1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 /* Portions Copyright 2007 Jeremy Teo */ 30 /* Portions Copyright 2010 Robert Milkowski */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/time.h> 35 #include <sys/sysmacros.h> 36 #include <sys/vfs.h> 37 #include <sys/uio_impl.h> 38 #include <sys/file.h> 39 #include <sys/stat.h> 40 #include <sys/kmem.h> 41 #include <sys/cmn_err.h> 42 #include <sys/errno.h> 43 #include <sys/zfs_dir.h> 44 #include <sys/zfs_acl.h> 45 #include <sys/zfs_ioctl.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/dmu.h> 48 #include <sys/dmu_objset.h> 49 #include <sys/spa.h> 50 #include <sys/txg.h> 51 #include <sys/dbuf.h> 52 #include <sys/policy.h> 53 #include <sys/zfs_vnops.h> 54 #include <sys/zfs_quota.h> 55 #include <sys/zfs_vfsops.h> 56 #include <sys/zfs_znode.h> 57 58 59 static ulong_t zfs_fsync_sync_cnt = 4; 60 61 int 62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr) 63 { 64 zfsvfs_t *zfsvfs = ZTOZSB(zp); 65 66 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 67 68 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 69 ZFS_ENTER(zfsvfs); 70 ZFS_VERIFY_ZP(zp); 71 zil_commit(zfsvfs->z_log, zp->z_id); 72 ZFS_EXIT(zfsvfs); 73 } 74 tsd_set(zfs_fsyncer_key, NULL); 75 76 return (0); 77 } 78 79 80 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 81 /* 82 * Lseek support for finding holes (cmd == SEEK_HOLE) and 83 * data (cmd == SEEK_DATA). "off" is an in/out parameter. 84 */ 85 static int 86 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off) 87 { 88 zfs_locked_range_t *lr; 89 uint64_t noff = (uint64_t)*off; /* new offset */ 90 uint64_t file_sz; 91 int error; 92 boolean_t hole; 93 94 file_sz = zp->z_size; 95 if (noff >= file_sz) { 96 return (SET_ERROR(ENXIO)); 97 } 98 99 if (cmd == F_SEEK_HOLE) 100 hole = B_TRUE; 101 else 102 hole = B_FALSE; 103 104 /* Flush any mmap()'d data to disk */ 105 if (zn_has_cached_data(zp)) 106 zn_flush_cached_data(zp, B_FALSE); 107 108 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER); 109 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff); 110 zfs_rangelock_exit(lr); 111 112 if (error == ESRCH) 113 return (SET_ERROR(ENXIO)); 114 115 /* File was dirty, so fall back to using generic logic */ 116 if (error == EBUSY) { 117 if (hole) 118 *off = file_sz; 119 120 return (0); 121 } 122 123 /* 124 * We could find a hole that begins after the logical end-of-file, 125 * because dmu_offset_next() only works on whole blocks. If the 126 * EOF falls mid-block, then indicate that the "virtual hole" 127 * at the end of the file begins at the logical EOF, rather than 128 * at the end of the last block. 129 */ 130 if (noff > file_sz) { 131 ASSERT(hole); 132 noff = file_sz; 133 } 134 135 if (noff < *off) 136 return (error); 137 *off = noff; 138 return (error); 139 } 140 141 int 142 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off) 143 { 144 zfsvfs_t *zfsvfs = ZTOZSB(zp); 145 int error; 146 147 ZFS_ENTER(zfsvfs); 148 ZFS_VERIFY_ZP(zp); 149 150 error = zfs_holey_common(zp, cmd, off); 151 152 ZFS_EXIT(zfsvfs); 153 return (error); 154 } 155 #endif /* SEEK_HOLE && SEEK_DATA */ 156 157 int 158 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr) 159 { 160 zfsvfs_t *zfsvfs = ZTOZSB(zp); 161 int error; 162 163 ZFS_ENTER(zfsvfs); 164 ZFS_VERIFY_ZP(zp); 165 166 if (flag & V_ACE_MASK) 167 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 168 else 169 error = zfs_zaccess_rwx(zp, mode, flag, cr); 170 171 ZFS_EXIT(zfsvfs); 172 return (error); 173 } 174 175 static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */ 176 177 /* 178 * Read bytes from specified file into supplied buffer. 179 * 180 * IN: zp - inode of file to be read from. 181 * uio - structure supplying read location, range info, 182 * and return buffer. 183 * ioflag - O_SYNC flags; used to provide FRSYNC semantics. 184 * O_DIRECT flag; used to bypass page cache. 185 * cr - credentials of caller. 186 * 187 * OUT: uio - updated offset and range, buffer filled. 188 * 189 * RETURN: 0 on success, error code on failure. 190 * 191 * Side Effects: 192 * inode - atime updated if byte count > 0 193 */ 194 int 195 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 196 { 197 (void) cr; 198 int error = 0; 199 boolean_t frsync = B_FALSE; 200 201 zfsvfs_t *zfsvfs = ZTOZSB(zp); 202 ZFS_ENTER(zfsvfs); 203 ZFS_VERIFY_ZP(zp); 204 205 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 206 ZFS_EXIT(zfsvfs); 207 return (SET_ERROR(EACCES)); 208 } 209 210 /* We don't copy out anything useful for directories. */ 211 if (Z_ISDIR(ZTOTYPE(zp))) { 212 ZFS_EXIT(zfsvfs); 213 return (SET_ERROR(EISDIR)); 214 } 215 216 /* 217 * Validate file offset 218 */ 219 if (zfs_uio_offset(uio) < (offset_t)0) { 220 ZFS_EXIT(zfsvfs); 221 return (SET_ERROR(EINVAL)); 222 } 223 224 /* 225 * Fasttrack empty reads 226 */ 227 if (zfs_uio_resid(uio) == 0) { 228 ZFS_EXIT(zfsvfs); 229 return (0); 230 } 231 232 #ifdef FRSYNC 233 /* 234 * If we're in FRSYNC mode, sync out this znode before reading it. 235 * Only do this for non-snapshots. 236 * 237 * Some platforms do not support FRSYNC and instead map it 238 * to O_SYNC, which results in unnecessary calls to zil_commit. We 239 * only honor FRSYNC requests on platforms which support it. 240 */ 241 frsync = !!(ioflag & FRSYNC); 242 #endif 243 if (zfsvfs->z_log && 244 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 245 zil_commit(zfsvfs->z_log, zp->z_id); 246 247 /* 248 * Lock the range against changes. 249 */ 250 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, 251 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER); 252 253 /* 254 * If we are reading past end-of-file we can skip 255 * to the end; but we might still need to set atime. 256 */ 257 if (zfs_uio_offset(uio) >= zp->z_size) { 258 error = 0; 259 goto out; 260 } 261 262 ASSERT(zfs_uio_offset(uio) < zp->z_size); 263 #if defined(__linux__) 264 ssize_t start_offset = zfs_uio_offset(uio); 265 #endif 266 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio)); 267 ssize_t start_resid = n; 268 269 while (n > 0) { 270 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size - 271 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size)); 272 #ifdef UIO_NOCOPY 273 if (zfs_uio_segflg(uio) == UIO_NOCOPY) 274 error = mappedread_sf(zp, nbytes, uio); 275 else 276 #endif 277 if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) { 278 error = mappedread(zp, nbytes, uio); 279 } else { 280 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 281 uio, nbytes); 282 } 283 284 if (error) { 285 /* convert checksum errors into IO errors */ 286 if (error == ECKSUM) 287 error = SET_ERROR(EIO); 288 289 #if defined(__linux__) 290 /* 291 * if we actually read some bytes, bubbling EFAULT 292 * up to become EAGAIN isn't what we want here... 293 * 294 * ...on Linux, at least. On FBSD, doing this breaks. 295 */ 296 if (error == EFAULT && 297 (zfs_uio_offset(uio) - start_offset) != 0) 298 error = 0; 299 #endif 300 break; 301 } 302 303 n -= nbytes; 304 } 305 306 int64_t nread = start_resid - n; 307 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread); 308 task_io_account_read(nread); 309 out: 310 zfs_rangelock_exit(lr); 311 312 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 313 ZFS_EXIT(zfsvfs); 314 return (error); 315 } 316 317 static void 318 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr, 319 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx) 320 { 321 zilog_t *zilog = zfsvfs->z_log; 322 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 323 324 ASSERT(clear_setid_bits_txgp != NULL); 325 ASSERT(tx != NULL); 326 327 /* 328 * Clear Set-UID/Set-GID bits on successful write if not 329 * privileged and at least one of the execute bits is set. 330 * 331 * It would be nice to do this after all writes have 332 * been done, but that would still expose the ISUID/ISGID 333 * to another app after the partial write is committed. 334 * 335 * Note: we don't call zfs_fuid_map_id() here because 336 * user 0 is not an ephemeral uid. 337 */ 338 mutex_enter(&zp->z_acl_lock); 339 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && 340 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 341 secpolicy_vnode_setid_retain(zp, cr, 342 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) { 343 uint64_t newmode; 344 345 zp->z_mode &= ~(S_ISUID | S_ISGID); 346 newmode = zp->z_mode; 347 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 348 (void *)&newmode, sizeof (uint64_t), tx); 349 350 mutex_exit(&zp->z_acl_lock); 351 352 /* 353 * Make sure SUID/SGID bits will be removed when we replay the 354 * log. If the setid bits are keep coming back, don't log more 355 * than one TX_SETATTR per transaction group. 356 */ 357 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) { 358 vattr_t va = {0}; 359 360 va.va_mask = AT_MODE; 361 va.va_nodeid = zp->z_id; 362 va.va_mode = newmode; 363 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va, AT_MODE, 364 NULL); 365 *clear_setid_bits_txgp = dmu_tx_get_txg(tx); 366 } 367 } else { 368 mutex_exit(&zp->z_acl_lock); 369 } 370 } 371 372 /* 373 * Write the bytes to a file. 374 * 375 * IN: zp - znode of file to be written to. 376 * uio - structure supplying write location, range info, 377 * and data buffer. 378 * ioflag - O_APPEND flag set if in append mode. 379 * O_DIRECT flag; used to bypass page cache. 380 * cr - credentials of caller. 381 * 382 * OUT: uio - updated offset and range. 383 * 384 * RETURN: 0 if success 385 * error code if failure 386 * 387 * Timestamps: 388 * ip - ctime|mtime updated if byte count > 0 389 */ 390 int 391 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 392 { 393 int error = 0, error1; 394 ssize_t start_resid = zfs_uio_resid(uio); 395 uint64_t clear_setid_bits_txg = 0; 396 397 /* 398 * Fasttrack empty write 399 */ 400 ssize_t n = start_resid; 401 if (n == 0) 402 return (0); 403 404 zfsvfs_t *zfsvfs = ZTOZSB(zp); 405 ZFS_ENTER(zfsvfs); 406 ZFS_VERIFY_ZP(zp); 407 408 sa_bulk_attr_t bulk[4]; 409 int count = 0; 410 uint64_t mtime[2], ctime[2]; 411 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 412 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 413 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 414 &zp->z_size, 8); 415 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 416 &zp->z_pflags, 8); 417 418 /* 419 * Callers might not be able to detect properly that we are read-only, 420 * so check it explicitly here. 421 */ 422 if (zfs_is_readonly(zfsvfs)) { 423 ZFS_EXIT(zfsvfs); 424 return (SET_ERROR(EROFS)); 425 } 426 427 /* 428 * If immutable or not appending then return EPERM. 429 * Intentionally allow ZFS_READONLY through here. 430 * See zfs_zaccess_common() 431 */ 432 if ((zp->z_pflags & ZFS_IMMUTABLE) || 433 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) && 434 (zfs_uio_offset(uio) < zp->z_size))) { 435 ZFS_EXIT(zfsvfs); 436 return (SET_ERROR(EPERM)); 437 } 438 439 /* 440 * Validate file offset 441 */ 442 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio); 443 if (woff < 0) { 444 ZFS_EXIT(zfsvfs); 445 return (SET_ERROR(EINVAL)); 446 } 447 448 const uint64_t max_blksz = zfsvfs->z_max_blksz; 449 450 /* 451 * Pre-fault the pages to ensure slow (eg NFS) pages 452 * don't hold up txg. 453 * Skip this if uio contains loaned arc_buf. 454 */ 455 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 456 ZFS_EXIT(zfsvfs); 457 return (SET_ERROR(EFAULT)); 458 } 459 460 /* 461 * If in append mode, set the io offset pointer to eof. 462 */ 463 zfs_locked_range_t *lr; 464 if (ioflag & O_APPEND) { 465 /* 466 * Obtain an appending range lock to guarantee file append 467 * semantics. We reset the write offset once we have the lock. 468 */ 469 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 470 woff = lr->lr_offset; 471 if (lr->lr_length == UINT64_MAX) { 472 /* 473 * We overlocked the file because this write will cause 474 * the file block size to increase. 475 * Note that zp_size cannot change with this lock held. 476 */ 477 woff = zp->z_size; 478 } 479 zfs_uio_setoffset(uio, woff); 480 } else { 481 /* 482 * Note that if the file block size will change as a result of 483 * this write, then this range lock will lock the entire file 484 * so that we can re-write the block safely. 485 */ 486 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 487 } 488 489 if (zn_rlimit_fsize(zp, uio)) { 490 zfs_rangelock_exit(lr); 491 ZFS_EXIT(zfsvfs); 492 return (SET_ERROR(EFBIG)); 493 } 494 495 const rlim64_t limit = MAXOFFSET_T; 496 497 if (woff >= limit) { 498 zfs_rangelock_exit(lr); 499 ZFS_EXIT(zfsvfs); 500 return (SET_ERROR(EFBIG)); 501 } 502 503 if (n > limit - woff) 504 n = limit - woff; 505 506 uint64_t end_size = MAX(zp->z_size, woff + n); 507 zilog_t *zilog = zfsvfs->z_log; 508 509 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 510 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp)); 511 const uint64_t projid = zp->z_projid; 512 513 /* 514 * Write the file in reasonable size chunks. Each chunk is written 515 * in a separate transaction; this keeps the intent log records small 516 * and allows us to do more fine-grained space accounting. 517 */ 518 while (n > 0) { 519 woff = zfs_uio_offset(uio); 520 521 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) || 522 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) || 523 (projid != ZFS_DEFAULT_PROJID && 524 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 525 projid))) { 526 error = SET_ERROR(EDQUOT); 527 break; 528 } 529 530 arc_buf_t *abuf = NULL; 531 if (n >= max_blksz && woff >= zp->z_size && 532 P2PHASE(woff, max_blksz) == 0 && 533 zp->z_blksz == max_blksz) { 534 /* 535 * This write covers a full block. "Borrow" a buffer 536 * from the dmu so that we can fill it before we enter 537 * a transaction. This avoids the possibility of 538 * holding up the transaction if the data copy hangs 539 * up on a pagefault (e.g., from an NFS server mapping). 540 */ 541 size_t cbytes; 542 543 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 544 max_blksz); 545 ASSERT(abuf != NULL); 546 ASSERT(arc_buf_size(abuf) == max_blksz); 547 if ((error = zfs_uiocopy(abuf->b_data, max_blksz, 548 UIO_WRITE, uio, &cbytes))) { 549 dmu_return_arcbuf(abuf); 550 break; 551 } 552 ASSERT3S(cbytes, ==, max_blksz); 553 } 554 555 /* 556 * Start a transaction. 557 */ 558 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 559 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 560 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); 561 DB_DNODE_ENTER(db); 562 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, 563 MIN(n, max_blksz)); 564 DB_DNODE_EXIT(db); 565 zfs_sa_upgrade_txholds(tx, zp); 566 error = dmu_tx_assign(tx, TXG_WAIT); 567 if (error) { 568 dmu_tx_abort(tx); 569 if (abuf != NULL) 570 dmu_return_arcbuf(abuf); 571 break; 572 } 573 574 /* 575 * NB: We must call zfs_clear_setid_bits_if_necessary before 576 * committing the transaction! 577 */ 578 579 /* 580 * If rangelock_enter() over-locked we grow the blocksize 581 * and then reduce the lock range. This will only happen 582 * on the first iteration since rangelock_reduce() will 583 * shrink down lr_length to the appropriate size. 584 */ 585 if (lr->lr_length == UINT64_MAX) { 586 uint64_t new_blksz; 587 588 if (zp->z_blksz > max_blksz) { 589 /* 590 * File's blocksize is already larger than the 591 * "recordsize" property. Only let it grow to 592 * the next power of 2. 593 */ 594 ASSERT(!ISP2(zp->z_blksz)); 595 new_blksz = MIN(end_size, 596 1 << highbit64(zp->z_blksz)); 597 } else { 598 new_blksz = MIN(end_size, max_blksz); 599 } 600 zfs_grow_blocksize(zp, new_blksz, tx); 601 zfs_rangelock_reduce(lr, woff, n); 602 } 603 604 /* 605 * XXX - should we really limit each write to z_max_blksz? 606 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 607 */ 608 const ssize_t nbytes = 609 MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 610 611 ssize_t tx_bytes; 612 if (abuf == NULL) { 613 tx_bytes = zfs_uio_resid(uio); 614 zfs_uio_fault_disable(uio, B_TRUE); 615 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 616 uio, nbytes, tx); 617 zfs_uio_fault_disable(uio, B_FALSE); 618 #ifdef __linux__ 619 if (error == EFAULT) { 620 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 621 cr, &clear_setid_bits_txg, tx); 622 dmu_tx_commit(tx); 623 /* 624 * Account for partial writes before 625 * continuing the loop. 626 * Update needs to occur before the next 627 * zfs_uio_prefaultpages, or prefaultpages may 628 * error, and we may break the loop early. 629 */ 630 if (tx_bytes != zfs_uio_resid(uio)) 631 n -= tx_bytes - zfs_uio_resid(uio); 632 if (zfs_uio_prefaultpages(MIN(n, max_blksz), 633 uio)) { 634 break; 635 } 636 continue; 637 } 638 #endif 639 /* 640 * On FreeBSD, EFAULT should be propagated back to the 641 * VFS, which will handle faulting and will retry. 642 */ 643 if (error != 0 && error != EFAULT) { 644 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 645 cr, &clear_setid_bits_txg, tx); 646 dmu_tx_commit(tx); 647 break; 648 } 649 tx_bytes -= zfs_uio_resid(uio); 650 } else { 651 /* Implied by abuf != NULL: */ 652 ASSERT3S(n, >=, max_blksz); 653 ASSERT0(P2PHASE(woff, max_blksz)); 654 /* 655 * We can simplify nbytes to MIN(n, max_blksz) since 656 * P2PHASE(woff, max_blksz) is 0, and knowing 657 * n >= max_blksz lets us simplify further: 658 */ 659 ASSERT3S(nbytes, ==, max_blksz); 660 /* 661 * Thus, we're writing a full block at a block-aligned 662 * offset and extending the file past EOF. 663 * 664 * dmu_assign_arcbuf_by_dbuf() will directly assign the 665 * arc buffer to a dbuf. 666 */ 667 error = dmu_assign_arcbuf_by_dbuf( 668 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 669 if (error != 0) { 670 /* 671 * XXX This might not be necessary if 672 * dmu_assign_arcbuf_by_dbuf is guaranteed 673 * to be atomic. 674 */ 675 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 676 cr, &clear_setid_bits_txg, tx); 677 dmu_return_arcbuf(abuf); 678 dmu_tx_commit(tx); 679 break; 680 } 681 ASSERT3S(nbytes, <=, zfs_uio_resid(uio)); 682 zfs_uioskip(uio, nbytes); 683 tx_bytes = nbytes; 684 } 685 if (tx_bytes && zn_has_cached_data(zp) && 686 !(ioflag & O_DIRECT)) { 687 update_pages(zp, woff, tx_bytes, zfsvfs->z_os); 688 } 689 690 /* 691 * If we made no progress, we're done. If we made even 692 * partial progress, update the znode and ZIL accordingly. 693 */ 694 if (tx_bytes == 0) { 695 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 696 (void *)&zp->z_size, sizeof (uint64_t), tx); 697 dmu_tx_commit(tx); 698 ASSERT(error != 0); 699 break; 700 } 701 702 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, 703 &clear_setid_bits_txg, tx); 704 705 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 706 707 /* 708 * Update the file size (zp_size) if it has changed; 709 * account for possible concurrent updates. 710 */ 711 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) { 712 (void) atomic_cas_64(&zp->z_size, end_size, 713 zfs_uio_offset(uio)); 714 ASSERT(error == 0 || error == EFAULT); 715 } 716 /* 717 * If we are replaying and eof is non zero then force 718 * the file size to the specified eof. Note, there's no 719 * concurrency during replay. 720 */ 721 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 722 zp->z_size = zfsvfs->z_replay_eof; 723 724 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 725 if (error1 != 0) 726 /* Avoid clobbering EFAULT. */ 727 error = error1; 728 729 /* 730 * NB: During replay, the TX_SETATTR record logged by 731 * zfs_clear_setid_bits_if_necessary must precede any of 732 * the TX_WRITE records logged here. 733 */ 734 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag, 735 NULL, NULL); 736 737 dmu_tx_commit(tx); 738 739 if (error != 0) 740 break; 741 ASSERT3S(tx_bytes, ==, nbytes); 742 n -= nbytes; 743 744 if (n > 0) { 745 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 746 error = SET_ERROR(EFAULT); 747 break; 748 } 749 } 750 } 751 752 zfs_znode_update_vfs(zp); 753 zfs_rangelock_exit(lr); 754 755 /* 756 * If we're in replay mode, or we made no progress, or the 757 * uio data is inaccessible return an error. Otherwise, it's 758 * at least a partial write, so it's successful. 759 */ 760 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid || 761 error == EFAULT) { 762 ZFS_EXIT(zfsvfs); 763 return (error); 764 } 765 766 if (ioflag & (O_SYNC | O_DSYNC) || 767 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 768 zil_commit(zilog, zp->z_id); 769 770 const int64_t nwritten = start_resid - zfs_uio_resid(uio); 771 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten); 772 task_io_account_write(nwritten); 773 774 ZFS_EXIT(zfsvfs); 775 return (0); 776 } 777 778 int 779 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 780 { 781 zfsvfs_t *zfsvfs = ZTOZSB(zp); 782 int error; 783 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 784 785 ZFS_ENTER(zfsvfs); 786 ZFS_VERIFY_ZP(zp); 787 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 788 ZFS_EXIT(zfsvfs); 789 790 return (error); 791 } 792 793 int 794 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 795 { 796 zfsvfs_t *zfsvfs = ZTOZSB(zp); 797 int error; 798 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 799 zilog_t *zilog = zfsvfs->z_log; 800 801 ZFS_ENTER(zfsvfs); 802 ZFS_VERIFY_ZP(zp); 803 804 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 805 806 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 807 zil_commit(zilog, 0); 808 809 ZFS_EXIT(zfsvfs); 810 return (error); 811 } 812 813 #ifdef ZFS_DEBUG 814 static int zil_fault_io = 0; 815 #endif 816 817 static void zfs_get_done(zgd_t *zgd, int error); 818 819 /* 820 * Get data to generate a TX_WRITE intent log record. 821 */ 822 int 823 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf, 824 struct lwb *lwb, zio_t *zio) 825 { 826 zfsvfs_t *zfsvfs = arg; 827 objset_t *os = zfsvfs->z_os; 828 znode_t *zp; 829 uint64_t object = lr->lr_foid; 830 uint64_t offset = lr->lr_offset; 831 uint64_t size = lr->lr_length; 832 dmu_buf_t *db; 833 zgd_t *zgd; 834 int error = 0; 835 uint64_t zp_gen; 836 837 ASSERT3P(lwb, !=, NULL); 838 ASSERT3P(zio, !=, NULL); 839 ASSERT3U(size, !=, 0); 840 841 /* 842 * Nothing to do if the file has been removed 843 */ 844 if (zfs_zget(zfsvfs, object, &zp) != 0) 845 return (SET_ERROR(ENOENT)); 846 if (zp->z_unlinked) { 847 /* 848 * Release the vnode asynchronously as we currently have the 849 * txg stopped from syncing. 850 */ 851 zfs_zrele_async(zp); 852 return (SET_ERROR(ENOENT)); 853 } 854 /* check if generation number matches */ 855 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 856 sizeof (zp_gen)) != 0) { 857 zfs_zrele_async(zp); 858 return (SET_ERROR(EIO)); 859 } 860 if (zp_gen != gen) { 861 zfs_zrele_async(zp); 862 return (SET_ERROR(ENOENT)); 863 } 864 865 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 866 zgd->zgd_lwb = lwb; 867 zgd->zgd_private = zp; 868 869 /* 870 * Write records come in two flavors: immediate and indirect. 871 * For small writes it's cheaper to store the data with the 872 * log record (immediate); for large writes it's cheaper to 873 * sync the data and get a pointer to it (indirect) so that 874 * we don't have to write the data twice. 875 */ 876 if (buf != NULL) { /* immediate write */ 877 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 878 offset, size, RL_READER); 879 /* test for truncation needs to be done while range locked */ 880 if (offset >= zp->z_size) { 881 error = SET_ERROR(ENOENT); 882 } else { 883 error = dmu_read(os, object, offset, size, buf, 884 DMU_READ_NO_PREFETCH); 885 } 886 ASSERT(error == 0 || error == ENOENT); 887 } else { /* indirect write */ 888 /* 889 * Have to lock the whole block to ensure when it's 890 * written out and its checksum is being calculated 891 * that no one can change the data. We need to re-check 892 * blocksize after we get the lock in case it's changed! 893 */ 894 for (;;) { 895 uint64_t blkoff; 896 size = zp->z_blksz; 897 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 898 offset -= blkoff; 899 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 900 offset, size, RL_READER); 901 if (zp->z_blksz == size) 902 break; 903 offset += blkoff; 904 zfs_rangelock_exit(zgd->zgd_lr); 905 } 906 /* test for truncation needs to be done while range locked */ 907 if (lr->lr_offset >= zp->z_size) 908 error = SET_ERROR(ENOENT); 909 #ifdef ZFS_DEBUG 910 if (zil_fault_io) { 911 error = SET_ERROR(EIO); 912 zil_fault_io = 0; 913 } 914 #endif 915 if (error == 0) 916 error = dmu_buf_hold(os, object, offset, zgd, &db, 917 DMU_READ_NO_PREFETCH); 918 919 if (error == 0) { 920 blkptr_t *bp = &lr->lr_blkptr; 921 922 zgd->zgd_db = db; 923 zgd->zgd_bp = bp; 924 925 ASSERT(db->db_offset == offset); 926 ASSERT(db->db_size == size); 927 928 error = dmu_sync(zio, lr->lr_common.lrc_txg, 929 zfs_get_done, zgd); 930 ASSERT(error || lr->lr_length <= size); 931 932 /* 933 * On success, we need to wait for the write I/O 934 * initiated by dmu_sync() to complete before we can 935 * release this dbuf. We will finish everything up 936 * in the zfs_get_done() callback. 937 */ 938 if (error == 0) 939 return (0); 940 941 if (error == EALREADY) { 942 lr->lr_common.lrc_txtype = TX_WRITE2; 943 /* 944 * TX_WRITE2 relies on the data previously 945 * written by the TX_WRITE that caused 946 * EALREADY. We zero out the BP because 947 * it is the old, currently-on-disk BP. 948 */ 949 zgd->zgd_bp = NULL; 950 BP_ZERO(bp); 951 error = 0; 952 } 953 } 954 } 955 956 zfs_get_done(zgd, error); 957 958 return (error); 959 } 960 961 962 static void 963 zfs_get_done(zgd_t *zgd, int error) 964 { 965 (void) error; 966 znode_t *zp = zgd->zgd_private; 967 968 if (zgd->zgd_db) 969 dmu_buf_rele(zgd->zgd_db, zgd); 970 971 zfs_rangelock_exit(zgd->zgd_lr); 972 973 /* 974 * Release the vnode asynchronously as we currently have the 975 * txg stopped from syncing. 976 */ 977 zfs_zrele_async(zp); 978 979 kmem_free(zgd, sizeof (zgd_t)); 980 } 981 982 EXPORT_SYMBOL(zfs_access); 983 EXPORT_SYMBOL(zfs_fsync); 984 EXPORT_SYMBOL(zfs_holey); 985 EXPORT_SYMBOL(zfs_read); 986 EXPORT_SYMBOL(zfs_write); 987 EXPORT_SYMBOL(zfs_getsecattr); 988 EXPORT_SYMBOL(zfs_setsecattr); 989 990 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW, 991 "Bytes to read per chunk"); 992