1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Portions Copyright 2011 Martin Matuska 25 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright (c) 2012 Pawel Jakub Dawidek 27 * Copyright (c) 2014, 2016 Joyent, Inc. All rights reserved. 28 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 29 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 30 * Copyright (c) 2011, 2024 by Delphix. All rights reserved. 31 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 32 * Copyright (c) 2013 Steven Hartland. All rights reserved. 33 * Copyright (c) 2014 Integros [integros.com] 34 * Copyright 2016 Toomas Soome <tsoome@me.com> 35 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 36 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 37 * Copyright 2017 RackTop Systems. 38 * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. 39 * Copyright (c) 2019 Datto Inc. 40 * Copyright (c) 2019, 2020 by Christian Schwarz. All rights reserved. 41 * Copyright (c) 2019, 2021, 2024, Klara Inc. 42 * Copyright (c) 2019, Allan Jude 43 * Copyright 2024 Oxide Computer Company 44 */ 45 46 /* 47 * ZFS ioctls. 48 * 49 * This file handles the ioctls to /dev/zfs, used for configuring ZFS storage 50 * pools and filesystems, e.g. with /sbin/zfs and /sbin/zpool. 51 * 52 * There are two ways that we handle ioctls: the legacy way where almost 53 * all of the logic is in the ioctl callback, and the new way where most 54 * of the marshalling is handled in the common entry point, zfsdev_ioctl(). 55 * 56 * Non-legacy ioctls should be registered by calling 57 * zfs_ioctl_register() from zfs_ioctl_init(). The ioctl is invoked 58 * from userland by lzc_ioctl(). 59 * 60 * The registration arguments are as follows: 61 * 62 * const char *name 63 * The name of the ioctl. This is used for history logging. If the 64 * ioctl returns successfully (the callback returns 0), and allow_log 65 * is true, then a history log entry will be recorded with the input & 66 * output nvlists. The log entry can be printed with "zpool history -i". 67 * 68 * zfs_ioc_t ioc 69 * The ioctl request number, which userland will pass to ioctl(2). 70 * We want newer versions of libzfs and libzfs_core to run against 71 * existing zfs kernel modules (i.e. a deferred reboot after an update). 72 * Therefore the ioctl numbers cannot change from release to release. 73 * 74 * zfs_secpolicy_func_t *secpolicy 75 * This function will be called before the zfs_ioc_func_t, to 76 * determine if this operation is permitted. It should return EPERM 77 * on failure, and 0 on success. Checks include determining if the 78 * dataset is visible in this zone, and if the user has either all 79 * zfs privileges in the zone (SYS_MOUNT), or has been granted permission 80 * to do this operation on this dataset with "zfs allow". 81 * 82 * zfs_ioc_namecheck_t namecheck 83 * This specifies what to expect in the zfs_cmd_t:zc_name -- a pool 84 * name, a dataset name, or nothing. If the name is not well-formed, 85 * the ioctl will fail and the callback will not be called. 86 * Therefore, the callback can assume that the name is well-formed 87 * (e.g. is null-terminated, doesn't have more than one '@' character, 88 * doesn't have invalid characters). 89 * 90 * zfs_ioc_poolcheck_t pool_check 91 * This specifies requirements on the pool state. If the pool does 92 * not meet them (is suspended or is readonly), the ioctl will fail 93 * and the callback will not be called. If any checks are specified 94 * (i.e. it is not POOL_CHECK_NONE), namecheck must not be NO_NAME. 95 * Multiple checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED | 96 * POOL_CHECK_READONLY). 97 * 98 * zfs_ioc_key_t *nvl_keys 99 * The list of expected/allowable innvl input keys. This list is used 100 * to validate the nvlist input to the ioctl. 101 * 102 * boolean_t smush_outnvlist 103 * If smush_outnvlist is true, then the output is presumed to be a 104 * list of errors, and it will be "smushed" down to fit into the 105 * caller's buffer, by removing some entries and replacing them with a 106 * single "N_MORE_ERRORS" entry indicating how many were removed. See 107 * nvlist_smush() for details. If smush_outnvlist is false, and the 108 * outnvlist does not fit into the userland-provided buffer, then the 109 * ioctl will fail with ENOMEM. 110 * 111 * zfs_ioc_func_t *func 112 * The callback function that will perform the operation. 113 * 114 * The callback should return 0 on success, or an error number on 115 * failure. If the function fails, the userland ioctl will return -1, 116 * and errno will be set to the callback's return value. The callback 117 * will be called with the following arguments: 118 * 119 * const char *name 120 * The name of the pool or dataset to operate on, from 121 * zfs_cmd_t:zc_name. The 'namecheck' argument specifies the 122 * expected type (pool, dataset, or none). 123 * 124 * nvlist_t *innvl 125 * The input nvlist, deserialized from zfs_cmd_t:zc_nvlist_src. Or 126 * NULL if no input nvlist was provided. Changes to this nvlist are 127 * ignored. If the input nvlist could not be deserialized, the 128 * ioctl will fail and the callback will not be called. 129 * 130 * nvlist_t *outnvl 131 * The output nvlist, initially empty. The callback can fill it in, 132 * and it will be returned to userland by serializing it into 133 * zfs_cmd_t:zc_nvlist_dst. If it is non-empty, and serialization 134 * fails (e.g. because the caller didn't supply a large enough 135 * buffer), then the overall ioctl will fail. See the 136 * 'smush_nvlist' argument above for additional behaviors. 137 * 138 * There are two typical uses of the output nvlist: 139 * - To return state, e.g. property values. In this case, 140 * smush_outnvlist should be false. If the buffer was not large 141 * enough, the caller will reallocate a larger buffer and try 142 * the ioctl again. 143 * 144 * - To return multiple errors from an ioctl which makes on-disk 145 * changes. In this case, smush_outnvlist should be true. 146 * Ioctls which make on-disk modifications should generally not 147 * use the outnvl if they succeed, because the caller can not 148 * distinguish between the operation failing, and 149 * deserialization failing. 150 * 151 * IOCTL Interface Errors 152 * 153 * The following ioctl input errors can be returned: 154 * ZFS_ERR_IOC_CMD_UNAVAIL the ioctl number is not supported by kernel 155 * ZFS_ERR_IOC_ARG_UNAVAIL an input argument is not supported by kernel 156 * ZFS_ERR_IOC_ARG_REQUIRED a required input argument is missing 157 * ZFS_ERR_IOC_ARG_BADTYPE an input argument has an invalid type 158 */ 159 160 #include <sys/types.h> 161 #include <sys/param.h> 162 #include <sys/errno.h> 163 #include <sys/uio_impl.h> 164 #include <sys/file.h> 165 #include <sys/kmem.h> 166 #include <sys/cmn_err.h> 167 #include <sys/stat.h> 168 #include <sys/zfs_ioctl.h> 169 #include <sys/zfs_quota.h> 170 #include <sys/zfs_vfsops.h> 171 #include <sys/zfs_znode.h> 172 #include <sys/zap.h> 173 #include <sys/spa.h> 174 #include <sys/spa_impl.h> 175 #include <sys/vdev.h> 176 #include <sys/vdev_impl.h> 177 #include <sys/dmu.h> 178 #include <sys/dsl_dir.h> 179 #include <sys/dsl_dataset.h> 180 #include <sys/dsl_prop.h> 181 #include <sys/dsl_deleg.h> 182 #include <sys/dmu_objset.h> 183 #include <sys/dmu_impl.h> 184 #include <sys/dmu_redact.h> 185 #include <sys/dmu_tx.h> 186 #include <sys/sunddi.h> 187 #include <sys/policy.h> 188 #include <sys/zone.h> 189 #include <sys/nvpair.h> 190 #include <sys/pathname.h> 191 #include <sys/fs/zfs.h> 192 #include <sys/zfs_ctldir.h> 193 #include <sys/zfs_dir.h> 194 #include <sys/zfs_onexit.h> 195 #include <sys/zvol.h> 196 #include <sys/dsl_scan.h> 197 #include <sys/fm/util.h> 198 #include <sys/dsl_crypt.h> 199 #include <sys/rrwlock.h> 200 #include <sys/zfs_file.h> 201 202 #include <sys/dmu_recv.h> 203 #include <sys/dmu_send.h> 204 #include <sys/dmu_recv.h> 205 #include <sys/dsl_destroy.h> 206 #include <sys/dsl_bookmark.h> 207 #include <sys/dsl_userhold.h> 208 #include <sys/zfeature.h> 209 #include <sys/zcp.h> 210 #include <sys/zio_checksum.h> 211 #include <sys/vdev_removal.h> 212 #include <sys/vdev_impl.h> 213 #include <sys/vdev_initialize.h> 214 #include <sys/vdev_trim.h> 215 216 #include "zfs_namecheck.h" 217 #include "zfs_prop.h" 218 #include "zfs_deleg.h" 219 #include "zfs_comutil.h" 220 221 #include <sys/lua/lua.h> 222 #include <sys/lua/lauxlib.h> 223 #include <sys/zfs_ioctl_impl.h> 224 225 kmutex_t zfsdev_state_lock; 226 static zfsdev_state_t zfsdev_state_listhead; 227 228 /* 229 * Limit maximum nvlist size. We don't want users passing in insane values 230 * for zc->zc_nvlist_src_size, since we will need to allocate that much memory. 231 * Defaults to 0=auto which is handled by platform code. 232 */ 233 uint64_t zfs_max_nvlist_src_size = 0; 234 235 /* 236 * When logging the output nvlist of an ioctl in the on-disk history, limit 237 * the logged size to this many bytes. This must be less than DMU_MAX_ACCESS. 238 * This applies primarily to zfs_ioc_channel_program(). 239 */ 240 static uint64_t zfs_history_output_max = 1024 * 1024; 241 242 uint_t zfs_allow_log_key; 243 244 /* DATA_TYPE_ANY is used when zkey_type can vary. */ 245 #define DATA_TYPE_ANY DATA_TYPE_UNKNOWN 246 247 typedef struct zfs_ioc_vec { 248 zfs_ioc_legacy_func_t *zvec_legacy_func; 249 zfs_ioc_func_t *zvec_func; 250 zfs_secpolicy_func_t *zvec_secpolicy; 251 zfs_ioc_namecheck_t zvec_namecheck; 252 boolean_t zvec_allow_log; 253 zfs_ioc_poolcheck_t zvec_pool_check; 254 boolean_t zvec_smush_outnvlist; 255 const char *zvec_name; 256 const zfs_ioc_key_t *zvec_nvl_keys; 257 size_t zvec_nvl_key_count; 258 } zfs_ioc_vec_t; 259 260 /* This array is indexed by zfs_userquota_prop_t */ 261 static const char *userquota_perms[] = { 262 ZFS_DELEG_PERM_USERUSED, 263 ZFS_DELEG_PERM_USERQUOTA, 264 ZFS_DELEG_PERM_GROUPUSED, 265 ZFS_DELEG_PERM_GROUPQUOTA, 266 ZFS_DELEG_PERM_USEROBJUSED, 267 ZFS_DELEG_PERM_USEROBJQUOTA, 268 ZFS_DELEG_PERM_GROUPOBJUSED, 269 ZFS_DELEG_PERM_GROUPOBJQUOTA, 270 ZFS_DELEG_PERM_PROJECTUSED, 271 ZFS_DELEG_PERM_PROJECTQUOTA, 272 ZFS_DELEG_PERM_PROJECTOBJUSED, 273 ZFS_DELEG_PERM_PROJECTOBJQUOTA, 274 }; 275 276 static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc); 277 static int zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc); 278 static int zfs_check_settable(const char *name, nvpair_t *property, 279 cred_t *cr); 280 static int zfs_check_clearable(const char *dataset, nvlist_t *props, 281 nvlist_t **errors); 282 static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *, 283 boolean_t *); 284 int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *); 285 static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp); 286 287 static void 288 history_str_free(char *buf) 289 { 290 kmem_free(buf, HIS_MAX_RECORD_LEN); 291 } 292 293 static char * 294 history_str_get(zfs_cmd_t *zc) 295 { 296 char *buf; 297 298 if (zc->zc_history == 0) 299 return (NULL); 300 301 buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP); 302 if (copyinstr((void *)(uintptr_t)zc->zc_history, 303 buf, HIS_MAX_RECORD_LEN, NULL) != 0) { 304 history_str_free(buf); 305 return (NULL); 306 } 307 308 buf[HIS_MAX_RECORD_LEN -1] = '\0'; 309 310 return (buf); 311 } 312 313 /* 314 * Return non-zero if the spa version is less than requested version. 315 */ 316 static int 317 zfs_earlier_version(const char *name, int version) 318 { 319 spa_t *spa; 320 321 if (spa_open(name, &spa, FTAG) == 0) { 322 if (spa_version(spa) < version) { 323 spa_close(spa, FTAG); 324 return (1); 325 } 326 spa_close(spa, FTAG); 327 } 328 return (0); 329 } 330 331 /* 332 * Return TRUE if the ZPL version is less than requested version. 333 */ 334 static boolean_t 335 zpl_earlier_version(const char *name, int version) 336 { 337 objset_t *os; 338 boolean_t rc = B_TRUE; 339 340 if (dmu_objset_hold(name, FTAG, &os) == 0) { 341 uint64_t zplversion; 342 343 if (dmu_objset_type(os) != DMU_OST_ZFS) { 344 dmu_objset_rele(os, FTAG); 345 return (B_TRUE); 346 } 347 /* XXX reading from non-owned objset */ 348 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0) 349 rc = zplversion < version; 350 dmu_objset_rele(os, FTAG); 351 } 352 return (rc); 353 } 354 355 static void 356 zfs_log_history(zfs_cmd_t *zc) 357 { 358 spa_t *spa; 359 char *buf; 360 361 if ((buf = history_str_get(zc)) == NULL) 362 return; 363 364 if (spa_open(zc->zc_name, &spa, FTAG) == 0) { 365 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY) 366 (void) spa_history_log(spa, buf); 367 spa_close(spa, FTAG); 368 } 369 history_str_free(buf); 370 } 371 372 /* 373 * Policy for top-level read operations (list pools). Requires no privileges, 374 * and can be used in the local zone, as there is no associated dataset. 375 */ 376 static int 377 zfs_secpolicy_none(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 378 { 379 (void) zc, (void) innvl, (void) cr; 380 return (0); 381 } 382 383 /* 384 * Policy for dataset read operations (list children, get statistics). Requires 385 * no privileges, but must be visible in the local zone. 386 */ 387 static int 388 zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 389 { 390 (void) innvl, (void) cr; 391 if (INGLOBALZONE(curproc) || 392 zone_dataset_visible(zc->zc_name, NULL)) 393 return (0); 394 395 return (SET_ERROR(ENOENT)); 396 } 397 398 static int 399 zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr) 400 { 401 int writable = 1; 402 403 /* 404 * The dataset must be visible by this zone -- check this first 405 * so they don't see EPERM on something they shouldn't know about. 406 */ 407 if (!INGLOBALZONE(curproc) && 408 !zone_dataset_visible(dataset, &writable)) 409 return (SET_ERROR(ENOENT)); 410 411 if (INGLOBALZONE(curproc)) { 412 /* 413 * If the fs is zoned, only root can access it from the 414 * global zone. 415 */ 416 if (secpolicy_zfs(cr) && zoned) 417 return (SET_ERROR(EPERM)); 418 } else { 419 /* 420 * If we are in a local zone, the 'zoned' property must be set. 421 */ 422 if (!zoned) 423 return (SET_ERROR(EPERM)); 424 425 /* must be writable by this zone */ 426 if (!writable) 427 return (SET_ERROR(EPERM)); 428 } 429 return (0); 430 } 431 432 static int 433 zfs_dozonecheck(const char *dataset, cred_t *cr) 434 { 435 uint64_t zoned; 436 437 if (dsl_prop_get_integer(dataset, zfs_prop_to_name(ZFS_PROP_ZONED), 438 &zoned, NULL)) 439 return (SET_ERROR(ENOENT)); 440 441 return (zfs_dozonecheck_impl(dataset, zoned, cr)); 442 } 443 444 static int 445 zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr) 446 { 447 uint64_t zoned; 448 449 if (dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned)) 450 return (SET_ERROR(ENOENT)); 451 452 return (zfs_dozonecheck_impl(dataset, zoned, cr)); 453 } 454 455 static int 456 zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds, 457 const char *perm, cred_t *cr) 458 { 459 int error; 460 461 error = zfs_dozonecheck_ds(name, ds, cr); 462 if (error == 0) { 463 error = secpolicy_zfs(cr); 464 if (error != 0) 465 error = dsl_deleg_access_impl(ds, perm, cr); 466 } 467 return (error); 468 } 469 470 static int 471 zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr) 472 { 473 int error; 474 dsl_dataset_t *ds; 475 dsl_pool_t *dp; 476 477 /* 478 * First do a quick check for root in the global zone, which 479 * is allowed to do all write_perms. This ensures that zfs_ioc_* 480 * will get to handle nonexistent datasets. 481 */ 482 if (INGLOBALZONE(curproc) && secpolicy_zfs(cr) == 0) 483 return (0); 484 485 error = dsl_pool_hold(name, FTAG, &dp); 486 if (error != 0) 487 return (error); 488 489 error = dsl_dataset_hold(dp, name, FTAG, &ds); 490 if (error != 0) { 491 dsl_pool_rele(dp, FTAG); 492 return (error); 493 } 494 495 error = zfs_secpolicy_write_perms_ds(name, ds, perm, cr); 496 497 dsl_dataset_rele(ds, FTAG); 498 dsl_pool_rele(dp, FTAG); 499 return (error); 500 } 501 502 /* 503 * Policy for setting the security label property. 504 * 505 * Returns 0 for success, non-zero for access and other errors. 506 */ 507 static int 508 zfs_set_slabel_policy(const char *name, const char *strval, cred_t *cr) 509 { 510 #ifdef HAVE_MLSLABEL 511 char ds_hexsl[MAXNAMELEN]; 512 bslabel_t ds_sl, new_sl; 513 boolean_t new_default = FALSE; 514 uint64_t zoned; 515 int needed_priv = -1; 516 int error; 517 518 /* First get the existing dataset label. */ 519 error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 520 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 521 if (error != 0) 522 return (SET_ERROR(EPERM)); 523 524 if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) 525 new_default = TRUE; 526 527 /* The label must be translatable */ 528 if (!new_default && (hexstr_to_label(strval, &new_sl) != 0)) 529 return (SET_ERROR(EINVAL)); 530 531 /* 532 * In a non-global zone, disallow attempts to set a label that 533 * doesn't match that of the zone; otherwise no other checks 534 * are needed. 535 */ 536 if (!INGLOBALZONE(curproc)) { 537 if (new_default || !blequal(&new_sl, CR_SL(CRED()))) 538 return (SET_ERROR(EPERM)); 539 return (0); 540 } 541 542 /* 543 * For global-zone datasets (i.e., those whose zoned property is 544 * "off", verify that the specified new label is valid for the 545 * global zone. 546 */ 547 if (dsl_prop_get_integer(name, 548 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 549 return (SET_ERROR(EPERM)); 550 if (!zoned) { 551 if (zfs_check_global_label(name, strval) != 0) 552 return (SET_ERROR(EPERM)); 553 } 554 555 /* 556 * If the existing dataset label is nondefault, check if the 557 * dataset is mounted (label cannot be changed while mounted). 558 * Get the zfsvfs_t; if there isn't one, then the dataset isn't 559 * mounted (or isn't a dataset, doesn't exist, ...). 560 */ 561 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) { 562 objset_t *os; 563 static const char *setsl_tag = "setsl_tag"; 564 565 /* 566 * Try to own the dataset; abort if there is any error, 567 * (e.g., already mounted, in use, or other error). 568 */ 569 error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE, B_TRUE, 570 setsl_tag, &os); 571 if (error != 0) 572 return (SET_ERROR(EPERM)); 573 574 dmu_objset_disown(os, B_TRUE, setsl_tag); 575 576 if (new_default) { 577 needed_priv = PRIV_FILE_DOWNGRADE_SL; 578 goto out_check; 579 } 580 581 if (hexstr_to_label(strval, &new_sl) != 0) 582 return (SET_ERROR(EPERM)); 583 584 if (blstrictdom(&ds_sl, &new_sl)) 585 needed_priv = PRIV_FILE_DOWNGRADE_SL; 586 else if (blstrictdom(&new_sl, &ds_sl)) 587 needed_priv = PRIV_FILE_UPGRADE_SL; 588 } else { 589 /* dataset currently has a default label */ 590 if (!new_default) 591 needed_priv = PRIV_FILE_UPGRADE_SL; 592 } 593 594 out_check: 595 if (needed_priv != -1) 596 return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL)); 597 return (0); 598 #else 599 return (SET_ERROR(ENOTSUP)); 600 #endif /* HAVE_MLSLABEL */ 601 } 602 603 static int 604 zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval, 605 cred_t *cr) 606 { 607 const char *strval; 608 609 /* 610 * Check permissions for special properties. 611 */ 612 switch (prop) { 613 default: 614 break; 615 case ZFS_PROP_ZONED: 616 /* 617 * Disallow setting of 'zoned' from within a local zone. 618 */ 619 if (!INGLOBALZONE(curproc)) 620 return (SET_ERROR(EPERM)); 621 break; 622 623 case ZFS_PROP_QUOTA: 624 case ZFS_PROP_FILESYSTEM_LIMIT: 625 case ZFS_PROP_SNAPSHOT_LIMIT: 626 if (!INGLOBALZONE(curproc)) { 627 uint64_t zoned; 628 char setpoint[ZFS_MAX_DATASET_NAME_LEN]; 629 /* 630 * Unprivileged users are allowed to modify the 631 * limit on things *under* (ie. contained by) 632 * the thing they own. 633 */ 634 if (dsl_prop_get_integer(dsname, 635 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, setpoint)) 636 return (SET_ERROR(EPERM)); 637 if (!zoned || strlen(dsname) <= strlen(setpoint)) 638 return (SET_ERROR(EPERM)); 639 } 640 break; 641 642 case ZFS_PROP_MLSLABEL: 643 if (!is_system_labeled()) 644 return (SET_ERROR(EPERM)); 645 646 if (nvpair_value_string(propval, &strval) == 0) { 647 int err; 648 649 err = zfs_set_slabel_policy(dsname, strval, CRED()); 650 if (err != 0) 651 return (err); 652 } 653 break; 654 } 655 656 return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr)); 657 } 658 659 static int 660 zfs_secpolicy_set_fsacl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 661 { 662 /* 663 * permission to set permissions will be evaluated later in 664 * dsl_deleg_can_allow() 665 */ 666 (void) innvl; 667 return (zfs_dozonecheck(zc->zc_name, cr)); 668 } 669 670 static int 671 zfs_secpolicy_rollback(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 672 { 673 (void) innvl; 674 return (zfs_secpolicy_write_perms(zc->zc_name, 675 ZFS_DELEG_PERM_ROLLBACK, cr)); 676 } 677 678 static int 679 zfs_secpolicy_send(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 680 { 681 (void) innvl; 682 dsl_pool_t *dp; 683 dsl_dataset_t *ds; 684 const char *cp; 685 int error; 686 687 /* 688 * Generate the current snapshot name from the given objsetid, then 689 * use that name for the secpolicy/zone checks. 690 */ 691 cp = strchr(zc->zc_name, '@'); 692 if (cp == NULL) 693 return (SET_ERROR(EINVAL)); 694 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 695 if (error != 0) 696 return (error); 697 698 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds); 699 if (error != 0) { 700 dsl_pool_rele(dp, FTAG); 701 return (error); 702 } 703 704 dsl_dataset_name(ds, zc->zc_name); 705 706 error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds, 707 ZFS_DELEG_PERM_SEND, cr); 708 dsl_dataset_rele(ds, FTAG); 709 dsl_pool_rele(dp, FTAG); 710 711 return (error); 712 } 713 714 static int 715 zfs_secpolicy_send_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 716 { 717 (void) innvl; 718 return (zfs_secpolicy_write_perms(zc->zc_name, 719 ZFS_DELEG_PERM_SEND, cr)); 720 } 721 722 static int 723 zfs_secpolicy_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 724 { 725 (void) zc, (void) innvl, (void) cr; 726 return (SET_ERROR(ENOTSUP)); 727 } 728 729 static int 730 zfs_secpolicy_smb_acl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 731 { 732 (void) zc, (void) innvl, (void) cr; 733 return (SET_ERROR(ENOTSUP)); 734 } 735 736 static int 737 zfs_get_parent(const char *datasetname, char *parent, int parentsize) 738 { 739 char *cp; 740 741 /* 742 * Remove the @bla or /bla from the end of the name to get the parent. 743 */ 744 (void) strlcpy(parent, datasetname, parentsize); 745 cp = strrchr(parent, '@'); 746 if (cp != NULL) { 747 cp[0] = '\0'; 748 } else { 749 cp = strrchr(parent, '/'); 750 if (cp == NULL) 751 return (SET_ERROR(ENOENT)); 752 cp[0] = '\0'; 753 } 754 755 return (0); 756 } 757 758 int 759 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 760 { 761 int error; 762 763 if ((error = zfs_secpolicy_write_perms(name, 764 ZFS_DELEG_PERM_MOUNT, cr)) != 0) 765 return (error); 766 767 return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr)); 768 } 769 770 static int 771 zfs_secpolicy_destroy(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 772 { 773 (void) innvl; 774 return (zfs_secpolicy_destroy_perms(zc->zc_name, cr)); 775 } 776 777 /* 778 * Destroying snapshots with delegated permissions requires 779 * descendant mount and destroy permissions. 780 */ 781 static int 782 zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 783 { 784 (void) zc; 785 nvlist_t *snaps; 786 nvpair_t *pair, *nextpair; 787 int error = 0; 788 789 snaps = fnvlist_lookup_nvlist(innvl, "snaps"); 790 791 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; 792 pair = nextpair) { 793 nextpair = nvlist_next_nvpair(snaps, pair); 794 error = zfs_secpolicy_destroy_perms(nvpair_name(pair), cr); 795 if (error == ENOENT) { 796 /* 797 * Ignore any snapshots that don't exist (we consider 798 * them "already destroyed"). Remove the name from the 799 * nvl here in case the snapshot is created between 800 * now and when we try to destroy it (in which case 801 * we don't want to destroy it since we haven't 802 * checked for permission). 803 */ 804 fnvlist_remove_nvpair(snaps, pair); 805 error = 0; 806 } 807 if (error != 0) 808 break; 809 } 810 811 return (error); 812 } 813 814 int 815 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 816 { 817 char parentname[ZFS_MAX_DATASET_NAME_LEN]; 818 int error; 819 820 if ((error = zfs_secpolicy_write_perms(from, 821 ZFS_DELEG_PERM_RENAME, cr)) != 0) 822 return (error); 823 824 if ((error = zfs_secpolicy_write_perms(from, 825 ZFS_DELEG_PERM_MOUNT, cr)) != 0) 826 return (error); 827 828 if ((error = zfs_get_parent(to, parentname, 829 sizeof (parentname))) != 0) 830 return (error); 831 832 if ((error = zfs_secpolicy_write_perms(parentname, 833 ZFS_DELEG_PERM_CREATE, cr)) != 0) 834 return (error); 835 836 if ((error = zfs_secpolicy_write_perms(parentname, 837 ZFS_DELEG_PERM_MOUNT, cr)) != 0) 838 return (error); 839 840 return (error); 841 } 842 843 static int 844 zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 845 { 846 (void) innvl; 847 return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr)); 848 } 849 850 static int 851 zfs_secpolicy_promote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 852 { 853 (void) innvl; 854 dsl_pool_t *dp; 855 dsl_dataset_t *clone; 856 int error; 857 858 error = zfs_secpolicy_write_perms(zc->zc_name, 859 ZFS_DELEG_PERM_PROMOTE, cr); 860 if (error != 0) 861 return (error); 862 863 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 864 if (error != 0) 865 return (error); 866 867 error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &clone); 868 869 if (error == 0) { 870 char parentname[ZFS_MAX_DATASET_NAME_LEN]; 871 dsl_dataset_t *origin = NULL; 872 dsl_dir_t *dd; 873 dd = clone->ds_dir; 874 875 error = dsl_dataset_hold_obj(dd->dd_pool, 876 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin); 877 if (error != 0) { 878 dsl_dataset_rele(clone, FTAG); 879 dsl_pool_rele(dp, FTAG); 880 return (error); 881 } 882 883 error = zfs_secpolicy_write_perms_ds(zc->zc_name, clone, 884 ZFS_DELEG_PERM_MOUNT, cr); 885 886 dsl_dataset_name(origin, parentname); 887 if (error == 0) { 888 error = zfs_secpolicy_write_perms_ds(parentname, origin, 889 ZFS_DELEG_PERM_PROMOTE, cr); 890 } 891 dsl_dataset_rele(clone, FTAG); 892 dsl_dataset_rele(origin, FTAG); 893 } 894 dsl_pool_rele(dp, FTAG); 895 return (error); 896 } 897 898 static int 899 zfs_secpolicy_recv(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 900 { 901 (void) innvl; 902 int error; 903 904 if ((error = zfs_secpolicy_write_perms(zc->zc_name, 905 ZFS_DELEG_PERM_RECEIVE, cr)) != 0) 906 return (error); 907 908 if ((error = zfs_secpolicy_write_perms(zc->zc_name, 909 ZFS_DELEG_PERM_MOUNT, cr)) != 0) 910 return (error); 911 912 return (zfs_secpolicy_write_perms(zc->zc_name, 913 ZFS_DELEG_PERM_CREATE, cr)); 914 } 915 916 int 917 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 918 { 919 return (zfs_secpolicy_write_perms(name, 920 ZFS_DELEG_PERM_SNAPSHOT, cr)); 921 } 922 923 /* 924 * Check for permission to create each snapshot in the nvlist. 925 */ 926 static int 927 zfs_secpolicy_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 928 { 929 (void) zc; 930 nvlist_t *snaps; 931 int error = 0; 932 nvpair_t *pair; 933 934 snaps = fnvlist_lookup_nvlist(innvl, "snaps"); 935 936 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; 937 pair = nvlist_next_nvpair(snaps, pair)) { 938 char *name = (char *)nvpair_name(pair); 939 char *atp = strchr(name, '@'); 940 941 if (atp == NULL) { 942 error = SET_ERROR(EINVAL); 943 break; 944 } 945 *atp = '\0'; 946 error = zfs_secpolicy_snapshot_perms(name, cr); 947 *atp = '@'; 948 if (error != 0) 949 break; 950 } 951 return (error); 952 } 953 954 /* 955 * Check for permission to create each bookmark in the nvlist. 956 */ 957 static int 958 zfs_secpolicy_bookmark(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 959 { 960 (void) zc; 961 int error = 0; 962 963 for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); 964 pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { 965 char *name = (char *)nvpair_name(pair); 966 char *hashp = strchr(name, '#'); 967 968 if (hashp == NULL) { 969 error = SET_ERROR(EINVAL); 970 break; 971 } 972 *hashp = '\0'; 973 error = zfs_secpolicy_write_perms(name, 974 ZFS_DELEG_PERM_BOOKMARK, cr); 975 *hashp = '#'; 976 if (error != 0) 977 break; 978 } 979 return (error); 980 } 981 982 static int 983 zfs_secpolicy_destroy_bookmarks(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 984 { 985 (void) zc; 986 nvpair_t *pair, *nextpair; 987 int error = 0; 988 989 for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; 990 pair = nextpair) { 991 char *name = (char *)nvpair_name(pair); 992 char *hashp = strchr(name, '#'); 993 nextpair = nvlist_next_nvpair(innvl, pair); 994 995 if (hashp == NULL) { 996 error = SET_ERROR(EINVAL); 997 break; 998 } 999 1000 *hashp = '\0'; 1001 error = zfs_secpolicy_write_perms(name, 1002 ZFS_DELEG_PERM_DESTROY, cr); 1003 *hashp = '#'; 1004 if (error == ENOENT) { 1005 /* 1006 * Ignore any filesystems that don't exist (we consider 1007 * their bookmarks "already destroyed"). Remove 1008 * the name from the nvl here in case the filesystem 1009 * is created between now and when we try to destroy 1010 * the bookmark (in which case we don't want to 1011 * destroy it since we haven't checked for permission). 1012 */ 1013 fnvlist_remove_nvpair(innvl, pair); 1014 error = 0; 1015 } 1016 if (error != 0) 1017 break; 1018 } 1019 1020 return (error); 1021 } 1022 1023 static int 1024 zfs_secpolicy_log_history(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1025 { 1026 (void) zc, (void) innvl, (void) cr; 1027 /* 1028 * Even root must have a proper TSD so that we know what pool 1029 * to log to. 1030 */ 1031 if (tsd_get(zfs_allow_log_key) == NULL) 1032 return (SET_ERROR(EPERM)); 1033 return (0); 1034 } 1035 1036 static int 1037 zfs_secpolicy_create_clone(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1038 { 1039 char parentname[ZFS_MAX_DATASET_NAME_LEN]; 1040 int error; 1041 const char *origin; 1042 1043 if ((error = zfs_get_parent(zc->zc_name, parentname, 1044 sizeof (parentname))) != 0) 1045 return (error); 1046 1047 if (nvlist_lookup_string(innvl, "origin", &origin) == 0 && 1048 (error = zfs_secpolicy_write_perms(origin, 1049 ZFS_DELEG_PERM_CLONE, cr)) != 0) 1050 return (error); 1051 1052 if ((error = zfs_secpolicy_write_perms(parentname, 1053 ZFS_DELEG_PERM_CREATE, cr)) != 0) 1054 return (error); 1055 1056 return (zfs_secpolicy_write_perms(parentname, 1057 ZFS_DELEG_PERM_MOUNT, cr)); 1058 } 1059 1060 /* 1061 * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires 1062 * SYS_CONFIG privilege, which is not available in a local zone. 1063 */ 1064 int 1065 zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1066 { 1067 (void) zc, (void) innvl; 1068 1069 if (secpolicy_sys_config(cr, B_FALSE) != 0) 1070 return (SET_ERROR(EPERM)); 1071 1072 return (0); 1073 } 1074 1075 /* 1076 * Policy for object to name lookups. 1077 */ 1078 static int 1079 zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1080 { 1081 (void) innvl; 1082 int error; 1083 1084 if (secpolicy_sys_config(cr, B_FALSE) == 0) 1085 return (0); 1086 1087 error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr); 1088 return (error); 1089 } 1090 1091 /* 1092 * Policy for fault injection. Requires all privileges. 1093 */ 1094 static int 1095 zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1096 { 1097 (void) zc, (void) innvl; 1098 return (secpolicy_zinject(cr)); 1099 } 1100 1101 static int 1102 zfs_secpolicy_inherit_prop(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1103 { 1104 (void) innvl; 1105 zfs_prop_t prop = zfs_name_to_prop(zc->zc_value); 1106 1107 if (prop == ZPROP_USERPROP) { 1108 if (!zfs_prop_user(zc->zc_value)) 1109 return (SET_ERROR(EINVAL)); 1110 return (zfs_secpolicy_write_perms(zc->zc_name, 1111 ZFS_DELEG_PERM_USERPROP, cr)); 1112 } else { 1113 return (zfs_secpolicy_setprop(zc->zc_name, prop, 1114 NULL, cr)); 1115 } 1116 } 1117 1118 static int 1119 zfs_secpolicy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1120 { 1121 int err = zfs_secpolicy_read(zc, innvl, cr); 1122 if (err) 1123 return (err); 1124 1125 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) 1126 return (SET_ERROR(EINVAL)); 1127 1128 if (zc->zc_value[0] == 0) { 1129 /* 1130 * They are asking about a posix uid/gid. If it's 1131 * themself, allow it. 1132 */ 1133 if (zc->zc_objset_type == ZFS_PROP_USERUSED || 1134 zc->zc_objset_type == ZFS_PROP_USERQUOTA || 1135 zc->zc_objset_type == ZFS_PROP_USEROBJUSED || 1136 zc->zc_objset_type == ZFS_PROP_USEROBJQUOTA) { 1137 if (zc->zc_guid == crgetuid(cr)) 1138 return (0); 1139 } else if (zc->zc_objset_type == ZFS_PROP_GROUPUSED || 1140 zc->zc_objset_type == ZFS_PROP_GROUPQUOTA || 1141 zc->zc_objset_type == ZFS_PROP_GROUPOBJUSED || 1142 zc->zc_objset_type == ZFS_PROP_GROUPOBJQUOTA) { 1143 if (groupmember(zc->zc_guid, cr)) 1144 return (0); 1145 } 1146 /* else is for project quota/used */ 1147 } 1148 1149 return (zfs_secpolicy_write_perms(zc->zc_name, 1150 userquota_perms[zc->zc_objset_type], cr)); 1151 } 1152 1153 static int 1154 zfs_secpolicy_userspace_many(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1155 { 1156 int err = zfs_secpolicy_read(zc, innvl, cr); 1157 if (err) 1158 return (err); 1159 1160 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) 1161 return (SET_ERROR(EINVAL)); 1162 1163 return (zfs_secpolicy_write_perms(zc->zc_name, 1164 userquota_perms[zc->zc_objset_type], cr)); 1165 } 1166 1167 static int 1168 zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1169 { 1170 (void) innvl; 1171 return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION, 1172 NULL, cr)); 1173 } 1174 1175 static int 1176 zfs_secpolicy_hold(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1177 { 1178 (void) zc; 1179 nvpair_t *pair; 1180 nvlist_t *holds; 1181 int error; 1182 1183 holds = fnvlist_lookup_nvlist(innvl, "holds"); 1184 1185 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; 1186 pair = nvlist_next_nvpair(holds, pair)) { 1187 char fsname[ZFS_MAX_DATASET_NAME_LEN]; 1188 error = dmu_fsname(nvpair_name(pair), fsname); 1189 if (error != 0) 1190 return (error); 1191 error = zfs_secpolicy_write_perms(fsname, 1192 ZFS_DELEG_PERM_HOLD, cr); 1193 if (error != 0) 1194 return (error); 1195 } 1196 return (0); 1197 } 1198 1199 static int 1200 zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1201 { 1202 (void) zc; 1203 nvpair_t *pair; 1204 int error; 1205 1206 for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; 1207 pair = nvlist_next_nvpair(innvl, pair)) { 1208 char fsname[ZFS_MAX_DATASET_NAME_LEN]; 1209 error = dmu_fsname(nvpair_name(pair), fsname); 1210 if (error != 0) 1211 return (error); 1212 error = zfs_secpolicy_write_perms(fsname, 1213 ZFS_DELEG_PERM_RELEASE, cr); 1214 if (error != 0) 1215 return (error); 1216 } 1217 return (0); 1218 } 1219 1220 /* 1221 * Policy for allowing temporary snapshots to be taken or released 1222 */ 1223 static int 1224 zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1225 { 1226 /* 1227 * A temporary snapshot is the same as a snapshot, 1228 * hold, destroy and release all rolled into one. 1229 * Delegated diff alone is sufficient that we allow this. 1230 */ 1231 int error; 1232 1233 if (zfs_secpolicy_write_perms(zc->zc_name, 1234 ZFS_DELEG_PERM_DIFF, cr) == 0) 1235 return (0); 1236 1237 error = zfs_secpolicy_snapshot_perms(zc->zc_name, cr); 1238 1239 if (innvl != NULL) { 1240 if (error == 0) 1241 error = zfs_secpolicy_hold(zc, innvl, cr); 1242 if (error == 0) 1243 error = zfs_secpolicy_release(zc, innvl, cr); 1244 if (error == 0) 1245 error = zfs_secpolicy_destroy(zc, innvl, cr); 1246 } 1247 return (error); 1248 } 1249 1250 static int 1251 zfs_secpolicy_load_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1252 { 1253 return (zfs_secpolicy_write_perms(zc->zc_name, 1254 ZFS_DELEG_PERM_LOAD_KEY, cr)); 1255 } 1256 1257 static int 1258 zfs_secpolicy_change_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1259 { 1260 return (zfs_secpolicy_write_perms(zc->zc_name, 1261 ZFS_DELEG_PERM_CHANGE_KEY, cr)); 1262 } 1263 1264 /* 1265 * Returns the nvlist as specified by the user in the zfs_cmd_t. 1266 */ 1267 static int 1268 get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp) 1269 { 1270 char *packed; 1271 int error; 1272 nvlist_t *list = NULL; 1273 1274 /* 1275 * Read in and unpack the user-supplied nvlist. 1276 */ 1277 if (size == 0) 1278 return (SET_ERROR(EINVAL)); 1279 1280 packed = vmem_alloc(size, KM_SLEEP); 1281 1282 if (ddi_copyin((void *)(uintptr_t)nvl, packed, size, iflag) != 0) { 1283 vmem_free(packed, size); 1284 return (SET_ERROR(EFAULT)); 1285 } 1286 1287 if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) { 1288 vmem_free(packed, size); 1289 return (error); 1290 } 1291 1292 vmem_free(packed, size); 1293 1294 *nvp = list; 1295 return (0); 1296 } 1297 1298 /* 1299 * Reduce the size of this nvlist until it can be serialized in 'max' bytes. 1300 * Entries will be removed from the end of the nvlist, and one int32 entry 1301 * named "N_MORE_ERRORS" will be added indicating how many entries were 1302 * removed. 1303 */ 1304 static int 1305 nvlist_smush(nvlist_t *errors, size_t max) 1306 { 1307 size_t size; 1308 1309 size = fnvlist_size(errors); 1310 1311 if (size > max) { 1312 nvpair_t *more_errors; 1313 int n = 0; 1314 1315 if (max < 1024) 1316 return (SET_ERROR(ENOMEM)); 1317 1318 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0); 1319 more_errors = nvlist_prev_nvpair(errors, NULL); 1320 1321 do { 1322 nvpair_t *pair = nvlist_prev_nvpair(errors, 1323 more_errors); 1324 fnvlist_remove_nvpair(errors, pair); 1325 n++; 1326 size = fnvlist_size(errors); 1327 } while (size > max); 1328 1329 fnvlist_remove_nvpair(errors, more_errors); 1330 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n); 1331 ASSERT3U(fnvlist_size(errors), <=, max); 1332 } 1333 1334 return (0); 1335 } 1336 1337 static int 1338 put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl) 1339 { 1340 char *packed = NULL; 1341 int error = 0; 1342 size_t size; 1343 1344 size = fnvlist_size(nvl); 1345 1346 if (size > zc->zc_nvlist_dst_size) { 1347 error = SET_ERROR(ENOMEM); 1348 } else { 1349 packed = fnvlist_pack(nvl, &size); 1350 if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst, 1351 size, zc->zc_iflags) != 0) 1352 error = SET_ERROR(EFAULT); 1353 fnvlist_pack_free(packed, size); 1354 } 1355 1356 zc->zc_nvlist_dst_size = size; 1357 zc->zc_nvlist_dst_filled = B_TRUE; 1358 return (error); 1359 } 1360 1361 int 1362 getzfsvfs_impl(objset_t *os, zfsvfs_t **zfvp) 1363 { 1364 int error = 0; 1365 if (dmu_objset_type(os) != DMU_OST_ZFS) { 1366 return (SET_ERROR(EINVAL)); 1367 } 1368 1369 mutex_enter(&os->os_user_ptr_lock); 1370 *zfvp = dmu_objset_get_user(os); 1371 /* bump s_active only when non-zero to prevent umount race */ 1372 error = zfs_vfs_ref(zfvp); 1373 mutex_exit(&os->os_user_ptr_lock); 1374 return (error); 1375 } 1376 1377 int 1378 getzfsvfs(const char *dsname, zfsvfs_t **zfvp) 1379 { 1380 objset_t *os; 1381 int error; 1382 1383 error = dmu_objset_hold(dsname, FTAG, &os); 1384 if (error != 0) 1385 return (error); 1386 1387 error = getzfsvfs_impl(os, zfvp); 1388 dmu_objset_rele(os, FTAG); 1389 return (error); 1390 } 1391 1392 /* 1393 * Find a zfsvfs_t for a mounted filesystem, or create our own, in which 1394 * case its z_sb will be NULL, and it will be opened as the owner. 1395 * If 'writer' is set, the z_teardown_lock will be held for RW_WRITER, 1396 * which prevents all inode ops from running. 1397 */ 1398 static int 1399 zfsvfs_hold(const char *name, const void *tag, zfsvfs_t **zfvp, 1400 boolean_t writer) 1401 { 1402 int error = 0; 1403 1404 if (getzfsvfs(name, zfvp) != 0) 1405 error = zfsvfs_create(name, B_FALSE, zfvp); 1406 if (error == 0) { 1407 if (writer) 1408 ZFS_TEARDOWN_ENTER_WRITE(*zfvp, tag); 1409 else 1410 ZFS_TEARDOWN_ENTER_READ(*zfvp, tag); 1411 if ((*zfvp)->z_unmounted) { 1412 /* 1413 * XXX we could probably try again, since the unmounting 1414 * thread should be just about to disassociate the 1415 * objset from the zfsvfs. 1416 */ 1417 ZFS_TEARDOWN_EXIT(*zfvp, tag); 1418 return (SET_ERROR(EBUSY)); 1419 } 1420 } 1421 return (error); 1422 } 1423 1424 static void 1425 zfsvfs_rele(zfsvfs_t *zfsvfs, const void *tag) 1426 { 1427 ZFS_TEARDOWN_EXIT(zfsvfs, tag); 1428 1429 if (zfs_vfs_held(zfsvfs)) { 1430 zfs_vfs_rele(zfsvfs); 1431 } else { 1432 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); 1433 zfsvfs_free(zfsvfs); 1434 } 1435 } 1436 1437 static int 1438 zfs_ioc_pool_create(zfs_cmd_t *zc) 1439 { 1440 int error; 1441 nvlist_t *config, *props = NULL; 1442 nvlist_t *rootprops = NULL; 1443 nvlist_t *zplprops = NULL; 1444 dsl_crypto_params_t *dcp = NULL; 1445 const char *spa_name = zc->zc_name; 1446 boolean_t unload_wkey = B_TRUE; 1447 1448 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1449 zc->zc_iflags, &config))) 1450 return (error); 1451 1452 if (zc->zc_nvlist_src_size != 0 && (error = 1453 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 1454 zc->zc_iflags, &props))) { 1455 nvlist_free(config); 1456 return (error); 1457 } 1458 1459 if (props) { 1460 nvlist_t *nvl = NULL; 1461 nvlist_t *hidden_args = NULL; 1462 uint64_t version = SPA_VERSION; 1463 const char *tname; 1464 1465 (void) nvlist_lookup_uint64(props, 1466 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version); 1467 if (!SPA_VERSION_IS_SUPPORTED(version)) { 1468 error = SET_ERROR(EINVAL); 1469 goto pool_props_bad; 1470 } 1471 (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl); 1472 if (nvl) { 1473 error = nvlist_dup(nvl, &rootprops, KM_SLEEP); 1474 if (error != 0) 1475 goto pool_props_bad; 1476 (void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS); 1477 } 1478 1479 (void) nvlist_lookup_nvlist(props, ZPOOL_HIDDEN_ARGS, 1480 &hidden_args); 1481 error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 1482 rootprops, hidden_args, &dcp); 1483 if (error != 0) 1484 goto pool_props_bad; 1485 (void) nvlist_remove_all(props, ZPOOL_HIDDEN_ARGS); 1486 1487 VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1488 error = zfs_fill_zplprops_root(version, rootprops, 1489 zplprops, NULL); 1490 if (error != 0) 1491 goto pool_props_bad; 1492 1493 if (nvlist_lookup_string(props, 1494 zpool_prop_to_name(ZPOOL_PROP_TNAME), &tname) == 0) 1495 spa_name = tname; 1496 } 1497 1498 error = spa_create(zc->zc_name, config, props, zplprops, dcp); 1499 1500 /* 1501 * Set the remaining root properties 1502 */ 1503 if (!error && (error = zfs_set_prop_nvlist(spa_name, 1504 ZPROP_SRC_LOCAL, rootprops, NULL)) != 0) { 1505 (void) spa_destroy(spa_name); 1506 unload_wkey = B_FALSE; /* spa_destroy() unloads wrapping keys */ 1507 } 1508 1509 pool_props_bad: 1510 nvlist_free(rootprops); 1511 nvlist_free(zplprops); 1512 nvlist_free(config); 1513 nvlist_free(props); 1514 dsl_crypto_params_free(dcp, unload_wkey && !!error); 1515 1516 return (error); 1517 } 1518 1519 static int 1520 zfs_ioc_pool_destroy(zfs_cmd_t *zc) 1521 { 1522 int error; 1523 zfs_log_history(zc); 1524 error = spa_destroy(zc->zc_name); 1525 1526 return (error); 1527 } 1528 1529 static int 1530 zfs_ioc_pool_import(zfs_cmd_t *zc) 1531 { 1532 nvlist_t *config, *props = NULL; 1533 uint64_t guid; 1534 int error; 1535 1536 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1537 zc->zc_iflags, &config)) != 0) 1538 return (error); 1539 1540 if (zc->zc_nvlist_src_size != 0 && (error = 1541 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 1542 zc->zc_iflags, &props))) { 1543 nvlist_free(config); 1544 return (error); 1545 } 1546 1547 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1548 guid != zc->zc_guid) 1549 error = SET_ERROR(EINVAL); 1550 else 1551 error = spa_import(zc->zc_name, config, props, zc->zc_cookie); 1552 1553 if (zc->zc_nvlist_dst != 0) { 1554 int err; 1555 1556 if ((err = put_nvlist(zc, config)) != 0) 1557 error = err; 1558 } 1559 1560 nvlist_free(config); 1561 nvlist_free(props); 1562 1563 return (error); 1564 } 1565 1566 static int 1567 zfs_ioc_pool_export(zfs_cmd_t *zc) 1568 { 1569 int error; 1570 boolean_t force = (boolean_t)zc->zc_cookie; 1571 boolean_t hardforce = (boolean_t)zc->zc_guid; 1572 1573 zfs_log_history(zc); 1574 error = spa_export(zc->zc_name, NULL, force, hardforce); 1575 1576 return (error); 1577 } 1578 1579 static int 1580 zfs_ioc_pool_configs(zfs_cmd_t *zc) 1581 { 1582 nvlist_t *configs; 1583 int error; 1584 1585 error = spa_all_configs(&zc->zc_cookie, &configs); 1586 if (error) 1587 return (error); 1588 1589 error = put_nvlist(zc, configs); 1590 1591 nvlist_free(configs); 1592 1593 return (error); 1594 } 1595 1596 /* 1597 * inputs: 1598 * zc_name name of the pool 1599 * 1600 * outputs: 1601 * zc_cookie real errno 1602 * zc_nvlist_dst config nvlist 1603 * zc_nvlist_dst_size size of config nvlist 1604 */ 1605 static int 1606 zfs_ioc_pool_stats(zfs_cmd_t *zc) 1607 { 1608 nvlist_t *config; 1609 int error; 1610 int ret = 0; 1611 1612 error = spa_get_stats(zc->zc_name, &config, zc->zc_value, 1613 sizeof (zc->zc_value)); 1614 1615 if (config != NULL) { 1616 ret = put_nvlist(zc, config); 1617 nvlist_free(config); 1618 1619 /* 1620 * The config may be present even if 'error' is non-zero. 1621 * In this case we return success, and preserve the real errno 1622 * in 'zc_cookie'. 1623 */ 1624 zc->zc_cookie = error; 1625 } else { 1626 ret = error; 1627 } 1628 1629 return (ret); 1630 } 1631 1632 /* 1633 * Try to import the given pool, returning pool stats as appropriate so that 1634 * user land knows which devices are available and overall pool health. 1635 */ 1636 static int 1637 zfs_ioc_pool_tryimport(zfs_cmd_t *zc) 1638 { 1639 nvlist_t *tryconfig, *config = NULL; 1640 int error; 1641 1642 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1643 zc->zc_iflags, &tryconfig)) != 0) 1644 return (error); 1645 1646 config = spa_tryimport(tryconfig); 1647 1648 nvlist_free(tryconfig); 1649 1650 if (config == NULL) 1651 return (SET_ERROR(EINVAL)); 1652 1653 error = put_nvlist(zc, config); 1654 nvlist_free(config); 1655 1656 return (error); 1657 } 1658 1659 /* 1660 * inputs: 1661 * zc_name name of the pool 1662 * zc_cookie scan func (pool_scan_func_t) 1663 * zc_flags scrub pause/resume flag (pool_scrub_cmd_t) 1664 */ 1665 static int 1666 zfs_ioc_pool_scan(zfs_cmd_t *zc) 1667 { 1668 spa_t *spa; 1669 int error; 1670 1671 if (zc->zc_flags >= POOL_SCRUB_FLAGS_END) 1672 return (SET_ERROR(EINVAL)); 1673 1674 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1675 return (error); 1676 1677 if (zc->zc_flags == POOL_SCRUB_PAUSE) 1678 error = spa_scrub_pause_resume(spa, POOL_SCRUB_PAUSE); 1679 else if (zc->zc_cookie == POOL_SCAN_NONE) 1680 error = spa_scan_stop(spa); 1681 else 1682 error = spa_scan(spa, zc->zc_cookie); 1683 1684 spa_close(spa, FTAG); 1685 1686 return (error); 1687 } 1688 1689 /* 1690 * inputs: 1691 * poolname name of the pool 1692 * scan_type scan func (pool_scan_func_t) 1693 * scan_command scrub pause/resume flag (pool_scrub_cmd_t) 1694 */ 1695 static const zfs_ioc_key_t zfs_keys_pool_scrub[] = { 1696 {"scan_type", DATA_TYPE_UINT64, 0}, 1697 {"scan_command", DATA_TYPE_UINT64, 0}, 1698 }; 1699 1700 static int 1701 zfs_ioc_pool_scrub(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 1702 { 1703 spa_t *spa; 1704 int error; 1705 uint64_t scan_type, scan_cmd; 1706 1707 if (nvlist_lookup_uint64(innvl, "scan_type", &scan_type) != 0) 1708 return (SET_ERROR(EINVAL)); 1709 if (nvlist_lookup_uint64(innvl, "scan_command", &scan_cmd) != 0) 1710 return (SET_ERROR(EINVAL)); 1711 1712 if (scan_cmd >= POOL_SCRUB_FLAGS_END) 1713 return (SET_ERROR(EINVAL)); 1714 1715 if ((error = spa_open(poolname, &spa, FTAG)) != 0) 1716 return (error); 1717 1718 if (scan_cmd == POOL_SCRUB_PAUSE) { 1719 error = spa_scrub_pause_resume(spa, POOL_SCRUB_PAUSE); 1720 } else if (scan_type == POOL_SCAN_NONE) { 1721 error = spa_scan_stop(spa); 1722 } else { 1723 error = spa_scan(spa, scan_type); 1724 } 1725 1726 spa_close(spa, FTAG); 1727 return (error); 1728 } 1729 1730 static int 1731 zfs_ioc_pool_freeze(zfs_cmd_t *zc) 1732 { 1733 spa_t *spa; 1734 int error; 1735 1736 error = spa_open(zc->zc_name, &spa, FTAG); 1737 if (error == 0) { 1738 spa_freeze(spa); 1739 spa_close(spa, FTAG); 1740 } 1741 return (error); 1742 } 1743 1744 static int 1745 zfs_ioc_pool_upgrade(zfs_cmd_t *zc) 1746 { 1747 spa_t *spa; 1748 int error; 1749 1750 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1751 return (error); 1752 1753 if (zc->zc_cookie < spa_version(spa) || 1754 !SPA_VERSION_IS_SUPPORTED(zc->zc_cookie)) { 1755 spa_close(spa, FTAG); 1756 return (SET_ERROR(EINVAL)); 1757 } 1758 1759 spa_upgrade(spa, zc->zc_cookie); 1760 spa_close(spa, FTAG); 1761 1762 return (error); 1763 } 1764 1765 static int 1766 zfs_ioc_pool_get_history(zfs_cmd_t *zc) 1767 { 1768 spa_t *spa; 1769 char *hist_buf; 1770 uint64_t size; 1771 int error; 1772 1773 if ((size = zc->zc_history_len) == 0) 1774 return (SET_ERROR(EINVAL)); 1775 1776 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1777 return (error); 1778 1779 if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { 1780 spa_close(spa, FTAG); 1781 return (SET_ERROR(ENOTSUP)); 1782 } 1783 1784 hist_buf = vmem_alloc(size, KM_SLEEP); 1785 if ((error = spa_history_get(spa, &zc->zc_history_offset, 1786 &zc->zc_history_len, hist_buf)) == 0) { 1787 error = ddi_copyout(hist_buf, 1788 (void *)(uintptr_t)zc->zc_history, 1789 zc->zc_history_len, zc->zc_iflags); 1790 } 1791 1792 spa_close(spa, FTAG); 1793 vmem_free(hist_buf, size); 1794 return (error); 1795 } 1796 1797 static int 1798 zfs_ioc_pool_reguid(zfs_cmd_t *zc) 1799 { 1800 spa_t *spa; 1801 int error; 1802 1803 error = spa_open(zc->zc_name, &spa, FTAG); 1804 if (error == 0) { 1805 error = spa_change_guid(spa); 1806 spa_close(spa, FTAG); 1807 } 1808 return (error); 1809 } 1810 1811 static int 1812 zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc) 1813 { 1814 return (dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value)); 1815 } 1816 1817 /* 1818 * inputs: 1819 * zc_name name of filesystem 1820 * zc_obj object to find 1821 * 1822 * outputs: 1823 * zc_value name of object 1824 */ 1825 static int 1826 zfs_ioc_obj_to_path(zfs_cmd_t *zc) 1827 { 1828 objset_t *os; 1829 int error; 1830 1831 /* XXX reading from objset not owned */ 1832 if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, 1833 FTAG, &os)) != 0) 1834 return (error); 1835 if (dmu_objset_type(os) != DMU_OST_ZFS) { 1836 dmu_objset_rele_flags(os, B_TRUE, FTAG); 1837 return (SET_ERROR(EINVAL)); 1838 } 1839 error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value, 1840 sizeof (zc->zc_value)); 1841 dmu_objset_rele_flags(os, B_TRUE, FTAG); 1842 1843 return (error); 1844 } 1845 1846 /* 1847 * inputs: 1848 * zc_name name of filesystem 1849 * zc_obj object to find 1850 * 1851 * outputs: 1852 * zc_stat stats on object 1853 * zc_value path to object 1854 */ 1855 static int 1856 zfs_ioc_obj_to_stats(zfs_cmd_t *zc) 1857 { 1858 objset_t *os; 1859 int error; 1860 1861 /* XXX reading from objset not owned */ 1862 if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, 1863 FTAG, &os)) != 0) 1864 return (error); 1865 if (dmu_objset_type(os) != DMU_OST_ZFS) { 1866 dmu_objset_rele_flags(os, B_TRUE, FTAG); 1867 return (SET_ERROR(EINVAL)); 1868 } 1869 error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value, 1870 sizeof (zc->zc_value)); 1871 dmu_objset_rele_flags(os, B_TRUE, FTAG); 1872 1873 return (error); 1874 } 1875 1876 static int 1877 zfs_ioc_vdev_add(zfs_cmd_t *zc) 1878 { 1879 spa_t *spa; 1880 int error; 1881 nvlist_t *config; 1882 1883 error = spa_open(zc->zc_name, &spa, FTAG); 1884 if (error != 0) 1885 return (error); 1886 1887 error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1888 zc->zc_iflags, &config); 1889 if (error == 0) { 1890 error = spa_vdev_add(spa, config, zc->zc_flags); 1891 nvlist_free(config); 1892 } 1893 spa_close(spa, FTAG); 1894 return (error); 1895 } 1896 1897 /* 1898 * inputs: 1899 * zc_name name of the pool 1900 * zc_guid guid of vdev to remove 1901 * zc_cookie cancel removal 1902 */ 1903 static int 1904 zfs_ioc_vdev_remove(zfs_cmd_t *zc) 1905 { 1906 spa_t *spa; 1907 int error; 1908 1909 error = spa_open(zc->zc_name, &spa, FTAG); 1910 if (error != 0) 1911 return (error); 1912 if (zc->zc_cookie != 0) { 1913 error = spa_vdev_remove_cancel(spa); 1914 } else { 1915 error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE); 1916 } 1917 spa_close(spa, FTAG); 1918 return (error); 1919 } 1920 1921 static int 1922 zfs_ioc_vdev_set_state(zfs_cmd_t *zc) 1923 { 1924 spa_t *spa; 1925 int error; 1926 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 1927 1928 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1929 return (error); 1930 switch (zc->zc_cookie) { 1931 case VDEV_STATE_ONLINE: 1932 error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate); 1933 break; 1934 1935 case VDEV_STATE_OFFLINE: 1936 error = vdev_offline(spa, zc->zc_guid, zc->zc_obj); 1937 break; 1938 1939 case VDEV_STATE_FAULTED: 1940 if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && 1941 zc->zc_obj != VDEV_AUX_EXTERNAL && 1942 zc->zc_obj != VDEV_AUX_EXTERNAL_PERSIST) 1943 zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; 1944 1945 error = vdev_fault(spa, zc->zc_guid, zc->zc_obj); 1946 break; 1947 1948 case VDEV_STATE_DEGRADED: 1949 if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && 1950 zc->zc_obj != VDEV_AUX_EXTERNAL) 1951 zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; 1952 1953 error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj); 1954 break; 1955 1956 case VDEV_STATE_REMOVED: 1957 error = vdev_remove_wanted(spa, zc->zc_guid); 1958 break; 1959 1960 default: 1961 error = SET_ERROR(EINVAL); 1962 } 1963 zc->zc_cookie = newstate; 1964 spa_close(spa, FTAG); 1965 return (error); 1966 } 1967 1968 static int 1969 zfs_ioc_vdev_attach(zfs_cmd_t *zc) 1970 { 1971 spa_t *spa; 1972 nvlist_t *config; 1973 int replacing = zc->zc_cookie; 1974 int rebuild = zc->zc_simple; 1975 int error; 1976 1977 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1978 return (error); 1979 1980 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1981 zc->zc_iflags, &config)) == 0) { 1982 error = spa_vdev_attach(spa, zc->zc_guid, config, replacing, 1983 rebuild); 1984 nvlist_free(config); 1985 } 1986 1987 spa_close(spa, FTAG); 1988 return (error); 1989 } 1990 1991 static int 1992 zfs_ioc_vdev_detach(zfs_cmd_t *zc) 1993 { 1994 spa_t *spa; 1995 int error; 1996 1997 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1998 return (error); 1999 2000 error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE); 2001 2002 spa_close(spa, FTAG); 2003 return (error); 2004 } 2005 2006 static int 2007 zfs_ioc_vdev_split(zfs_cmd_t *zc) 2008 { 2009 spa_t *spa; 2010 nvlist_t *config, *props = NULL; 2011 int error; 2012 boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT); 2013 2014 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 2015 return (error); 2016 2017 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 2018 zc->zc_iflags, &config))) { 2019 spa_close(spa, FTAG); 2020 return (error); 2021 } 2022 2023 if (zc->zc_nvlist_src_size != 0 && (error = 2024 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 2025 zc->zc_iflags, &props))) { 2026 spa_close(spa, FTAG); 2027 nvlist_free(config); 2028 return (error); 2029 } 2030 2031 error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp); 2032 2033 spa_close(spa, FTAG); 2034 2035 nvlist_free(config); 2036 nvlist_free(props); 2037 2038 return (error); 2039 } 2040 2041 static int 2042 zfs_ioc_vdev_setpath(zfs_cmd_t *zc) 2043 { 2044 spa_t *spa; 2045 const char *path = zc->zc_value; 2046 uint64_t guid = zc->zc_guid; 2047 int error; 2048 2049 error = spa_open(zc->zc_name, &spa, FTAG); 2050 if (error != 0) 2051 return (error); 2052 2053 error = spa_vdev_setpath(spa, guid, path); 2054 spa_close(spa, FTAG); 2055 return (error); 2056 } 2057 2058 static int 2059 zfs_ioc_vdev_setfru(zfs_cmd_t *zc) 2060 { 2061 spa_t *spa; 2062 const char *fru = zc->zc_value; 2063 uint64_t guid = zc->zc_guid; 2064 int error; 2065 2066 error = spa_open(zc->zc_name, &spa, FTAG); 2067 if (error != 0) 2068 return (error); 2069 2070 error = spa_vdev_setfru(spa, guid, fru); 2071 spa_close(spa, FTAG); 2072 return (error); 2073 } 2074 2075 static int 2076 zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os) 2077 { 2078 int error = 0; 2079 nvlist_t *nv; 2080 2081 dmu_objset_fast_stat(os, &zc->zc_objset_stats); 2082 2083 if (!zc->zc_simple && zc->zc_nvlist_dst != 0 && 2084 (error = dsl_prop_get_all(os, &nv)) == 0) { 2085 dmu_objset_stats(os, nv); 2086 /* 2087 * NB: zvol_get_stats() will read the objset contents, 2088 * which we aren't supposed to do with a 2089 * DS_MODE_USER hold, because it could be 2090 * inconsistent. So this is a bit of a workaround... 2091 * XXX reading without owning 2092 */ 2093 if (!zc->zc_objset_stats.dds_inconsistent && 2094 dmu_objset_type(os) == DMU_OST_ZVOL) { 2095 error = zvol_get_stats(os, nv); 2096 if (error == EIO) { 2097 nvlist_free(nv); 2098 return (error); 2099 } 2100 VERIFY0(error); 2101 } 2102 if (error == 0) 2103 error = put_nvlist(zc, nv); 2104 nvlist_free(nv); 2105 } 2106 2107 return (error); 2108 } 2109 2110 /* 2111 * inputs: 2112 * zc_name name of filesystem 2113 * zc_nvlist_dst_size size of buffer for property nvlist 2114 * 2115 * outputs: 2116 * zc_objset_stats stats 2117 * zc_nvlist_dst property nvlist 2118 * zc_nvlist_dst_size size of property nvlist 2119 */ 2120 static int 2121 zfs_ioc_objset_stats(zfs_cmd_t *zc) 2122 { 2123 objset_t *os; 2124 int error; 2125 2126 error = dmu_objset_hold(zc->zc_name, FTAG, &os); 2127 if (error == 0) { 2128 error = zfs_ioc_objset_stats_impl(zc, os); 2129 dmu_objset_rele(os, FTAG); 2130 } 2131 2132 return (error); 2133 } 2134 2135 /* 2136 * inputs: 2137 * zc_name name of filesystem 2138 * zc_nvlist_dst_size size of buffer for property nvlist 2139 * 2140 * outputs: 2141 * zc_nvlist_dst received property nvlist 2142 * zc_nvlist_dst_size size of received property nvlist 2143 * 2144 * Gets received properties (distinct from local properties on or after 2145 * SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from 2146 * local property values. 2147 */ 2148 static int 2149 zfs_ioc_objset_recvd_props(zfs_cmd_t *zc) 2150 { 2151 int error = 0; 2152 nvlist_t *nv; 2153 2154 /* 2155 * Without this check, we would return local property values if the 2156 * caller has not already received properties on or after 2157 * SPA_VERSION_RECVD_PROPS. 2158 */ 2159 if (!dsl_prop_get_hasrecvd(zc->zc_name)) 2160 return (SET_ERROR(ENOTSUP)); 2161 2162 if (zc->zc_nvlist_dst != 0 && 2163 (error = dsl_prop_get_received(zc->zc_name, &nv)) == 0) { 2164 error = put_nvlist(zc, nv); 2165 nvlist_free(nv); 2166 } 2167 2168 return (error); 2169 } 2170 2171 static int 2172 nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop) 2173 { 2174 uint64_t value; 2175 int error; 2176 2177 /* 2178 * zfs_get_zplprop() will either find a value or give us 2179 * the default value (if there is one). 2180 */ 2181 if ((error = zfs_get_zplprop(os, prop, &value)) != 0) 2182 return (error); 2183 VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0); 2184 return (0); 2185 } 2186 2187 /* 2188 * inputs: 2189 * zc_name name of filesystem 2190 * zc_nvlist_dst_size size of buffer for zpl property nvlist 2191 * 2192 * outputs: 2193 * zc_nvlist_dst zpl property nvlist 2194 * zc_nvlist_dst_size size of zpl property nvlist 2195 */ 2196 static int 2197 zfs_ioc_objset_zplprops(zfs_cmd_t *zc) 2198 { 2199 objset_t *os; 2200 int err; 2201 2202 /* XXX reading without owning */ 2203 if ((err = dmu_objset_hold(zc->zc_name, FTAG, &os))) 2204 return (err); 2205 2206 dmu_objset_fast_stat(os, &zc->zc_objset_stats); 2207 2208 /* 2209 * NB: nvl_add_zplprop() will read the objset contents, 2210 * which we aren't supposed to do with a DS_MODE_USER 2211 * hold, because it could be inconsistent. 2212 */ 2213 if (zc->zc_nvlist_dst != 0 && 2214 !zc->zc_objset_stats.dds_inconsistent && 2215 dmu_objset_type(os) == DMU_OST_ZFS) { 2216 nvlist_t *nv; 2217 2218 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2219 if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 && 2220 (err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 && 2221 (err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 && 2222 (err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0) 2223 err = put_nvlist(zc, nv); 2224 nvlist_free(nv); 2225 } else { 2226 err = SET_ERROR(ENOENT); 2227 } 2228 dmu_objset_rele(os, FTAG); 2229 return (err); 2230 } 2231 2232 /* 2233 * inputs: 2234 * zc_name name of filesystem 2235 * zc_cookie zap cursor 2236 * zc_nvlist_dst_size size of buffer for property nvlist 2237 * 2238 * outputs: 2239 * zc_name name of next filesystem 2240 * zc_cookie zap cursor 2241 * zc_objset_stats stats 2242 * zc_nvlist_dst property nvlist 2243 * zc_nvlist_dst_size size of property nvlist 2244 */ 2245 static int 2246 zfs_ioc_dataset_list_next(zfs_cmd_t *zc) 2247 { 2248 objset_t *os; 2249 int error; 2250 char *p; 2251 size_t orig_len = strlen(zc->zc_name); 2252 2253 top: 2254 if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os))) { 2255 if (error == ENOENT) 2256 error = SET_ERROR(ESRCH); 2257 return (error); 2258 } 2259 2260 p = strrchr(zc->zc_name, '/'); 2261 if (p == NULL || p[1] != '\0') 2262 (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name)); 2263 p = zc->zc_name + strlen(zc->zc_name); 2264 2265 do { 2266 error = dmu_dir_list_next(os, 2267 sizeof (zc->zc_name) - (p - zc->zc_name), p, 2268 NULL, &zc->zc_cookie); 2269 if (error == ENOENT) 2270 error = SET_ERROR(ESRCH); 2271 } while (error == 0 && zfs_dataset_name_hidden(zc->zc_name)); 2272 dmu_objset_rele(os, FTAG); 2273 2274 /* 2275 * If it's an internal dataset (ie. with a '$' in its name), 2276 * don't try to get stats for it, otherwise we'll return ENOENT. 2277 */ 2278 if (error == 0 && strchr(zc->zc_name, '$') == NULL) { 2279 error = zfs_ioc_objset_stats(zc); /* fill in the stats */ 2280 if (error == ENOENT) { 2281 /* We lost a race with destroy, get the next one. */ 2282 zc->zc_name[orig_len] = '\0'; 2283 goto top; 2284 } 2285 } 2286 return (error); 2287 } 2288 2289 /* 2290 * inputs: 2291 * zc_name name of filesystem 2292 * zc_cookie zap cursor 2293 * zc_nvlist_src iteration range nvlist 2294 * zc_nvlist_src_size size of iteration range nvlist 2295 * 2296 * outputs: 2297 * zc_name name of next snapshot 2298 * zc_objset_stats stats 2299 * zc_nvlist_dst property nvlist 2300 * zc_nvlist_dst_size size of property nvlist 2301 */ 2302 static int 2303 zfs_ioc_snapshot_list_next(zfs_cmd_t *zc) 2304 { 2305 int error; 2306 objset_t *os, *ossnap; 2307 dsl_dataset_t *ds; 2308 uint64_t min_txg = 0, max_txg = 0; 2309 2310 if (zc->zc_nvlist_src_size != 0) { 2311 nvlist_t *props = NULL; 2312 error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 2313 zc->zc_iflags, &props); 2314 if (error != 0) 2315 return (error); 2316 (void) nvlist_lookup_uint64(props, SNAP_ITER_MIN_TXG, 2317 &min_txg); 2318 (void) nvlist_lookup_uint64(props, SNAP_ITER_MAX_TXG, 2319 &max_txg); 2320 nvlist_free(props); 2321 } 2322 2323 error = dmu_objset_hold(zc->zc_name, FTAG, &os); 2324 if (error != 0) { 2325 return (error == ENOENT ? SET_ERROR(ESRCH) : error); 2326 } 2327 2328 /* 2329 * A dataset name of maximum length cannot have any snapshots, 2330 * so exit immediately. 2331 */ 2332 if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= 2333 ZFS_MAX_DATASET_NAME_LEN) { 2334 dmu_objset_rele(os, FTAG); 2335 return (SET_ERROR(ESRCH)); 2336 } 2337 2338 while (error == 0) { 2339 if (issig()) { 2340 error = SET_ERROR(EINTR); 2341 break; 2342 } 2343 2344 error = dmu_snapshot_list_next(os, 2345 sizeof (zc->zc_name) - strlen(zc->zc_name), 2346 zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, 2347 &zc->zc_cookie, NULL); 2348 if (error == ENOENT) { 2349 error = SET_ERROR(ESRCH); 2350 break; 2351 } else if (error != 0) { 2352 break; 2353 } 2354 2355 error = dsl_dataset_hold_obj(dmu_objset_pool(os), zc->zc_obj, 2356 FTAG, &ds); 2357 if (error != 0) 2358 break; 2359 2360 if ((min_txg != 0 && dsl_get_creationtxg(ds) < min_txg) || 2361 (max_txg != 0 && dsl_get_creationtxg(ds) > max_txg)) { 2362 dsl_dataset_rele(ds, FTAG); 2363 /* undo snapshot name append */ 2364 *(strchr(zc->zc_name, '@') + 1) = '\0'; 2365 /* skip snapshot */ 2366 continue; 2367 } 2368 2369 if (zc->zc_simple) { 2370 dsl_dataset_fast_stat(ds, &zc->zc_objset_stats); 2371 dsl_dataset_rele(ds, FTAG); 2372 break; 2373 } 2374 2375 if ((error = dmu_objset_from_ds(ds, &ossnap)) != 0) { 2376 dsl_dataset_rele(ds, FTAG); 2377 break; 2378 } 2379 if ((error = zfs_ioc_objset_stats_impl(zc, ossnap)) != 0) { 2380 dsl_dataset_rele(ds, FTAG); 2381 break; 2382 } 2383 dsl_dataset_rele(ds, FTAG); 2384 break; 2385 } 2386 2387 dmu_objset_rele(os, FTAG); 2388 /* if we failed, undo the @ that we tacked on to zc_name */ 2389 if (error != 0) 2390 *strchr(zc->zc_name, '@') = '\0'; 2391 return (error); 2392 } 2393 2394 static int 2395 zfs_prop_set_userquota(const char *dsname, nvpair_t *pair) 2396 { 2397 const char *propname = nvpair_name(pair); 2398 uint64_t *valary; 2399 unsigned int vallen; 2400 const char *dash, *domain; 2401 zfs_userquota_prop_t type; 2402 uint64_t rid; 2403 uint64_t quota; 2404 zfsvfs_t *zfsvfs; 2405 int err; 2406 2407 if (nvpair_type(pair) == DATA_TYPE_NVLIST) { 2408 nvlist_t *attrs; 2409 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); 2410 if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 2411 &pair) != 0) 2412 return (SET_ERROR(EINVAL)); 2413 } 2414 2415 /* 2416 * A correctly constructed propname is encoded as 2417 * userquota@<rid>-<domain>. 2418 */ 2419 if ((dash = strchr(propname, '-')) == NULL || 2420 nvpair_value_uint64_array(pair, &valary, &vallen) != 0 || 2421 vallen != 3) 2422 return (SET_ERROR(EINVAL)); 2423 2424 domain = dash + 1; 2425 type = valary[0]; 2426 rid = valary[1]; 2427 quota = valary[2]; 2428 2429 err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE); 2430 if (err == 0) { 2431 err = zfs_set_userquota(zfsvfs, type, domain, rid, quota); 2432 zfsvfs_rele(zfsvfs, FTAG); 2433 } 2434 2435 return (err); 2436 } 2437 2438 /* 2439 * If the named property is one that has a special function to set its value, 2440 * return 0 on success and a positive error code on failure; otherwise if it is 2441 * not one of the special properties handled by this function, return -1. 2442 * 2443 * XXX: It would be better for callers of the property interface if we handled 2444 * these special cases in dsl_prop.c (in the dsl layer). 2445 */ 2446 static int 2447 zfs_prop_set_special(const char *dsname, zprop_source_t source, 2448 nvpair_t *pair) 2449 { 2450 const char *propname = nvpair_name(pair); 2451 zfs_prop_t prop = zfs_name_to_prop(propname); 2452 uint64_t intval = 0; 2453 const char *strval = NULL; 2454 int err = -1; 2455 2456 if (prop == ZPROP_USERPROP) { 2457 if (zfs_prop_userquota(propname)) 2458 return (zfs_prop_set_userquota(dsname, pair)); 2459 return (-1); 2460 } 2461 2462 if (nvpair_type(pair) == DATA_TYPE_NVLIST) { 2463 nvlist_t *attrs; 2464 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); 2465 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 2466 &pair) == 0); 2467 } 2468 2469 /* all special properties are numeric except for keylocation */ 2470 if (zfs_prop_get_type(prop) == PROP_TYPE_STRING) { 2471 strval = fnvpair_value_string(pair); 2472 } else { 2473 intval = fnvpair_value_uint64(pair); 2474 } 2475 2476 switch (prop) { 2477 case ZFS_PROP_QUOTA: 2478 err = dsl_dir_set_quota(dsname, source, intval); 2479 break; 2480 case ZFS_PROP_REFQUOTA: 2481 err = dsl_dataset_set_refquota(dsname, source, intval); 2482 break; 2483 case ZFS_PROP_FILESYSTEM_LIMIT: 2484 case ZFS_PROP_SNAPSHOT_LIMIT: 2485 if (intval == UINT64_MAX) { 2486 /* clearing the limit, just do it */ 2487 err = 0; 2488 } else { 2489 err = dsl_dir_activate_fs_ss_limit(dsname); 2490 } 2491 /* 2492 * Set err to -1 to force the zfs_set_prop_nvlist code down the 2493 * default path to set the value in the nvlist. 2494 */ 2495 if (err == 0) 2496 err = -1; 2497 break; 2498 case ZFS_PROP_KEYLOCATION: 2499 err = dsl_crypto_can_set_keylocation(dsname, strval); 2500 2501 /* 2502 * Set err to -1 to force the zfs_set_prop_nvlist code down the 2503 * default path to set the value in the nvlist. 2504 */ 2505 if (err == 0) 2506 err = -1; 2507 break; 2508 case ZFS_PROP_RESERVATION: 2509 err = dsl_dir_set_reservation(dsname, source, intval); 2510 break; 2511 case ZFS_PROP_REFRESERVATION: 2512 err = dsl_dataset_set_refreservation(dsname, source, intval); 2513 break; 2514 case ZFS_PROP_COMPRESSION: 2515 err = dsl_dataset_set_compression(dsname, source, intval); 2516 /* 2517 * Set err to -1 to force the zfs_set_prop_nvlist code down the 2518 * default path to set the value in the nvlist. 2519 */ 2520 if (err == 0) 2521 err = -1; 2522 break; 2523 case ZFS_PROP_VOLSIZE: 2524 err = zvol_set_volsize(dsname, intval); 2525 break; 2526 case ZFS_PROP_VOLTHREADING: 2527 err = zvol_set_volthreading(dsname, intval); 2528 /* 2529 * Set err to -1 to force the zfs_set_prop_nvlist code down the 2530 * default path to set the value in the nvlist. 2531 */ 2532 if (err == 0) 2533 err = -1; 2534 break; 2535 case ZFS_PROP_SNAPDEV: 2536 case ZFS_PROP_VOLMODE: 2537 err = zvol_set_common(dsname, prop, source, intval); 2538 break; 2539 case ZFS_PROP_READONLY: 2540 err = zvol_set_ro(dsname, intval); 2541 /* 2542 * Set err to -1 to force the zfs_set_prop_nvlist code down the 2543 * default path to set the value in the nvlist. 2544 */ 2545 if (err == 0) 2546 err = -1; 2547 break; 2548 case ZFS_PROP_VERSION: 2549 { 2550 zfsvfs_t *zfsvfs; 2551 2552 if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0) 2553 break; 2554 2555 err = zfs_set_version(zfsvfs, intval); 2556 zfsvfs_rele(zfsvfs, FTAG); 2557 2558 if (err == 0 && intval >= ZPL_VERSION_USERSPACE) { 2559 zfs_cmd_t *zc; 2560 2561 zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); 2562 (void) strlcpy(zc->zc_name, dsname, 2563 sizeof (zc->zc_name)); 2564 (void) zfs_ioc_userspace_upgrade(zc); 2565 (void) zfs_ioc_id_quota_upgrade(zc); 2566 kmem_free(zc, sizeof (zfs_cmd_t)); 2567 } 2568 break; 2569 } 2570 default: 2571 err = -1; 2572 } 2573 2574 return (err); 2575 } 2576 2577 static boolean_t 2578 zfs_is_namespace_prop(zfs_prop_t prop) 2579 { 2580 switch (prop) { 2581 2582 case ZFS_PROP_ATIME: 2583 case ZFS_PROP_RELATIME: 2584 case ZFS_PROP_DEVICES: 2585 case ZFS_PROP_EXEC: 2586 case ZFS_PROP_SETUID: 2587 case ZFS_PROP_READONLY: 2588 case ZFS_PROP_XATTR: 2589 case ZFS_PROP_NBMAND: 2590 return (B_TRUE); 2591 2592 default: 2593 return (B_FALSE); 2594 } 2595 } 2596 2597 /* 2598 * This function is best effort. If it fails to set any of the given properties, 2599 * it continues to set as many as it can and returns the last error 2600 * encountered. If the caller provides a non-NULL errlist, it will be filled in 2601 * with the list of names of all the properties that failed along with the 2602 * corresponding error numbers. 2603 * 2604 * If every property is set successfully, zero is returned and errlist is not 2605 * modified. 2606 */ 2607 int 2608 zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl, 2609 nvlist_t *errlist) 2610 { 2611 nvpair_t *pair; 2612 nvpair_t *propval; 2613 int rv = 0; 2614 int err; 2615 uint64_t intval; 2616 const char *strval; 2617 boolean_t should_update_mount_cache = B_FALSE; 2618 2619 nvlist_t *genericnvl = fnvlist_alloc(); 2620 nvlist_t *retrynvl = fnvlist_alloc(); 2621 retry: 2622 pair = NULL; 2623 while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { 2624 const char *propname = nvpair_name(pair); 2625 zfs_prop_t prop = zfs_name_to_prop(propname); 2626 err = 0; 2627 2628 /* decode the property value */ 2629 propval = pair; 2630 if (nvpair_type(pair) == DATA_TYPE_NVLIST) { 2631 nvlist_t *attrs; 2632 attrs = fnvpair_value_nvlist(pair); 2633 if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 2634 &propval) != 0) 2635 err = SET_ERROR(EINVAL); 2636 } 2637 2638 /* Validate value type */ 2639 if (err == 0 && source == ZPROP_SRC_INHERITED) { 2640 /* inherited properties are expected to be booleans */ 2641 if (nvpair_type(propval) != DATA_TYPE_BOOLEAN) 2642 err = SET_ERROR(EINVAL); 2643 } else if (err == 0 && prop == ZPROP_USERPROP) { 2644 if (zfs_prop_user(propname)) { 2645 if (nvpair_type(propval) != DATA_TYPE_STRING) 2646 err = SET_ERROR(EINVAL); 2647 } else if (zfs_prop_userquota(propname)) { 2648 if (nvpair_type(propval) != 2649 DATA_TYPE_UINT64_ARRAY) 2650 err = SET_ERROR(EINVAL); 2651 } else { 2652 err = SET_ERROR(EINVAL); 2653 } 2654 } else if (err == 0) { 2655 if (nvpair_type(propval) == DATA_TYPE_STRING) { 2656 if (zfs_prop_get_type(prop) != PROP_TYPE_STRING) 2657 err = SET_ERROR(EINVAL); 2658 } else if (nvpair_type(propval) == DATA_TYPE_UINT64) { 2659 const char *unused; 2660 2661 intval = fnvpair_value_uint64(propval); 2662 2663 switch (zfs_prop_get_type(prop)) { 2664 case PROP_TYPE_NUMBER: 2665 break; 2666 case PROP_TYPE_STRING: 2667 err = SET_ERROR(EINVAL); 2668 break; 2669 case PROP_TYPE_INDEX: 2670 if (zfs_prop_index_to_string(prop, 2671 intval, &unused) != 0) 2672 err = 2673 SET_ERROR(ZFS_ERR_BADPROP); 2674 break; 2675 default: 2676 cmn_err(CE_PANIC, 2677 "unknown property type"); 2678 } 2679 } else { 2680 err = SET_ERROR(EINVAL); 2681 } 2682 } 2683 2684 /* Validate permissions */ 2685 if (err == 0) 2686 err = zfs_check_settable(dsname, pair, CRED()); 2687 2688 if (err == 0) { 2689 if (source == ZPROP_SRC_INHERITED) 2690 err = -1; /* does not need special handling */ 2691 else 2692 err = zfs_prop_set_special(dsname, source, 2693 pair); 2694 if (err == -1) { 2695 /* 2696 * For better performance we build up a list of 2697 * properties to set in a single transaction. 2698 */ 2699 err = nvlist_add_nvpair(genericnvl, pair); 2700 } else if (err != 0 && nvl != retrynvl) { 2701 /* 2702 * This may be a spurious error caused by 2703 * receiving quota and reservation out of order. 2704 * Try again in a second pass. 2705 */ 2706 err = nvlist_add_nvpair(retrynvl, pair); 2707 } 2708 } 2709 2710 if (err != 0) { 2711 if (errlist != NULL) 2712 fnvlist_add_int32(errlist, propname, err); 2713 rv = err; 2714 } 2715 2716 if (zfs_is_namespace_prop(prop)) 2717 should_update_mount_cache = B_TRUE; 2718 } 2719 2720 if (nvl != retrynvl && !nvlist_empty(retrynvl)) { 2721 nvl = retrynvl; 2722 goto retry; 2723 } 2724 2725 if (nvlist_empty(genericnvl)) 2726 goto out; 2727 2728 /* 2729 * Try to set them all in one batch. 2730 */ 2731 err = dsl_props_set(dsname, source, genericnvl); 2732 if (err == 0) 2733 goto out; 2734 2735 /* 2736 * If batching fails, we still want to set as many properties as we 2737 * can, so try setting them individually. 2738 */ 2739 pair = NULL; 2740 while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) { 2741 const char *propname = nvpair_name(pair); 2742 2743 propval = pair; 2744 if (nvpair_type(pair) == DATA_TYPE_NVLIST) { 2745 nvlist_t *attrs; 2746 attrs = fnvpair_value_nvlist(pair); 2747 propval = fnvlist_lookup_nvpair(attrs, ZPROP_VALUE); 2748 } 2749 2750 if (nvpair_type(propval) == DATA_TYPE_STRING) { 2751 strval = fnvpair_value_string(propval); 2752 err = dsl_prop_set_string(dsname, propname, 2753 source, strval); 2754 } else if (nvpair_type(propval) == DATA_TYPE_BOOLEAN) { 2755 err = dsl_prop_inherit(dsname, propname, source); 2756 } else { 2757 intval = fnvpair_value_uint64(propval); 2758 err = dsl_prop_set_int(dsname, propname, source, 2759 intval); 2760 } 2761 2762 if (err != 0) { 2763 if (errlist != NULL) { 2764 fnvlist_add_int32(errlist, propname, err); 2765 } 2766 rv = err; 2767 } 2768 } 2769 2770 out: 2771 if (should_update_mount_cache) 2772 zfs_ioctl_update_mount_cache(dsname); 2773 2774 nvlist_free(genericnvl); 2775 nvlist_free(retrynvl); 2776 2777 return (rv); 2778 } 2779 2780 /* 2781 * Check that all the properties are valid user properties. 2782 */ 2783 static int 2784 zfs_check_userprops(nvlist_t *nvl) 2785 { 2786 nvpair_t *pair = NULL; 2787 2788 while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { 2789 const char *propname = nvpair_name(pair); 2790 2791 if (!zfs_prop_user(propname) || 2792 nvpair_type(pair) != DATA_TYPE_STRING) 2793 return (SET_ERROR(EINVAL)); 2794 2795 if (strlen(propname) >= ZAP_MAXNAMELEN) 2796 return (SET_ERROR(ENAMETOOLONG)); 2797 2798 if (strlen(fnvpair_value_string(pair)) >= ZAP_MAXVALUELEN) 2799 return (SET_ERROR(E2BIG)); 2800 } 2801 return (0); 2802 } 2803 2804 static void 2805 props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops) 2806 { 2807 nvpair_t *pair; 2808 2809 VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2810 2811 pair = NULL; 2812 while ((pair = nvlist_next_nvpair(props, pair)) != NULL) { 2813 if (nvlist_exists(skipped, nvpair_name(pair))) 2814 continue; 2815 2816 VERIFY(nvlist_add_nvpair(*newprops, pair) == 0); 2817 } 2818 } 2819 2820 static int 2821 clear_received_props(const char *dsname, nvlist_t *props, 2822 nvlist_t *skipped) 2823 { 2824 int err = 0; 2825 nvlist_t *cleared_props = NULL; 2826 props_skip(props, skipped, &cleared_props); 2827 if (!nvlist_empty(cleared_props)) { 2828 /* 2829 * Acts on local properties until the dataset has received 2830 * properties at least once on or after SPA_VERSION_RECVD_PROPS. 2831 */ 2832 zprop_source_t flags = (ZPROP_SRC_NONE | 2833 (dsl_prop_get_hasrecvd(dsname) ? ZPROP_SRC_RECEIVED : 0)); 2834 err = zfs_set_prop_nvlist(dsname, flags, cleared_props, NULL); 2835 } 2836 nvlist_free(cleared_props); 2837 return (err); 2838 } 2839 2840 /* 2841 * inputs: 2842 * zc_name name of filesystem 2843 * zc_value name of property to set 2844 * zc_nvlist_src{_size} nvlist of properties to apply 2845 * zc_cookie received properties flag 2846 * 2847 * outputs: 2848 * zc_nvlist_dst{_size} error for each unapplied received property 2849 */ 2850 static int 2851 zfs_ioc_set_prop(zfs_cmd_t *zc) 2852 { 2853 nvlist_t *nvl; 2854 boolean_t received = zc->zc_cookie; 2855 zprop_source_t source = (received ? ZPROP_SRC_RECEIVED : 2856 ZPROP_SRC_LOCAL); 2857 nvlist_t *errors; 2858 int error; 2859 2860 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 2861 zc->zc_iflags, &nvl)) != 0) 2862 return (error); 2863 2864 if (received) { 2865 nvlist_t *origprops; 2866 2867 if (dsl_prop_get_received(zc->zc_name, &origprops) == 0) { 2868 (void) clear_received_props(zc->zc_name, 2869 origprops, nvl); 2870 nvlist_free(origprops); 2871 } 2872 2873 error = dsl_prop_set_hasrecvd(zc->zc_name); 2874 } 2875 2876 errors = fnvlist_alloc(); 2877 if (error == 0) 2878 error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, errors); 2879 2880 if (zc->zc_nvlist_dst != 0 && errors != NULL) { 2881 (void) put_nvlist(zc, errors); 2882 } 2883 2884 nvlist_free(errors); 2885 nvlist_free(nvl); 2886 return (error); 2887 } 2888 2889 /* 2890 * inputs: 2891 * zc_name name of filesystem 2892 * zc_value name of property to inherit 2893 * zc_cookie revert to received value if TRUE 2894 * 2895 * outputs: none 2896 */ 2897 static int 2898 zfs_ioc_inherit_prop(zfs_cmd_t *zc) 2899 { 2900 const char *propname = zc->zc_value; 2901 zfs_prop_t prop = zfs_name_to_prop(propname); 2902 boolean_t received = zc->zc_cookie; 2903 zprop_source_t source = (received 2904 ? ZPROP_SRC_NONE /* revert to received value, if any */ 2905 : ZPROP_SRC_INHERITED); /* explicitly inherit */ 2906 nvlist_t *dummy; 2907 nvpair_t *pair; 2908 zprop_type_t type; 2909 int err; 2910 2911 if (!received) { 2912 /* 2913 * Only check this in the non-received case. We want to allow 2914 * 'inherit -S' to revert non-inheritable properties like quota 2915 * and reservation to the received or default values even though 2916 * they are not considered inheritable. 2917 */ 2918 if (prop != ZPROP_USERPROP && !zfs_prop_inheritable(prop)) 2919 return (SET_ERROR(EINVAL)); 2920 } 2921 2922 if (prop == ZPROP_USERPROP) { 2923 if (!zfs_prop_user(propname)) 2924 return (SET_ERROR(EINVAL)); 2925 2926 type = PROP_TYPE_STRING; 2927 } else if (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION) { 2928 return (SET_ERROR(EINVAL)); 2929 } else { 2930 type = zfs_prop_get_type(prop); 2931 } 2932 2933 /* 2934 * zfs_prop_set_special() expects properties in the form of an 2935 * nvpair with type info. 2936 */ 2937 dummy = fnvlist_alloc(); 2938 2939 switch (type) { 2940 case PROP_TYPE_STRING: 2941 VERIFY(0 == nvlist_add_string(dummy, propname, "")); 2942 break; 2943 case PROP_TYPE_NUMBER: 2944 case PROP_TYPE_INDEX: 2945 VERIFY(0 == nvlist_add_uint64(dummy, propname, 0)); 2946 break; 2947 default: 2948 err = SET_ERROR(EINVAL); 2949 goto errout; 2950 } 2951 2952 pair = nvlist_next_nvpair(dummy, NULL); 2953 if (pair == NULL) { 2954 err = SET_ERROR(EINVAL); 2955 } else { 2956 err = zfs_prop_set_special(zc->zc_name, source, pair); 2957 if (err == -1) /* property is not "special", needs handling */ 2958 err = dsl_prop_inherit(zc->zc_name, zc->zc_value, 2959 source); 2960 } 2961 2962 errout: 2963 nvlist_free(dummy); 2964 return (err); 2965 } 2966 2967 static int 2968 zfs_ioc_pool_set_props(zfs_cmd_t *zc) 2969 { 2970 nvlist_t *props; 2971 spa_t *spa; 2972 int error; 2973 nvpair_t *pair; 2974 2975 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 2976 zc->zc_iflags, &props))) 2977 return (error); 2978 2979 /* 2980 * If the only property is the configfile, then just do a spa_lookup() 2981 * to handle the faulted case. 2982 */ 2983 pair = nvlist_next_nvpair(props, NULL); 2984 if (pair != NULL && strcmp(nvpair_name(pair), 2985 zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 && 2986 nvlist_next_nvpair(props, pair) == NULL) { 2987 mutex_enter(&spa_namespace_lock); 2988 if ((spa = spa_lookup(zc->zc_name)) != NULL) { 2989 spa_configfile_set(spa, props, B_FALSE); 2990 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 2991 } 2992 mutex_exit(&spa_namespace_lock); 2993 if (spa != NULL) { 2994 nvlist_free(props); 2995 return (0); 2996 } 2997 } 2998 2999 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { 3000 nvlist_free(props); 3001 return (error); 3002 } 3003 3004 error = spa_prop_set(spa, props); 3005 3006 nvlist_free(props); 3007 spa_close(spa, FTAG); 3008 3009 return (error); 3010 } 3011 3012 static int 3013 zfs_ioc_pool_get_props(zfs_cmd_t *zc) 3014 { 3015 spa_t *spa; 3016 int error; 3017 nvlist_t *nvp = NULL; 3018 3019 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { 3020 /* 3021 * If the pool is faulted, there may be properties we can still 3022 * get (such as altroot and cachefile), so attempt to get them 3023 * anyway. 3024 */ 3025 mutex_enter(&spa_namespace_lock); 3026 if ((spa = spa_lookup(zc->zc_name)) != NULL) 3027 error = spa_prop_get(spa, &nvp); 3028 mutex_exit(&spa_namespace_lock); 3029 } else { 3030 error = spa_prop_get(spa, &nvp); 3031 spa_close(spa, FTAG); 3032 } 3033 3034 if (error == 0 && zc->zc_nvlist_dst != 0) 3035 error = put_nvlist(zc, nvp); 3036 else 3037 error = SET_ERROR(EFAULT); 3038 3039 nvlist_free(nvp); 3040 return (error); 3041 } 3042 3043 /* 3044 * innvl: { 3045 * "vdevprops_set_vdev" -> guid 3046 * "vdevprops_set_props" -> { prop -> value } 3047 * } 3048 * 3049 * outnvl: propname -> error code (int32) 3050 */ 3051 static const zfs_ioc_key_t zfs_keys_vdev_set_props[] = { 3052 {ZPOOL_VDEV_PROPS_SET_VDEV, DATA_TYPE_UINT64, 0}, 3053 {ZPOOL_VDEV_PROPS_SET_PROPS, DATA_TYPE_NVLIST, 0} 3054 }; 3055 3056 static int 3057 zfs_ioc_vdev_set_props(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 3058 { 3059 spa_t *spa; 3060 int error; 3061 vdev_t *vd; 3062 uint64_t vdev_guid; 3063 3064 /* Early validation */ 3065 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 3066 &vdev_guid) != 0) 3067 return (SET_ERROR(EINVAL)); 3068 3069 if (outnvl == NULL) 3070 return (SET_ERROR(EINVAL)); 3071 3072 if ((error = spa_open(poolname, &spa, FTAG)) != 0) 3073 return (error); 3074 3075 ASSERT(spa_writeable(spa)); 3076 3077 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) { 3078 spa_close(spa, FTAG); 3079 return (SET_ERROR(ENOENT)); 3080 } 3081 3082 error = vdev_prop_set(vd, innvl, outnvl); 3083 3084 spa_close(spa, FTAG); 3085 3086 return (error); 3087 } 3088 3089 /* 3090 * innvl: { 3091 * "vdevprops_get_vdev" -> guid 3092 * (optional) "vdevprops_get_props" -> { propname -> propid } 3093 * } 3094 * 3095 * outnvl: propname -> value 3096 */ 3097 static const zfs_ioc_key_t zfs_keys_vdev_get_props[] = { 3098 {ZPOOL_VDEV_PROPS_GET_VDEV, DATA_TYPE_UINT64, 0}, 3099 {ZPOOL_VDEV_PROPS_GET_PROPS, DATA_TYPE_NVLIST, ZK_OPTIONAL} 3100 }; 3101 3102 static int 3103 zfs_ioc_vdev_get_props(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 3104 { 3105 spa_t *spa; 3106 int error; 3107 vdev_t *vd; 3108 uint64_t vdev_guid; 3109 3110 /* Early validation */ 3111 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 3112 &vdev_guid) != 0) 3113 return (SET_ERROR(EINVAL)); 3114 3115 if (outnvl == NULL) 3116 return (SET_ERROR(EINVAL)); 3117 3118 if ((error = spa_open(poolname, &spa, FTAG)) != 0) 3119 return (error); 3120 3121 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) { 3122 spa_close(spa, FTAG); 3123 return (SET_ERROR(ENOENT)); 3124 } 3125 3126 error = vdev_prop_get(vd, innvl, outnvl); 3127 3128 spa_close(spa, FTAG); 3129 3130 return (error); 3131 } 3132 3133 /* 3134 * inputs: 3135 * zc_name name of filesystem 3136 * zc_nvlist_src{_size} nvlist of delegated permissions 3137 * zc_perm_action allow/unallow flag 3138 * 3139 * outputs: none 3140 */ 3141 static int 3142 zfs_ioc_set_fsacl(zfs_cmd_t *zc) 3143 { 3144 int error; 3145 nvlist_t *fsaclnv = NULL; 3146 3147 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 3148 zc->zc_iflags, &fsaclnv)) != 0) 3149 return (error); 3150 3151 /* 3152 * Verify nvlist is constructed correctly 3153 */ 3154 if (zfs_deleg_verify_nvlist(fsaclnv) != 0) { 3155 nvlist_free(fsaclnv); 3156 return (SET_ERROR(EINVAL)); 3157 } 3158 3159 /* 3160 * If we don't have PRIV_SYS_MOUNT, then validate 3161 * that user is allowed to hand out each permission in 3162 * the nvlist(s) 3163 */ 3164 3165 error = secpolicy_zfs(CRED()); 3166 if (error != 0) { 3167 if (zc->zc_perm_action == B_FALSE) { 3168 error = dsl_deleg_can_allow(zc->zc_name, 3169 fsaclnv, CRED()); 3170 } else { 3171 error = dsl_deleg_can_unallow(zc->zc_name, 3172 fsaclnv, CRED()); 3173 } 3174 } 3175 3176 if (error == 0) 3177 error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action); 3178 3179 nvlist_free(fsaclnv); 3180 return (error); 3181 } 3182 3183 /* 3184 * inputs: 3185 * zc_name name of filesystem 3186 * 3187 * outputs: 3188 * zc_nvlist_src{_size} nvlist of delegated permissions 3189 */ 3190 static int 3191 zfs_ioc_get_fsacl(zfs_cmd_t *zc) 3192 { 3193 nvlist_t *nvp; 3194 int error; 3195 3196 if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) { 3197 error = put_nvlist(zc, nvp); 3198 nvlist_free(nvp); 3199 } 3200 3201 return (error); 3202 } 3203 3204 static void 3205 zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3206 { 3207 zfs_creat_t *zct = arg; 3208 3209 zfs_create_fs(os, cr, zct->zct_zplprops, tx); 3210 } 3211 3212 #define ZFS_PROP_UNDEFINED ((uint64_t)-1) 3213 3214 /* 3215 * inputs: 3216 * os parent objset pointer (NULL if root fs) 3217 * fuids_ok fuids allowed in this version of the spa? 3218 * sa_ok SAs allowed in this version of the spa? 3219 * createprops list of properties requested by creator 3220 * 3221 * outputs: 3222 * zplprops values for the zplprops we attach to the master node object 3223 * is_ci true if requested file system will be purely case-insensitive 3224 * 3225 * Determine the settings for utf8only, normalization and 3226 * casesensitivity. Specific values may have been requested by the 3227 * creator and/or we can inherit values from the parent dataset. If 3228 * the file system is of too early a vintage, a creator can not 3229 * request settings for these properties, even if the requested 3230 * setting is the default value. We don't actually want to create dsl 3231 * properties for these, so remove them from the source nvlist after 3232 * processing. 3233 */ 3234 static int 3235 zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver, 3236 boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops, 3237 nvlist_t *zplprops, boolean_t *is_ci) 3238 { 3239 uint64_t sense = ZFS_PROP_UNDEFINED; 3240 uint64_t norm = ZFS_PROP_UNDEFINED; 3241 uint64_t u8 = ZFS_PROP_UNDEFINED; 3242 int error; 3243 3244 ASSERT(zplprops != NULL); 3245 3246 /* parent dataset must be a filesystem */ 3247 if (os != NULL && os->os_phys->os_type != DMU_OST_ZFS) 3248 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 3249 3250 /* 3251 * Pull out creator prop choices, if any. 3252 */ 3253 if (createprops) { 3254 (void) nvlist_lookup_uint64(createprops, 3255 zfs_prop_to_name(ZFS_PROP_VERSION), &zplver); 3256 (void) nvlist_lookup_uint64(createprops, 3257 zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm); 3258 (void) nvlist_remove_all(createprops, 3259 zfs_prop_to_name(ZFS_PROP_NORMALIZE)); 3260 (void) nvlist_lookup_uint64(createprops, 3261 zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8); 3262 (void) nvlist_remove_all(createprops, 3263 zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); 3264 (void) nvlist_lookup_uint64(createprops, 3265 zfs_prop_to_name(ZFS_PROP_CASE), &sense); 3266 (void) nvlist_remove_all(createprops, 3267 zfs_prop_to_name(ZFS_PROP_CASE)); 3268 } 3269 3270 /* 3271 * If the zpl version requested is whacky or the file system 3272 * or pool is version is too "young" to support normalization 3273 * and the creator tried to set a value for one of the props, 3274 * error out. 3275 */ 3276 if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) || 3277 (zplver >= ZPL_VERSION_FUID && !fuids_ok) || 3278 (zplver >= ZPL_VERSION_SA && !sa_ok) || 3279 (zplver < ZPL_VERSION_NORMALIZATION && 3280 (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED || 3281 sense != ZFS_PROP_UNDEFINED))) 3282 return (SET_ERROR(ENOTSUP)); 3283 3284 /* 3285 * Put the version in the zplprops 3286 */ 3287 VERIFY(nvlist_add_uint64(zplprops, 3288 zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0); 3289 3290 if (norm == ZFS_PROP_UNDEFINED && 3291 (error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm)) != 0) 3292 return (error); 3293 VERIFY(nvlist_add_uint64(zplprops, 3294 zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0); 3295 3296 /* 3297 * If we're normalizing, names must always be valid UTF-8 strings. 3298 */ 3299 if (norm) 3300 u8 = 1; 3301 if (u8 == ZFS_PROP_UNDEFINED && 3302 (error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8)) != 0) 3303 return (error); 3304 VERIFY(nvlist_add_uint64(zplprops, 3305 zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0); 3306 3307 if (sense == ZFS_PROP_UNDEFINED && 3308 (error = zfs_get_zplprop(os, ZFS_PROP_CASE, &sense)) != 0) 3309 return (error); 3310 VERIFY(nvlist_add_uint64(zplprops, 3311 zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0); 3312 3313 if (is_ci) 3314 *is_ci = (sense == ZFS_CASE_INSENSITIVE); 3315 3316 return (0); 3317 } 3318 3319 static int 3320 zfs_fill_zplprops(const char *dataset, nvlist_t *createprops, 3321 nvlist_t *zplprops, boolean_t *is_ci) 3322 { 3323 boolean_t fuids_ok, sa_ok; 3324 uint64_t zplver = ZPL_VERSION; 3325 objset_t *os = NULL; 3326 char parentname[ZFS_MAX_DATASET_NAME_LEN]; 3327 spa_t *spa; 3328 uint64_t spa_vers; 3329 int error; 3330 3331 zfs_get_parent(dataset, parentname, sizeof (parentname)); 3332 3333 if ((error = spa_open(dataset, &spa, FTAG)) != 0) 3334 return (error); 3335 3336 spa_vers = spa_version(spa); 3337 spa_close(spa, FTAG); 3338 3339 zplver = zfs_zpl_version_map(spa_vers); 3340 fuids_ok = (zplver >= ZPL_VERSION_FUID); 3341 sa_ok = (zplver >= ZPL_VERSION_SA); 3342 3343 /* 3344 * Open parent object set so we can inherit zplprop values. 3345 */ 3346 if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0) 3347 return (error); 3348 3349 error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops, 3350 zplprops, is_ci); 3351 dmu_objset_rele(os, FTAG); 3352 return (error); 3353 } 3354 3355 static int 3356 zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops, 3357 nvlist_t *zplprops, boolean_t *is_ci) 3358 { 3359 boolean_t fuids_ok; 3360 boolean_t sa_ok; 3361 uint64_t zplver = ZPL_VERSION; 3362 int error; 3363 3364 zplver = zfs_zpl_version_map(spa_vers); 3365 fuids_ok = (zplver >= ZPL_VERSION_FUID); 3366 sa_ok = (zplver >= ZPL_VERSION_SA); 3367 3368 error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok, 3369 createprops, zplprops, is_ci); 3370 return (error); 3371 } 3372 3373 /* 3374 * innvl: { 3375 * "type" -> dmu_objset_type_t (int32) 3376 * (optional) "props" -> { prop -> value } 3377 * (optional) "hidden_args" -> { "wkeydata" -> value } 3378 * raw uint8_t array of encryption wrapping key data (32 bytes) 3379 * } 3380 * 3381 * outnvl: propname -> error code (int32) 3382 */ 3383 3384 static const zfs_ioc_key_t zfs_keys_create[] = { 3385 {"type", DATA_TYPE_INT32, 0}, 3386 {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 3387 {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 3388 }; 3389 3390 static int 3391 zfs_ioc_create(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 3392 { 3393 int error = 0; 3394 zfs_creat_t zct = { 0 }; 3395 nvlist_t *nvprops = NULL; 3396 nvlist_t *hidden_args = NULL; 3397 void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); 3398 dmu_objset_type_t type; 3399 boolean_t is_insensitive = B_FALSE; 3400 dsl_crypto_params_t *dcp = NULL; 3401 3402 type = (dmu_objset_type_t)fnvlist_lookup_int32(innvl, "type"); 3403 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); 3404 (void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); 3405 3406 switch (type) { 3407 case DMU_OST_ZFS: 3408 cbfunc = zfs_create_cb; 3409 break; 3410 3411 case DMU_OST_ZVOL: 3412 cbfunc = zvol_create_cb; 3413 break; 3414 3415 default: 3416 cbfunc = NULL; 3417 break; 3418 } 3419 if (strchr(fsname, '@') || 3420 strchr(fsname, '%')) 3421 return (SET_ERROR(EINVAL)); 3422 3423 zct.zct_props = nvprops; 3424 3425 if (cbfunc == NULL) 3426 return (SET_ERROR(EINVAL)); 3427 3428 if (type == DMU_OST_ZVOL) { 3429 uint64_t volsize, volblocksize; 3430 3431 if (nvprops == NULL) 3432 return (SET_ERROR(EINVAL)); 3433 if (nvlist_lookup_uint64(nvprops, 3434 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0) 3435 return (SET_ERROR(EINVAL)); 3436 3437 if ((error = nvlist_lookup_uint64(nvprops, 3438 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 3439 &volblocksize)) != 0 && error != ENOENT) 3440 return (SET_ERROR(EINVAL)); 3441 3442 if (error != 0) 3443 volblocksize = zfs_prop_default_numeric( 3444 ZFS_PROP_VOLBLOCKSIZE); 3445 3446 if ((error = zvol_check_volblocksize(fsname, 3447 volblocksize)) != 0 || 3448 (error = zvol_check_volsize(volsize, 3449 volblocksize)) != 0) 3450 return (error); 3451 } else if (type == DMU_OST_ZFS) { 3452 int error; 3453 3454 /* 3455 * We have to have normalization and 3456 * case-folding flags correct when we do the 3457 * file system creation, so go figure them out 3458 * now. 3459 */ 3460 VERIFY(nvlist_alloc(&zct.zct_zplprops, 3461 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3462 error = zfs_fill_zplprops(fsname, nvprops, 3463 zct.zct_zplprops, &is_insensitive); 3464 if (error != 0) { 3465 nvlist_free(zct.zct_zplprops); 3466 return (error); 3467 } 3468 } 3469 3470 error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, nvprops, 3471 hidden_args, &dcp); 3472 if (error != 0) { 3473 nvlist_free(zct.zct_zplprops); 3474 return (error); 3475 } 3476 3477 error = dmu_objset_create(fsname, type, 3478 is_insensitive ? DS_FLAG_CI_DATASET : 0, dcp, cbfunc, &zct); 3479 3480 nvlist_free(zct.zct_zplprops); 3481 dsl_crypto_params_free(dcp, !!error); 3482 3483 /* 3484 * It would be nice to do this atomically. 3485 */ 3486 if (error == 0) { 3487 error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, 3488 nvprops, outnvl); 3489 if (error != 0) { 3490 spa_t *spa; 3491 int error2; 3492 3493 /* 3494 * Volumes will return EBUSY and cannot be destroyed 3495 * until all asynchronous minor handling (e.g. from 3496 * setting the volmode property) has completed. Wait for 3497 * the spa_zvol_taskq to drain then retry. 3498 */ 3499 error2 = dsl_destroy_head(fsname); 3500 while ((error2 == EBUSY) && (type == DMU_OST_ZVOL)) { 3501 error2 = spa_open(fsname, &spa, FTAG); 3502 if (error2 == 0) { 3503 taskq_wait(spa->spa_zvol_taskq); 3504 spa_close(spa, FTAG); 3505 } 3506 error2 = dsl_destroy_head(fsname); 3507 } 3508 } 3509 } 3510 return (error); 3511 } 3512 3513 /* 3514 * innvl: { 3515 * "origin" -> name of origin snapshot 3516 * (optional) "props" -> { prop -> value } 3517 * (optional) "hidden_args" -> { "wkeydata" -> value } 3518 * raw uint8_t array of encryption wrapping key data (32 bytes) 3519 * } 3520 * 3521 * outputs: 3522 * outnvl: propname -> error code (int32) 3523 */ 3524 static const zfs_ioc_key_t zfs_keys_clone[] = { 3525 {"origin", DATA_TYPE_STRING, 0}, 3526 {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 3527 {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 3528 }; 3529 3530 static int 3531 zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 3532 { 3533 int error = 0; 3534 nvlist_t *nvprops = NULL; 3535 const char *origin_name; 3536 3537 origin_name = fnvlist_lookup_string(innvl, "origin"); 3538 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); 3539 3540 if (strchr(fsname, '@') || 3541 strchr(fsname, '%')) 3542 return (SET_ERROR(EINVAL)); 3543 3544 if (dataset_namecheck(origin_name, NULL, NULL) != 0) 3545 return (SET_ERROR(EINVAL)); 3546 3547 error = dmu_objset_clone(fsname, origin_name); 3548 3549 /* 3550 * It would be nice to do this atomically. 3551 */ 3552 if (error == 0) { 3553 error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, 3554 nvprops, outnvl); 3555 if (error != 0) 3556 (void) dsl_destroy_head(fsname); 3557 } 3558 return (error); 3559 } 3560 3561 static const zfs_ioc_key_t zfs_keys_remap[] = { 3562 /* no nvl keys */ 3563 }; 3564 3565 static int 3566 zfs_ioc_remap(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 3567 { 3568 /* This IOCTL is no longer supported. */ 3569 (void) fsname, (void) innvl, (void) outnvl; 3570 return (0); 3571 } 3572 3573 /* 3574 * innvl: { 3575 * "snaps" -> { snapshot1, snapshot2 } 3576 * (optional) "props" -> { prop -> value (string) } 3577 * } 3578 * 3579 * outnvl: snapshot -> error code (int32) 3580 */ 3581 static const zfs_ioc_key_t zfs_keys_snapshot[] = { 3582 {"snaps", DATA_TYPE_NVLIST, 0}, 3583 {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 3584 }; 3585 3586 static int 3587 zfs_ioc_snapshot(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 3588 { 3589 nvlist_t *snaps; 3590 nvlist_t *props = NULL; 3591 int error, poollen; 3592 nvpair_t *pair; 3593 3594 (void) nvlist_lookup_nvlist(innvl, "props", &props); 3595 if (!nvlist_empty(props) && 3596 zfs_earlier_version(poolname, SPA_VERSION_SNAP_PROPS)) 3597 return (SET_ERROR(ENOTSUP)); 3598 if ((error = zfs_check_userprops(props)) != 0) 3599 return (error); 3600 3601 snaps = fnvlist_lookup_nvlist(innvl, "snaps"); 3602 poollen = strlen(poolname); 3603 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; 3604 pair = nvlist_next_nvpair(snaps, pair)) { 3605 const char *name = nvpair_name(pair); 3606 char *cp = strchr(name, '@'); 3607 3608 /* 3609 * The snap name must contain an @, and the part after it must 3610 * contain only valid characters. 3611 */ 3612 if (cp == NULL || 3613 zfs_component_namecheck(cp + 1, NULL, NULL) != 0) 3614 return (SET_ERROR(EINVAL)); 3615 3616 /* 3617 * The snap must be in the specified pool. 3618 */ 3619 if (strncmp(name, poolname, poollen) != 0 || 3620 (name[poollen] != '/' && name[poollen] != '@')) 3621 return (SET_ERROR(EXDEV)); 3622 3623 /* 3624 * Check for permission to set the properties on the fs. 3625 */ 3626 if (!nvlist_empty(props)) { 3627 *cp = '\0'; 3628 error = zfs_secpolicy_write_perms(name, 3629 ZFS_DELEG_PERM_USERPROP, CRED()); 3630 *cp = '@'; 3631 if (error != 0) 3632 return (error); 3633 } 3634 3635 /* This must be the only snap of this fs. */ 3636 for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair); 3637 pair2 != NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) { 3638 if (strncmp(name, nvpair_name(pair2), cp - name + 1) 3639 == 0) { 3640 return (SET_ERROR(EXDEV)); 3641 } 3642 } 3643 } 3644 3645 error = dsl_dataset_snapshot(snaps, props, outnvl); 3646 3647 return (error); 3648 } 3649 3650 /* 3651 * innvl: "message" -> string 3652 */ 3653 static const zfs_ioc_key_t zfs_keys_log_history[] = { 3654 {"message", DATA_TYPE_STRING, 0}, 3655 }; 3656 3657 static int 3658 zfs_ioc_log_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl) 3659 { 3660 (void) unused, (void) outnvl; 3661 const char *message; 3662 char *poolname; 3663 spa_t *spa; 3664 int error; 3665 3666 /* 3667 * The poolname in the ioctl is not set, we get it from the TSD, 3668 * which was set at the end of the last successful ioctl that allows 3669 * logging. The secpolicy func already checked that it is set. 3670 * Only one log ioctl is allowed after each successful ioctl, so 3671 * we clear the TSD here. 3672 */ 3673 poolname = tsd_get(zfs_allow_log_key); 3674 if (poolname == NULL) 3675 return (SET_ERROR(EINVAL)); 3676 (void) tsd_set(zfs_allow_log_key, NULL); 3677 error = spa_open(poolname, &spa, FTAG); 3678 kmem_strfree(poolname); 3679 if (error != 0) 3680 return (error); 3681 3682 message = fnvlist_lookup_string(innvl, "message"); 3683 3684 if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { 3685 spa_close(spa, FTAG); 3686 return (SET_ERROR(ENOTSUP)); 3687 } 3688 3689 error = spa_history_log(spa, message); 3690 spa_close(spa, FTAG); 3691 return (error); 3692 } 3693 3694 /* 3695 * This ioctl is used to set the bootenv configuration on the current 3696 * pool. This configuration is stored in the second padding area of the label, 3697 * and it is used by the bootloader(s) to store the bootloader and/or system 3698 * specific data. 3699 * The data is stored as nvlist data stream, and is protected by 3700 * an embedded checksum. 3701 * The version can have two possible values: 3702 * VB_RAW: nvlist should have key GRUB_ENVMAP, value DATA_TYPE_STRING. 3703 * VB_NVLIST: nvlist with arbitrary <key, value> pairs. 3704 */ 3705 static const zfs_ioc_key_t zfs_keys_set_bootenv[] = { 3706 {"version", DATA_TYPE_UINT64, 0}, 3707 {"<keys>", DATA_TYPE_ANY, ZK_OPTIONAL | ZK_WILDCARDLIST}, 3708 }; 3709 3710 static int 3711 zfs_ioc_set_bootenv(const char *name, nvlist_t *innvl, nvlist_t *outnvl) 3712 { 3713 int error; 3714 spa_t *spa; 3715 3716 if ((error = spa_open(name, &spa, FTAG)) != 0) 3717 return (error); 3718 spa_vdev_state_enter(spa, SCL_ALL); 3719 error = vdev_label_write_bootenv(spa->spa_root_vdev, innvl); 3720 (void) spa_vdev_state_exit(spa, NULL, 0); 3721 spa_close(spa, FTAG); 3722 return (error); 3723 } 3724 3725 static const zfs_ioc_key_t zfs_keys_get_bootenv[] = { 3726 /* no nvl keys */ 3727 }; 3728 3729 static int 3730 zfs_ioc_get_bootenv(const char *name, nvlist_t *innvl, nvlist_t *outnvl) 3731 { 3732 spa_t *spa; 3733 int error; 3734 3735 if ((error = spa_open(name, &spa, FTAG)) != 0) 3736 return (error); 3737 spa_vdev_state_enter(spa, SCL_ALL); 3738 error = vdev_label_read_bootenv(spa->spa_root_vdev, outnvl); 3739 (void) spa_vdev_state_exit(spa, NULL, 0); 3740 spa_close(spa, FTAG); 3741 return (error); 3742 } 3743 3744 /* 3745 * The dp_config_rwlock must not be held when calling this, because the 3746 * unmount may need to write out data. 3747 * 3748 * This function is best-effort. Callers must deal gracefully if it 3749 * remains mounted (or is remounted after this call). 3750 * 3751 * Returns 0 if the argument is not a snapshot, or it is not currently a 3752 * filesystem, or we were able to unmount it. Returns error code otherwise. 3753 */ 3754 void 3755 zfs_unmount_snap(const char *snapname) 3756 { 3757 if (strchr(snapname, '@') == NULL) 3758 return; 3759 3760 (void) zfsctl_snapshot_unmount(snapname, MNT_FORCE); 3761 } 3762 3763 static int 3764 zfs_unmount_snap_cb(const char *snapname, void *arg) 3765 { 3766 (void) arg; 3767 zfs_unmount_snap(snapname); 3768 return (0); 3769 } 3770 3771 /* 3772 * When a clone is destroyed, its origin may also need to be destroyed, 3773 * in which case it must be unmounted. This routine will do that unmount 3774 * if necessary. 3775 */ 3776 void 3777 zfs_destroy_unmount_origin(const char *fsname) 3778 { 3779 int error; 3780 objset_t *os; 3781 dsl_dataset_t *ds; 3782 3783 error = dmu_objset_hold(fsname, FTAG, &os); 3784 if (error != 0) 3785 return; 3786 ds = dmu_objset_ds(os); 3787 if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev)) { 3788 char originname[ZFS_MAX_DATASET_NAME_LEN]; 3789 dsl_dataset_name(ds->ds_prev, originname); 3790 dmu_objset_rele(os, FTAG); 3791 zfs_unmount_snap(originname); 3792 } else { 3793 dmu_objset_rele(os, FTAG); 3794 } 3795 } 3796 3797 /* 3798 * innvl: { 3799 * "snaps" -> { snapshot1, snapshot2 } 3800 * (optional boolean) "defer" 3801 * } 3802 * 3803 * outnvl: snapshot -> error code (int32) 3804 */ 3805 static const zfs_ioc_key_t zfs_keys_destroy_snaps[] = { 3806 {"snaps", DATA_TYPE_NVLIST, 0}, 3807 {"defer", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 3808 }; 3809 3810 static int 3811 zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 3812 { 3813 int poollen; 3814 nvlist_t *snaps; 3815 nvpair_t *pair; 3816 boolean_t defer; 3817 spa_t *spa; 3818 3819 snaps = fnvlist_lookup_nvlist(innvl, "snaps"); 3820 defer = nvlist_exists(innvl, "defer"); 3821 3822 poollen = strlen(poolname); 3823 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; 3824 pair = nvlist_next_nvpair(snaps, pair)) { 3825 const char *name = nvpair_name(pair); 3826 3827 /* 3828 * The snap must be in the specified pool to prevent the 3829 * invalid removal of zvol minors below. 3830 */ 3831 if (strncmp(name, poolname, poollen) != 0 || 3832 (name[poollen] != '/' && name[poollen] != '@')) 3833 return (SET_ERROR(EXDEV)); 3834 3835 zfs_unmount_snap(nvpair_name(pair)); 3836 if (spa_open(name, &spa, FTAG) == 0) { 3837 zvol_remove_minors(spa, name, B_TRUE); 3838 spa_close(spa, FTAG); 3839 } 3840 } 3841 3842 return (dsl_destroy_snapshots_nvl(snaps, defer, outnvl)); 3843 } 3844 3845 /* 3846 * Create bookmarks. The bookmark names are of the form <fs>#<bmark>. 3847 * All bookmarks and snapshots must be in the same pool. 3848 * dsl_bookmark_create_nvl_validate describes the nvlist schema in more detail. 3849 * 3850 * innvl: { 3851 * new_bookmark1 -> existing_snapshot, 3852 * new_bookmark2 -> existing_bookmark, 3853 * } 3854 * 3855 * outnvl: bookmark -> error code (int32) 3856 * 3857 */ 3858 static const zfs_ioc_key_t zfs_keys_bookmark[] = { 3859 {"<bookmark>...", DATA_TYPE_STRING, ZK_WILDCARDLIST}, 3860 }; 3861 3862 static int 3863 zfs_ioc_bookmark(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 3864 { 3865 (void) poolname; 3866 return (dsl_bookmark_create(innvl, outnvl)); 3867 } 3868 3869 /* 3870 * innvl: { 3871 * property 1, property 2, ... 3872 * } 3873 * 3874 * outnvl: { 3875 * bookmark name 1 -> { property 1, property 2, ... }, 3876 * bookmark name 2 -> { property 1, property 2, ... } 3877 * } 3878 * 3879 */ 3880 static const zfs_ioc_key_t zfs_keys_get_bookmarks[] = { 3881 {"<property>...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST | ZK_OPTIONAL}, 3882 }; 3883 3884 static int 3885 zfs_ioc_get_bookmarks(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 3886 { 3887 return (dsl_get_bookmarks(fsname, innvl, outnvl)); 3888 } 3889 3890 /* 3891 * innvl is not used. 3892 * 3893 * outnvl: { 3894 * property 1, property 2, ... 3895 * } 3896 * 3897 */ 3898 static const zfs_ioc_key_t zfs_keys_get_bookmark_props[] = { 3899 /* no nvl keys */ 3900 }; 3901 3902 static int 3903 zfs_ioc_get_bookmark_props(const char *bookmark, nvlist_t *innvl, 3904 nvlist_t *outnvl) 3905 { 3906 (void) innvl; 3907 char fsname[ZFS_MAX_DATASET_NAME_LEN]; 3908 char *bmname; 3909 3910 bmname = strchr(bookmark, '#'); 3911 if (bmname == NULL) 3912 return (SET_ERROR(EINVAL)); 3913 bmname++; 3914 3915 (void) strlcpy(fsname, bookmark, sizeof (fsname)); 3916 *(strchr(fsname, '#')) = '\0'; 3917 3918 return (dsl_get_bookmark_props(fsname, bmname, outnvl)); 3919 } 3920 3921 /* 3922 * innvl: { 3923 * bookmark name 1, bookmark name 2 3924 * } 3925 * 3926 * outnvl: bookmark -> error code (int32) 3927 * 3928 */ 3929 static const zfs_ioc_key_t zfs_keys_destroy_bookmarks[] = { 3930 {"<bookmark>...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST}, 3931 }; 3932 3933 static int 3934 zfs_ioc_destroy_bookmarks(const char *poolname, nvlist_t *innvl, 3935 nvlist_t *outnvl) 3936 { 3937 int error, poollen; 3938 3939 poollen = strlen(poolname); 3940 for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); 3941 pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { 3942 const char *name = nvpair_name(pair); 3943 const char *cp = strchr(name, '#'); 3944 3945 /* 3946 * The bookmark name must contain an #, and the part after it 3947 * must contain only valid characters. 3948 */ 3949 if (cp == NULL || 3950 zfs_component_namecheck(cp + 1, NULL, NULL) != 0) 3951 return (SET_ERROR(EINVAL)); 3952 3953 /* 3954 * The bookmark must be in the specified pool. 3955 */ 3956 if (strncmp(name, poolname, poollen) != 0 || 3957 (name[poollen] != '/' && name[poollen] != '#')) 3958 return (SET_ERROR(EXDEV)); 3959 } 3960 3961 error = dsl_bookmark_destroy(innvl, outnvl); 3962 return (error); 3963 } 3964 3965 static const zfs_ioc_key_t zfs_keys_channel_program[] = { 3966 {"program", DATA_TYPE_STRING, 0}, 3967 {"arg", DATA_TYPE_ANY, 0}, 3968 {"sync", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, 3969 {"instrlimit", DATA_TYPE_UINT64, ZK_OPTIONAL}, 3970 {"memlimit", DATA_TYPE_UINT64, ZK_OPTIONAL}, 3971 }; 3972 3973 static int 3974 zfs_ioc_channel_program(const char *poolname, nvlist_t *innvl, 3975 nvlist_t *outnvl) 3976 { 3977 const char *program; 3978 uint64_t instrlimit, memlimit; 3979 boolean_t sync_flag; 3980 nvpair_t *nvarg = NULL; 3981 3982 program = fnvlist_lookup_string(innvl, ZCP_ARG_PROGRAM); 3983 if (0 != nvlist_lookup_boolean_value(innvl, ZCP_ARG_SYNC, &sync_flag)) { 3984 sync_flag = B_TRUE; 3985 } 3986 if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_INSTRLIMIT, &instrlimit)) { 3987 instrlimit = ZCP_DEFAULT_INSTRLIMIT; 3988 } 3989 if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_MEMLIMIT, &memlimit)) { 3990 memlimit = ZCP_DEFAULT_MEMLIMIT; 3991 } 3992 nvarg = fnvlist_lookup_nvpair(innvl, ZCP_ARG_ARGLIST); 3993 3994 if (instrlimit == 0 || instrlimit > zfs_lua_max_instrlimit) 3995 return (SET_ERROR(EINVAL)); 3996 if (memlimit == 0 || memlimit > zfs_lua_max_memlimit) 3997 return (SET_ERROR(EINVAL)); 3998 3999 return (zcp_eval(poolname, program, sync_flag, instrlimit, memlimit, 4000 nvarg, outnvl)); 4001 } 4002 4003 /* 4004 * innvl: unused 4005 * outnvl: empty 4006 */ 4007 static const zfs_ioc_key_t zfs_keys_pool_checkpoint[] = { 4008 /* no nvl keys */ 4009 }; 4010 4011 static int 4012 zfs_ioc_pool_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 4013 { 4014 (void) innvl, (void) outnvl; 4015 return (spa_checkpoint(poolname)); 4016 } 4017 4018 /* 4019 * innvl: unused 4020 * outnvl: empty 4021 */ 4022 static const zfs_ioc_key_t zfs_keys_pool_discard_checkpoint[] = { 4023 /* no nvl keys */ 4024 }; 4025 4026 static int 4027 zfs_ioc_pool_discard_checkpoint(const char *poolname, nvlist_t *innvl, 4028 nvlist_t *outnvl) 4029 { 4030 (void) innvl, (void) outnvl; 4031 return (spa_checkpoint_discard(poolname)); 4032 } 4033 4034 /* 4035 * inputs: 4036 * zc_name name of dataset to destroy 4037 * zc_defer_destroy mark for deferred destroy 4038 * 4039 * outputs: none 4040 */ 4041 static int 4042 zfs_ioc_destroy(zfs_cmd_t *zc) 4043 { 4044 objset_t *os; 4045 dmu_objset_type_t ost; 4046 int err; 4047 4048 err = dmu_objset_hold(zc->zc_name, FTAG, &os); 4049 if (err != 0) 4050 return (err); 4051 ost = dmu_objset_type(os); 4052 dmu_objset_rele(os, FTAG); 4053 4054 if (ost == DMU_OST_ZFS) 4055 zfs_unmount_snap(zc->zc_name); 4056 4057 if (strchr(zc->zc_name, '@')) { 4058 err = dsl_destroy_snapshot(zc->zc_name, zc->zc_defer_destroy); 4059 } else { 4060 err = dsl_destroy_head(zc->zc_name); 4061 if (err == EEXIST) { 4062 /* 4063 * It is possible that the given DS may have 4064 * hidden child (%recv) datasets - "leftovers" 4065 * resulting from the previously interrupted 4066 * 'zfs receive'. 4067 * 4068 * 6 extra bytes for /%recv 4069 */ 4070 char namebuf[ZFS_MAX_DATASET_NAME_LEN + 6]; 4071 4072 if (snprintf(namebuf, sizeof (namebuf), "%s/%s", 4073 zc->zc_name, recv_clone_name) >= 4074 sizeof (namebuf)) 4075 return (SET_ERROR(EINVAL)); 4076 4077 /* 4078 * Try to remove the hidden child (%recv) and after 4079 * that try to remove the target dataset. 4080 * If the hidden child (%recv) does not exist 4081 * the original error (EEXIST) will be returned 4082 */ 4083 err = dsl_destroy_head(namebuf); 4084 if (err == 0) 4085 err = dsl_destroy_head(zc->zc_name); 4086 else if (err == ENOENT) 4087 err = SET_ERROR(EEXIST); 4088 } 4089 } 4090 4091 return (err); 4092 } 4093 4094 /* 4095 * innvl: { 4096 * "initialize_command" -> POOL_INITIALIZE_{CANCEL|START|SUSPEND} (uint64) 4097 * "initialize_vdevs": { -> guids to initialize (nvlist) 4098 * "vdev_path_1": vdev_guid_1, (uint64), 4099 * "vdev_path_2": vdev_guid_2, (uint64), 4100 * ... 4101 * }, 4102 * } 4103 * 4104 * outnvl: { 4105 * "initialize_vdevs": { -> initialization errors (nvlist) 4106 * "vdev_path_1": errno, see function body for possible errnos (uint64) 4107 * "vdev_path_2": errno, ... (uint64) 4108 * ... 4109 * } 4110 * } 4111 * 4112 * EINVAL is returned for an unknown commands or if any of the provided vdev 4113 * guids have be specified with a type other than uint64. 4114 */ 4115 static const zfs_ioc_key_t zfs_keys_pool_initialize[] = { 4116 {ZPOOL_INITIALIZE_COMMAND, DATA_TYPE_UINT64, 0}, 4117 {ZPOOL_INITIALIZE_VDEVS, DATA_TYPE_NVLIST, 0} 4118 }; 4119 4120 static int 4121 zfs_ioc_pool_initialize(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 4122 { 4123 uint64_t cmd_type; 4124 if (nvlist_lookup_uint64(innvl, ZPOOL_INITIALIZE_COMMAND, 4125 &cmd_type) != 0) { 4126 return (SET_ERROR(EINVAL)); 4127 } 4128 4129 if (!(cmd_type == POOL_INITIALIZE_CANCEL || 4130 cmd_type == POOL_INITIALIZE_START || 4131 cmd_type == POOL_INITIALIZE_SUSPEND || 4132 cmd_type == POOL_INITIALIZE_UNINIT)) { 4133 return (SET_ERROR(EINVAL)); 4134 } 4135 4136 nvlist_t *vdev_guids; 4137 if (nvlist_lookup_nvlist(innvl, ZPOOL_INITIALIZE_VDEVS, 4138 &vdev_guids) != 0) { 4139 return (SET_ERROR(EINVAL)); 4140 } 4141 4142 for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL); 4143 pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) { 4144 uint64_t vdev_guid; 4145 if (nvpair_value_uint64(pair, &vdev_guid) != 0) { 4146 return (SET_ERROR(EINVAL)); 4147 } 4148 } 4149 4150 spa_t *spa; 4151 int error = spa_open(poolname, &spa, FTAG); 4152 if (error != 0) 4153 return (error); 4154 4155 nvlist_t *vdev_errlist = fnvlist_alloc(); 4156 int total_errors = spa_vdev_initialize(spa, vdev_guids, cmd_type, 4157 vdev_errlist); 4158 4159 if (fnvlist_size(vdev_errlist) > 0) { 4160 fnvlist_add_nvlist(outnvl, ZPOOL_INITIALIZE_VDEVS, 4161 vdev_errlist); 4162 } 4163 fnvlist_free(vdev_errlist); 4164 4165 spa_close(spa, FTAG); 4166 return (total_errors > 0 ? SET_ERROR(EINVAL) : 0); 4167 } 4168 4169 /* 4170 * innvl: { 4171 * "trim_command" -> POOL_TRIM_{CANCEL|START|SUSPEND} (uint64) 4172 * "trim_vdevs": { -> guids to TRIM (nvlist) 4173 * "vdev_path_1": vdev_guid_1, (uint64), 4174 * "vdev_path_2": vdev_guid_2, (uint64), 4175 * ... 4176 * }, 4177 * "trim_rate" -> Target TRIM rate in bytes/sec. 4178 * "trim_secure" -> Set to request a secure TRIM. 4179 * } 4180 * 4181 * outnvl: { 4182 * "trim_vdevs": { -> TRIM errors (nvlist) 4183 * "vdev_path_1": errno, see function body for possible errnos (uint64) 4184 * "vdev_path_2": errno, ... (uint64) 4185 * ... 4186 * } 4187 * } 4188 * 4189 * EINVAL is returned for an unknown commands or if any of the provided vdev 4190 * guids have be specified with a type other than uint64. 4191 */ 4192 static const zfs_ioc_key_t zfs_keys_pool_trim[] = { 4193 {ZPOOL_TRIM_COMMAND, DATA_TYPE_UINT64, 0}, 4194 {ZPOOL_TRIM_VDEVS, DATA_TYPE_NVLIST, 0}, 4195 {ZPOOL_TRIM_RATE, DATA_TYPE_UINT64, ZK_OPTIONAL}, 4196 {ZPOOL_TRIM_SECURE, DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, 4197 }; 4198 4199 static int 4200 zfs_ioc_pool_trim(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 4201 { 4202 uint64_t cmd_type; 4203 if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_COMMAND, &cmd_type) != 0) 4204 return (SET_ERROR(EINVAL)); 4205 4206 if (!(cmd_type == POOL_TRIM_CANCEL || 4207 cmd_type == POOL_TRIM_START || 4208 cmd_type == POOL_TRIM_SUSPEND)) { 4209 return (SET_ERROR(EINVAL)); 4210 } 4211 4212 nvlist_t *vdev_guids; 4213 if (nvlist_lookup_nvlist(innvl, ZPOOL_TRIM_VDEVS, &vdev_guids) != 0) 4214 return (SET_ERROR(EINVAL)); 4215 4216 for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL); 4217 pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) { 4218 uint64_t vdev_guid; 4219 if (nvpair_value_uint64(pair, &vdev_guid) != 0) { 4220 return (SET_ERROR(EINVAL)); 4221 } 4222 } 4223 4224 /* Optional, defaults to maximum rate when not provided */ 4225 uint64_t rate; 4226 if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_RATE, &rate) != 0) 4227 rate = 0; 4228 4229 /* Optional, defaults to standard TRIM when not provided */ 4230 boolean_t secure; 4231 if (nvlist_lookup_boolean_value(innvl, ZPOOL_TRIM_SECURE, 4232 &secure) != 0) { 4233 secure = B_FALSE; 4234 } 4235 4236 spa_t *spa; 4237 int error = spa_open(poolname, &spa, FTAG); 4238 if (error != 0) 4239 return (error); 4240 4241 nvlist_t *vdev_errlist = fnvlist_alloc(); 4242 int total_errors = spa_vdev_trim(spa, vdev_guids, cmd_type, 4243 rate, !!zfs_trim_metaslab_skip, secure, vdev_errlist); 4244 4245 if (fnvlist_size(vdev_errlist) > 0) 4246 fnvlist_add_nvlist(outnvl, ZPOOL_TRIM_VDEVS, vdev_errlist); 4247 4248 fnvlist_free(vdev_errlist); 4249 4250 spa_close(spa, FTAG); 4251 return (total_errors > 0 ? SET_ERROR(EINVAL) : 0); 4252 } 4253 4254 /* 4255 * This ioctl waits for activity of a particular type to complete. If there is 4256 * no activity of that type in progress, it returns immediately, and the 4257 * returned value "waited" is false. If there is activity in progress, and no 4258 * tag is passed in, the ioctl blocks until all activity of that type is 4259 * complete, and then returns with "waited" set to true. 4260 * 4261 * If a tag is provided, it identifies a particular instance of an activity to 4262 * wait for. Currently, this is only valid for use with 'initialize', because 4263 * that is the only activity for which there can be multiple instances running 4264 * concurrently. In the case of 'initialize', the tag corresponds to the guid of 4265 * the vdev on which to wait. 4266 * 4267 * If a thread waiting in the ioctl receives a signal, the call will return 4268 * immediately, and the return value will be EINTR. 4269 * 4270 * innvl: { 4271 * "wait_activity" -> int32_t 4272 * (optional) "wait_tag" -> uint64_t 4273 * } 4274 * 4275 * outnvl: "waited" -> boolean_t 4276 */ 4277 static const zfs_ioc_key_t zfs_keys_pool_wait[] = { 4278 {ZPOOL_WAIT_ACTIVITY, DATA_TYPE_INT32, 0}, 4279 {ZPOOL_WAIT_TAG, DATA_TYPE_UINT64, ZK_OPTIONAL}, 4280 }; 4281 4282 static int 4283 zfs_ioc_wait(const char *name, nvlist_t *innvl, nvlist_t *outnvl) 4284 { 4285 int32_t activity; 4286 uint64_t tag; 4287 boolean_t waited; 4288 int error; 4289 4290 if (nvlist_lookup_int32(innvl, ZPOOL_WAIT_ACTIVITY, &activity) != 0) 4291 return (EINVAL); 4292 4293 if (nvlist_lookup_uint64(innvl, ZPOOL_WAIT_TAG, &tag) == 0) 4294 error = spa_wait_tag(name, activity, tag, &waited); 4295 else 4296 error = spa_wait(name, activity, &waited); 4297 4298 if (error == 0) 4299 fnvlist_add_boolean_value(outnvl, ZPOOL_WAIT_WAITED, waited); 4300 4301 return (error); 4302 } 4303 4304 /* 4305 * This ioctl waits for activity of a particular type to complete. If there is 4306 * no activity of that type in progress, it returns immediately, and the 4307 * returned value "waited" is false. If there is activity in progress, and no 4308 * tag is passed in, the ioctl blocks until all activity of that type is 4309 * complete, and then returns with "waited" set to true. 4310 * 4311 * If a thread waiting in the ioctl receives a signal, the call will return 4312 * immediately, and the return value will be EINTR. 4313 * 4314 * innvl: { 4315 * "wait_activity" -> int32_t 4316 * } 4317 * 4318 * outnvl: "waited" -> boolean_t 4319 */ 4320 static const zfs_ioc_key_t zfs_keys_fs_wait[] = { 4321 {ZFS_WAIT_ACTIVITY, DATA_TYPE_INT32, 0}, 4322 }; 4323 4324 static int 4325 zfs_ioc_wait_fs(const char *name, nvlist_t *innvl, nvlist_t *outnvl) 4326 { 4327 int32_t activity; 4328 boolean_t waited = B_FALSE; 4329 int error; 4330 dsl_pool_t *dp; 4331 dsl_dir_t *dd; 4332 dsl_dataset_t *ds; 4333 4334 if (nvlist_lookup_int32(innvl, ZFS_WAIT_ACTIVITY, &activity) != 0) 4335 return (SET_ERROR(EINVAL)); 4336 4337 if (activity >= ZFS_WAIT_NUM_ACTIVITIES || activity < 0) 4338 return (SET_ERROR(EINVAL)); 4339 4340 if ((error = dsl_pool_hold(name, FTAG, &dp)) != 0) 4341 return (error); 4342 4343 if ((error = dsl_dataset_hold(dp, name, FTAG, &ds)) != 0) { 4344 dsl_pool_rele(dp, FTAG); 4345 return (error); 4346 } 4347 4348 dd = ds->ds_dir; 4349 mutex_enter(&dd->dd_activity_lock); 4350 dd->dd_activity_waiters++; 4351 4352 /* 4353 * We get a long-hold here so that the dsl_dataset_t and dsl_dir_t 4354 * aren't evicted while we're waiting. Normally this is prevented by 4355 * holding the pool, but we can't do that while we're waiting since 4356 * that would prevent TXGs from syncing out. Some of the functionality 4357 * of long-holds (e.g. preventing deletion) is unnecessary for this 4358 * case, since we would cancel the waiters before proceeding with a 4359 * deletion. An alternative mechanism for keeping the dataset around 4360 * could be developed but this is simpler. 4361 */ 4362 dsl_dataset_long_hold(ds, FTAG); 4363 dsl_pool_rele(dp, FTAG); 4364 4365 error = dsl_dir_wait(dd, ds, activity, &waited); 4366 4367 dsl_dataset_long_rele(ds, FTAG); 4368 dd->dd_activity_waiters--; 4369 if (dd->dd_activity_waiters == 0) 4370 cv_signal(&dd->dd_activity_cv); 4371 mutex_exit(&dd->dd_activity_lock); 4372 4373 dsl_dataset_rele(ds, FTAG); 4374 4375 if (error == 0) 4376 fnvlist_add_boolean_value(outnvl, ZFS_WAIT_WAITED, waited); 4377 4378 return (error); 4379 } 4380 4381 /* 4382 * fsname is name of dataset to rollback (to most recent snapshot) 4383 * 4384 * innvl may contain name of expected target snapshot 4385 * 4386 * outnvl: "target" -> name of most recent snapshot 4387 * } 4388 */ 4389 static const zfs_ioc_key_t zfs_keys_rollback[] = { 4390 {"target", DATA_TYPE_STRING, ZK_OPTIONAL}, 4391 }; 4392 4393 static int 4394 zfs_ioc_rollback(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 4395 { 4396 zfsvfs_t *zfsvfs; 4397 zvol_state_handle_t *zv; 4398 const char *target = NULL; 4399 int error; 4400 4401 (void) nvlist_lookup_string(innvl, "target", &target); 4402 if (target != NULL) { 4403 const char *cp = strchr(target, '@'); 4404 4405 /* 4406 * The snap name must contain an @, and the part after it must 4407 * contain only valid characters. 4408 */ 4409 if (cp == NULL || 4410 zfs_component_namecheck(cp + 1, NULL, NULL) != 0) 4411 return (SET_ERROR(EINVAL)); 4412 } 4413 4414 if (getzfsvfs(fsname, &zfsvfs) == 0) { 4415 dsl_dataset_t *ds; 4416 4417 ds = dmu_objset_ds(zfsvfs->z_os); 4418 error = zfs_suspend_fs(zfsvfs); 4419 if (error == 0) { 4420 int resume_err; 4421 4422 error = dsl_dataset_rollback(fsname, target, zfsvfs, 4423 outnvl); 4424 resume_err = zfs_resume_fs(zfsvfs, ds); 4425 error = error ? error : resume_err; 4426 } 4427 zfs_vfs_rele(zfsvfs); 4428 } else if ((zv = zvol_suspend(fsname)) != NULL) { 4429 error = dsl_dataset_rollback(fsname, target, zvol_tag(zv), 4430 outnvl); 4431 zvol_resume(zv); 4432 } else { 4433 error = dsl_dataset_rollback(fsname, target, NULL, outnvl); 4434 } 4435 return (error); 4436 } 4437 4438 static int 4439 recursive_unmount(const char *fsname, void *arg) 4440 { 4441 const char *snapname = arg; 4442 char *fullname; 4443 4444 fullname = kmem_asprintf("%s@%s", fsname, snapname); 4445 zfs_unmount_snap(fullname); 4446 kmem_strfree(fullname); 4447 4448 return (0); 4449 } 4450 4451 /* 4452 * 4453 * snapname is the snapshot to redact. 4454 * innvl: { 4455 * "bookname" -> (string) 4456 * shortname of the redaction bookmark to generate 4457 * "snapnv" -> (nvlist, values ignored) 4458 * snapshots to redact snapname with respect to 4459 * } 4460 * 4461 * outnvl is unused 4462 */ 4463 4464 static const zfs_ioc_key_t zfs_keys_redact[] = { 4465 {"bookname", DATA_TYPE_STRING, 0}, 4466 {"snapnv", DATA_TYPE_NVLIST, 0}, 4467 }; 4468 4469 static int 4470 zfs_ioc_redact(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) 4471 { 4472 (void) outnvl; 4473 nvlist_t *redactnvl = NULL; 4474 const char *redactbook = NULL; 4475 4476 if (nvlist_lookup_nvlist(innvl, "snapnv", &redactnvl) != 0) 4477 return (SET_ERROR(EINVAL)); 4478 if (fnvlist_num_pairs(redactnvl) == 0) 4479 return (SET_ERROR(ENXIO)); 4480 if (nvlist_lookup_string(innvl, "bookname", &redactbook) != 0) 4481 return (SET_ERROR(EINVAL)); 4482 4483 return (dmu_redact_snap(snapname, redactnvl, redactbook)); 4484 } 4485 4486 /* 4487 * inputs: 4488 * zc_name old name of dataset 4489 * zc_value new name of dataset 4490 * zc_cookie recursive flag (only valid for snapshots) 4491 * 4492 * outputs: none 4493 */ 4494 static int 4495 zfs_ioc_rename(zfs_cmd_t *zc) 4496 { 4497 objset_t *os; 4498 dmu_objset_type_t ost; 4499 boolean_t recursive = zc->zc_cookie & 1; 4500 boolean_t nounmount = !!(zc->zc_cookie & 2); 4501 char *at; 4502 int err; 4503 4504 /* "zfs rename" from and to ...%recv datasets should both fail */ 4505 zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; 4506 zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; 4507 if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || 4508 dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || 4509 strchr(zc->zc_name, '%') || strchr(zc->zc_value, '%')) 4510 return (SET_ERROR(EINVAL)); 4511 4512 err = dmu_objset_hold(zc->zc_name, FTAG, &os); 4513 if (err != 0) 4514 return (err); 4515 ost = dmu_objset_type(os); 4516 dmu_objset_rele(os, FTAG); 4517 4518 at = strchr(zc->zc_name, '@'); 4519 if (at != NULL) { 4520 /* snaps must be in same fs */ 4521 int error; 4522 4523 if (strncmp(zc->zc_name, zc->zc_value, at - zc->zc_name + 1)) 4524 return (SET_ERROR(EXDEV)); 4525 *at = '\0'; 4526 if (ost == DMU_OST_ZFS && !nounmount) { 4527 error = dmu_objset_find(zc->zc_name, 4528 recursive_unmount, at + 1, 4529 recursive ? DS_FIND_CHILDREN : 0); 4530 if (error != 0) { 4531 *at = '@'; 4532 return (error); 4533 } 4534 } 4535 error = dsl_dataset_rename_snapshot(zc->zc_name, 4536 at + 1, strchr(zc->zc_value, '@') + 1, recursive); 4537 *at = '@'; 4538 4539 return (error); 4540 } else { 4541 return (dsl_dir_rename(zc->zc_name, zc->zc_value)); 4542 } 4543 } 4544 4545 static int 4546 zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr) 4547 { 4548 const char *propname = nvpair_name(pair); 4549 boolean_t issnap = (strchr(dsname, '@') != NULL); 4550 zfs_prop_t prop = zfs_name_to_prop(propname); 4551 uint64_t intval, compval; 4552 int err; 4553 4554 if (prop == ZPROP_USERPROP) { 4555 if (zfs_prop_user(propname)) { 4556 if ((err = zfs_secpolicy_write_perms(dsname, 4557 ZFS_DELEG_PERM_USERPROP, cr))) 4558 return (err); 4559 return (0); 4560 } 4561 4562 if (!issnap && zfs_prop_userquota(propname)) { 4563 const char *perm = NULL; 4564 const char *uq_prefix = 4565 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA]; 4566 const char *gq_prefix = 4567 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA]; 4568 const char *uiq_prefix = 4569 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA]; 4570 const char *giq_prefix = 4571 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA]; 4572 const char *pq_prefix = 4573 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA]; 4574 const char *piq_prefix = zfs_userquota_prop_prefixes[\ 4575 ZFS_PROP_PROJECTOBJQUOTA]; 4576 4577 if (strncmp(propname, uq_prefix, 4578 strlen(uq_prefix)) == 0) { 4579 perm = ZFS_DELEG_PERM_USERQUOTA; 4580 } else if (strncmp(propname, uiq_prefix, 4581 strlen(uiq_prefix)) == 0) { 4582 perm = ZFS_DELEG_PERM_USEROBJQUOTA; 4583 } else if (strncmp(propname, gq_prefix, 4584 strlen(gq_prefix)) == 0) { 4585 perm = ZFS_DELEG_PERM_GROUPQUOTA; 4586 } else if (strncmp(propname, giq_prefix, 4587 strlen(giq_prefix)) == 0) { 4588 perm = ZFS_DELEG_PERM_GROUPOBJQUOTA; 4589 } else if (strncmp(propname, pq_prefix, 4590 strlen(pq_prefix)) == 0) { 4591 perm = ZFS_DELEG_PERM_PROJECTQUOTA; 4592 } else if (strncmp(propname, piq_prefix, 4593 strlen(piq_prefix)) == 0) { 4594 perm = ZFS_DELEG_PERM_PROJECTOBJQUOTA; 4595 } else { 4596 /* {USER|GROUP|PROJECT}USED are read-only */ 4597 return (SET_ERROR(EINVAL)); 4598 } 4599 4600 if ((err = zfs_secpolicy_write_perms(dsname, perm, cr))) 4601 return (err); 4602 return (0); 4603 } 4604 4605 return (SET_ERROR(EINVAL)); 4606 } 4607 4608 if (issnap) 4609 return (SET_ERROR(EINVAL)); 4610 4611 if (nvpair_type(pair) == DATA_TYPE_NVLIST) { 4612 /* 4613 * dsl_prop_get_all_impl() returns properties in this 4614 * format. 4615 */ 4616 nvlist_t *attrs; 4617 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); 4618 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 4619 &pair) == 0); 4620 } 4621 4622 /* 4623 * Check that this value is valid for this pool version 4624 */ 4625 switch (prop) { 4626 case ZFS_PROP_COMPRESSION: 4627 /* 4628 * If the user specified gzip compression, make sure 4629 * the SPA supports it. We ignore any errors here since 4630 * we'll catch them later. 4631 */ 4632 if (nvpair_value_uint64(pair, &intval) == 0) { 4633 compval = ZIO_COMPRESS_ALGO(intval); 4634 if (compval >= ZIO_COMPRESS_GZIP_1 && 4635 compval <= ZIO_COMPRESS_GZIP_9 && 4636 zfs_earlier_version(dsname, 4637 SPA_VERSION_GZIP_COMPRESSION)) { 4638 return (SET_ERROR(ENOTSUP)); 4639 } 4640 4641 if (compval == ZIO_COMPRESS_ZLE && 4642 zfs_earlier_version(dsname, 4643 SPA_VERSION_ZLE_COMPRESSION)) 4644 return (SET_ERROR(ENOTSUP)); 4645 4646 if (compval == ZIO_COMPRESS_LZ4) { 4647 spa_t *spa; 4648 4649 if ((err = spa_open(dsname, &spa, FTAG)) != 0) 4650 return (err); 4651 4652 if (!spa_feature_is_enabled(spa, 4653 SPA_FEATURE_LZ4_COMPRESS)) { 4654 spa_close(spa, FTAG); 4655 return (SET_ERROR(ENOTSUP)); 4656 } 4657 spa_close(spa, FTAG); 4658 } 4659 4660 if (compval == ZIO_COMPRESS_ZSTD) { 4661 spa_t *spa; 4662 4663 if ((err = spa_open(dsname, &spa, FTAG)) != 0) 4664 return (err); 4665 4666 if (!spa_feature_is_enabled(spa, 4667 SPA_FEATURE_ZSTD_COMPRESS)) { 4668 spa_close(spa, FTAG); 4669 return (SET_ERROR(ENOTSUP)); 4670 } 4671 spa_close(spa, FTAG); 4672 } 4673 } 4674 break; 4675 4676 case ZFS_PROP_COPIES: 4677 if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS)) 4678 return (SET_ERROR(ENOTSUP)); 4679 break; 4680 4681 case ZFS_PROP_VOLBLOCKSIZE: 4682 case ZFS_PROP_RECORDSIZE: 4683 /* Record sizes above 128k need the feature to be enabled */ 4684 if (nvpair_value_uint64(pair, &intval) == 0 && 4685 intval > SPA_OLD_MAXBLOCKSIZE) { 4686 spa_t *spa; 4687 4688 /* 4689 * We don't allow setting the property above 1MB, 4690 * unless the tunable has been changed. 4691 */ 4692 if (intval > zfs_max_recordsize || 4693 intval > SPA_MAXBLOCKSIZE) 4694 return (SET_ERROR(ERANGE)); 4695 4696 if ((err = spa_open(dsname, &spa, FTAG)) != 0) 4697 return (err); 4698 4699 if (!spa_feature_is_enabled(spa, 4700 SPA_FEATURE_LARGE_BLOCKS)) { 4701 spa_close(spa, FTAG); 4702 return (SET_ERROR(ENOTSUP)); 4703 } 4704 spa_close(spa, FTAG); 4705 } 4706 break; 4707 4708 case ZFS_PROP_DNODESIZE: 4709 /* Dnode sizes above 512 need the feature to be enabled */ 4710 if (nvpair_value_uint64(pair, &intval) == 0 && 4711 intval != ZFS_DNSIZE_LEGACY) { 4712 spa_t *spa; 4713 4714 if ((err = spa_open(dsname, &spa, FTAG)) != 0) 4715 return (err); 4716 4717 if (!spa_feature_is_enabled(spa, 4718 SPA_FEATURE_LARGE_DNODE)) { 4719 spa_close(spa, FTAG); 4720 return (SET_ERROR(ENOTSUP)); 4721 } 4722 spa_close(spa, FTAG); 4723 } 4724 break; 4725 4726 case ZFS_PROP_SPECIAL_SMALL_BLOCKS: 4727 /* 4728 * This property could require the allocation classes 4729 * feature to be active for setting, however we allow 4730 * it so that tests of settable properties succeed. 4731 * The CLI will issue a warning in this case. 4732 */ 4733 break; 4734 4735 case ZFS_PROP_SHARESMB: 4736 if (zpl_earlier_version(dsname, ZPL_VERSION_FUID)) 4737 return (SET_ERROR(ENOTSUP)); 4738 break; 4739 4740 case ZFS_PROP_ACLINHERIT: 4741 if (nvpair_type(pair) == DATA_TYPE_UINT64 && 4742 nvpair_value_uint64(pair, &intval) == 0) { 4743 if (intval == ZFS_ACL_PASSTHROUGH_X && 4744 zfs_earlier_version(dsname, 4745 SPA_VERSION_PASSTHROUGH_X)) 4746 return (SET_ERROR(ENOTSUP)); 4747 } 4748 break; 4749 case ZFS_PROP_CHECKSUM: 4750 case ZFS_PROP_DEDUP: 4751 { 4752 spa_feature_t feature; 4753 spa_t *spa; 4754 int err; 4755 4756 /* dedup feature version checks */ 4757 if (prop == ZFS_PROP_DEDUP && 4758 zfs_earlier_version(dsname, SPA_VERSION_DEDUP)) 4759 return (SET_ERROR(ENOTSUP)); 4760 4761 if (nvpair_type(pair) == DATA_TYPE_UINT64 && 4762 nvpair_value_uint64(pair, &intval) == 0) { 4763 /* check prop value is enabled in features */ 4764 feature = zio_checksum_to_feature( 4765 intval & ZIO_CHECKSUM_MASK); 4766 if (feature == SPA_FEATURE_NONE) 4767 break; 4768 4769 if ((err = spa_open(dsname, &spa, FTAG)) != 0) 4770 return (err); 4771 4772 if (!spa_feature_is_enabled(spa, feature)) { 4773 spa_close(spa, FTAG); 4774 return (SET_ERROR(ENOTSUP)); 4775 } 4776 spa_close(spa, FTAG); 4777 } 4778 break; 4779 } 4780 4781 default: 4782 break; 4783 } 4784 4785 return (zfs_secpolicy_setprop(dsname, prop, pair, CRED())); 4786 } 4787 4788 /* 4789 * Removes properties from the given props list that fail permission checks 4790 * needed to clear them and to restore them in case of a receive error. For each 4791 * property, make sure we have both set and inherit permissions. 4792 * 4793 * Returns the first error encountered if any permission checks fail. If the 4794 * caller provides a non-NULL errlist, it also gives the complete list of names 4795 * of all the properties that failed a permission check along with the 4796 * corresponding error numbers. The caller is responsible for freeing the 4797 * returned errlist. 4798 * 4799 * If every property checks out successfully, zero is returned and the list 4800 * pointed at by errlist is NULL. 4801 */ 4802 static int 4803 zfs_check_clearable(const char *dataset, nvlist_t *props, nvlist_t **errlist) 4804 { 4805 zfs_cmd_t *zc; 4806 nvpair_t *pair, *next_pair; 4807 nvlist_t *errors; 4808 int err, rv = 0; 4809 4810 if (props == NULL) 4811 return (0); 4812 4813 VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4814 4815 zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP); 4816 (void) strlcpy(zc->zc_name, dataset, sizeof (zc->zc_name)); 4817 pair = nvlist_next_nvpair(props, NULL); 4818 while (pair != NULL) { 4819 next_pair = nvlist_next_nvpair(props, pair); 4820 4821 (void) strlcpy(zc->zc_value, nvpair_name(pair), 4822 sizeof (zc->zc_value)); 4823 if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 || 4824 (err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) { 4825 VERIFY(nvlist_remove_nvpair(props, pair) == 0); 4826 VERIFY(nvlist_add_int32(errors, 4827 zc->zc_value, err) == 0); 4828 } 4829 pair = next_pair; 4830 } 4831 kmem_free(zc, sizeof (zfs_cmd_t)); 4832 4833 if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) { 4834 nvlist_free(errors); 4835 errors = NULL; 4836 } else { 4837 VERIFY(nvpair_value_int32(pair, &rv) == 0); 4838 } 4839 4840 if (errlist == NULL) 4841 nvlist_free(errors); 4842 else 4843 *errlist = errors; 4844 4845 return (rv); 4846 } 4847 4848 static boolean_t 4849 propval_equals(nvpair_t *p1, nvpair_t *p2) 4850 { 4851 if (nvpair_type(p1) == DATA_TYPE_NVLIST) { 4852 /* dsl_prop_get_all_impl() format */ 4853 nvlist_t *attrs; 4854 VERIFY(nvpair_value_nvlist(p1, &attrs) == 0); 4855 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 4856 &p1) == 0); 4857 } 4858 4859 if (nvpair_type(p2) == DATA_TYPE_NVLIST) { 4860 nvlist_t *attrs; 4861 VERIFY(nvpair_value_nvlist(p2, &attrs) == 0); 4862 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 4863 &p2) == 0); 4864 } 4865 4866 if (nvpair_type(p1) != nvpair_type(p2)) 4867 return (B_FALSE); 4868 4869 if (nvpair_type(p1) == DATA_TYPE_STRING) { 4870 const char *valstr1, *valstr2; 4871 4872 VERIFY(nvpair_value_string(p1, &valstr1) == 0); 4873 VERIFY(nvpair_value_string(p2, &valstr2) == 0); 4874 return (strcmp(valstr1, valstr2) == 0); 4875 } else { 4876 uint64_t intval1, intval2; 4877 4878 VERIFY(nvpair_value_uint64(p1, &intval1) == 0); 4879 VERIFY(nvpair_value_uint64(p2, &intval2) == 0); 4880 return (intval1 == intval2); 4881 } 4882 } 4883 4884 /* 4885 * Remove properties from props if they are not going to change (as determined 4886 * by comparison with origprops). Remove them from origprops as well, since we 4887 * do not need to clear or restore properties that won't change. 4888 */ 4889 static void 4890 props_reduce(nvlist_t *props, nvlist_t *origprops) 4891 { 4892 nvpair_t *pair, *next_pair; 4893 4894 if (origprops == NULL) 4895 return; /* all props need to be received */ 4896 4897 pair = nvlist_next_nvpair(props, NULL); 4898 while (pair != NULL) { 4899 const char *propname = nvpair_name(pair); 4900 nvpair_t *match; 4901 4902 next_pair = nvlist_next_nvpair(props, pair); 4903 4904 if ((nvlist_lookup_nvpair(origprops, propname, 4905 &match) != 0) || !propval_equals(pair, match)) 4906 goto next; /* need to set received value */ 4907 4908 /* don't clear the existing received value */ 4909 (void) nvlist_remove_nvpair(origprops, match); 4910 /* don't bother receiving the property */ 4911 (void) nvlist_remove_nvpair(props, pair); 4912 next: 4913 pair = next_pair; 4914 } 4915 } 4916 4917 /* 4918 * Extract properties that cannot be set PRIOR to the receipt of a dataset. 4919 * For example, refquota cannot be set until after the receipt of a dataset, 4920 * because in replication streams, an older/earlier snapshot may exceed the 4921 * refquota. We want to receive the older/earlier snapshot, but setting 4922 * refquota pre-receipt will set the dsl's ACTUAL quota, which will prevent 4923 * the older/earlier snapshot from being received (with EDQUOT). 4924 * 4925 * The ZFS test "zfs_receive_011_pos" demonstrates such a scenario. 4926 * 4927 * libzfs will need to be judicious handling errors encountered by props 4928 * extracted by this function. 4929 */ 4930 static nvlist_t * 4931 extract_delay_props(nvlist_t *props) 4932 { 4933 nvlist_t *delayprops; 4934 nvpair_t *nvp, *tmp; 4935 static const zfs_prop_t delayable[] = { 4936 ZFS_PROP_REFQUOTA, 4937 ZFS_PROP_KEYLOCATION, 4938 /* 4939 * Setting ZFS_PROP_SHARESMB requires the objset type to be 4940 * known, which is not possible prior to receipt of raw sends. 4941 */ 4942 ZFS_PROP_SHARESMB, 4943 0 4944 }; 4945 int i; 4946 4947 VERIFY(nvlist_alloc(&delayprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4948 4949 for (nvp = nvlist_next_nvpair(props, NULL); nvp != NULL; 4950 nvp = nvlist_next_nvpair(props, nvp)) { 4951 /* 4952 * strcmp() is safe because zfs_prop_to_name() always returns 4953 * a bounded string. 4954 */ 4955 for (i = 0; delayable[i] != 0; i++) { 4956 if (strcmp(zfs_prop_to_name(delayable[i]), 4957 nvpair_name(nvp)) == 0) { 4958 break; 4959 } 4960 } 4961 if (delayable[i] != 0) { 4962 tmp = nvlist_prev_nvpair(props, nvp); 4963 VERIFY(nvlist_add_nvpair(delayprops, nvp) == 0); 4964 VERIFY(nvlist_remove_nvpair(props, nvp) == 0); 4965 nvp = tmp; 4966 } 4967 } 4968 4969 if (nvlist_empty(delayprops)) { 4970 nvlist_free(delayprops); 4971 delayprops = NULL; 4972 } 4973 return (delayprops); 4974 } 4975 4976 static void 4977 zfs_allow_log_destroy(void *arg) 4978 { 4979 char *poolname = arg; 4980 4981 if (poolname != NULL) 4982 kmem_strfree(poolname); 4983 } 4984 4985 #ifdef ZFS_DEBUG 4986 static boolean_t zfs_ioc_recv_inject_err; 4987 #endif 4988 4989 /* 4990 * nvlist 'errors' is always allocated. It will contain descriptions of 4991 * encountered errors, if any. It's the callers responsibility to free. 4992 */ 4993 static int 4994 zfs_ioc_recv_impl(char *tofs, char *tosnap, const char *origin, 4995 nvlist_t *recvprops, nvlist_t *localprops, nvlist_t *hidden_args, 4996 boolean_t force, boolean_t heal, boolean_t resumable, int input_fd, 4997 dmu_replay_record_t *begin_record, uint64_t *read_bytes, 4998 uint64_t *errflags, nvlist_t **errors) 4999 { 5000 dmu_recv_cookie_t drc; 5001 int error = 0; 5002 int props_error = 0; 5003 offset_t off, noff; 5004 nvlist_t *local_delayprops = NULL; 5005 nvlist_t *recv_delayprops = NULL; 5006 nvlist_t *inherited_delayprops = NULL; 5007 nvlist_t *origprops = NULL; /* existing properties */ 5008 nvlist_t *origrecvd = NULL; /* existing received properties */ 5009 boolean_t first_recvd_props = B_FALSE; 5010 boolean_t tofs_was_redacted; 5011 zfs_file_t *input_fp; 5012 5013 *read_bytes = 0; 5014 *errflags = 0; 5015 *errors = fnvlist_alloc(); 5016 off = 0; 5017 5018 if ((input_fp = zfs_file_get(input_fd)) == NULL) 5019 return (SET_ERROR(EBADF)); 5020 5021 noff = off = zfs_file_off(input_fp); 5022 error = dmu_recv_begin(tofs, tosnap, begin_record, force, heal, 5023 resumable, localprops, hidden_args, origin, &drc, input_fp, 5024 &off); 5025 if (error != 0) 5026 goto out; 5027 tofs_was_redacted = dsl_get_redacted(drc.drc_ds); 5028 5029 /* 5030 * Set properties before we receive the stream so that they are applied 5031 * to the new data. Note that we must call dmu_recv_stream() if 5032 * dmu_recv_begin() succeeds. 5033 */ 5034 if (recvprops != NULL && !drc.drc_newfs) { 5035 if (spa_version(dsl_dataset_get_spa(drc.drc_ds)) >= 5036 SPA_VERSION_RECVD_PROPS && 5037 !dsl_prop_get_hasrecvd(tofs)) 5038 first_recvd_props = B_TRUE; 5039 5040 /* 5041 * If new received properties are supplied, they are to 5042 * completely replace the existing received properties, 5043 * so stash away the existing ones. 5044 */ 5045 if (dsl_prop_get_received(tofs, &origrecvd) == 0) { 5046 nvlist_t *errlist = NULL; 5047 /* 5048 * Don't bother writing a property if its value won't 5049 * change (and avoid the unnecessary security checks). 5050 * 5051 * The first receive after SPA_VERSION_RECVD_PROPS is a 5052 * special case where we blow away all local properties 5053 * regardless. 5054 */ 5055 if (!first_recvd_props) 5056 props_reduce(recvprops, origrecvd); 5057 if (zfs_check_clearable(tofs, origrecvd, &errlist) != 0) 5058 (void) nvlist_merge(*errors, errlist, 0); 5059 nvlist_free(errlist); 5060 5061 if (clear_received_props(tofs, origrecvd, 5062 first_recvd_props ? NULL : recvprops) != 0) 5063 *errflags |= ZPROP_ERR_NOCLEAR; 5064 } else { 5065 *errflags |= ZPROP_ERR_NOCLEAR; 5066 } 5067 } 5068 5069 /* 5070 * Stash away existing properties so we can restore them on error unless 5071 * we're doing the first receive after SPA_VERSION_RECVD_PROPS, in which 5072 * case "origrecvd" will take care of that. 5073 */ 5074 if (localprops != NULL && !drc.drc_newfs && !first_recvd_props) { 5075 objset_t *os; 5076 if (dmu_objset_hold(tofs, FTAG, &os) == 0) { 5077 if (dsl_prop_get_all(os, &origprops) != 0) { 5078 *errflags |= ZPROP_ERR_NOCLEAR; 5079 } 5080 dmu_objset_rele(os, FTAG); 5081 } else { 5082 *errflags |= ZPROP_ERR_NOCLEAR; 5083 } 5084 } 5085 5086 if (recvprops != NULL) { 5087 props_error = dsl_prop_set_hasrecvd(tofs); 5088 5089 if (props_error == 0) { 5090 recv_delayprops = extract_delay_props(recvprops); 5091 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, 5092 recvprops, *errors); 5093 } 5094 } 5095 5096 if (localprops != NULL) { 5097 nvlist_t *oprops = fnvlist_alloc(); 5098 nvlist_t *xprops = fnvlist_alloc(); 5099 nvpair_t *nvp = NULL; 5100 5101 while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) { 5102 if (nvpair_type(nvp) == DATA_TYPE_BOOLEAN) { 5103 /* -x property */ 5104 const char *name = nvpair_name(nvp); 5105 zfs_prop_t prop = zfs_name_to_prop(name); 5106 if (prop != ZPROP_USERPROP) { 5107 if (!zfs_prop_inheritable(prop)) 5108 continue; 5109 } else if (!zfs_prop_user(name)) 5110 continue; 5111 fnvlist_add_boolean(xprops, name); 5112 } else { 5113 /* -o property=value */ 5114 fnvlist_add_nvpair(oprops, nvp); 5115 } 5116 } 5117 5118 local_delayprops = extract_delay_props(oprops); 5119 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, 5120 oprops, *errors); 5121 inherited_delayprops = extract_delay_props(xprops); 5122 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, 5123 xprops, *errors); 5124 5125 nvlist_free(oprops); 5126 nvlist_free(xprops); 5127 } 5128 5129 error = dmu_recv_stream(&drc, &off); 5130 5131 if (error == 0) { 5132 zfsvfs_t *zfsvfs = NULL; 5133 zvol_state_handle_t *zv = NULL; 5134 5135 if (getzfsvfs(tofs, &zfsvfs) == 0) { 5136 /* online recv */ 5137 dsl_dataset_t *ds; 5138 int end_err; 5139 boolean_t stream_is_redacted = DMU_GET_FEATUREFLAGS( 5140 begin_record->drr_u.drr_begin. 5141 drr_versioninfo) & DMU_BACKUP_FEATURE_REDACTED; 5142 5143 ds = dmu_objset_ds(zfsvfs->z_os); 5144 error = zfs_suspend_fs(zfsvfs); 5145 /* 5146 * If the suspend fails, then the recv_end will 5147 * likely also fail, and clean up after itself. 5148 */ 5149 end_err = dmu_recv_end(&drc, zfsvfs); 5150 /* 5151 * If the dataset was not redacted, but we received a 5152 * redacted stream onto it, we need to unmount the 5153 * dataset. Otherwise, resume the filesystem. 5154 */ 5155 if (error == 0 && !drc.drc_newfs && 5156 stream_is_redacted && !tofs_was_redacted) { 5157 error = zfs_end_fs(zfsvfs, ds); 5158 } else if (error == 0) { 5159 error = zfs_resume_fs(zfsvfs, ds); 5160 } 5161 error = error ? error : end_err; 5162 zfs_vfs_rele(zfsvfs); 5163 } else if ((zv = zvol_suspend(tofs)) != NULL) { 5164 error = dmu_recv_end(&drc, zvol_tag(zv)); 5165 zvol_resume(zv); 5166 } else { 5167 error = dmu_recv_end(&drc, NULL); 5168 } 5169 5170 /* Set delayed properties now, after we're done receiving. */ 5171 if (recv_delayprops != NULL && error == 0) { 5172 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, 5173 recv_delayprops, *errors); 5174 } 5175 if (local_delayprops != NULL && error == 0) { 5176 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, 5177 local_delayprops, *errors); 5178 } 5179 if (inherited_delayprops != NULL && error == 0) { 5180 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, 5181 inherited_delayprops, *errors); 5182 } 5183 } 5184 5185 /* 5186 * Merge delayed props back in with initial props, in case 5187 * we're DEBUG and zfs_ioc_recv_inject_err is set (which means 5188 * we have to make sure clear_received_props() includes 5189 * the delayed properties). 5190 * 5191 * Since zfs_ioc_recv_inject_err is only in DEBUG kernels, 5192 * using ASSERT() will be just like a VERIFY. 5193 */ 5194 if (recv_delayprops != NULL) { 5195 ASSERT(nvlist_merge(recvprops, recv_delayprops, 0) == 0); 5196 nvlist_free(recv_delayprops); 5197 } 5198 if (local_delayprops != NULL) { 5199 ASSERT(nvlist_merge(localprops, local_delayprops, 0) == 0); 5200 nvlist_free(local_delayprops); 5201 } 5202 if (inherited_delayprops != NULL) { 5203 ASSERT(nvlist_merge(localprops, inherited_delayprops, 0) == 0); 5204 nvlist_free(inherited_delayprops); 5205 } 5206 *read_bytes = off - noff; 5207 5208 #ifdef ZFS_DEBUG 5209 if (zfs_ioc_recv_inject_err) { 5210 zfs_ioc_recv_inject_err = B_FALSE; 5211 error = 1; 5212 } 5213 #endif 5214 5215 /* 5216 * On error, restore the original props. 5217 */ 5218 if (error != 0 && recvprops != NULL && !drc.drc_newfs) { 5219 if (clear_received_props(tofs, recvprops, NULL) != 0) { 5220 /* 5221 * We failed to clear the received properties. 5222 * Since we may have left a $recvd value on the 5223 * system, we can't clear the $hasrecvd flag. 5224 */ 5225 *errflags |= ZPROP_ERR_NORESTORE; 5226 } else if (first_recvd_props) { 5227 dsl_prop_unset_hasrecvd(tofs); 5228 } 5229 5230 if (origrecvd == NULL && !drc.drc_newfs) { 5231 /* We failed to stash the original properties. */ 5232 *errflags |= ZPROP_ERR_NORESTORE; 5233 } 5234 5235 /* 5236 * dsl_props_set() will not convert RECEIVED to LOCAL on or 5237 * after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL 5238 * explicitly if we're restoring local properties cleared in the 5239 * first new-style receive. 5240 */ 5241 if (origrecvd != NULL && 5242 zfs_set_prop_nvlist(tofs, (first_recvd_props ? 5243 ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED), 5244 origrecvd, NULL) != 0) { 5245 /* 5246 * We stashed the original properties but failed to 5247 * restore them. 5248 */ 5249 *errflags |= ZPROP_ERR_NORESTORE; 5250 } 5251 } 5252 if (error != 0 && localprops != NULL && !drc.drc_newfs && 5253 !first_recvd_props) { 5254 nvlist_t *setprops; 5255 nvlist_t *inheritprops; 5256 nvpair_t *nvp; 5257 5258 if (origprops == NULL) { 5259 /* We failed to stash the original properties. */ 5260 *errflags |= ZPROP_ERR_NORESTORE; 5261 goto out; 5262 } 5263 5264 /* Restore original props */ 5265 setprops = fnvlist_alloc(); 5266 inheritprops = fnvlist_alloc(); 5267 nvp = NULL; 5268 while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) { 5269 const char *name = nvpair_name(nvp); 5270 const char *source; 5271 nvlist_t *attrs; 5272 5273 if (!nvlist_exists(origprops, name)) { 5274 /* 5275 * Property was not present or was explicitly 5276 * inherited before the receive, restore this. 5277 */ 5278 fnvlist_add_boolean(inheritprops, name); 5279 continue; 5280 } 5281 attrs = fnvlist_lookup_nvlist(origprops, name); 5282 source = fnvlist_lookup_string(attrs, ZPROP_SOURCE); 5283 5284 /* Skip received properties */ 5285 if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0) 5286 continue; 5287 5288 if (strcmp(source, tofs) == 0) { 5289 /* Property was locally set */ 5290 fnvlist_add_nvlist(setprops, name, attrs); 5291 } else { 5292 /* Property was implicitly inherited */ 5293 fnvlist_add_boolean(inheritprops, name); 5294 } 5295 } 5296 5297 if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, setprops, 5298 NULL) != 0) 5299 *errflags |= ZPROP_ERR_NORESTORE; 5300 if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, inheritprops, 5301 NULL) != 0) 5302 *errflags |= ZPROP_ERR_NORESTORE; 5303 5304 nvlist_free(setprops); 5305 nvlist_free(inheritprops); 5306 } 5307 out: 5308 zfs_file_put(input_fp); 5309 nvlist_free(origrecvd); 5310 nvlist_free(origprops); 5311 5312 if (error == 0) 5313 error = props_error; 5314 5315 return (error); 5316 } 5317 5318 /* 5319 * inputs: 5320 * zc_name name of containing filesystem (unused) 5321 * zc_nvlist_src{_size} nvlist of properties to apply 5322 * zc_nvlist_conf{_size} nvlist of properties to exclude 5323 * (DATA_TYPE_BOOLEAN) and override (everything else) 5324 * zc_value name of snapshot to create 5325 * zc_string name of clone origin (if DRR_FLAG_CLONE) 5326 * zc_cookie file descriptor to recv from 5327 * zc_begin_record the BEGIN record of the stream (not byteswapped) 5328 * zc_guid force flag 5329 * 5330 * outputs: 5331 * zc_cookie number of bytes read 5332 * zc_obj zprop_errflags_t 5333 * zc_nvlist_dst{_size} error for each unapplied received property 5334 */ 5335 static int 5336 zfs_ioc_recv(zfs_cmd_t *zc) 5337 { 5338 dmu_replay_record_t begin_record; 5339 nvlist_t *errors = NULL; 5340 nvlist_t *recvdprops = NULL; 5341 nvlist_t *localprops = NULL; 5342 const char *origin = NULL; 5343 char *tosnap; 5344 char tofs[ZFS_MAX_DATASET_NAME_LEN]; 5345 int error = 0; 5346 5347 if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || 5348 strchr(zc->zc_value, '@') == NULL || 5349 strchr(zc->zc_value, '%') != NULL) { 5350 return (SET_ERROR(EINVAL)); 5351 } 5352 5353 (void) strlcpy(tofs, zc->zc_value, sizeof (tofs)); 5354 tosnap = strchr(tofs, '@'); 5355 *tosnap++ = '\0'; 5356 5357 if (zc->zc_nvlist_src != 0 && 5358 (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 5359 zc->zc_iflags, &recvdprops)) != 0) { 5360 goto out; 5361 } 5362 5363 if (zc->zc_nvlist_conf != 0 && 5364 (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 5365 zc->zc_iflags, &localprops)) != 0) { 5366 goto out; 5367 } 5368 5369 if (zc->zc_string[0]) 5370 origin = zc->zc_string; 5371 5372 begin_record.drr_type = DRR_BEGIN; 5373 begin_record.drr_payloadlen = 0; 5374 begin_record.drr_u.drr_begin = zc->zc_begin_record; 5375 5376 error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvdprops, localprops, 5377 NULL, zc->zc_guid, B_FALSE, B_FALSE, zc->zc_cookie, &begin_record, 5378 &zc->zc_cookie, &zc->zc_obj, &errors); 5379 5380 /* 5381 * Now that all props, initial and delayed, are set, report the prop 5382 * errors to the caller. 5383 */ 5384 if (zc->zc_nvlist_dst_size != 0 && errors != NULL && 5385 (nvlist_smush(errors, zc->zc_nvlist_dst_size) != 0 || 5386 put_nvlist(zc, errors) != 0)) { 5387 /* 5388 * Caller made zc->zc_nvlist_dst less than the minimum expected 5389 * size or supplied an invalid address. 5390 */ 5391 error = SET_ERROR(EINVAL); 5392 } 5393 5394 out: 5395 nvlist_free(errors); 5396 nvlist_free(recvdprops); 5397 nvlist_free(localprops); 5398 5399 return (error); 5400 } 5401 5402 /* 5403 * innvl: { 5404 * "snapname" -> full name of the snapshot to create 5405 * (optional) "props" -> received properties to set (nvlist) 5406 * (optional) "localprops" -> override and exclude properties (nvlist) 5407 * (optional) "origin" -> name of clone origin (DRR_FLAG_CLONE) 5408 * "begin_record" -> non-byteswapped dmu_replay_record_t 5409 * "input_fd" -> file descriptor to read stream from (int32) 5410 * (optional) "force" -> force flag (value ignored) 5411 * (optional) "heal" -> use send stream to heal data corruption 5412 * (optional) "resumable" -> resumable flag (value ignored) 5413 * (optional) "cleanup_fd" -> unused 5414 * (optional) "action_handle" -> unused 5415 * (optional) "hidden_args" -> { "wkeydata" -> value } 5416 * } 5417 * 5418 * outnvl: { 5419 * "read_bytes" -> number of bytes read 5420 * "error_flags" -> zprop_errflags_t 5421 * "errors" -> error for each unapplied received property (nvlist) 5422 * } 5423 */ 5424 static const zfs_ioc_key_t zfs_keys_recv_new[] = { 5425 {"snapname", DATA_TYPE_STRING, 0}, 5426 {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 5427 {"localprops", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 5428 {"origin", DATA_TYPE_STRING, ZK_OPTIONAL}, 5429 {"begin_record", DATA_TYPE_BYTE_ARRAY, 0}, 5430 {"input_fd", DATA_TYPE_INT32, 0}, 5431 {"force", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 5432 {"heal", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 5433 {"resumable", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 5434 {"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL}, 5435 {"action_handle", DATA_TYPE_UINT64, ZK_OPTIONAL}, 5436 {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 5437 }; 5438 5439 static int 5440 zfs_ioc_recv_new(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 5441 { 5442 dmu_replay_record_t *begin_record; 5443 uint_t begin_record_size; 5444 nvlist_t *errors = NULL; 5445 nvlist_t *recvprops = NULL; 5446 nvlist_t *localprops = NULL; 5447 nvlist_t *hidden_args = NULL; 5448 const char *snapname; 5449 const char *origin = NULL; 5450 char *tosnap; 5451 char tofs[ZFS_MAX_DATASET_NAME_LEN]; 5452 boolean_t force; 5453 boolean_t heal; 5454 boolean_t resumable; 5455 uint64_t read_bytes = 0; 5456 uint64_t errflags = 0; 5457 int input_fd = -1; 5458 int error; 5459 5460 snapname = fnvlist_lookup_string(innvl, "snapname"); 5461 5462 if (dataset_namecheck(snapname, NULL, NULL) != 0 || 5463 strchr(snapname, '@') == NULL || 5464 strchr(snapname, '%') != NULL) { 5465 return (SET_ERROR(EINVAL)); 5466 } 5467 5468 (void) strlcpy(tofs, snapname, sizeof (tofs)); 5469 tosnap = strchr(tofs, '@'); 5470 *tosnap++ = '\0'; 5471 5472 error = nvlist_lookup_string(innvl, "origin", &origin); 5473 if (error && error != ENOENT) 5474 return (error); 5475 5476 error = nvlist_lookup_byte_array(innvl, "begin_record", 5477 (uchar_t **)&begin_record, &begin_record_size); 5478 if (error != 0 || begin_record_size != sizeof (*begin_record)) 5479 return (SET_ERROR(EINVAL)); 5480 5481 input_fd = fnvlist_lookup_int32(innvl, "input_fd"); 5482 5483 force = nvlist_exists(innvl, "force"); 5484 heal = nvlist_exists(innvl, "heal"); 5485 resumable = nvlist_exists(innvl, "resumable"); 5486 5487 /* we still use "props" here for backwards compatibility */ 5488 error = nvlist_lookup_nvlist(innvl, "props", &recvprops); 5489 if (error && error != ENOENT) 5490 goto out; 5491 5492 error = nvlist_lookup_nvlist(innvl, "localprops", &localprops); 5493 if (error && error != ENOENT) 5494 goto out; 5495 5496 error = nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); 5497 if (error && error != ENOENT) 5498 goto out; 5499 5500 error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvprops, localprops, 5501 hidden_args, force, heal, resumable, input_fd, begin_record, 5502 &read_bytes, &errflags, &errors); 5503 5504 fnvlist_add_uint64(outnvl, "read_bytes", read_bytes); 5505 fnvlist_add_uint64(outnvl, "error_flags", errflags); 5506 fnvlist_add_nvlist(outnvl, "errors", errors); 5507 5508 out: 5509 nvlist_free(errors); 5510 nvlist_free(recvprops); 5511 nvlist_free(localprops); 5512 nvlist_free(hidden_args); 5513 5514 return (error); 5515 } 5516 5517 /* 5518 * When stack space is limited, we write replication stream data to the target 5519 * on a separate taskq thread, to make sure there's enough stack space. 5520 */ 5521 #ifndef HAVE_LARGE_STACKS 5522 #define USE_SEND_TASKQ 1 5523 #endif 5524 5525 typedef struct dump_bytes_io { 5526 zfs_file_t *dbi_fp; 5527 caddr_t dbi_buf; 5528 int dbi_len; 5529 int dbi_err; 5530 } dump_bytes_io_t; 5531 5532 static void 5533 dump_bytes_cb(void *arg) 5534 { 5535 dump_bytes_io_t *dbi = (dump_bytes_io_t *)arg; 5536 zfs_file_t *fp; 5537 caddr_t buf; 5538 5539 fp = dbi->dbi_fp; 5540 buf = dbi->dbi_buf; 5541 5542 dbi->dbi_err = zfs_file_write(fp, buf, dbi->dbi_len, NULL); 5543 } 5544 5545 typedef struct dump_bytes_arg { 5546 zfs_file_t *dba_fp; 5547 #ifdef USE_SEND_TASKQ 5548 taskq_t *dba_tq; 5549 taskq_ent_t dba_tqent; 5550 #endif 5551 } dump_bytes_arg_t; 5552 5553 static int 5554 dump_bytes(objset_t *os, void *buf, int len, void *arg) 5555 { 5556 dump_bytes_arg_t *dba = (dump_bytes_arg_t *)arg; 5557 dump_bytes_io_t dbi; 5558 5559 dbi.dbi_fp = dba->dba_fp; 5560 dbi.dbi_buf = buf; 5561 dbi.dbi_len = len; 5562 5563 #ifdef USE_SEND_TASKQ 5564 taskq_dispatch_ent(dba->dba_tq, dump_bytes_cb, &dbi, TQ_SLEEP, 5565 &dba->dba_tqent); 5566 taskq_wait(dba->dba_tq); 5567 #else 5568 dump_bytes_cb(&dbi); 5569 #endif 5570 5571 return (dbi.dbi_err); 5572 } 5573 5574 static int 5575 dump_bytes_init(dump_bytes_arg_t *dba, int fd, dmu_send_outparams_t *out) 5576 { 5577 zfs_file_t *fp = zfs_file_get(fd); 5578 if (fp == NULL) 5579 return (SET_ERROR(EBADF)); 5580 5581 dba->dba_fp = fp; 5582 #ifdef USE_SEND_TASKQ 5583 dba->dba_tq = taskq_create("z_send", 1, defclsyspri, 0, 0, 0); 5584 taskq_init_ent(&dba->dba_tqent); 5585 #endif 5586 5587 memset(out, 0, sizeof (dmu_send_outparams_t)); 5588 out->dso_outfunc = dump_bytes; 5589 out->dso_arg = dba; 5590 out->dso_dryrun = B_FALSE; 5591 5592 return (0); 5593 } 5594 5595 static void 5596 dump_bytes_fini(dump_bytes_arg_t *dba) 5597 { 5598 zfs_file_put(dba->dba_fp); 5599 #ifdef USE_SEND_TASKQ 5600 taskq_destroy(dba->dba_tq); 5601 #endif 5602 } 5603 5604 /* 5605 * inputs: 5606 * zc_name name of snapshot to send 5607 * zc_cookie file descriptor to send stream to 5608 * zc_obj fromorigin flag (mutually exclusive with zc_fromobj) 5609 * zc_sendobj objsetid of snapshot to send 5610 * zc_fromobj objsetid of incremental fromsnap (may be zero) 5611 * zc_guid if set, estimate size of stream only. zc_cookie is ignored. 5612 * output size in zc_objset_type. 5613 * zc_flags lzc_send_flags 5614 * 5615 * outputs: 5616 * zc_objset_type estimated size, if zc_guid is set 5617 * 5618 * NOTE: This is no longer the preferred interface, any new functionality 5619 * should be added to zfs_ioc_send_new() instead. 5620 */ 5621 static int 5622 zfs_ioc_send(zfs_cmd_t *zc) 5623 { 5624 int error; 5625 offset_t off; 5626 boolean_t estimate = (zc->zc_guid != 0); 5627 boolean_t embedok = (zc->zc_flags & 0x1); 5628 boolean_t large_block_ok = (zc->zc_flags & 0x2); 5629 boolean_t compressok = (zc->zc_flags & 0x4); 5630 boolean_t rawok = (zc->zc_flags & 0x8); 5631 boolean_t savedok = (zc->zc_flags & 0x10); 5632 5633 if (zc->zc_obj != 0) { 5634 dsl_pool_t *dp; 5635 dsl_dataset_t *tosnap; 5636 5637 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 5638 if (error != 0) 5639 return (error); 5640 5641 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); 5642 if (error != 0) { 5643 dsl_pool_rele(dp, FTAG); 5644 return (error); 5645 } 5646 5647 if (dsl_dir_is_clone(tosnap->ds_dir)) 5648 zc->zc_fromobj = 5649 dsl_dir_phys(tosnap->ds_dir)->dd_origin_obj; 5650 dsl_dataset_rele(tosnap, FTAG); 5651 dsl_pool_rele(dp, FTAG); 5652 } 5653 5654 if (estimate) { 5655 dsl_pool_t *dp; 5656 dsl_dataset_t *tosnap; 5657 dsl_dataset_t *fromsnap = NULL; 5658 5659 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 5660 if (error != 0) 5661 return (error); 5662 5663 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, 5664 FTAG, &tosnap); 5665 if (error != 0) { 5666 dsl_pool_rele(dp, FTAG); 5667 return (error); 5668 } 5669 5670 if (zc->zc_fromobj != 0) { 5671 error = dsl_dataset_hold_obj(dp, zc->zc_fromobj, 5672 FTAG, &fromsnap); 5673 if (error != 0) { 5674 dsl_dataset_rele(tosnap, FTAG); 5675 dsl_pool_rele(dp, FTAG); 5676 return (error); 5677 } 5678 } 5679 5680 error = dmu_send_estimate_fast(tosnap, fromsnap, NULL, 5681 compressok || rawok, savedok, &zc->zc_objset_type); 5682 5683 if (fromsnap != NULL) 5684 dsl_dataset_rele(fromsnap, FTAG); 5685 dsl_dataset_rele(tosnap, FTAG); 5686 dsl_pool_rele(dp, FTAG); 5687 } else { 5688 dump_bytes_arg_t dba; 5689 dmu_send_outparams_t out; 5690 error = dump_bytes_init(&dba, zc->zc_cookie, &out); 5691 if (error) 5692 return (error); 5693 5694 off = zfs_file_off(dba.dba_fp); 5695 error = dmu_send_obj(zc->zc_name, zc->zc_sendobj, 5696 zc->zc_fromobj, embedok, large_block_ok, compressok, 5697 rawok, savedok, zc->zc_cookie, &off, &out); 5698 5699 dump_bytes_fini(&dba); 5700 } 5701 return (error); 5702 } 5703 5704 /* 5705 * inputs: 5706 * zc_name name of snapshot on which to report progress 5707 * zc_cookie file descriptor of send stream 5708 * 5709 * outputs: 5710 * zc_cookie number of bytes written in send stream thus far 5711 * zc_objset_type logical size of data traversed by send thus far 5712 */ 5713 static int 5714 zfs_ioc_send_progress(zfs_cmd_t *zc) 5715 { 5716 dsl_pool_t *dp; 5717 dsl_dataset_t *ds; 5718 dmu_sendstatus_t *dsp = NULL; 5719 int error; 5720 5721 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 5722 if (error != 0) 5723 return (error); 5724 5725 error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); 5726 if (error != 0) { 5727 dsl_pool_rele(dp, FTAG); 5728 return (error); 5729 } 5730 5731 mutex_enter(&ds->ds_sendstream_lock); 5732 5733 /* 5734 * Iterate over all the send streams currently active on this dataset. 5735 * If there's one which matches the specified file descriptor _and_ the 5736 * stream was started by the current process, return the progress of 5737 * that stream. 5738 */ 5739 5740 for (dsp = list_head(&ds->ds_sendstreams); dsp != NULL; 5741 dsp = list_next(&ds->ds_sendstreams, dsp)) { 5742 if (dsp->dss_outfd == zc->zc_cookie && 5743 zfs_proc_is_caller(dsp->dss_proc)) 5744 break; 5745 } 5746 5747 if (dsp != NULL) { 5748 zc->zc_cookie = atomic_cas_64((volatile uint64_t *)dsp->dss_off, 5749 0, 0); 5750 /* This is the closest thing we have to atomic_read_64. */ 5751 zc->zc_objset_type = atomic_cas_64(&dsp->dss_blocks, 0, 0); 5752 } else { 5753 error = SET_ERROR(ENOENT); 5754 } 5755 5756 mutex_exit(&ds->ds_sendstream_lock); 5757 dsl_dataset_rele(ds, FTAG); 5758 dsl_pool_rele(dp, FTAG); 5759 return (error); 5760 } 5761 5762 static int 5763 zfs_ioc_inject_fault(zfs_cmd_t *zc) 5764 { 5765 int id, error; 5766 5767 error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id, 5768 &zc->zc_inject_record); 5769 5770 if (error == 0) 5771 zc->zc_guid = (uint64_t)id; 5772 5773 return (error); 5774 } 5775 5776 static int 5777 zfs_ioc_clear_fault(zfs_cmd_t *zc) 5778 { 5779 return (zio_clear_fault((int)zc->zc_guid)); 5780 } 5781 5782 static int 5783 zfs_ioc_inject_list_next(zfs_cmd_t *zc) 5784 { 5785 int id = (int)zc->zc_guid; 5786 int error; 5787 5788 error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name), 5789 &zc->zc_inject_record); 5790 5791 zc->zc_guid = id; 5792 5793 return (error); 5794 } 5795 5796 static int 5797 zfs_ioc_error_log(zfs_cmd_t *zc) 5798 { 5799 spa_t *spa; 5800 int error; 5801 5802 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 5803 return (error); 5804 5805 error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst, 5806 &zc->zc_nvlist_dst_size); 5807 5808 spa_close(spa, FTAG); 5809 5810 return (error); 5811 } 5812 5813 static int 5814 zfs_ioc_clear(zfs_cmd_t *zc) 5815 { 5816 spa_t *spa; 5817 vdev_t *vd; 5818 int error; 5819 5820 /* 5821 * On zpool clear we also fix up missing slogs 5822 */ 5823 mutex_enter(&spa_namespace_lock); 5824 spa = spa_lookup(zc->zc_name); 5825 if (spa == NULL) { 5826 mutex_exit(&spa_namespace_lock); 5827 return (SET_ERROR(EIO)); 5828 } 5829 if (spa_get_log_state(spa) == SPA_LOG_MISSING) { 5830 /* we need to let spa_open/spa_load clear the chains */ 5831 spa_set_log_state(spa, SPA_LOG_CLEAR); 5832 } 5833 spa->spa_last_open_failed = 0; 5834 mutex_exit(&spa_namespace_lock); 5835 5836 if (zc->zc_cookie & ZPOOL_NO_REWIND) { 5837 error = spa_open(zc->zc_name, &spa, FTAG); 5838 } else { 5839 nvlist_t *policy; 5840 nvlist_t *config = NULL; 5841 5842 if (zc->zc_nvlist_src == 0) 5843 return (SET_ERROR(EINVAL)); 5844 5845 if ((error = get_nvlist(zc->zc_nvlist_src, 5846 zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) { 5847 error = spa_open_rewind(zc->zc_name, &spa, FTAG, 5848 policy, &config); 5849 if (config != NULL) { 5850 int err; 5851 5852 if ((err = put_nvlist(zc, config)) != 0) 5853 error = err; 5854 nvlist_free(config); 5855 } 5856 nvlist_free(policy); 5857 } 5858 } 5859 5860 if (error != 0) 5861 return (error); 5862 5863 /* 5864 * If multihost is enabled, resuming I/O is unsafe as another 5865 * host may have imported the pool. Check for remote activity. 5866 */ 5867 if (spa_multihost(spa) && spa_suspended(spa) && 5868 spa_mmp_remote_host_activity(spa)) { 5869 spa_close(spa, FTAG); 5870 return (SET_ERROR(EREMOTEIO)); 5871 } 5872 5873 spa_vdev_state_enter(spa, SCL_NONE); 5874 5875 if (zc->zc_guid == 0) { 5876 vd = NULL; 5877 } else { 5878 vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE); 5879 if (vd == NULL) { 5880 error = SET_ERROR(ENODEV); 5881 (void) spa_vdev_state_exit(spa, NULL, error); 5882 spa_close(spa, FTAG); 5883 return (error); 5884 } 5885 } 5886 5887 vdev_clear(spa, vd); 5888 5889 (void) spa_vdev_state_exit(spa, spa_suspended(spa) ? 5890 NULL : spa->spa_root_vdev, 0); 5891 5892 /* 5893 * Resume any suspended I/Os. 5894 */ 5895 if (zio_resume(spa) != 0) 5896 error = SET_ERROR(EIO); 5897 5898 spa_close(spa, FTAG); 5899 5900 return (error); 5901 } 5902 5903 /* 5904 * Reopen all the vdevs associated with the pool. 5905 * 5906 * innvl: { 5907 * "scrub_restart" -> when true and scrub is running, allow to restart 5908 * scrub as the side effect of the reopen (boolean). 5909 * } 5910 * 5911 * outnvl is unused 5912 */ 5913 static const zfs_ioc_key_t zfs_keys_pool_reopen[] = { 5914 {"scrub_restart", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, 5915 }; 5916 5917 static int 5918 zfs_ioc_pool_reopen(const char *pool, nvlist_t *innvl, nvlist_t *outnvl) 5919 { 5920 (void) outnvl; 5921 spa_t *spa; 5922 int error; 5923 boolean_t rc, scrub_restart = B_TRUE; 5924 5925 if (innvl) { 5926 error = nvlist_lookup_boolean_value(innvl, 5927 "scrub_restart", &rc); 5928 if (error == 0) 5929 scrub_restart = rc; 5930 } 5931 5932 error = spa_open(pool, &spa, FTAG); 5933 if (error != 0) 5934 return (error); 5935 5936 spa_vdev_state_enter(spa, SCL_NONE); 5937 5938 /* 5939 * If the scrub_restart flag is B_FALSE and a scrub is already 5940 * in progress then set spa_scrub_reopen flag to B_TRUE so that 5941 * we don't restart the scrub as a side effect of the reopen. 5942 * Otherwise, let vdev_open() decided if a resilver is required. 5943 */ 5944 5945 spa->spa_scrub_reopen = (!scrub_restart && 5946 dsl_scan_scrubbing(spa->spa_dsl_pool)); 5947 vdev_reopen(spa->spa_root_vdev); 5948 spa->spa_scrub_reopen = B_FALSE; 5949 5950 (void) spa_vdev_state_exit(spa, NULL, 0); 5951 spa_close(spa, FTAG); 5952 return (0); 5953 } 5954 5955 /* 5956 * inputs: 5957 * zc_name name of filesystem 5958 * 5959 * outputs: 5960 * zc_string name of conflicting snapshot, if there is one 5961 */ 5962 static int 5963 zfs_ioc_promote(zfs_cmd_t *zc) 5964 { 5965 dsl_pool_t *dp; 5966 dsl_dataset_t *ds, *ods; 5967 char origin[ZFS_MAX_DATASET_NAME_LEN]; 5968 char *cp; 5969 int error; 5970 5971 zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; 5972 if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || 5973 strchr(zc->zc_name, '%')) 5974 return (SET_ERROR(EINVAL)); 5975 5976 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 5977 if (error != 0) 5978 return (error); 5979 5980 error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); 5981 if (error != 0) { 5982 dsl_pool_rele(dp, FTAG); 5983 return (error); 5984 } 5985 5986 if (!dsl_dir_is_clone(ds->ds_dir)) { 5987 dsl_dataset_rele(ds, FTAG); 5988 dsl_pool_rele(dp, FTAG); 5989 return (SET_ERROR(EINVAL)); 5990 } 5991 5992 error = dsl_dataset_hold_obj(dp, 5993 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &ods); 5994 if (error != 0) { 5995 dsl_dataset_rele(ds, FTAG); 5996 dsl_pool_rele(dp, FTAG); 5997 return (error); 5998 } 5999 6000 dsl_dataset_name(ods, origin); 6001 dsl_dataset_rele(ods, FTAG); 6002 dsl_dataset_rele(ds, FTAG); 6003 dsl_pool_rele(dp, FTAG); 6004 6005 /* 6006 * We don't need to unmount *all* the origin fs's snapshots, but 6007 * it's easier. 6008 */ 6009 cp = strchr(origin, '@'); 6010 if (cp) 6011 *cp = '\0'; 6012 (void) dmu_objset_find(origin, 6013 zfs_unmount_snap_cb, NULL, DS_FIND_SNAPSHOTS); 6014 return (dsl_dataset_promote(zc->zc_name, zc->zc_string)); 6015 } 6016 6017 /* 6018 * Retrieve a single {user|group|project}{used|quota}@... property. 6019 * 6020 * inputs: 6021 * zc_name name of filesystem 6022 * zc_objset_type zfs_userquota_prop_t 6023 * zc_value domain name (eg. "S-1-234-567-89") 6024 * zc_guid RID/UID/GID 6025 * 6026 * outputs: 6027 * zc_cookie property value 6028 */ 6029 static int 6030 zfs_ioc_userspace_one(zfs_cmd_t *zc) 6031 { 6032 zfsvfs_t *zfsvfs; 6033 int error; 6034 6035 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) 6036 return (SET_ERROR(EINVAL)); 6037 6038 error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); 6039 if (error != 0) 6040 return (error); 6041 6042 error = zfs_userspace_one(zfsvfs, 6043 zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie); 6044 zfsvfs_rele(zfsvfs, FTAG); 6045 6046 return (error); 6047 } 6048 6049 /* 6050 * inputs: 6051 * zc_name name of filesystem 6052 * zc_cookie zap cursor 6053 * zc_objset_type zfs_userquota_prop_t 6054 * zc_nvlist_dst[_size] buffer to fill (not really an nvlist) 6055 * 6056 * outputs: 6057 * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t) 6058 * zc_cookie zap cursor 6059 */ 6060 static int 6061 zfs_ioc_userspace_many(zfs_cmd_t *zc) 6062 { 6063 zfsvfs_t *zfsvfs; 6064 int bufsize = zc->zc_nvlist_dst_size; 6065 6066 if (bufsize <= 0) 6067 return (SET_ERROR(ENOMEM)); 6068 6069 int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); 6070 if (error != 0) 6071 return (error); 6072 6073 void *buf = vmem_alloc(bufsize, KM_SLEEP); 6074 6075 error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie, 6076 buf, &zc->zc_nvlist_dst_size); 6077 6078 if (error == 0) { 6079 error = xcopyout(buf, 6080 (void *)(uintptr_t)zc->zc_nvlist_dst, 6081 zc->zc_nvlist_dst_size); 6082 } 6083 vmem_free(buf, bufsize); 6084 zfsvfs_rele(zfsvfs, FTAG); 6085 6086 return (error); 6087 } 6088 6089 /* 6090 * inputs: 6091 * zc_name name of filesystem 6092 * 6093 * outputs: 6094 * none 6095 */ 6096 static int 6097 zfs_ioc_userspace_upgrade(zfs_cmd_t *zc) 6098 { 6099 int error = 0; 6100 zfsvfs_t *zfsvfs; 6101 6102 if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { 6103 if (!dmu_objset_userused_enabled(zfsvfs->z_os)) { 6104 /* 6105 * If userused is not enabled, it may be because the 6106 * objset needs to be closed & reopened (to grow the 6107 * objset_phys_t). Suspend/resume the fs will do that. 6108 */ 6109 dsl_dataset_t *ds, *newds; 6110 6111 ds = dmu_objset_ds(zfsvfs->z_os); 6112 error = zfs_suspend_fs(zfsvfs); 6113 if (error == 0) { 6114 dmu_objset_refresh_ownership(ds, &newds, 6115 B_TRUE, zfsvfs); 6116 error = zfs_resume_fs(zfsvfs, newds); 6117 } 6118 } 6119 if (error == 0) { 6120 mutex_enter(&zfsvfs->z_os->os_upgrade_lock); 6121 if (zfsvfs->z_os->os_upgrade_id == 0) { 6122 /* clear potential error code and retry */ 6123 zfsvfs->z_os->os_upgrade_status = 0; 6124 mutex_exit(&zfsvfs->z_os->os_upgrade_lock); 6125 6126 dsl_pool_config_enter( 6127 dmu_objset_pool(zfsvfs->z_os), FTAG); 6128 dmu_objset_userspace_upgrade(zfsvfs->z_os); 6129 dsl_pool_config_exit( 6130 dmu_objset_pool(zfsvfs->z_os), FTAG); 6131 } else { 6132 mutex_exit(&zfsvfs->z_os->os_upgrade_lock); 6133 } 6134 6135 taskq_wait_id(zfsvfs->z_os->os_spa->spa_upgrade_taskq, 6136 zfsvfs->z_os->os_upgrade_id); 6137 error = zfsvfs->z_os->os_upgrade_status; 6138 } 6139 zfs_vfs_rele(zfsvfs); 6140 } else { 6141 objset_t *os; 6142 6143 /* XXX kind of reading contents without owning */ 6144 error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os); 6145 if (error != 0) 6146 return (error); 6147 6148 mutex_enter(&os->os_upgrade_lock); 6149 if (os->os_upgrade_id == 0) { 6150 /* clear potential error code and retry */ 6151 os->os_upgrade_status = 0; 6152 mutex_exit(&os->os_upgrade_lock); 6153 6154 dmu_objset_userspace_upgrade(os); 6155 } else { 6156 mutex_exit(&os->os_upgrade_lock); 6157 } 6158 6159 dsl_pool_rele(dmu_objset_pool(os), FTAG); 6160 6161 taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id); 6162 error = os->os_upgrade_status; 6163 6164 dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT, 6165 FTAG); 6166 } 6167 return (error); 6168 } 6169 6170 /* 6171 * inputs: 6172 * zc_name name of filesystem 6173 * 6174 * outputs: 6175 * none 6176 */ 6177 static int 6178 zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc) 6179 { 6180 objset_t *os; 6181 int error; 6182 6183 error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os); 6184 if (error != 0) 6185 return (error); 6186 6187 if (dmu_objset_userobjspace_upgradable(os) || 6188 dmu_objset_projectquota_upgradable(os)) { 6189 mutex_enter(&os->os_upgrade_lock); 6190 if (os->os_upgrade_id == 0) { 6191 /* clear potential error code and retry */ 6192 os->os_upgrade_status = 0; 6193 mutex_exit(&os->os_upgrade_lock); 6194 6195 dmu_objset_id_quota_upgrade(os); 6196 } else { 6197 mutex_exit(&os->os_upgrade_lock); 6198 } 6199 6200 dsl_pool_rele(dmu_objset_pool(os), FTAG); 6201 6202 taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id); 6203 error = os->os_upgrade_status; 6204 } else { 6205 dsl_pool_rele(dmu_objset_pool(os), FTAG); 6206 } 6207 6208 dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT, FTAG); 6209 6210 return (error); 6211 } 6212 6213 static int 6214 zfs_ioc_share(zfs_cmd_t *zc) 6215 { 6216 return (SET_ERROR(ENOSYS)); 6217 } 6218 6219 /* 6220 * inputs: 6221 * zc_name name of containing filesystem 6222 * zc_obj object # beyond which we want next in-use object # 6223 * 6224 * outputs: 6225 * zc_obj next in-use object # 6226 */ 6227 static int 6228 zfs_ioc_next_obj(zfs_cmd_t *zc) 6229 { 6230 objset_t *os = NULL; 6231 int error; 6232 6233 error = dmu_objset_hold(zc->zc_name, FTAG, &os); 6234 if (error != 0) 6235 return (error); 6236 6237 error = dmu_object_next(os, &zc->zc_obj, B_FALSE, 0); 6238 6239 dmu_objset_rele(os, FTAG); 6240 return (error); 6241 } 6242 6243 /* 6244 * inputs: 6245 * zc_name name of filesystem 6246 * zc_value prefix name for snapshot 6247 * zc_cleanup_fd cleanup-on-exit file descriptor for calling process 6248 * 6249 * outputs: 6250 * zc_value short name of new snapshot 6251 */ 6252 static int 6253 zfs_ioc_tmp_snapshot(zfs_cmd_t *zc) 6254 { 6255 char *snap_name; 6256 char *hold_name; 6257 minor_t minor; 6258 6259 zfs_file_t *fp = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor); 6260 if (fp == NULL) 6261 return (SET_ERROR(EBADF)); 6262 6263 snap_name = kmem_asprintf("%s-%016llx", zc->zc_value, 6264 (u_longlong_t)ddi_get_lbolt64()); 6265 hold_name = kmem_asprintf("%%%s", zc->zc_value); 6266 6267 int error = dsl_dataset_snapshot_tmp(zc->zc_name, snap_name, minor, 6268 hold_name); 6269 if (error == 0) 6270 (void) strlcpy(zc->zc_value, snap_name, 6271 sizeof (zc->zc_value)); 6272 kmem_strfree(snap_name); 6273 kmem_strfree(hold_name); 6274 zfs_onexit_fd_rele(fp); 6275 return (error); 6276 } 6277 6278 /* 6279 * inputs: 6280 * zc_name name of "to" snapshot 6281 * zc_value name of "from" snapshot 6282 * zc_cookie file descriptor to write diff data on 6283 * 6284 * outputs: 6285 * dmu_diff_record_t's to the file descriptor 6286 */ 6287 static int 6288 zfs_ioc_diff(zfs_cmd_t *zc) 6289 { 6290 zfs_file_t *fp; 6291 offset_t off; 6292 int error; 6293 6294 if ((fp = zfs_file_get(zc->zc_cookie)) == NULL) 6295 return (SET_ERROR(EBADF)); 6296 6297 off = zfs_file_off(fp); 6298 error = dmu_diff(zc->zc_name, zc->zc_value, fp, &off); 6299 6300 zfs_file_put(fp); 6301 6302 return (error); 6303 } 6304 6305 static int 6306 zfs_ioc_smb_acl(zfs_cmd_t *zc) 6307 { 6308 return (SET_ERROR(ENOTSUP)); 6309 } 6310 6311 /* 6312 * innvl: { 6313 * "holds" -> { snapname -> holdname (string), ... } 6314 * (optional) "cleanup_fd" -> fd (int32) 6315 * } 6316 * 6317 * outnvl: { 6318 * snapname -> error value (int32) 6319 * ... 6320 * } 6321 */ 6322 static const zfs_ioc_key_t zfs_keys_hold[] = { 6323 {"holds", DATA_TYPE_NVLIST, 0}, 6324 {"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL}, 6325 }; 6326 6327 static int 6328 zfs_ioc_hold(const char *pool, nvlist_t *args, nvlist_t *errlist) 6329 { 6330 (void) pool; 6331 nvpair_t *pair; 6332 nvlist_t *holds; 6333 int cleanup_fd = -1; 6334 int error; 6335 minor_t minor = 0; 6336 zfs_file_t *fp = NULL; 6337 6338 holds = fnvlist_lookup_nvlist(args, "holds"); 6339 6340 /* make sure the user didn't pass us any invalid (empty) tags */ 6341 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; 6342 pair = nvlist_next_nvpair(holds, pair)) { 6343 const char *htag; 6344 6345 error = nvpair_value_string(pair, &htag); 6346 if (error != 0) 6347 return (SET_ERROR(error)); 6348 6349 if (strlen(htag) == 0) 6350 return (SET_ERROR(EINVAL)); 6351 } 6352 6353 if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) { 6354 fp = zfs_onexit_fd_hold(cleanup_fd, &minor); 6355 if (fp == NULL) 6356 return (SET_ERROR(EBADF)); 6357 } 6358 6359 error = dsl_dataset_user_hold(holds, minor, errlist); 6360 if (fp != NULL) { 6361 ASSERT3U(minor, !=, 0); 6362 zfs_onexit_fd_rele(fp); 6363 } 6364 return (SET_ERROR(error)); 6365 } 6366 6367 /* 6368 * innvl is not used. 6369 * 6370 * outnvl: { 6371 * holdname -> time added (uint64 seconds since epoch) 6372 * ... 6373 * } 6374 */ 6375 static const zfs_ioc_key_t zfs_keys_get_holds[] = { 6376 /* no nvl keys */ 6377 }; 6378 6379 static int 6380 zfs_ioc_get_holds(const char *snapname, nvlist_t *args, nvlist_t *outnvl) 6381 { 6382 (void) args; 6383 return (dsl_dataset_get_holds(snapname, outnvl)); 6384 } 6385 6386 /* 6387 * innvl: { 6388 * snapname -> { holdname, ... } 6389 * ... 6390 * } 6391 * 6392 * outnvl: { 6393 * snapname -> error value (int32) 6394 * ... 6395 * } 6396 */ 6397 static const zfs_ioc_key_t zfs_keys_release[] = { 6398 {"<snapname>...", DATA_TYPE_NVLIST, ZK_WILDCARDLIST}, 6399 }; 6400 6401 static int 6402 zfs_ioc_release(const char *pool, nvlist_t *holds, nvlist_t *errlist) 6403 { 6404 (void) pool; 6405 return (dsl_dataset_user_release(holds, errlist)); 6406 } 6407 6408 /* 6409 * inputs: 6410 * zc_guid flags (ZEVENT_NONBLOCK) 6411 * zc_cleanup_fd zevent file descriptor 6412 * 6413 * outputs: 6414 * zc_nvlist_dst next nvlist event 6415 * zc_cookie dropped events since last get 6416 */ 6417 static int 6418 zfs_ioc_events_next(zfs_cmd_t *zc) 6419 { 6420 zfs_zevent_t *ze; 6421 nvlist_t *event = NULL; 6422 minor_t minor; 6423 uint64_t dropped = 0; 6424 int error; 6425 6426 zfs_file_t *fp = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze); 6427 if (fp == NULL) 6428 return (SET_ERROR(EBADF)); 6429 6430 do { 6431 error = zfs_zevent_next(ze, &event, 6432 &zc->zc_nvlist_dst_size, &dropped); 6433 if (event != NULL) { 6434 zc->zc_cookie = dropped; 6435 error = put_nvlist(zc, event); 6436 nvlist_free(event); 6437 } 6438 6439 if (zc->zc_guid & ZEVENT_NONBLOCK) 6440 break; 6441 6442 if ((error == 0) || (error != ENOENT)) 6443 break; 6444 6445 error = zfs_zevent_wait(ze); 6446 if (error != 0) 6447 break; 6448 } while (1); 6449 6450 zfs_zevent_fd_rele(fp); 6451 6452 return (error); 6453 } 6454 6455 /* 6456 * outputs: 6457 * zc_cookie cleared events count 6458 */ 6459 static int 6460 zfs_ioc_events_clear(zfs_cmd_t *zc) 6461 { 6462 uint_t count; 6463 6464 zfs_zevent_drain_all(&count); 6465 zc->zc_cookie = count; 6466 6467 return (0); 6468 } 6469 6470 /* 6471 * inputs: 6472 * zc_guid eid | ZEVENT_SEEK_START | ZEVENT_SEEK_END 6473 * zc_cleanup zevent file descriptor 6474 */ 6475 static int 6476 zfs_ioc_events_seek(zfs_cmd_t *zc) 6477 { 6478 zfs_zevent_t *ze; 6479 minor_t minor; 6480 int error; 6481 6482 zfs_file_t *fp = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze); 6483 if (fp == NULL) 6484 return (SET_ERROR(EBADF)); 6485 6486 error = zfs_zevent_seek(ze, zc->zc_guid); 6487 zfs_zevent_fd_rele(fp); 6488 6489 return (error); 6490 } 6491 6492 /* 6493 * inputs: 6494 * zc_name name of later filesystem or snapshot 6495 * zc_value full name of old snapshot or bookmark 6496 * 6497 * outputs: 6498 * zc_cookie space in bytes 6499 * zc_objset_type compressed space in bytes 6500 * zc_perm_action uncompressed space in bytes 6501 */ 6502 static int 6503 zfs_ioc_space_written(zfs_cmd_t *zc) 6504 { 6505 int error; 6506 dsl_pool_t *dp; 6507 dsl_dataset_t *new; 6508 6509 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 6510 if (error != 0) 6511 return (error); 6512 error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &new); 6513 if (error != 0) { 6514 dsl_pool_rele(dp, FTAG); 6515 return (error); 6516 } 6517 if (strchr(zc->zc_value, '#') != NULL) { 6518 zfs_bookmark_phys_t bmp; 6519 error = dsl_bookmark_lookup(dp, zc->zc_value, 6520 new, &bmp); 6521 if (error == 0) { 6522 error = dsl_dataset_space_written_bookmark(&bmp, new, 6523 &zc->zc_cookie, 6524 &zc->zc_objset_type, &zc->zc_perm_action); 6525 } 6526 } else { 6527 dsl_dataset_t *old; 6528 error = dsl_dataset_hold(dp, zc->zc_value, FTAG, &old); 6529 6530 if (error == 0) { 6531 error = dsl_dataset_space_written(old, new, 6532 &zc->zc_cookie, 6533 &zc->zc_objset_type, &zc->zc_perm_action); 6534 dsl_dataset_rele(old, FTAG); 6535 } 6536 } 6537 dsl_dataset_rele(new, FTAG); 6538 dsl_pool_rele(dp, FTAG); 6539 return (error); 6540 } 6541 6542 /* 6543 * innvl: { 6544 * "firstsnap" -> snapshot name 6545 * } 6546 * 6547 * outnvl: { 6548 * "used" -> space in bytes 6549 * "compressed" -> compressed space in bytes 6550 * "uncompressed" -> uncompressed space in bytes 6551 * } 6552 */ 6553 static const zfs_ioc_key_t zfs_keys_space_snaps[] = { 6554 {"firstsnap", DATA_TYPE_STRING, 0}, 6555 }; 6556 6557 static int 6558 zfs_ioc_space_snaps(const char *lastsnap, nvlist_t *innvl, nvlist_t *outnvl) 6559 { 6560 int error; 6561 dsl_pool_t *dp; 6562 dsl_dataset_t *new, *old; 6563 const char *firstsnap; 6564 uint64_t used, comp, uncomp; 6565 6566 firstsnap = fnvlist_lookup_string(innvl, "firstsnap"); 6567 6568 error = dsl_pool_hold(lastsnap, FTAG, &dp); 6569 if (error != 0) 6570 return (error); 6571 6572 error = dsl_dataset_hold(dp, lastsnap, FTAG, &new); 6573 if (error == 0 && !new->ds_is_snapshot) { 6574 dsl_dataset_rele(new, FTAG); 6575 error = SET_ERROR(EINVAL); 6576 } 6577 if (error != 0) { 6578 dsl_pool_rele(dp, FTAG); 6579 return (error); 6580 } 6581 error = dsl_dataset_hold(dp, firstsnap, FTAG, &old); 6582 if (error == 0 && !old->ds_is_snapshot) { 6583 dsl_dataset_rele(old, FTAG); 6584 error = SET_ERROR(EINVAL); 6585 } 6586 if (error != 0) { 6587 dsl_dataset_rele(new, FTAG); 6588 dsl_pool_rele(dp, FTAG); 6589 return (error); 6590 } 6591 6592 error = dsl_dataset_space_wouldfree(old, new, &used, &comp, &uncomp); 6593 dsl_dataset_rele(old, FTAG); 6594 dsl_dataset_rele(new, FTAG); 6595 dsl_pool_rele(dp, FTAG); 6596 fnvlist_add_uint64(outnvl, "used", used); 6597 fnvlist_add_uint64(outnvl, "compressed", comp); 6598 fnvlist_add_uint64(outnvl, "uncompressed", uncomp); 6599 return (error); 6600 } 6601 6602 /* 6603 * innvl: { 6604 * "fd" -> file descriptor to write stream to (int32) 6605 * (optional) "fromsnap" -> full snap name to send an incremental from 6606 * (optional) "largeblockok" -> (value ignored) 6607 * indicates that blocks > 128KB are permitted 6608 * (optional) "embedok" -> (value ignored) 6609 * presence indicates DRR_WRITE_EMBEDDED records are permitted 6610 * (optional) "compressok" -> (value ignored) 6611 * presence indicates compressed DRR_WRITE records are permitted 6612 * (optional) "rawok" -> (value ignored) 6613 * presence indicates raw encrypted records should be used. 6614 * (optional) "savedok" -> (value ignored) 6615 * presence indicates we should send a partially received snapshot 6616 * (optional) "resume_object" and "resume_offset" -> (uint64) 6617 * if present, resume send stream from specified object and offset. 6618 * (optional) "redactbook" -> (string) 6619 * if present, use this bookmark's redaction list to generate a redacted 6620 * send stream 6621 * } 6622 * 6623 * outnvl is unused 6624 */ 6625 static const zfs_ioc_key_t zfs_keys_send_new[] = { 6626 {"fd", DATA_TYPE_INT32, 0}, 6627 {"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL}, 6628 {"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6629 {"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6630 {"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6631 {"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6632 {"savedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6633 {"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL}, 6634 {"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL}, 6635 {"redactbook", DATA_TYPE_STRING, ZK_OPTIONAL}, 6636 }; 6637 6638 static int 6639 zfs_ioc_send_new(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) 6640 { 6641 (void) outnvl; 6642 int error; 6643 offset_t off; 6644 const char *fromname = NULL; 6645 int fd; 6646 boolean_t largeblockok; 6647 boolean_t embedok; 6648 boolean_t compressok; 6649 boolean_t rawok; 6650 boolean_t savedok; 6651 uint64_t resumeobj = 0; 6652 uint64_t resumeoff = 0; 6653 const char *redactbook = NULL; 6654 6655 fd = fnvlist_lookup_int32(innvl, "fd"); 6656 6657 (void) nvlist_lookup_string(innvl, "fromsnap", &fromname); 6658 6659 largeblockok = nvlist_exists(innvl, "largeblockok"); 6660 embedok = nvlist_exists(innvl, "embedok"); 6661 compressok = nvlist_exists(innvl, "compressok"); 6662 rawok = nvlist_exists(innvl, "rawok"); 6663 savedok = nvlist_exists(innvl, "savedok"); 6664 6665 (void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj); 6666 (void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff); 6667 6668 (void) nvlist_lookup_string(innvl, "redactbook", &redactbook); 6669 6670 dump_bytes_arg_t dba; 6671 dmu_send_outparams_t out; 6672 error = dump_bytes_init(&dba, fd, &out); 6673 if (error) 6674 return (error); 6675 6676 off = zfs_file_off(dba.dba_fp); 6677 error = dmu_send(snapname, fromname, embedok, largeblockok, 6678 compressok, rawok, savedok, resumeobj, resumeoff, 6679 redactbook, fd, &off, &out); 6680 6681 dump_bytes_fini(&dba); 6682 6683 return (error); 6684 } 6685 6686 static int 6687 send_space_sum(objset_t *os, void *buf, int len, void *arg) 6688 { 6689 (void) os, (void) buf; 6690 uint64_t *size = arg; 6691 6692 *size += len; 6693 return (0); 6694 } 6695 6696 /* 6697 * Determine approximately how large a zfs send stream will be -- the number 6698 * of bytes that will be written to the fd supplied to zfs_ioc_send_new(). 6699 * 6700 * innvl: { 6701 * (optional) "from" -> full snap or bookmark name to send an incremental 6702 * from 6703 * (optional) "largeblockok" -> (value ignored) 6704 * indicates that blocks > 128KB are permitted 6705 * (optional) "embedok" -> (value ignored) 6706 * presence indicates DRR_WRITE_EMBEDDED records are permitted 6707 * (optional) "compressok" -> (value ignored) 6708 * presence indicates compressed DRR_WRITE records are permitted 6709 * (optional) "rawok" -> (value ignored) 6710 * presence indicates raw encrypted records should be used. 6711 * (optional) "resume_object" and "resume_offset" -> (uint64) 6712 * if present, resume send stream from specified object and offset. 6713 * (optional) "fd" -> file descriptor to use as a cookie for progress 6714 * tracking (int32) 6715 * } 6716 * 6717 * outnvl: { 6718 * "space" -> bytes of space (uint64) 6719 * } 6720 */ 6721 static const zfs_ioc_key_t zfs_keys_send_space[] = { 6722 {"from", DATA_TYPE_STRING, ZK_OPTIONAL}, 6723 {"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL}, 6724 {"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6725 {"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6726 {"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6727 {"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6728 {"fd", DATA_TYPE_INT32, ZK_OPTIONAL}, 6729 {"redactbook", DATA_TYPE_STRING, ZK_OPTIONAL}, 6730 {"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL}, 6731 {"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL}, 6732 {"bytes", DATA_TYPE_UINT64, ZK_OPTIONAL}, 6733 }; 6734 6735 static int 6736 zfs_ioc_send_space(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) 6737 { 6738 dsl_pool_t *dp; 6739 dsl_dataset_t *tosnap; 6740 dsl_dataset_t *fromsnap = NULL; 6741 int error; 6742 const char *fromname = NULL; 6743 const char *redactlist_book = NULL; 6744 boolean_t largeblockok; 6745 boolean_t embedok; 6746 boolean_t compressok; 6747 boolean_t rawok; 6748 boolean_t savedok; 6749 uint64_t space = 0; 6750 boolean_t full_estimate = B_FALSE; 6751 uint64_t resumeobj = 0; 6752 uint64_t resumeoff = 0; 6753 uint64_t resume_bytes = 0; 6754 int32_t fd = -1; 6755 zfs_bookmark_phys_t zbm = {0}; 6756 6757 error = dsl_pool_hold(snapname, FTAG, &dp); 6758 if (error != 0) 6759 return (error); 6760 6761 error = dsl_dataset_hold(dp, snapname, FTAG, &tosnap); 6762 if (error != 0) { 6763 dsl_pool_rele(dp, FTAG); 6764 return (error); 6765 } 6766 (void) nvlist_lookup_int32(innvl, "fd", &fd); 6767 6768 largeblockok = nvlist_exists(innvl, "largeblockok"); 6769 embedok = nvlist_exists(innvl, "embedok"); 6770 compressok = nvlist_exists(innvl, "compressok"); 6771 rawok = nvlist_exists(innvl, "rawok"); 6772 savedok = nvlist_exists(innvl, "savedok"); 6773 boolean_t from = (nvlist_lookup_string(innvl, "from", &fromname) == 0); 6774 boolean_t altbook = (nvlist_lookup_string(innvl, "redactbook", 6775 &redactlist_book) == 0); 6776 6777 (void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj); 6778 (void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff); 6779 (void) nvlist_lookup_uint64(innvl, "bytes", &resume_bytes); 6780 6781 if (altbook) { 6782 full_estimate = B_TRUE; 6783 } else if (from) { 6784 if (strchr(fromname, '#')) { 6785 error = dsl_bookmark_lookup(dp, fromname, tosnap, &zbm); 6786 6787 /* 6788 * dsl_bookmark_lookup() will fail with EXDEV if 6789 * the from-bookmark and tosnap are at the same txg. 6790 * However, it's valid to do a send (and therefore, 6791 * a send estimate) from and to the same time point, 6792 * if the bookmark is redacted (the incremental send 6793 * can change what's redacted on the target). In 6794 * this case, dsl_bookmark_lookup() fills in zbm 6795 * but returns EXDEV. Ignore this error. 6796 */ 6797 if (error == EXDEV && zbm.zbm_redaction_obj != 0 && 6798 zbm.zbm_guid == 6799 dsl_dataset_phys(tosnap)->ds_guid) 6800 error = 0; 6801 6802 if (error != 0) { 6803 dsl_dataset_rele(tosnap, FTAG); 6804 dsl_pool_rele(dp, FTAG); 6805 return (error); 6806 } 6807 if (zbm.zbm_redaction_obj != 0 || !(zbm.zbm_flags & 6808 ZBM_FLAG_HAS_FBN)) { 6809 full_estimate = B_TRUE; 6810 } 6811 } else if (strchr(fromname, '@')) { 6812 error = dsl_dataset_hold(dp, fromname, FTAG, &fromsnap); 6813 if (error != 0) { 6814 dsl_dataset_rele(tosnap, FTAG); 6815 dsl_pool_rele(dp, FTAG); 6816 return (error); 6817 } 6818 6819 if (!dsl_dataset_is_before(tosnap, fromsnap, 0)) { 6820 full_estimate = B_TRUE; 6821 dsl_dataset_rele(fromsnap, FTAG); 6822 } 6823 } else { 6824 /* 6825 * from is not properly formatted as a snapshot or 6826 * bookmark 6827 */ 6828 dsl_dataset_rele(tosnap, FTAG); 6829 dsl_pool_rele(dp, FTAG); 6830 return (SET_ERROR(EINVAL)); 6831 } 6832 } 6833 6834 if (full_estimate) { 6835 dmu_send_outparams_t out = {0}; 6836 offset_t off = 0; 6837 out.dso_outfunc = send_space_sum; 6838 out.dso_arg = &space; 6839 out.dso_dryrun = B_TRUE; 6840 /* 6841 * We have to release these holds so dmu_send can take them. It 6842 * will do all the error checking we need. 6843 */ 6844 dsl_dataset_rele(tosnap, FTAG); 6845 dsl_pool_rele(dp, FTAG); 6846 error = dmu_send(snapname, fromname, embedok, largeblockok, 6847 compressok, rawok, savedok, resumeobj, resumeoff, 6848 redactlist_book, fd, &off, &out); 6849 } else { 6850 error = dmu_send_estimate_fast(tosnap, fromsnap, 6851 (from && strchr(fromname, '#') != NULL ? &zbm : NULL), 6852 compressok || rawok, savedok, &space); 6853 space -= resume_bytes; 6854 if (fromsnap != NULL) 6855 dsl_dataset_rele(fromsnap, FTAG); 6856 dsl_dataset_rele(tosnap, FTAG); 6857 dsl_pool_rele(dp, FTAG); 6858 } 6859 6860 fnvlist_add_uint64(outnvl, "space", space); 6861 6862 return (error); 6863 } 6864 6865 /* 6866 * Sync the currently open TXG to disk for the specified pool. 6867 * This is somewhat similar to 'zfs_sync()'. 6868 * For cases that do not result in error this ioctl will wait for 6869 * the currently open TXG to commit before returning back to the caller. 6870 * 6871 * innvl: { 6872 * "force" -> when true, force uberblock update even if there is no dirty data. 6873 * In addition this will cause the vdev configuration to be written 6874 * out including updating the zpool cache file. (boolean_t) 6875 * } 6876 * 6877 * onvl is unused 6878 */ 6879 static const zfs_ioc_key_t zfs_keys_pool_sync[] = { 6880 {"force", DATA_TYPE_BOOLEAN_VALUE, 0}, 6881 }; 6882 6883 static int 6884 zfs_ioc_pool_sync(const char *pool, nvlist_t *innvl, nvlist_t *onvl) 6885 { 6886 (void) onvl; 6887 int err; 6888 boolean_t rc, force = B_FALSE; 6889 spa_t *spa; 6890 6891 if ((err = spa_open(pool, &spa, FTAG)) != 0) 6892 return (err); 6893 6894 if (innvl) { 6895 err = nvlist_lookup_boolean_value(innvl, "force", &rc); 6896 if (err == 0) 6897 force = rc; 6898 } 6899 6900 if (force) { 6901 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_WRITER); 6902 vdev_config_dirty(spa->spa_root_vdev); 6903 spa_config_exit(spa, SCL_CONFIG, FTAG); 6904 } 6905 txg_wait_synced(spa_get_dsl(spa), 0); 6906 6907 spa_close(spa, FTAG); 6908 6909 return (0); 6910 } 6911 6912 /* 6913 * Load a user's wrapping key into the kernel. 6914 * innvl: { 6915 * "hidden_args" -> { "wkeydata" -> value } 6916 * raw uint8_t array of encryption wrapping key data (32 bytes) 6917 * (optional) "noop" -> (value ignored) 6918 * presence indicated key should only be verified, not loaded 6919 * } 6920 */ 6921 static const zfs_ioc_key_t zfs_keys_load_key[] = { 6922 {"hidden_args", DATA_TYPE_NVLIST, 0}, 6923 {"noop", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6924 }; 6925 6926 static int 6927 zfs_ioc_load_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) 6928 { 6929 (void) outnvl; 6930 int ret; 6931 dsl_crypto_params_t *dcp = NULL; 6932 nvlist_t *hidden_args; 6933 boolean_t noop = nvlist_exists(innvl, "noop"); 6934 6935 if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { 6936 ret = SET_ERROR(EINVAL); 6937 goto error; 6938 } 6939 6940 hidden_args = fnvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS); 6941 6942 ret = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, 6943 hidden_args, &dcp); 6944 if (ret != 0) 6945 goto error; 6946 6947 ret = spa_keystore_load_wkey(dsname, dcp, noop); 6948 if (ret != 0) 6949 goto error; 6950 6951 dsl_crypto_params_free(dcp, noop); 6952 6953 return (0); 6954 6955 error: 6956 dsl_crypto_params_free(dcp, B_TRUE); 6957 return (ret); 6958 } 6959 6960 /* 6961 * Unload a user's wrapping key from the kernel. 6962 * Both innvl and outnvl are unused. 6963 */ 6964 static const zfs_ioc_key_t zfs_keys_unload_key[] = { 6965 /* no nvl keys */ 6966 }; 6967 6968 static int 6969 zfs_ioc_unload_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) 6970 { 6971 (void) innvl, (void) outnvl; 6972 int ret = 0; 6973 6974 if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { 6975 ret = (SET_ERROR(EINVAL)); 6976 goto out; 6977 } 6978 6979 ret = spa_keystore_unload_wkey(dsname); 6980 if (ret != 0) 6981 goto out; 6982 6983 out: 6984 return (ret); 6985 } 6986 6987 /* 6988 * Changes a user's wrapping key used to decrypt a dataset. The keyformat, 6989 * keylocation, pbkdf2salt, and pbkdf2iters properties can also be specified 6990 * here to change how the key is derived in userspace. 6991 * 6992 * innvl: { 6993 * "hidden_args" (optional) -> { "wkeydata" -> value } 6994 * raw uint8_t array of new encryption wrapping key data (32 bytes) 6995 * "props" (optional) -> { prop -> value } 6996 * } 6997 * 6998 * outnvl is unused 6999 */ 7000 static const zfs_ioc_key_t zfs_keys_change_key[] = { 7001 {"crypt_cmd", DATA_TYPE_UINT64, ZK_OPTIONAL}, 7002 {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 7003 {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 7004 }; 7005 7006 static int 7007 zfs_ioc_change_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) 7008 { 7009 (void) outnvl; 7010 int ret; 7011 uint64_t cmd = DCP_CMD_NONE; 7012 dsl_crypto_params_t *dcp = NULL; 7013 nvlist_t *args = NULL, *hidden_args = NULL; 7014 7015 if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { 7016 ret = (SET_ERROR(EINVAL)); 7017 goto error; 7018 } 7019 7020 (void) nvlist_lookup_uint64(innvl, "crypt_cmd", &cmd); 7021 (void) nvlist_lookup_nvlist(innvl, "props", &args); 7022 (void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); 7023 7024 ret = dsl_crypto_params_create_nvlist(cmd, args, hidden_args, &dcp); 7025 if (ret != 0) 7026 goto error; 7027 7028 ret = spa_keystore_change_key(dsname, dcp); 7029 if (ret != 0) 7030 goto error; 7031 7032 dsl_crypto_params_free(dcp, B_FALSE); 7033 7034 return (0); 7035 7036 error: 7037 dsl_crypto_params_free(dcp, B_TRUE); 7038 return (ret); 7039 } 7040 7041 static zfs_ioc_vec_t zfs_ioc_vec[ZFS_IOC_LAST - ZFS_IOC_FIRST]; 7042 7043 static void 7044 zfs_ioctl_register_legacy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, 7045 zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, 7046 boolean_t log_history, zfs_ioc_poolcheck_t pool_check) 7047 { 7048 zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; 7049 7050 ASSERT3U(ioc, >=, ZFS_IOC_FIRST); 7051 ASSERT3U(ioc, <, ZFS_IOC_LAST); 7052 ASSERT3P(vec->zvec_legacy_func, ==, NULL); 7053 ASSERT3P(vec->zvec_func, ==, NULL); 7054 7055 vec->zvec_legacy_func = func; 7056 vec->zvec_secpolicy = secpolicy; 7057 vec->zvec_namecheck = namecheck; 7058 vec->zvec_allow_log = log_history; 7059 vec->zvec_pool_check = pool_check; 7060 } 7061 7062 /* 7063 * See the block comment at the beginning of this file for details on 7064 * each argument to this function. 7065 */ 7066 void 7067 zfs_ioctl_register(const char *name, zfs_ioc_t ioc, zfs_ioc_func_t *func, 7068 zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, 7069 zfs_ioc_poolcheck_t pool_check, boolean_t smush_outnvlist, 7070 boolean_t allow_log, const zfs_ioc_key_t *nvl_keys, size_t num_keys) 7071 { 7072 zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; 7073 7074 ASSERT3U(ioc, >=, ZFS_IOC_FIRST); 7075 ASSERT3U(ioc, <, ZFS_IOC_LAST); 7076 ASSERT3P(vec->zvec_legacy_func, ==, NULL); 7077 ASSERT3P(vec->zvec_func, ==, NULL); 7078 7079 /* if we are logging, the name must be valid */ 7080 ASSERT(!allow_log || namecheck != NO_NAME); 7081 7082 vec->zvec_name = name; 7083 vec->zvec_func = func; 7084 vec->zvec_secpolicy = secpolicy; 7085 vec->zvec_namecheck = namecheck; 7086 vec->zvec_pool_check = pool_check; 7087 vec->zvec_smush_outnvlist = smush_outnvlist; 7088 vec->zvec_allow_log = allow_log; 7089 vec->zvec_nvl_keys = nvl_keys; 7090 vec->zvec_nvl_key_count = num_keys; 7091 } 7092 7093 static void 7094 zfs_ioctl_register_pool(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, 7095 zfs_secpolicy_func_t *secpolicy, boolean_t log_history, 7096 zfs_ioc_poolcheck_t pool_check) 7097 { 7098 zfs_ioctl_register_legacy(ioc, func, secpolicy, 7099 POOL_NAME, log_history, pool_check); 7100 } 7101 7102 void 7103 zfs_ioctl_register_dataset_nolog(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, 7104 zfs_secpolicy_func_t *secpolicy, zfs_ioc_poolcheck_t pool_check) 7105 { 7106 zfs_ioctl_register_legacy(ioc, func, secpolicy, 7107 DATASET_NAME, B_FALSE, pool_check); 7108 } 7109 7110 static void 7111 zfs_ioctl_register_pool_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) 7112 { 7113 zfs_ioctl_register_legacy(ioc, func, zfs_secpolicy_config, 7114 POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); 7115 } 7116 7117 static void 7118 zfs_ioctl_register_pool_meta(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, 7119 zfs_secpolicy_func_t *secpolicy) 7120 { 7121 zfs_ioctl_register_legacy(ioc, func, secpolicy, 7122 NO_NAME, B_FALSE, POOL_CHECK_NONE); 7123 } 7124 7125 static void 7126 zfs_ioctl_register_dataset_read_secpolicy(zfs_ioc_t ioc, 7127 zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) 7128 { 7129 zfs_ioctl_register_legacy(ioc, func, secpolicy, 7130 DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED); 7131 } 7132 7133 static void 7134 zfs_ioctl_register_dataset_read(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) 7135 { 7136 zfs_ioctl_register_dataset_read_secpolicy(ioc, func, 7137 zfs_secpolicy_read); 7138 } 7139 7140 static void 7141 zfs_ioctl_register_dataset_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, 7142 zfs_secpolicy_func_t *secpolicy) 7143 { 7144 zfs_ioctl_register_legacy(ioc, func, secpolicy, 7145 DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); 7146 } 7147 7148 static void 7149 zfs_ioctl_init(void) 7150 { 7151 zfs_ioctl_register("snapshot", ZFS_IOC_SNAPSHOT, 7152 zfs_ioc_snapshot, zfs_secpolicy_snapshot, POOL_NAME, 7153 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7154 zfs_keys_snapshot, ARRAY_SIZE(zfs_keys_snapshot)); 7155 7156 zfs_ioctl_register("log_history", ZFS_IOC_LOG_HISTORY, 7157 zfs_ioc_log_history, zfs_secpolicy_log_history, NO_NAME, 7158 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, 7159 zfs_keys_log_history, ARRAY_SIZE(zfs_keys_log_history)); 7160 7161 zfs_ioctl_register("space_snaps", ZFS_IOC_SPACE_SNAPS, 7162 zfs_ioc_space_snaps, zfs_secpolicy_read, DATASET_NAME, 7163 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, 7164 zfs_keys_space_snaps, ARRAY_SIZE(zfs_keys_space_snaps)); 7165 7166 zfs_ioctl_register("send", ZFS_IOC_SEND_NEW, 7167 zfs_ioc_send_new, zfs_secpolicy_send_new, DATASET_NAME, 7168 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, 7169 zfs_keys_send_new, ARRAY_SIZE(zfs_keys_send_new)); 7170 7171 zfs_ioctl_register("send_space", ZFS_IOC_SEND_SPACE, 7172 zfs_ioc_send_space, zfs_secpolicy_read, DATASET_NAME, 7173 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, 7174 zfs_keys_send_space, ARRAY_SIZE(zfs_keys_send_space)); 7175 7176 zfs_ioctl_register("create", ZFS_IOC_CREATE, 7177 zfs_ioc_create, zfs_secpolicy_create_clone, DATASET_NAME, 7178 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7179 zfs_keys_create, ARRAY_SIZE(zfs_keys_create)); 7180 7181 zfs_ioctl_register("clone", ZFS_IOC_CLONE, 7182 zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME, 7183 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7184 zfs_keys_clone, ARRAY_SIZE(zfs_keys_clone)); 7185 7186 zfs_ioctl_register("remap", ZFS_IOC_REMAP, 7187 zfs_ioc_remap, zfs_secpolicy_none, DATASET_NAME, 7188 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, 7189 zfs_keys_remap, ARRAY_SIZE(zfs_keys_remap)); 7190 7191 zfs_ioctl_register("destroy_snaps", ZFS_IOC_DESTROY_SNAPS, 7192 zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME, 7193 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7194 zfs_keys_destroy_snaps, ARRAY_SIZE(zfs_keys_destroy_snaps)); 7195 7196 zfs_ioctl_register("hold", ZFS_IOC_HOLD, 7197 zfs_ioc_hold, zfs_secpolicy_hold, POOL_NAME, 7198 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7199 zfs_keys_hold, ARRAY_SIZE(zfs_keys_hold)); 7200 zfs_ioctl_register("release", ZFS_IOC_RELEASE, 7201 zfs_ioc_release, zfs_secpolicy_release, POOL_NAME, 7202 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7203 zfs_keys_release, ARRAY_SIZE(zfs_keys_release)); 7204 7205 zfs_ioctl_register("get_holds", ZFS_IOC_GET_HOLDS, 7206 zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME, 7207 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, 7208 zfs_keys_get_holds, ARRAY_SIZE(zfs_keys_get_holds)); 7209 7210 zfs_ioctl_register("rollback", ZFS_IOC_ROLLBACK, 7211 zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, 7212 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, 7213 zfs_keys_rollback, ARRAY_SIZE(zfs_keys_rollback)); 7214 7215 zfs_ioctl_register("bookmark", ZFS_IOC_BOOKMARK, 7216 zfs_ioc_bookmark, zfs_secpolicy_bookmark, POOL_NAME, 7217 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7218 zfs_keys_bookmark, ARRAY_SIZE(zfs_keys_bookmark)); 7219 7220 zfs_ioctl_register("get_bookmarks", ZFS_IOC_GET_BOOKMARKS, 7221 zfs_ioc_get_bookmarks, zfs_secpolicy_read, DATASET_NAME, 7222 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, 7223 zfs_keys_get_bookmarks, ARRAY_SIZE(zfs_keys_get_bookmarks)); 7224 7225 zfs_ioctl_register("get_bookmark_props", ZFS_IOC_GET_BOOKMARK_PROPS, 7226 zfs_ioc_get_bookmark_props, zfs_secpolicy_read, ENTITY_NAME, 7227 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_get_bookmark_props, 7228 ARRAY_SIZE(zfs_keys_get_bookmark_props)); 7229 7230 zfs_ioctl_register("destroy_bookmarks", ZFS_IOC_DESTROY_BOOKMARKS, 7231 zfs_ioc_destroy_bookmarks, zfs_secpolicy_destroy_bookmarks, 7232 POOL_NAME, 7233 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7234 zfs_keys_destroy_bookmarks, 7235 ARRAY_SIZE(zfs_keys_destroy_bookmarks)); 7236 7237 zfs_ioctl_register("receive", ZFS_IOC_RECV_NEW, 7238 zfs_ioc_recv_new, zfs_secpolicy_recv, DATASET_NAME, 7239 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7240 zfs_keys_recv_new, ARRAY_SIZE(zfs_keys_recv_new)); 7241 zfs_ioctl_register("load-key", ZFS_IOC_LOAD_KEY, 7242 zfs_ioc_load_key, zfs_secpolicy_load_key, 7243 DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, 7244 zfs_keys_load_key, ARRAY_SIZE(zfs_keys_load_key)); 7245 zfs_ioctl_register("unload-key", ZFS_IOC_UNLOAD_KEY, 7246 zfs_ioc_unload_key, zfs_secpolicy_load_key, 7247 DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, 7248 zfs_keys_unload_key, ARRAY_SIZE(zfs_keys_unload_key)); 7249 zfs_ioctl_register("change-key", ZFS_IOC_CHANGE_KEY, 7250 zfs_ioc_change_key, zfs_secpolicy_change_key, 7251 DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, 7252 B_TRUE, B_TRUE, zfs_keys_change_key, 7253 ARRAY_SIZE(zfs_keys_change_key)); 7254 7255 zfs_ioctl_register("sync", ZFS_IOC_POOL_SYNC, 7256 zfs_ioc_pool_sync, zfs_secpolicy_none, POOL_NAME, 7257 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, 7258 zfs_keys_pool_sync, ARRAY_SIZE(zfs_keys_pool_sync)); 7259 zfs_ioctl_register("reopen", ZFS_IOC_POOL_REOPEN, zfs_ioc_pool_reopen, 7260 zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED, B_TRUE, 7261 B_TRUE, zfs_keys_pool_reopen, ARRAY_SIZE(zfs_keys_pool_reopen)); 7262 7263 zfs_ioctl_register("channel_program", ZFS_IOC_CHANNEL_PROGRAM, 7264 zfs_ioc_channel_program, zfs_secpolicy_config, 7265 POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, 7266 B_TRUE, zfs_keys_channel_program, 7267 ARRAY_SIZE(zfs_keys_channel_program)); 7268 7269 zfs_ioctl_register("redact", ZFS_IOC_REDACT, 7270 zfs_ioc_redact, zfs_secpolicy_config, DATASET_NAME, 7271 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7272 zfs_keys_redact, ARRAY_SIZE(zfs_keys_redact)); 7273 7274 zfs_ioctl_register("zpool_checkpoint", ZFS_IOC_POOL_CHECKPOINT, 7275 zfs_ioc_pool_checkpoint, zfs_secpolicy_config, POOL_NAME, 7276 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7277 zfs_keys_pool_checkpoint, ARRAY_SIZE(zfs_keys_pool_checkpoint)); 7278 7279 zfs_ioctl_register("zpool_discard_checkpoint", 7280 ZFS_IOC_POOL_DISCARD_CHECKPOINT, zfs_ioc_pool_discard_checkpoint, 7281 zfs_secpolicy_config, POOL_NAME, 7282 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7283 zfs_keys_pool_discard_checkpoint, 7284 ARRAY_SIZE(zfs_keys_pool_discard_checkpoint)); 7285 7286 zfs_ioctl_register("initialize", ZFS_IOC_POOL_INITIALIZE, 7287 zfs_ioc_pool_initialize, zfs_secpolicy_config, POOL_NAME, 7288 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7289 zfs_keys_pool_initialize, ARRAY_SIZE(zfs_keys_pool_initialize)); 7290 7291 zfs_ioctl_register("trim", ZFS_IOC_POOL_TRIM, 7292 zfs_ioc_pool_trim, zfs_secpolicy_config, POOL_NAME, 7293 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7294 zfs_keys_pool_trim, ARRAY_SIZE(zfs_keys_pool_trim)); 7295 7296 zfs_ioctl_register("wait", ZFS_IOC_WAIT, 7297 zfs_ioc_wait, zfs_secpolicy_none, POOL_NAME, 7298 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, 7299 zfs_keys_pool_wait, ARRAY_SIZE(zfs_keys_pool_wait)); 7300 7301 zfs_ioctl_register("wait_fs", ZFS_IOC_WAIT_FS, 7302 zfs_ioc_wait_fs, zfs_secpolicy_none, DATASET_NAME, 7303 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, 7304 zfs_keys_fs_wait, ARRAY_SIZE(zfs_keys_fs_wait)); 7305 7306 zfs_ioctl_register("set_bootenv", ZFS_IOC_SET_BOOTENV, 7307 zfs_ioc_set_bootenv, zfs_secpolicy_config, POOL_NAME, 7308 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, 7309 zfs_keys_set_bootenv, ARRAY_SIZE(zfs_keys_set_bootenv)); 7310 7311 zfs_ioctl_register("get_bootenv", ZFS_IOC_GET_BOOTENV, 7312 zfs_ioc_get_bootenv, zfs_secpolicy_none, POOL_NAME, 7313 POOL_CHECK_SUSPENDED, B_FALSE, B_TRUE, 7314 zfs_keys_get_bootenv, ARRAY_SIZE(zfs_keys_get_bootenv)); 7315 7316 zfs_ioctl_register("zpool_vdev_get_props", ZFS_IOC_VDEV_GET_PROPS, 7317 zfs_ioc_vdev_get_props, zfs_secpolicy_read, POOL_NAME, 7318 POOL_CHECK_NONE, B_FALSE, B_FALSE, zfs_keys_vdev_get_props, 7319 ARRAY_SIZE(zfs_keys_vdev_get_props)); 7320 7321 zfs_ioctl_register("zpool_vdev_set_props", ZFS_IOC_VDEV_SET_PROPS, 7322 zfs_ioc_vdev_set_props, zfs_secpolicy_config, POOL_NAME, 7323 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, 7324 zfs_keys_vdev_set_props, ARRAY_SIZE(zfs_keys_vdev_set_props)); 7325 7326 zfs_ioctl_register("scrub", ZFS_IOC_POOL_SCRUB, 7327 zfs_ioc_pool_scrub, zfs_secpolicy_config, POOL_NAME, 7328 POOL_CHECK_NONE, B_TRUE, B_TRUE, 7329 zfs_keys_pool_scrub, ARRAY_SIZE(zfs_keys_pool_scrub)); 7330 7331 /* IOCTLS that use the legacy function signature */ 7332 7333 zfs_ioctl_register_legacy(ZFS_IOC_POOL_FREEZE, zfs_ioc_pool_freeze, 7334 zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_READONLY); 7335 7336 zfs_ioctl_register_pool(ZFS_IOC_POOL_CREATE, zfs_ioc_pool_create, 7337 zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); 7338 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SCAN, 7339 zfs_ioc_pool_scan); 7340 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_UPGRADE, 7341 zfs_ioc_pool_upgrade); 7342 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ADD, 7343 zfs_ioc_vdev_add); 7344 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_REMOVE, 7345 zfs_ioc_vdev_remove); 7346 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SET_STATE, 7347 zfs_ioc_vdev_set_state); 7348 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ATTACH, 7349 zfs_ioc_vdev_attach); 7350 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_DETACH, 7351 zfs_ioc_vdev_detach); 7352 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETPATH, 7353 zfs_ioc_vdev_setpath); 7354 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETFRU, 7355 zfs_ioc_vdev_setfru); 7356 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SET_PROPS, 7357 zfs_ioc_pool_set_props); 7358 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SPLIT, 7359 zfs_ioc_vdev_split); 7360 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_REGUID, 7361 zfs_ioc_pool_reguid); 7362 7363 zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_CONFIGS, 7364 zfs_ioc_pool_configs, zfs_secpolicy_none); 7365 zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_TRYIMPORT, 7366 zfs_ioc_pool_tryimport, zfs_secpolicy_config); 7367 zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_FAULT, 7368 zfs_ioc_inject_fault, zfs_secpolicy_inject); 7369 zfs_ioctl_register_pool_meta(ZFS_IOC_CLEAR_FAULT, 7370 zfs_ioc_clear_fault, zfs_secpolicy_inject); 7371 zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_LIST_NEXT, 7372 zfs_ioc_inject_list_next, zfs_secpolicy_inject); 7373 7374 /* 7375 * pool destroy, and export don't log the history as part of 7376 * zfsdev_ioctl, but rather zfs_ioc_pool_export 7377 * does the logging of those commands. 7378 */ 7379 zfs_ioctl_register_pool(ZFS_IOC_POOL_DESTROY, zfs_ioc_pool_destroy, 7380 zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); 7381 zfs_ioctl_register_pool(ZFS_IOC_POOL_EXPORT, zfs_ioc_pool_export, 7382 zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); 7383 7384 zfs_ioctl_register_pool(ZFS_IOC_POOL_STATS, zfs_ioc_pool_stats, 7385 zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); 7386 zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_PROPS, zfs_ioc_pool_get_props, 7387 zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); 7388 7389 zfs_ioctl_register_pool(ZFS_IOC_ERROR_LOG, zfs_ioc_error_log, 7390 zfs_secpolicy_inject, B_FALSE, POOL_CHECK_SUSPENDED); 7391 zfs_ioctl_register_pool(ZFS_IOC_DSOBJ_TO_DSNAME, 7392 zfs_ioc_dsobj_to_dsname, 7393 zfs_secpolicy_diff, B_FALSE, POOL_CHECK_SUSPENDED); 7394 zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_HISTORY, 7395 zfs_ioc_pool_get_history, 7396 zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); 7397 7398 zfs_ioctl_register_pool(ZFS_IOC_POOL_IMPORT, zfs_ioc_pool_import, 7399 zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); 7400 7401 zfs_ioctl_register_pool(ZFS_IOC_CLEAR, zfs_ioc_clear, 7402 zfs_secpolicy_config, B_TRUE, POOL_CHECK_READONLY); 7403 7404 zfs_ioctl_register_dataset_read(ZFS_IOC_SPACE_WRITTEN, 7405 zfs_ioc_space_written); 7406 zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_RECVD_PROPS, 7407 zfs_ioc_objset_recvd_props); 7408 zfs_ioctl_register_dataset_read(ZFS_IOC_NEXT_OBJ, 7409 zfs_ioc_next_obj); 7410 zfs_ioctl_register_dataset_read(ZFS_IOC_GET_FSACL, 7411 zfs_ioc_get_fsacl); 7412 zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_STATS, 7413 zfs_ioc_objset_stats); 7414 zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_ZPLPROPS, 7415 zfs_ioc_objset_zplprops); 7416 zfs_ioctl_register_dataset_read(ZFS_IOC_DATASET_LIST_NEXT, 7417 zfs_ioc_dataset_list_next); 7418 zfs_ioctl_register_dataset_read(ZFS_IOC_SNAPSHOT_LIST_NEXT, 7419 zfs_ioc_snapshot_list_next); 7420 zfs_ioctl_register_dataset_read(ZFS_IOC_SEND_PROGRESS, 7421 zfs_ioc_send_progress); 7422 7423 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_DIFF, 7424 zfs_ioc_diff, zfs_secpolicy_diff); 7425 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_STATS, 7426 zfs_ioc_obj_to_stats, zfs_secpolicy_diff); 7427 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_PATH, 7428 zfs_ioc_obj_to_path, zfs_secpolicy_diff); 7429 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_ONE, 7430 zfs_ioc_userspace_one, zfs_secpolicy_userspace_one); 7431 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_MANY, 7432 zfs_ioc_userspace_many, zfs_secpolicy_userspace_many); 7433 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_SEND, 7434 zfs_ioc_send, zfs_secpolicy_send); 7435 7436 zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_PROP, zfs_ioc_set_prop, 7437 zfs_secpolicy_none); 7438 zfs_ioctl_register_dataset_modify(ZFS_IOC_DESTROY, zfs_ioc_destroy, 7439 zfs_secpolicy_destroy); 7440 zfs_ioctl_register_dataset_modify(ZFS_IOC_RENAME, zfs_ioc_rename, 7441 zfs_secpolicy_rename); 7442 zfs_ioctl_register_dataset_modify(ZFS_IOC_RECV, zfs_ioc_recv, 7443 zfs_secpolicy_recv); 7444 zfs_ioctl_register_dataset_modify(ZFS_IOC_PROMOTE, zfs_ioc_promote, 7445 zfs_secpolicy_promote); 7446 zfs_ioctl_register_dataset_modify(ZFS_IOC_INHERIT_PROP, 7447 zfs_ioc_inherit_prop, zfs_secpolicy_inherit_prop); 7448 zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_FSACL, zfs_ioc_set_fsacl, 7449 zfs_secpolicy_set_fsacl); 7450 7451 zfs_ioctl_register_dataset_nolog(ZFS_IOC_SHARE, zfs_ioc_share, 7452 zfs_secpolicy_share, POOL_CHECK_NONE); 7453 zfs_ioctl_register_dataset_nolog(ZFS_IOC_SMB_ACL, zfs_ioc_smb_acl, 7454 zfs_secpolicy_smb_acl, POOL_CHECK_NONE); 7455 zfs_ioctl_register_dataset_nolog(ZFS_IOC_USERSPACE_UPGRADE, 7456 zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade, 7457 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); 7458 zfs_ioctl_register_dataset_nolog(ZFS_IOC_TMP_SNAPSHOT, 7459 zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot, 7460 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); 7461 7462 zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_NEXT, zfs_ioc_events_next, 7463 zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); 7464 zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_CLEAR, zfs_ioc_events_clear, 7465 zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); 7466 zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_SEEK, zfs_ioc_events_seek, 7467 zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); 7468 7469 zfs_ioctl_init_os(); 7470 } 7471 7472 /* 7473 * Verify that for non-legacy ioctls the input nvlist 7474 * pairs match against the expected input. 7475 * 7476 * Possible errors are: 7477 * ZFS_ERR_IOC_ARG_UNAVAIL An unrecognized nvpair was encountered 7478 * ZFS_ERR_IOC_ARG_REQUIRED A required nvpair is missing 7479 * ZFS_ERR_IOC_ARG_BADTYPE Invalid type for nvpair 7480 */ 7481 static int 7482 zfs_check_input_nvpairs(nvlist_t *innvl, const zfs_ioc_vec_t *vec) 7483 { 7484 const zfs_ioc_key_t *nvl_keys = vec->zvec_nvl_keys; 7485 boolean_t required_keys_found = B_FALSE; 7486 7487 /* 7488 * examine each input pair 7489 */ 7490 for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); 7491 pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { 7492 const char *name = nvpair_name(pair); 7493 data_type_t type = nvpair_type(pair); 7494 boolean_t identified = B_FALSE; 7495 7496 /* 7497 * check pair against the documented names and type 7498 */ 7499 for (int k = 0; k < vec->zvec_nvl_key_count; k++) { 7500 /* if not a wild card name, check for an exact match */ 7501 if ((nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) == 0 && 7502 strcmp(nvl_keys[k].zkey_name, name) != 0) 7503 continue; 7504 7505 identified = B_TRUE; 7506 7507 if (nvl_keys[k].zkey_type != DATA_TYPE_ANY && 7508 nvl_keys[k].zkey_type != type) { 7509 return (SET_ERROR(ZFS_ERR_IOC_ARG_BADTYPE)); 7510 } 7511 7512 if (nvl_keys[k].zkey_flags & ZK_OPTIONAL) 7513 continue; 7514 7515 required_keys_found = B_TRUE; 7516 break; 7517 } 7518 7519 /* allow an 'optional' key, everything else is invalid */ 7520 if (!identified && 7521 (strcmp(name, "optional") != 0 || 7522 type != DATA_TYPE_NVLIST)) { 7523 return (SET_ERROR(ZFS_ERR_IOC_ARG_UNAVAIL)); 7524 } 7525 } 7526 7527 /* verify that all required keys were found */ 7528 for (int k = 0; k < vec->zvec_nvl_key_count; k++) { 7529 if (nvl_keys[k].zkey_flags & ZK_OPTIONAL) 7530 continue; 7531 7532 if (nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) { 7533 /* at least one non-optional key is expected here */ 7534 if (!required_keys_found) 7535 return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED)); 7536 continue; 7537 } 7538 7539 if (!nvlist_exists(innvl, nvl_keys[k].zkey_name)) 7540 return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED)); 7541 } 7542 7543 return (0); 7544 } 7545 7546 static int 7547 pool_status_check(const char *name, zfs_ioc_namecheck_t type, 7548 zfs_ioc_poolcheck_t check) 7549 { 7550 spa_t *spa; 7551 int error; 7552 7553 ASSERT(type == POOL_NAME || type == DATASET_NAME || 7554 type == ENTITY_NAME); 7555 7556 if (check & POOL_CHECK_NONE) 7557 return (0); 7558 7559 error = spa_open(name, &spa, FTAG); 7560 if (error == 0) { 7561 if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa)) 7562 error = SET_ERROR(EAGAIN); 7563 else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa)) 7564 error = SET_ERROR(EROFS); 7565 spa_close(spa, FTAG); 7566 } 7567 return (error); 7568 } 7569 7570 int 7571 zfsdev_getminor(zfs_file_t *fp, minor_t *minorp) 7572 { 7573 zfsdev_state_t *zs, *fpd; 7574 7575 ASSERT(!MUTEX_HELD(&zfsdev_state_lock)); 7576 7577 fpd = zfs_file_private(fp); 7578 if (fpd == NULL) 7579 return (SET_ERROR(EBADF)); 7580 7581 mutex_enter(&zfsdev_state_lock); 7582 7583 for (zs = &zfsdev_state_listhead; zs != NULL; zs = zs->zs_next) { 7584 7585 if (zs->zs_minor == -1) 7586 continue; 7587 7588 if (fpd == zs) { 7589 *minorp = fpd->zs_minor; 7590 mutex_exit(&zfsdev_state_lock); 7591 return (0); 7592 } 7593 } 7594 7595 mutex_exit(&zfsdev_state_lock); 7596 7597 return (SET_ERROR(EBADF)); 7598 } 7599 7600 void * 7601 zfsdev_get_state(minor_t minor, enum zfsdev_state_type which) 7602 { 7603 zfsdev_state_t *zs; 7604 7605 for (zs = &zfsdev_state_listhead; zs != NULL; zs = zs->zs_next) { 7606 if (zs->zs_minor == minor) { 7607 membar_consumer(); 7608 switch (which) { 7609 case ZST_ONEXIT: 7610 return (zs->zs_onexit); 7611 case ZST_ZEVENT: 7612 return (zs->zs_zevent); 7613 case ZST_ALL: 7614 return (zs); 7615 } 7616 } 7617 } 7618 7619 return (NULL); 7620 } 7621 7622 /* 7623 * Find a free minor number. The zfsdev_state_list is expected to 7624 * be short since it is only a list of currently open file handles. 7625 */ 7626 static minor_t 7627 zfsdev_minor_alloc(void) 7628 { 7629 static minor_t last_minor = 0; 7630 minor_t m; 7631 7632 ASSERT(MUTEX_HELD(&zfsdev_state_lock)); 7633 7634 for (m = last_minor + 1; m != last_minor; m++) { 7635 if (m > ZFSDEV_MAX_MINOR) 7636 m = 1; 7637 if (zfsdev_get_state(m, ZST_ALL) == NULL) { 7638 last_minor = m; 7639 return (m); 7640 } 7641 } 7642 7643 return (0); 7644 } 7645 7646 int 7647 zfsdev_state_init(void *priv) 7648 { 7649 zfsdev_state_t *zs, *zsprev = NULL; 7650 minor_t minor; 7651 boolean_t newzs = B_FALSE; 7652 7653 ASSERT(MUTEX_HELD(&zfsdev_state_lock)); 7654 7655 minor = zfsdev_minor_alloc(); 7656 if (minor == 0) 7657 return (SET_ERROR(ENXIO)); 7658 7659 for (zs = &zfsdev_state_listhead; zs != NULL; zs = zs->zs_next) { 7660 if (zs->zs_minor == -1) 7661 break; 7662 zsprev = zs; 7663 } 7664 7665 if (!zs) { 7666 zs = kmem_zalloc(sizeof (zfsdev_state_t), KM_SLEEP); 7667 newzs = B_TRUE; 7668 } 7669 7670 zfsdev_private_set_state(priv, zs); 7671 7672 zfs_onexit_init((zfs_onexit_t **)&zs->zs_onexit); 7673 zfs_zevent_init((zfs_zevent_t **)&zs->zs_zevent); 7674 7675 /* 7676 * In order to provide for lock-free concurrent read access 7677 * to the minor list in zfsdev_get_state(), new entries 7678 * must be completely written before linking them into the 7679 * list whereas existing entries are already linked; the last 7680 * operation must be updating zs_minor (from -1 to the new 7681 * value). 7682 */ 7683 if (newzs) { 7684 zs->zs_minor = minor; 7685 membar_producer(); 7686 zsprev->zs_next = zs; 7687 } else { 7688 membar_producer(); 7689 zs->zs_minor = minor; 7690 } 7691 7692 return (0); 7693 } 7694 7695 void 7696 zfsdev_state_destroy(void *priv) 7697 { 7698 zfsdev_state_t *zs = zfsdev_private_get_state(priv); 7699 7700 ASSERT(zs != NULL); 7701 ASSERT3S(zs->zs_minor, >, 0); 7702 7703 /* 7704 * The last reference to this zfsdev file descriptor is being dropped. 7705 * We don't have to worry about lookup grabbing this state object, and 7706 * zfsdev_state_init() will not try to reuse this object until it is 7707 * invalidated by setting zs_minor to -1. Invalidation must be done 7708 * last, with a memory barrier to ensure ordering. This lets us avoid 7709 * taking the global zfsdev state lock around destruction. 7710 */ 7711 zfs_onexit_destroy(zs->zs_onexit); 7712 zfs_zevent_destroy(zs->zs_zevent); 7713 zs->zs_onexit = NULL; 7714 zs->zs_zevent = NULL; 7715 membar_producer(); 7716 zs->zs_minor = -1; 7717 } 7718 7719 long 7720 zfsdev_ioctl_common(uint_t vecnum, zfs_cmd_t *zc, int flag) 7721 { 7722 int error, cmd; 7723 const zfs_ioc_vec_t *vec; 7724 char *saved_poolname = NULL; 7725 uint64_t max_nvlist_src_size; 7726 size_t saved_poolname_len = 0; 7727 nvlist_t *innvl = NULL; 7728 fstrans_cookie_t cookie; 7729 hrtime_t start_time = gethrtime(); 7730 7731 cmd = vecnum; 7732 error = 0; 7733 if (vecnum >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0])) 7734 return (SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL)); 7735 7736 vec = &zfs_ioc_vec[vecnum]; 7737 7738 /* 7739 * The registered ioctl list may be sparse, verify that either 7740 * a normal or legacy handler are registered. 7741 */ 7742 if (vec->zvec_func == NULL && vec->zvec_legacy_func == NULL) 7743 return (SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL)); 7744 7745 zc->zc_iflags = flag & FKIOCTL; 7746 max_nvlist_src_size = zfs_max_nvlist_src_size_os(); 7747 if (zc->zc_nvlist_src_size > max_nvlist_src_size) { 7748 /* 7749 * Make sure the user doesn't pass in an insane value for 7750 * zc_nvlist_src_size. We have to check, since we will end 7751 * up allocating that much memory inside of get_nvlist(). This 7752 * prevents a nefarious user from allocating tons of kernel 7753 * memory. 7754 * 7755 * Also, we return EINVAL instead of ENOMEM here. The reason 7756 * being that returning ENOMEM from an ioctl() has a special 7757 * connotation; that the user's size value is too small and 7758 * needs to be expanded to hold the nvlist. See 7759 * zcmd_expand_dst_nvlist() for details. 7760 */ 7761 error = SET_ERROR(EINVAL); /* User's size too big */ 7762 7763 } else if (zc->zc_nvlist_src_size != 0) { 7764 error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 7765 zc->zc_iflags, &innvl); 7766 if (error != 0) 7767 goto out; 7768 } 7769 7770 /* 7771 * Ensure that all pool/dataset names are valid before we pass down to 7772 * the lower layers. 7773 */ 7774 zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; 7775 switch (vec->zvec_namecheck) { 7776 case POOL_NAME: 7777 if (pool_namecheck(zc->zc_name, NULL, NULL) != 0) 7778 error = SET_ERROR(EINVAL); 7779 else 7780 error = pool_status_check(zc->zc_name, 7781 vec->zvec_namecheck, vec->zvec_pool_check); 7782 break; 7783 7784 case DATASET_NAME: 7785 if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0) 7786 error = SET_ERROR(EINVAL); 7787 else 7788 error = pool_status_check(zc->zc_name, 7789 vec->zvec_namecheck, vec->zvec_pool_check); 7790 break; 7791 7792 case ENTITY_NAME: 7793 if (entity_namecheck(zc->zc_name, NULL, NULL) != 0) { 7794 error = SET_ERROR(EINVAL); 7795 } else { 7796 error = pool_status_check(zc->zc_name, 7797 vec->zvec_namecheck, vec->zvec_pool_check); 7798 } 7799 break; 7800 7801 case NO_NAME: 7802 break; 7803 } 7804 /* 7805 * Ensure that all input pairs are valid before we pass them down 7806 * to the lower layers. 7807 * 7808 * The vectored functions can use fnvlist_lookup_{type} for any 7809 * required pairs since zfs_check_input_nvpairs() confirmed that 7810 * they exist and are of the correct type. 7811 */ 7812 if (error == 0 && vec->zvec_func != NULL) { 7813 error = zfs_check_input_nvpairs(innvl, vec); 7814 if (error != 0) 7815 goto out; 7816 } 7817 7818 if (error == 0) { 7819 cookie = spl_fstrans_mark(); 7820 error = vec->zvec_secpolicy(zc, innvl, CRED()); 7821 spl_fstrans_unmark(cookie); 7822 } 7823 7824 if (error != 0) 7825 goto out; 7826 7827 /* legacy ioctls can modify zc_name */ 7828 /* 7829 * Can't use kmem_strdup() as we might truncate the string and 7830 * kmem_strfree() would then free with incorrect size. 7831 */ 7832 saved_poolname_len = strlen(zc->zc_name) + 1; 7833 saved_poolname = kmem_alloc(saved_poolname_len, KM_SLEEP); 7834 7835 strlcpy(saved_poolname, zc->zc_name, saved_poolname_len); 7836 saved_poolname[strcspn(saved_poolname, "/@#")] = '\0'; 7837 7838 if (vec->zvec_func != NULL) { 7839 nvlist_t *outnvl; 7840 int puterror = 0; 7841 spa_t *spa; 7842 nvlist_t *lognv = NULL; 7843 7844 ASSERT(vec->zvec_legacy_func == NULL); 7845 7846 /* 7847 * Add the innvl to the lognv before calling the func, 7848 * in case the func changes the innvl. 7849 */ 7850 if (vec->zvec_allow_log) { 7851 lognv = fnvlist_alloc(); 7852 fnvlist_add_string(lognv, ZPOOL_HIST_IOCTL, 7853 vec->zvec_name); 7854 if (!nvlist_empty(innvl)) { 7855 fnvlist_add_nvlist(lognv, ZPOOL_HIST_INPUT_NVL, 7856 innvl); 7857 } 7858 } 7859 7860 outnvl = fnvlist_alloc(); 7861 cookie = spl_fstrans_mark(); 7862 error = vec->zvec_func(zc->zc_name, innvl, outnvl); 7863 spl_fstrans_unmark(cookie); 7864 7865 /* 7866 * Some commands can partially execute, modify state, and still 7867 * return an error. In these cases, attempt to record what 7868 * was modified. 7869 */ 7870 if ((error == 0 || 7871 (cmd == ZFS_IOC_CHANNEL_PROGRAM && error != EINVAL)) && 7872 vec->zvec_allow_log && 7873 spa_open(zc->zc_name, &spa, FTAG) == 0) { 7874 if (!nvlist_empty(outnvl)) { 7875 size_t out_size = fnvlist_size(outnvl); 7876 if (out_size > zfs_history_output_max) { 7877 fnvlist_add_int64(lognv, 7878 ZPOOL_HIST_OUTPUT_SIZE, out_size); 7879 } else { 7880 fnvlist_add_nvlist(lognv, 7881 ZPOOL_HIST_OUTPUT_NVL, outnvl); 7882 } 7883 } 7884 if (error != 0) { 7885 fnvlist_add_int64(lognv, ZPOOL_HIST_ERRNO, 7886 error); 7887 } 7888 fnvlist_add_int64(lognv, ZPOOL_HIST_ELAPSED_NS, 7889 gethrtime() - start_time); 7890 (void) spa_history_log_nvl(spa, lognv); 7891 spa_close(spa, FTAG); 7892 } 7893 fnvlist_free(lognv); 7894 7895 if (!nvlist_empty(outnvl) || zc->zc_nvlist_dst_size != 0) { 7896 int smusherror = 0; 7897 if (vec->zvec_smush_outnvlist) { 7898 smusherror = nvlist_smush(outnvl, 7899 zc->zc_nvlist_dst_size); 7900 } 7901 if (smusherror == 0) 7902 puterror = put_nvlist(zc, outnvl); 7903 } 7904 7905 if (puterror != 0) 7906 error = puterror; 7907 7908 nvlist_free(outnvl); 7909 } else { 7910 cookie = spl_fstrans_mark(); 7911 error = vec->zvec_legacy_func(zc); 7912 spl_fstrans_unmark(cookie); 7913 } 7914 7915 out: 7916 nvlist_free(innvl); 7917 if (error == 0 && vec->zvec_allow_log) { 7918 char *s = tsd_get(zfs_allow_log_key); 7919 if (s != NULL) 7920 kmem_strfree(s); 7921 (void) tsd_set(zfs_allow_log_key, kmem_strdup(saved_poolname)); 7922 } 7923 if (saved_poolname != NULL) 7924 kmem_free(saved_poolname, saved_poolname_len); 7925 7926 return (error); 7927 } 7928 7929 int 7930 zfs_kmod_init(void) 7931 { 7932 int error; 7933 7934 if ((error = zvol_init()) != 0) 7935 return (error); 7936 7937 spa_init(SPA_MODE_READ | SPA_MODE_WRITE); 7938 zfs_init(); 7939 7940 zfs_ioctl_init(); 7941 7942 mutex_init(&zfsdev_state_lock, NULL, MUTEX_DEFAULT, NULL); 7943 zfsdev_state_listhead.zs_minor = -1; 7944 7945 if ((error = zfsdev_attach()) != 0) 7946 goto out; 7947 7948 tsd_create(&rrw_tsd_key, rrw_tsd_destroy); 7949 tsd_create(&zfs_allow_log_key, zfs_allow_log_destroy); 7950 7951 return (0); 7952 out: 7953 zfs_fini(); 7954 spa_fini(); 7955 zvol_fini(); 7956 7957 return (error); 7958 } 7959 7960 void 7961 zfs_kmod_fini(void) 7962 { 7963 zfsdev_state_t *zs, *zsnext = NULL; 7964 7965 zfsdev_detach(); 7966 7967 mutex_destroy(&zfsdev_state_lock); 7968 7969 for (zs = &zfsdev_state_listhead; zs != NULL; zs = zsnext) { 7970 zsnext = zs->zs_next; 7971 if (zs->zs_onexit) 7972 zfs_onexit_destroy(zs->zs_onexit); 7973 if (zs->zs_zevent) 7974 zfs_zevent_destroy(zs->zs_zevent); 7975 if (zs != &zfsdev_state_listhead) 7976 kmem_free(zs, sizeof (zfsdev_state_t)); 7977 } 7978 7979 zfs_ereport_taskq_fini(); /* run before zfs_fini() on Linux */ 7980 zfs_fini(); 7981 spa_fini(); 7982 zvol_fini(); 7983 7984 tsd_destroy(&rrw_tsd_key); 7985 tsd_destroy(&zfs_allow_log_key); 7986 } 7987 7988 ZFS_MODULE_PARAM(zfs, zfs_, max_nvlist_src_size, U64, ZMOD_RW, 7989 "Maximum size in bytes allowed for src nvlist passed with ZFS ioctls"); 7990 7991 ZFS_MODULE_PARAM(zfs, zfs_, history_output_max, U64, ZMOD_RW, 7992 "Maximum size in bytes of ZFS ioctl output that will be logged"); 7993