839 	 * Nothing to do if the file has been removed
840 	 */
841 	if (zfs_zget(zfsvfs, object, &zp) != 0)
842 		return (SET_ERROR(ENOENT));
843 	if (zp->z_unlinked) {
844 		/*
845 		 * Release the vnode asynchronously as we currently have the
846 		 * txg stopped from syncing.
847 		 */
848 		zfs_zrele_async(zp);
849 		return (SET_ERROR(ENOENT));
850 	}
851 	/* check if generation number matches */
852 	if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
853 	    sizeof (zp_gen)) != 0) {
854 		zfs_zrele_async(zp);
855 		return (SET_ERROR(EIO));
856 	}
857 	if (zp_gen != gen) {
858 		zfs_zrele_async(zp);
859 		return (SET_ERROR(ENOENT));
860 	}
861 
862 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
863 	zgd->zgd_lwb = lwb;
864 	zgd->zgd_private = zp;
865 
866 	/*
867 	 * Write records come in two flavors: immediate and indirect.
868 	 * For small writes it's cheaper to store the data with the
869 	 * log record (immediate); for large writes it's cheaper to
870 	 * sync the data and get a pointer to it (indirect) so that
871 	 * we don't have to write the data twice.
872 	 */
873 	if (buf != NULL) { /* immediate write */
874 		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
875 		    offset, size, RL_READER);
876 		/* test for truncation needs to be done while range locked */
877 		if (offset >= zp->z_size) {
878 			error = SET_ERROR(ENOENT);
879 		} else {
880 			error = dmu_read(os, object, offset, size, buf,
881 			    DMU_READ_NO_PREFETCH);
882 		}
883 		ASSERT(error == 0 || error == ENOENT);
884 	} else { /* indirect write */
885 		ASSERT3P(zio, !=, NULL);
886 		/*
887 		 * Have to lock the whole block to ensure when it's
888 		 * written out and its checksum is being calculated
889 		 * that no one can change the data. We need to re-check
890 		 * blocksize after we get the lock in case it's changed!
891 		 */
892 		for (;;) {
893 			uint64_t blkoff;
894 			size = zp->z_blksz;
895 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
896 			offset -= blkoff;
897 			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
898 			    offset, size, RL_READER);
899 			if (zp->z_blksz == size)
900 				break;
901 			offset += blkoff;
902 			zfs_rangelock_exit(zgd->zgd_lr);
903 		}
904 		/* test for truncation needs to be done while range locked */
905 		if (lr->lr_offset >= zp->z_size)
906 			error = SET_ERROR(ENOENT);
907 #ifdef ZFS_DEBUG
908 		if (zil_fault_io) {
909 			error = SET_ERROR(EIO);
910 			zil_fault_io = 0;
911 		}
912 #endif
913 		if (error == 0)
914 			error = dmu_buf_hold_noread(os, object, offset, zgd,
915 			    &db);
916 
917 		if (error == 0) {
918 			blkptr_t *bp = &lr->lr_blkptr;
919 
920 			zgd->zgd_db = db;
921 			zgd->zgd_bp = bp;
922 
923 			ASSERT(db->db_offset == offset);
924 			ASSERT(db->db_size == size);
925 
926 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
927 			    zfs_get_done, zgd);
928 			ASSERT(error || lr->lr_length <= size);
929 
930 			/*
931 			 * On success, we need to wait for the write I/O
932 			 * initiated by dmu_sync() to complete before we can
933 			 * release this dbuf.  We will finish everything up
934 			 * in the zfs_get_done() callback.
935 			 */
936 			if (error == 0)
937 				return (0);
938 
939 			if (error == EALREADY) {
940 				lr->lr_common.lrc_txtype = TX_WRITE2;
941 				/*
942 				 * TX_WRITE2 relies on the data previously
943 				 * written by the TX_WRITE that caused
944 				 * EALREADY.  We zero out the BP because
945 				 * it is the old, currently-on-disk BP.
946 				 */
947 				zgd->zgd_bp = NULL;
948 				BP_ZERO(bp);
949 				error = 0;
950 			}
951 		}
952 	}
953 
954 	zfs_get_done(zgd, error);
955 
956 	return (error);
957 }
958 
959 
960 static void
961 zfs_get_done(zgd_t *zgd, int error)
962 {
963 	(void) error;
964 	znode_t *zp = zgd->zgd_private;
965 
966 	if (zgd->zgd_db)
967 		dmu_buf_rele(zgd->zgd_db, zgd);
968 
969 	zfs_rangelock_exit(zgd->zgd_lr);
970 
971 	/*
972 	 * Release the vnode asynchronously as we currently have the
973 	 * txg stopped from syncing.
974 	 */
975 	zfs_zrele_async(zp);
976 
977 	kmem_free(zgd, sizeof (zgd_t));
978 }
979 
980 static int
981 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
982 {
983 	int error;
984 
985 	/* Swap. Not sure if the order of zfs_enter()s is important. */
986 	if (zfsvfs1 > zfsvfs2) {
987 		zfsvfs_t *tmpzfsvfs;
988 
989 		tmpzfsvfs = zfsvfs2;
990 		zfsvfs2 = zfsvfs1;
991 		zfsvfs1 = tmpzfsvfs;
992 	}
993 
994 	error = zfs_enter(zfsvfs1, tag);
995 	if (error != 0)
996 		return (error);
997 	if (zfsvfs1 != zfsvfs2) {
998 		error = zfs_enter(zfsvfs2, tag);
999 		if (error != 0) {
1000 			zfs_exit(zfsvfs1, tag);
1001 			return (error);
1002 		}
1003 	}
1004 
1005 	return (0);
1006 }
1007 
1008 static void
1009 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1010 {
1011 
1012 	zfs_exit(zfsvfs1, tag);
1013 	if (zfsvfs1 != zfsvfs2)
1014 		zfs_exit(zfsvfs2, tag);
1015 }
1016 
1017 /*
1018  * We split each clone request in chunks that can fit into a single ZIL
1019  * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1020  * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1021  * us room for storing 1022 block pointers.
1022  *
1023  * On success, the function return the number of bytes copied in *lenp.
1024  * Note, it doesn't return how much bytes are left to be copied.
1025  * On errors which are caused by any file system limitations or
1026  * brt limitations `EINVAL` is returned. In the most cases a user
1027  * requested bad parameters, it could be possible to clone the file but
1028  * some parameters don't match the requirements.
1029  */
1030 int
1031 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1032     uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1033 {
1034 	zfsvfs_t	*inzfsvfs, *outzfsvfs;
1035 	objset_t	*inos, *outos;
1036 	zfs_locked_range_t *inlr, *outlr;
1037 	dmu_buf_impl_t	*db;
1038 	dmu_tx_t	*tx;
1039 	zilog_t		*zilog;
1040 	uint64_t	inoff, outoff, len, done;
1041 	uint64_t	outsize, size;
1042 	int		error;
1043 	int		count = 0;
1044 	sa_bulk_attr_t	bulk[3];
1045 	uint64_t	mtime[2], ctime[2];
1046 	uint64_t	uid, gid, projid;
1047 	blkptr_t	*bps;
1048 	size_t		maxblocks, nbps;
1049 	uint_t		inblksz;
1050 	uint64_t	clear_setid_bits_txg = 0;
1051 
1052 	inoff = *inoffp;
1053 	outoff = *outoffp;
1054 	len = *lenp;
1055 	done = 0;
1056 
1057 	inzfsvfs = ZTOZSB(inzp);
1058 	outzfsvfs = ZTOZSB(outzp);
1059 
1060 	/*
1061 	 * We need to call zfs_enter() potentially on two different datasets,
1062 	 * so we need a dedicated function for that.
1063 	 */
1064 	error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1065 	if (error != 0)
1066 		return (error);
1067 
1068 	inos = inzfsvfs->z_os;
1069 	outos = outzfsvfs->z_os;
1070 
1071 	/*
1072 	 * Both source and destination have to belong to the same storage pool.
1073 	 */
1074 	if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1075 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1076 		return (SET_ERROR(EXDEV));
1077 	}
1078 
1079 	/*
1080 	 * outos and inos belongs to the same storage pool.
1081 	 * see a few lines above, only one check.
1082 	 */
1083 	if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1084 	    SPA_FEATURE_BLOCK_CLONING)) {
1085 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1086 		return (SET_ERROR(EOPNOTSUPP));
1087 	}
1088 
1089 	ASSERT(!outzfsvfs->z_replay);
1090 
1091 	/*
1092 	 * Block cloning from an unencrypted dataset into an encrypted
1093 	 * dataset and vice versa is not supported.
1094 	 */
1095 	if (inos->os_encrypted != outos->os_encrypted) {
1096 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1097 		return (SET_ERROR(EXDEV));
1098 	}
1099 
1100 	error = zfs_verify_zp(inzp);
1101 	if (error == 0)
1102 		error = zfs_verify_zp(outzp);
1103 	if (error != 0) {
1104 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1105 		return (error);
1106 	}
1107 
1108 	/*
1109 	 * We don't copy source file's flags that's why we don't allow to clone
1110 	 * files that are in quarantine.
1111 	 */
1112 	if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1113 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1114 		return (SET_ERROR(EACCES));
1115 	}
1116 
1117 	if (inoff >= inzp->z_size) {
1118 		*lenp = 0;
1119 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1120 		return (0);
1121 	}
1122 	if (len > inzp->z_size - inoff) {
1123 		len = inzp->z_size - inoff;
1124 	}
1125 	if (len == 0) {
1126 		*lenp = 0;
1127 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1128 		return (0);
1129 	}
1130 
1131 	/*
1132 	 * Callers might not be able to detect properly that we are read-only,
1133 	 * so check it explicitly here.
1134 	 */
1135 	if (zfs_is_readonly(outzfsvfs)) {
1136 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1137 		return (SET_ERROR(EROFS));
1138 	}
1139 
1140 	/*
1141 	 * If immutable or not appending then return EPERM.
1142 	 * Intentionally allow ZFS_READONLY through here.
1143 	 * See zfs_zaccess_common()
1144 	 */
1145 	if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1146 		zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1147 		return (SET_ERROR(EPERM));
1148 	}
1149 
1150 	/*
1151 	 * No overlapping if we are cloning within the same file.
1152 	 */
1153 	if (inzp == outzp) {
1154 		if (inoff < outoff + len && outoff < inoff + len) {
1155 			zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1156 			return (SET_ERROR(EINVAL));
1157 		}
1158 	}
1159 
1160 	/*
1161 	 * Maintain predictable lock order.
1162 	 */
1163 	if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1164 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1165 		    RL_READER);
1166 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1167 		    RL_WRITER);
1168 	} else {
1169 		outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1170 		    RL_WRITER);
1171 		inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1172 		    RL_READER);
1173 	}
1174 
1175 	inblksz = inzp->z_blksz;
1176 
1177 	/*
1178 	 * We cannot clone into files with different block size if we can't
1179 	 * grow it (block size is already bigger or more than one block).
1180 	 */
1181 	if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
1182 	    outzp->z_size > inblksz)) {
1183 		error = SET_ERROR(EINVAL);
1184 		goto unlock;
1185 	}
1186 
1187 	/*
1188 	 * Block size must be power-of-2 if destination offset != 0.
1189 	 * There can be no multiple blocks of non-power-of-2 size.
1190 	 */
1191 	if (outoff != 0 && !ISP2(inblksz)) {
1192 		error = SET_ERROR(EINVAL);
1193 		goto unlock;
1194 	}
1195 
1196 	/*
1197 	 * Offsets and len must be at block boundries.
1198 	 */
1199 	if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1200 		error = SET_ERROR(EINVAL);
1201 		goto unlock;
1202 	}
1203 	/*
1204 	 * Length must be multipe of blksz, except for the end of the file.
1205 	 */
1206 	if ((len % inblksz) != 0 &&
1207 	    (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1208 		error = SET_ERROR(EINVAL);
1209 		goto unlock;
1210 	}
1211 
1212 	/*
1213 	 * If we are copying only one block and it is smaller than recordsize
1214 	 * property, do not allow destination to grow beyond one block if it
1215 	 * is not there yet.  Otherwise the destination will get stuck with
1216 	 * that block size forever, that can be as small as 512 bytes, no
1217 	 * matter how big the destination grow later.
1218 	 */
1219 	if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
1220 	    outzp->z_size <= inblksz && outoff + len > inblksz) {
1221 		error = SET_ERROR(EINVAL);
1222 		goto unlock;
1223 	}
1224 
1225 	error = zn_rlimit_fsize(outoff + len);
1226 	if (error != 0) {
1227 		goto unlock;
1228 	}
1229 
1230 	if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1231 		error = SET_ERROR(EFBIG);
1232 		goto unlock;
1233 	}
1234 
1235 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1236 	    &mtime, 16);
1237 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1238 	    &ctime, 16);
1239 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1240 	    &outzp->z_size, 8);
1241 
1242 	zilog = outzfsvfs->z_log;
1243 	maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1244 	    sizeof (bps[0]);
1245 
1246 	uid = KUID_TO_SUID(ZTOUID(outzp));
1247 	gid = KGID_TO_SGID(ZTOGID(outzp));
1248 	projid = outzp->z_projid;
1249 
1250 	bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1251 
1252 	/*
1253 	 * Clone the file in reasonable size chunks.  Each chunk is cloned
1254 	 * in a separate transaction; this keeps the intent log records small
1255 	 * and allows us to do more fine-grained space accounting.
1256 	 */
1257 	while (len > 0) {
1258 		size = MIN(inblksz * maxblocks, len);
1259 
1260 		if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1261 		    uid) ||
1262 		    zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1263 		    gid) ||
1264 		    (projid != ZFS_DEFAULT_PROJID &&
1265 		    zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1266 		    projid))) {
1267 			error = SET_ERROR(EDQUOT);
1268 			break;
1269 		}
1270 
1271 		nbps = maxblocks;
1272 		error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
1273 		    &nbps);
1274 		if (error != 0) {
1275 			/*
1276 			 * If we are trying to clone a block that was created
1277 			 * in the current transaction group, error will be
1278 			 * EAGAIN here, which we can just return to the caller
1279 			 * so it can fallback if it likes.
1280 			 */
1281 			break;
1282 		}
1283 		/*
1284 		 * Encrypted data is fine as long as it comes from the same
1285 		 * dataset.
1286 		 * TODO: We want to extend it in the future to allow cloning to
1287 		 * datasets with the same keys, like clones or to be able to
1288 		 * clone a file from a snapshot of an encrypted dataset into the
1289 		 * dataset itself.
1290 		 */
1291 		if (BP_IS_PROTECTED(&bps[0])) {
1292 			if (inzfsvfs != outzfsvfs) {
1293 				error = SET_ERROR(EXDEV);
1294 				break;
1295 			}
1296 		}
1297 
1298 		/*
1299 		 * Start a transaction.
1300 		 */
1301 		tx = dmu_tx_create(outos);
1302 		dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1303 		db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1304 		DB_DNODE_ENTER(db);
1305 		dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1306 		DB_DNODE_EXIT(db);
1307 		zfs_sa_upgrade_txholds(tx, outzp);
1308 		error = dmu_tx_assign(tx, TXG_WAIT);
1309 		if (error != 0) {
1310 			dmu_tx_abort(tx);
1311 			break;
1312 		}
1313 
1314 		/*
1315 		 * Copy source znode's block size. This only happens on the
1316 		 * first iteration since zfs_rangelock_reduce() will shrink down
1317 		 * lr_len to the appropriate size.
1318 		 */
1319 		if (outlr->lr_length == UINT64_MAX) {
1320 			zfs_grow_blocksize(outzp, inblksz, tx);
1321 			/*
1322 			 * Round range lock up to the block boundary, so we
1323 			 * prevent appends until we are done.
1324 			 */
1325 			zfs_rangelock_reduce(outlr, outoff,
1326 			    ((len - 1) / inblksz + 1) * inblksz);
1327 		}
1328 
1329 		error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1330 		    bps, nbps, B_FALSE);
1331 		if (error != 0) {
1332 			dmu_tx_commit(tx);
1333 			break;
1334 		}
1335 
1336 		zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1337 		    &clear_setid_bits_txg, tx);
1338 
1339 		zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1340 
1341 		/*
1342 		 * Update the file size (zp_size) if it has changed;
1343 		 * account for possible concurrent updates.
1344 		 */
1345 		while ((outsize = outzp->z_size) < outoff + size) {
1346 			(void) atomic_cas_64(&outzp->z_size, outsize,
1347 			    outoff + size);
1348 		}
1349 
1350 		error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1351 
1352 		zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1353 		    size, inblksz, bps, nbps);
1354 
1355 		dmu_tx_commit(tx);
1356 
1357 		if (error != 0)
1358 			break;
1359 
1360 		inoff += size;
1361 		outoff += size;
1362 		len -= size;
1363 		done += size;
1364 	}
1365 
1366 	vmem_free(bps, sizeof (bps[0]) * maxblocks);
1367 	zfs_znode_update_vfs(outzp);
1368 
1369 unlock:
1370 	zfs_rangelock_exit(outlr);
1371 	zfs_rangelock_exit(inlr);
1372 
1373 	if (done > 0) {
1374 		/*
1375 		 * If we have made at least partial progress, reset the error.
1376 		 */
1377 		error = 0;
1378 
1379 		ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1380 
1381 		if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1382 			zil_commit(zilog, outzp->z_id);
1383 		}
1384 
1385 		*inoffp += done;
1386 		*outoffp += done;
1387 		*lenp = done;
1388 	} else {
1389 		/*
1390 		 * If we made no progress, there must be a good reason.
1391 		 * EOF is handled explicitly above, before the loop.
1392 		 */
1393 		ASSERT3S(error, !=, 0);
1394 	}
1395 
1396 	zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1397 
1398 	return (error);
1399 }
1400 
1401 /*
1402  * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1403  * but we cannot do that, because when replaying we don't have source znode
1404  * available. This is why we need a dedicated replay function.
1405  */
1406 int
1407 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1408     const blkptr_t *bps, size_t nbps)
1409 {
1410 	zfsvfs_t	*zfsvfs;
1411 	dmu_buf_impl_t	*db;
1412 	dmu_tx_t	*tx;
1413 	int		error;
1414 	int		count = 0;
1415 	sa_bulk_attr_t	bulk[3];
1416 	uint64_t	mtime[2], ctime[2];
1417 
1418 	ASSERT3U(off, <, MAXOFFSET_T);
1419 	ASSERT3U(len, >, 0);
1420 	ASSERT3U(nbps, >, 0);
1421 
1422 	zfsvfs = ZTOZSB(zp);
1423 
1424 	ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1425 	    SPA_FEATURE_BLOCK_CLONING));
1426 
1427 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1428 		return (error);
1429 
1430 	ASSERT(zfsvfs->z_replay);
1431 	ASSERT(!zfs_is_readonly(zfsvfs));
1432 
1433 	if ((off % blksz) != 0) {
1434 		zfs_exit(zfsvfs, FTAG);
1435 		return (SET_ERROR(EINVAL));
1436 	}
1437 
1438 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1439 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1440 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1441 	    &zp->z_size, 8);
1442 
1443 	/*
1444 	 * Start a transaction.
1445 	 */
1446 	tx = dmu_tx_create(zfsvfs->z_os);
1447 
1448 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1449 	db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1450 	DB_DNODE_ENTER(db);
1451 	dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1452 	DB_DNODE_EXIT(db);
1453 	zfs_sa_upgrade_txholds(tx, zp);
1454 	error = dmu_tx_assign(tx, TXG_WAIT);
1455 	if (error != 0) {
1456 		dmu_tx_abort(tx);
1457 		zfs_exit(zfsvfs, FTAG);
1458 		return (error);
1459 	}
1460 
1461 	if (zp->z_blksz < blksz)
1462 		zfs_grow_blocksize(zp, blksz, tx);
1463 
1464 	dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps, B_TRUE);
1465 
1466 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1467 
1468 	if (zp->z_size < off + len)
1469 		zp->z_size = off + len;
1470 
1471 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1472 
1473 	/*
1474 	 * zil_replaying() not only check if we are replaying ZIL, but also
1475 	 * updates the ZIL header to record replay progress.
1476 	 */
1477 	VERIFY(zil_replaying(zfsvfs->z_log, tx));
1478 
1479 	dmu_tx_commit(tx);
1480 
1481 	zfs_znode_update_vfs(zp);
1482 
1483 	zfs_exit(zfsvfs, FTAG);
1484 
1485 	return (error);
1486 }
1487 
1488 EXPORT_SYMBOL(zfs_access);
1489 EXPORT_SYMBOL(zfs_fsync);
1490 EXPORT_SYMBOL(zfs_holey);
1491 EXPORT_SYMBOL(zfs_read);
1492 EXPORT_SYMBOL(zfs_write);
1493 EXPORT_SYMBOL(zfs_getsecattr);
1494 EXPORT_SYMBOL(zfs_setsecattr);
1495 EXPORT_SYMBOL(zfs_clone_range);
1496 EXPORT_SYMBOL(zfs_clone_range_replay);
1497 
1498 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
1499 	"Bytes to read per chunk");
1500