xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_vnops.c (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/uio_impl.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/cmn_err.h>
42 #include <sys/errno.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zfs_acl.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/dmu.h>
48 #include <sys/dmu_objset.h>
49 #include <sys/spa.h>
50 #include <sys/txg.h>
51 #include <sys/dbuf.h>
52 #include <sys/policy.h>
53 #include <sys/zfs_vnops.h>
54 #include <sys/zfs_quota.h>
55 #include <sys/zfs_vfsops.h>
56 #include <sys/zfs_znode.h>
57 
58 
59 static ulong_t zfs_fsync_sync_cnt = 4;
60 
61 int
62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
63 {
64 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
65 
66 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
67 
68 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
69 		ZFS_ENTER(zfsvfs);
70 		ZFS_VERIFY_ZP(zp);
71 		atomic_inc_32(&zp->z_sync_writes_cnt);
72 		zil_commit(zfsvfs->z_log, zp->z_id);
73 		atomic_dec_32(&zp->z_sync_writes_cnt);
74 		ZFS_EXIT(zfsvfs);
75 	}
76 	tsd_set(zfs_fsyncer_key, NULL);
77 
78 	return (0);
79 }
80 
81 
82 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
83 /*
84  * Lseek support for finding holes (cmd == SEEK_HOLE) and
85  * data (cmd == SEEK_DATA). "off" is an in/out parameter.
86  */
87 static int
88 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
89 {
90 	zfs_locked_range_t *lr;
91 	uint64_t noff = (uint64_t)*off; /* new offset */
92 	uint64_t file_sz;
93 	int error;
94 	boolean_t hole;
95 
96 	file_sz = zp->z_size;
97 	if (noff >= file_sz)  {
98 		return (SET_ERROR(ENXIO));
99 	}
100 
101 	if (cmd == F_SEEK_HOLE)
102 		hole = B_TRUE;
103 	else
104 		hole = B_FALSE;
105 
106 	/* Flush any mmap()'d data to disk */
107 	if (zn_has_cached_data(zp))
108 		zn_flush_cached_data(zp, B_FALSE);
109 
110 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER);
111 	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
112 	zfs_rangelock_exit(lr);
113 
114 	if (error == ESRCH)
115 		return (SET_ERROR(ENXIO));
116 
117 	/* File was dirty, so fall back to using generic logic */
118 	if (error == EBUSY) {
119 		if (hole)
120 			*off = file_sz;
121 
122 		return (0);
123 	}
124 
125 	/*
126 	 * We could find a hole that begins after the logical end-of-file,
127 	 * because dmu_offset_next() only works on whole blocks.  If the
128 	 * EOF falls mid-block, then indicate that the "virtual hole"
129 	 * at the end of the file begins at the logical EOF, rather than
130 	 * at the end of the last block.
131 	 */
132 	if (noff > file_sz) {
133 		ASSERT(hole);
134 		noff = file_sz;
135 	}
136 
137 	if (noff < *off)
138 		return (error);
139 	*off = noff;
140 	return (error);
141 }
142 
143 int
144 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
145 {
146 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
147 	int error;
148 
149 	ZFS_ENTER(zfsvfs);
150 	ZFS_VERIFY_ZP(zp);
151 
152 	error = zfs_holey_common(zp, cmd, off);
153 
154 	ZFS_EXIT(zfsvfs);
155 	return (error);
156 }
157 #endif /* SEEK_HOLE && SEEK_DATA */
158 
159 int
160 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
161 {
162 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
163 	int error;
164 
165 	ZFS_ENTER(zfsvfs);
166 	ZFS_VERIFY_ZP(zp);
167 
168 	if (flag & V_ACE_MASK)
169 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
170 	else
171 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
172 
173 	ZFS_EXIT(zfsvfs);
174 	return (error);
175 }
176 
177 static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
178 
179 /*
180  * Read bytes from specified file into supplied buffer.
181  *
182  *	IN:	zp	- inode of file to be read from.
183  *		uio	- structure supplying read location, range info,
184  *			  and return buffer.
185  *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
186  *			  O_DIRECT flag; used to bypass page cache.
187  *		cr	- credentials of caller.
188  *
189  *	OUT:	uio	- updated offset and range, buffer filled.
190  *
191  *	RETURN:	0 on success, error code on failure.
192  *
193  * Side Effects:
194  *	inode - atime updated if byte count > 0
195  */
196 int
197 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
198 {
199 	(void) cr;
200 	int error = 0;
201 	boolean_t frsync = B_FALSE;
202 
203 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
204 	ZFS_ENTER(zfsvfs);
205 	ZFS_VERIFY_ZP(zp);
206 
207 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
208 		ZFS_EXIT(zfsvfs);
209 		return (SET_ERROR(EACCES));
210 	}
211 
212 	/* We don't copy out anything useful for directories. */
213 	if (Z_ISDIR(ZTOTYPE(zp))) {
214 		ZFS_EXIT(zfsvfs);
215 		return (SET_ERROR(EISDIR));
216 	}
217 
218 	/*
219 	 * Validate file offset
220 	 */
221 	if (zfs_uio_offset(uio) < (offset_t)0) {
222 		ZFS_EXIT(zfsvfs);
223 		return (SET_ERROR(EINVAL));
224 	}
225 
226 	/*
227 	 * Fasttrack empty reads
228 	 */
229 	if (zfs_uio_resid(uio) == 0) {
230 		ZFS_EXIT(zfsvfs);
231 		return (0);
232 	}
233 
234 #ifdef FRSYNC
235 	/*
236 	 * If we're in FRSYNC mode, sync out this znode before reading it.
237 	 * Only do this for non-snapshots.
238 	 *
239 	 * Some platforms do not support FRSYNC and instead map it
240 	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
241 	 * only honor FRSYNC requests on platforms which support it.
242 	 */
243 	frsync = !!(ioflag & FRSYNC);
244 #endif
245 	if (zfsvfs->z_log &&
246 	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
247 		zil_commit(zfsvfs->z_log, zp->z_id);
248 
249 	/*
250 	 * Lock the range against changes.
251 	 */
252 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
253 	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
254 
255 	/*
256 	 * If we are reading past end-of-file we can skip
257 	 * to the end; but we might still need to set atime.
258 	 */
259 	if (zfs_uio_offset(uio) >= zp->z_size) {
260 		error = 0;
261 		goto out;
262 	}
263 
264 	ASSERT(zfs_uio_offset(uio) < zp->z_size);
265 #if defined(__linux__)
266 	ssize_t start_offset = zfs_uio_offset(uio);
267 #endif
268 	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
269 	ssize_t start_resid = n;
270 
271 	while (n > 0) {
272 		ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
273 		    P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
274 #ifdef UIO_NOCOPY
275 		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
276 			error = mappedread_sf(zp, nbytes, uio);
277 		else
278 #endif
279 		if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
280 			error = mappedread(zp, nbytes, uio);
281 		} else {
282 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
283 			    uio, nbytes);
284 		}
285 
286 		if (error) {
287 			/* convert checksum errors into IO errors */
288 			if (error == ECKSUM)
289 				error = SET_ERROR(EIO);
290 
291 #if defined(__linux__)
292 			/*
293 			 * if we actually read some bytes, bubbling EFAULT
294 			 * up to become EAGAIN isn't what we want here...
295 			 *
296 			 * ...on Linux, at least. On FBSD, doing this breaks.
297 			 */
298 			if (error == EFAULT &&
299 			    (zfs_uio_offset(uio) - start_offset) != 0)
300 				error = 0;
301 #endif
302 			break;
303 		}
304 
305 		n -= nbytes;
306 	}
307 
308 	int64_t nread = start_resid - n;
309 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
310 	task_io_account_read(nread);
311 out:
312 	zfs_rangelock_exit(lr);
313 
314 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
315 	ZFS_EXIT(zfsvfs);
316 	return (error);
317 }
318 
319 static void
320 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
321     uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
322 {
323 	zilog_t *zilog = zfsvfs->z_log;
324 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
325 
326 	ASSERT(clear_setid_bits_txgp != NULL);
327 	ASSERT(tx != NULL);
328 
329 	/*
330 	 * Clear Set-UID/Set-GID bits on successful write if not
331 	 * privileged and at least one of the execute bits is set.
332 	 *
333 	 * It would be nice to do this after all writes have
334 	 * been done, but that would still expose the ISUID/ISGID
335 	 * to another app after the partial write is committed.
336 	 *
337 	 * Note: we don't call zfs_fuid_map_id() here because
338 	 * user 0 is not an ephemeral uid.
339 	 */
340 	mutex_enter(&zp->z_acl_lock);
341 	if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
342 	    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
343 	    secpolicy_vnode_setid_retain(zp, cr,
344 	    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
345 		uint64_t newmode;
346 
347 		zp->z_mode &= ~(S_ISUID | S_ISGID);
348 		newmode = zp->z_mode;
349 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
350 		    (void *)&newmode, sizeof (uint64_t), tx);
351 
352 		mutex_exit(&zp->z_acl_lock);
353 
354 		/*
355 		 * Make sure SUID/SGID bits will be removed when we replay the
356 		 * log. If the setid bits are keep coming back, don't log more
357 		 * than one TX_SETATTR per transaction group.
358 		 */
359 		if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
360 			vattr_t va = {0};
361 
362 			va.va_mask = ATTR_MODE;
363 			va.va_nodeid = zp->z_id;
364 			va.va_mode = newmode;
365 			zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
366 			    ATTR_MODE, NULL);
367 			*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
368 		}
369 	} else {
370 		mutex_exit(&zp->z_acl_lock);
371 	}
372 }
373 
374 /*
375  * Write the bytes to a file.
376  *
377  *	IN:	zp	- znode of file to be written to.
378  *		uio	- structure supplying write location, range info,
379  *			  and data buffer.
380  *		ioflag	- O_APPEND flag set if in append mode.
381  *			  O_DIRECT flag; used to bypass page cache.
382  *		cr	- credentials of caller.
383  *
384  *	OUT:	uio	- updated offset and range.
385  *
386  *	RETURN:	0 if success
387  *		error code if failure
388  *
389  * Timestamps:
390  *	ip - ctime|mtime updated if byte count > 0
391  */
392 int
393 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
394 {
395 	int error = 0, error1;
396 	ssize_t start_resid = zfs_uio_resid(uio);
397 	uint64_t clear_setid_bits_txg = 0;
398 
399 	/*
400 	 * Fasttrack empty write
401 	 */
402 	ssize_t n = start_resid;
403 	if (n == 0)
404 		return (0);
405 
406 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
407 	ZFS_ENTER(zfsvfs);
408 	ZFS_VERIFY_ZP(zp);
409 
410 	sa_bulk_attr_t bulk[4];
411 	int count = 0;
412 	uint64_t mtime[2], ctime[2];
413 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
414 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
415 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
416 	    &zp->z_size, 8);
417 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
418 	    &zp->z_pflags, 8);
419 
420 	/*
421 	 * Callers might not be able to detect properly that we are read-only,
422 	 * so check it explicitly here.
423 	 */
424 	if (zfs_is_readonly(zfsvfs)) {
425 		ZFS_EXIT(zfsvfs);
426 		return (SET_ERROR(EROFS));
427 	}
428 
429 	/*
430 	 * If immutable or not appending then return EPERM.
431 	 * Intentionally allow ZFS_READONLY through here.
432 	 * See zfs_zaccess_common()
433 	 */
434 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
435 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
436 	    (zfs_uio_offset(uio) < zp->z_size))) {
437 		ZFS_EXIT(zfsvfs);
438 		return (SET_ERROR(EPERM));
439 	}
440 
441 	/*
442 	 * Validate file offset
443 	 */
444 	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
445 	if (woff < 0) {
446 		ZFS_EXIT(zfsvfs);
447 		return (SET_ERROR(EINVAL));
448 	}
449 
450 	const uint64_t max_blksz = zfsvfs->z_max_blksz;
451 
452 	/*
453 	 * Pre-fault the pages to ensure slow (eg NFS) pages
454 	 * don't hold up txg.
455 	 * Skip this if uio contains loaned arc_buf.
456 	 */
457 	if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
458 		ZFS_EXIT(zfsvfs);
459 		return (SET_ERROR(EFAULT));
460 	}
461 
462 	/*
463 	 * If in append mode, set the io offset pointer to eof.
464 	 */
465 	zfs_locked_range_t *lr;
466 	if (ioflag & O_APPEND) {
467 		/*
468 		 * Obtain an appending range lock to guarantee file append
469 		 * semantics.  We reset the write offset once we have the lock.
470 		 */
471 		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
472 		woff = lr->lr_offset;
473 		if (lr->lr_length == UINT64_MAX) {
474 			/*
475 			 * We overlocked the file because this write will cause
476 			 * the file block size to increase.
477 			 * Note that zp_size cannot change with this lock held.
478 			 */
479 			woff = zp->z_size;
480 		}
481 		zfs_uio_setoffset(uio, woff);
482 	} else {
483 		/*
484 		 * Note that if the file block size will change as a result of
485 		 * this write, then this range lock will lock the entire file
486 		 * so that we can re-write the block safely.
487 		 */
488 		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
489 	}
490 
491 	if (zn_rlimit_fsize(zp, uio)) {
492 		zfs_rangelock_exit(lr);
493 		ZFS_EXIT(zfsvfs);
494 		return (SET_ERROR(EFBIG));
495 	}
496 
497 	const rlim64_t limit = MAXOFFSET_T;
498 
499 	if (woff >= limit) {
500 		zfs_rangelock_exit(lr);
501 		ZFS_EXIT(zfsvfs);
502 		return (SET_ERROR(EFBIG));
503 	}
504 
505 	if (n > limit - woff)
506 		n = limit - woff;
507 
508 	uint64_t end_size = MAX(zp->z_size, woff + n);
509 	zilog_t *zilog = zfsvfs->z_log;
510 
511 	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
512 	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
513 	const uint64_t projid = zp->z_projid;
514 
515 	/*
516 	 * Write the file in reasonable size chunks.  Each chunk is written
517 	 * in a separate transaction; this keeps the intent log records small
518 	 * and allows us to do more fine-grained space accounting.
519 	 */
520 	while (n > 0) {
521 		woff = zfs_uio_offset(uio);
522 
523 		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
524 		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
525 		    (projid != ZFS_DEFAULT_PROJID &&
526 		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
527 		    projid))) {
528 			error = SET_ERROR(EDQUOT);
529 			break;
530 		}
531 
532 		arc_buf_t *abuf = NULL;
533 		if (n >= max_blksz && woff >= zp->z_size &&
534 		    P2PHASE(woff, max_blksz) == 0 &&
535 		    zp->z_blksz == max_blksz) {
536 			/*
537 			 * This write covers a full block.  "Borrow" a buffer
538 			 * from the dmu so that we can fill it before we enter
539 			 * a transaction.  This avoids the possibility of
540 			 * holding up the transaction if the data copy hangs
541 			 * up on a pagefault (e.g., from an NFS server mapping).
542 			 */
543 			size_t cbytes;
544 
545 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
546 			    max_blksz);
547 			ASSERT(abuf != NULL);
548 			ASSERT(arc_buf_size(abuf) == max_blksz);
549 			if ((error = zfs_uiocopy(abuf->b_data, max_blksz,
550 			    UIO_WRITE, uio, &cbytes))) {
551 				dmu_return_arcbuf(abuf);
552 				break;
553 			}
554 			ASSERT3S(cbytes, ==, max_blksz);
555 		}
556 
557 		/*
558 		 * Start a transaction.
559 		 */
560 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
561 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
562 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
563 		DB_DNODE_ENTER(db);
564 		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
565 		    MIN(n, max_blksz));
566 		DB_DNODE_EXIT(db);
567 		zfs_sa_upgrade_txholds(tx, zp);
568 		error = dmu_tx_assign(tx, TXG_WAIT);
569 		if (error) {
570 			dmu_tx_abort(tx);
571 			if (abuf != NULL)
572 				dmu_return_arcbuf(abuf);
573 			break;
574 		}
575 
576 		/*
577 		 * NB: We must call zfs_clear_setid_bits_if_necessary before
578 		 * committing the transaction!
579 		 */
580 
581 		/*
582 		 * If rangelock_enter() over-locked we grow the blocksize
583 		 * and then reduce the lock range.  This will only happen
584 		 * on the first iteration since rangelock_reduce() will
585 		 * shrink down lr_length to the appropriate size.
586 		 */
587 		if (lr->lr_length == UINT64_MAX) {
588 			uint64_t new_blksz;
589 
590 			if (zp->z_blksz > max_blksz) {
591 				/*
592 				 * File's blocksize is already larger than the
593 				 * "recordsize" property.  Only let it grow to
594 				 * the next power of 2.
595 				 */
596 				ASSERT(!ISP2(zp->z_blksz));
597 				new_blksz = MIN(end_size,
598 				    1 << highbit64(zp->z_blksz));
599 			} else {
600 				new_blksz = MIN(end_size, max_blksz);
601 			}
602 			zfs_grow_blocksize(zp, new_blksz, tx);
603 			zfs_rangelock_reduce(lr, woff, n);
604 		}
605 
606 		/*
607 		 * XXX - should we really limit each write to z_max_blksz?
608 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
609 		 */
610 		const ssize_t nbytes =
611 		    MIN(n, max_blksz - P2PHASE(woff, max_blksz));
612 
613 		ssize_t tx_bytes;
614 		if (abuf == NULL) {
615 			tx_bytes = zfs_uio_resid(uio);
616 			zfs_uio_fault_disable(uio, B_TRUE);
617 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
618 			    uio, nbytes, tx);
619 			zfs_uio_fault_disable(uio, B_FALSE);
620 #ifdef __linux__
621 			if (error == EFAULT) {
622 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
623 				    cr, &clear_setid_bits_txg, tx);
624 				dmu_tx_commit(tx);
625 				/*
626 				 * Account for partial writes before
627 				 * continuing the loop.
628 				 * Update needs to occur before the next
629 				 * zfs_uio_prefaultpages, or prefaultpages may
630 				 * error, and we may break the loop early.
631 				 */
632 				if (tx_bytes != zfs_uio_resid(uio))
633 					n -= tx_bytes - zfs_uio_resid(uio);
634 				if (zfs_uio_prefaultpages(MIN(n, max_blksz),
635 				    uio)) {
636 					break;
637 				}
638 				continue;
639 			}
640 #endif
641 			/*
642 			 * On FreeBSD, EFAULT should be propagated back to the
643 			 * VFS, which will handle faulting and will retry.
644 			 */
645 			if (error != 0 && error != EFAULT) {
646 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
647 				    cr, &clear_setid_bits_txg, tx);
648 				dmu_tx_commit(tx);
649 				break;
650 			}
651 			tx_bytes -= zfs_uio_resid(uio);
652 		} else {
653 			/* Implied by abuf != NULL: */
654 			ASSERT3S(n, >=, max_blksz);
655 			ASSERT0(P2PHASE(woff, max_blksz));
656 			/*
657 			 * We can simplify nbytes to MIN(n, max_blksz) since
658 			 * P2PHASE(woff, max_blksz) is 0, and knowing
659 			 * n >= max_blksz lets us simplify further:
660 			 */
661 			ASSERT3S(nbytes, ==, max_blksz);
662 			/*
663 			 * Thus, we're writing a full block at a block-aligned
664 			 * offset and extending the file past EOF.
665 			 *
666 			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
667 			 * arc buffer to a dbuf.
668 			 */
669 			error = dmu_assign_arcbuf_by_dbuf(
670 			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
671 			if (error != 0) {
672 				/*
673 				 * XXX This might not be necessary if
674 				 * dmu_assign_arcbuf_by_dbuf is guaranteed
675 				 * to be atomic.
676 				 */
677 				zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
678 				    cr, &clear_setid_bits_txg, tx);
679 				dmu_return_arcbuf(abuf);
680 				dmu_tx_commit(tx);
681 				break;
682 			}
683 			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
684 			zfs_uioskip(uio, nbytes);
685 			tx_bytes = nbytes;
686 		}
687 		if (tx_bytes && zn_has_cached_data(zp) &&
688 		    !(ioflag & O_DIRECT)) {
689 			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
690 		}
691 
692 		/*
693 		 * If we made no progress, we're done.  If we made even
694 		 * partial progress, update the znode and ZIL accordingly.
695 		 */
696 		if (tx_bytes == 0) {
697 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
698 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
699 			dmu_tx_commit(tx);
700 			ASSERT(error != 0);
701 			break;
702 		}
703 
704 		zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
705 		    &clear_setid_bits_txg, tx);
706 
707 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
708 
709 		/*
710 		 * Update the file size (zp_size) if it has changed;
711 		 * account for possible concurrent updates.
712 		 */
713 		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
714 			(void) atomic_cas_64(&zp->z_size, end_size,
715 			    zfs_uio_offset(uio));
716 			ASSERT(error == 0 || error == EFAULT);
717 		}
718 		/*
719 		 * If we are replaying and eof is non zero then force
720 		 * the file size to the specified eof. Note, there's no
721 		 * concurrency during replay.
722 		 */
723 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
724 			zp->z_size = zfsvfs->z_replay_eof;
725 
726 		error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
727 		if (error1 != 0)
728 			/* Avoid clobbering EFAULT. */
729 			error = error1;
730 
731 		/*
732 		 * NB: During replay, the TX_SETATTR record logged by
733 		 * zfs_clear_setid_bits_if_necessary must precede any of
734 		 * the TX_WRITE records logged here.
735 		 */
736 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
737 		    NULL, NULL);
738 
739 		dmu_tx_commit(tx);
740 
741 		if (error != 0)
742 			break;
743 		ASSERT3S(tx_bytes, ==, nbytes);
744 		n -= nbytes;
745 
746 		if (n > 0) {
747 			if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
748 				error = SET_ERROR(EFAULT);
749 				break;
750 			}
751 		}
752 	}
753 
754 	zfs_znode_update_vfs(zp);
755 	zfs_rangelock_exit(lr);
756 
757 	/*
758 	 * If we're in replay mode, or we made no progress, or the
759 	 * uio data is inaccessible return an error.  Otherwise, it's
760 	 * at least a partial write, so it's successful.
761 	 */
762 	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
763 	    error == EFAULT) {
764 		ZFS_EXIT(zfsvfs);
765 		return (error);
766 	}
767 
768 	if (ioflag & (O_SYNC | O_DSYNC) ||
769 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
770 		zil_commit(zilog, zp->z_id);
771 
772 	const int64_t nwritten = start_resid - zfs_uio_resid(uio);
773 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
774 	task_io_account_write(nwritten);
775 
776 	ZFS_EXIT(zfsvfs);
777 	return (0);
778 }
779 
780 int
781 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
782 {
783 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
784 	int error;
785 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
786 
787 	ZFS_ENTER(zfsvfs);
788 	ZFS_VERIFY_ZP(zp);
789 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
790 	ZFS_EXIT(zfsvfs);
791 
792 	return (error);
793 }
794 
795 int
796 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
797 {
798 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
799 	int error;
800 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
801 	zilog_t	*zilog = zfsvfs->z_log;
802 
803 	ZFS_ENTER(zfsvfs);
804 	ZFS_VERIFY_ZP(zp);
805 
806 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
807 
808 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
809 		zil_commit(zilog, 0);
810 
811 	ZFS_EXIT(zfsvfs);
812 	return (error);
813 }
814 
815 #ifdef ZFS_DEBUG
816 static int zil_fault_io = 0;
817 #endif
818 
819 static void zfs_get_done(zgd_t *zgd, int error);
820 
821 /*
822  * Get data to generate a TX_WRITE intent log record.
823  */
824 int
825 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
826     struct lwb *lwb, zio_t *zio)
827 {
828 	zfsvfs_t *zfsvfs = arg;
829 	objset_t *os = zfsvfs->z_os;
830 	znode_t *zp;
831 	uint64_t object = lr->lr_foid;
832 	uint64_t offset = lr->lr_offset;
833 	uint64_t size = lr->lr_length;
834 	dmu_buf_t *db;
835 	zgd_t *zgd;
836 	int error = 0;
837 	uint64_t zp_gen;
838 
839 	ASSERT3P(lwb, !=, NULL);
840 	ASSERT3P(zio, !=, NULL);
841 	ASSERT3U(size, !=, 0);
842 
843 	/*
844 	 * Nothing to do if the file has been removed
845 	 */
846 	if (zfs_zget(zfsvfs, object, &zp) != 0)
847 		return (SET_ERROR(ENOENT));
848 	if (zp->z_unlinked) {
849 		/*
850 		 * Release the vnode asynchronously as we currently have the
851 		 * txg stopped from syncing.
852 		 */
853 		zfs_zrele_async(zp);
854 		return (SET_ERROR(ENOENT));
855 	}
856 	/* check if generation number matches */
857 	if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
858 	    sizeof (zp_gen)) != 0) {
859 		zfs_zrele_async(zp);
860 		return (SET_ERROR(EIO));
861 	}
862 	if (zp_gen != gen) {
863 		zfs_zrele_async(zp);
864 		return (SET_ERROR(ENOENT));
865 	}
866 
867 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
868 	zgd->zgd_lwb = lwb;
869 	zgd->zgd_private = zp;
870 
871 	/*
872 	 * Write records come in two flavors: immediate and indirect.
873 	 * For small writes it's cheaper to store the data with the
874 	 * log record (immediate); for large writes it's cheaper to
875 	 * sync the data and get a pointer to it (indirect) so that
876 	 * we don't have to write the data twice.
877 	 */
878 	if (buf != NULL) { /* immediate write */
879 		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
880 		    offset, size, RL_READER);
881 		/* test for truncation needs to be done while range locked */
882 		if (offset >= zp->z_size) {
883 			error = SET_ERROR(ENOENT);
884 		} else {
885 			error = dmu_read(os, object, offset, size, buf,
886 			    DMU_READ_NO_PREFETCH);
887 		}
888 		ASSERT(error == 0 || error == ENOENT);
889 	} else { /* indirect write */
890 		/*
891 		 * Have to lock the whole block to ensure when it's
892 		 * written out and its checksum is being calculated
893 		 * that no one can change the data. We need to re-check
894 		 * blocksize after we get the lock in case it's changed!
895 		 */
896 		for (;;) {
897 			uint64_t blkoff;
898 			size = zp->z_blksz;
899 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
900 			offset -= blkoff;
901 			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
902 			    offset, size, RL_READER);
903 			if (zp->z_blksz == size)
904 				break;
905 			offset += blkoff;
906 			zfs_rangelock_exit(zgd->zgd_lr);
907 		}
908 		/* test for truncation needs to be done while range locked */
909 		if (lr->lr_offset >= zp->z_size)
910 			error = SET_ERROR(ENOENT);
911 #ifdef ZFS_DEBUG
912 		if (zil_fault_io) {
913 			error = SET_ERROR(EIO);
914 			zil_fault_io = 0;
915 		}
916 #endif
917 		if (error == 0)
918 			error = dmu_buf_hold(os, object, offset, zgd, &db,
919 			    DMU_READ_NO_PREFETCH);
920 
921 		if (error == 0) {
922 			blkptr_t *bp = &lr->lr_blkptr;
923 
924 			zgd->zgd_db = db;
925 			zgd->zgd_bp = bp;
926 
927 			ASSERT(db->db_offset == offset);
928 			ASSERT(db->db_size == size);
929 
930 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
931 			    zfs_get_done, zgd);
932 			ASSERT(error || lr->lr_length <= size);
933 
934 			/*
935 			 * On success, we need to wait for the write I/O
936 			 * initiated by dmu_sync() to complete before we can
937 			 * release this dbuf.  We will finish everything up
938 			 * in the zfs_get_done() callback.
939 			 */
940 			if (error == 0)
941 				return (0);
942 
943 			if (error == EALREADY) {
944 				lr->lr_common.lrc_txtype = TX_WRITE2;
945 				/*
946 				 * TX_WRITE2 relies on the data previously
947 				 * written by the TX_WRITE that caused
948 				 * EALREADY.  We zero out the BP because
949 				 * it is the old, currently-on-disk BP.
950 				 */
951 				zgd->zgd_bp = NULL;
952 				BP_ZERO(bp);
953 				error = 0;
954 			}
955 		}
956 	}
957 
958 	zfs_get_done(zgd, error);
959 
960 	return (error);
961 }
962 
963 
964 static void
965 zfs_get_done(zgd_t *zgd, int error)
966 {
967 	(void) error;
968 	znode_t *zp = zgd->zgd_private;
969 
970 	if (zgd->zgd_db)
971 		dmu_buf_rele(zgd->zgd_db, zgd);
972 
973 	zfs_rangelock_exit(zgd->zgd_lr);
974 
975 	/*
976 	 * Release the vnode asynchronously as we currently have the
977 	 * txg stopped from syncing.
978 	 */
979 	zfs_zrele_async(zp);
980 
981 	kmem_free(zgd, sizeof (zgd_t));
982 }
983 
984 EXPORT_SYMBOL(zfs_access);
985 EXPORT_SYMBOL(zfs_fsync);
986 EXPORT_SYMBOL(zfs_holey);
987 EXPORT_SYMBOL(zfs_read);
988 EXPORT_SYMBOL(zfs_write);
989 EXPORT_SYMBOL(zfs_getsecattr);
990 EXPORT_SYMBOL(zfs_setsecattr);
991 
992 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW,
993 	"Bytes to read per chunk");
994