1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Portions Copyright 2011 Martin Matuska 25 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved. 26 * Portions Copyright 2012 Pawel Jakub Dawidek <pawel@dawidek.net> 27 * Copyright (c) 2014, 2016 Joyent, Inc. All rights reserved. 28 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 29 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 30 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 31 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 32 * Copyright (c) 2013 Steven Hartland. All rights reserved. 33 * Copyright (c) 2014 Integros [integros.com] 34 * Copyright 2016 Toomas Soome <tsoome@me.com> 35 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 36 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 37 * Copyright 2017 RackTop Systems. 38 * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. 39 * Copyright (c) 2019 Datto Inc. 40 * Copyright (c) 2019, 2020 by Christian Schwarz. All rights reserved. 41 * Copyright (c) 2019, 2021, Klara Inc. 42 * Copyright (c) 2019, Allan Jude 43 */ 44 45 /* 46 * ZFS ioctls. 47 * 48 * This file handles the ioctls to /dev/zfs, used for configuring ZFS storage 49 * pools and filesystems, e.g. with /sbin/zfs and /sbin/zpool. 50 * 51 * There are two ways that we handle ioctls: the legacy way where almost 52 * all of the logic is in the ioctl callback, and the new way where most 53 * of the marshalling is handled in the common entry point, zfsdev_ioctl(). 54 * 55 * Non-legacy ioctls should be registered by calling 56 * zfs_ioctl_register() from zfs_ioctl_init(). The ioctl is invoked 57 * from userland by lzc_ioctl(). 58 * 59 * The registration arguments are as follows: 60 * 61 * const char *name 62 * The name of the ioctl. This is used for history logging. If the 63 * ioctl returns successfully (the callback returns 0), and allow_log 64 * is true, then a history log entry will be recorded with the input & 65 * output nvlists. The log entry can be printed with "zpool history -i". 66 * 67 * zfs_ioc_t ioc 68 * The ioctl request number, which userland will pass to ioctl(2). 69 * We want newer versions of libzfs and libzfs_core to run against 70 * existing zfs kernel modules (i.e. a deferred reboot after an update). 71 * Therefore the ioctl numbers cannot change from release to release. 72 * 73 * zfs_secpolicy_func_t *secpolicy 74 * This function will be called before the zfs_ioc_func_t, to 75 * determine if this operation is permitted. It should return EPERM 76 * on failure, and 0 on success. Checks include determining if the 77 * dataset is visible in this zone, and if the user has either all 78 * zfs privileges in the zone (SYS_MOUNT), or has been granted permission 79 * to do this operation on this dataset with "zfs allow". 80 * 81 * zfs_ioc_namecheck_t namecheck 82 * This specifies what to expect in the zfs_cmd_t:zc_name -- a pool 83 * name, a dataset name, or nothing. If the name is not well-formed, 84 * the ioctl will fail and the callback will not be called. 85 * Therefore, the callback can assume that the name is well-formed 86 * (e.g. is null-terminated, doesn't have more than one '@' character, 87 * doesn't have invalid characters). 88 * 89 * zfs_ioc_poolcheck_t pool_check 90 * This specifies requirements on the pool state. If the pool does 91 * not meet them (is suspended or is readonly), the ioctl will fail 92 * and the callback will not be called. If any checks are specified 93 * (i.e. it is not POOL_CHECK_NONE), namecheck must not be NO_NAME. 94 * Multiple checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED | 95 * POOL_CHECK_READONLY). 96 * 97 * zfs_ioc_key_t *nvl_keys 98 * The list of expected/allowable innvl input keys. This list is used 99 * to validate the nvlist input to the ioctl. 100 * 101 * boolean_t smush_outnvlist 102 * If smush_outnvlist is true, then the output is presumed to be a 103 * list of errors, and it will be "smushed" down to fit into the 104 * caller's buffer, by removing some entries and replacing them with a 105 * single "N_MORE_ERRORS" entry indicating how many were removed. See 106 * nvlist_smush() for details. If smush_outnvlist is false, and the 107 * outnvlist does not fit into the userland-provided buffer, then the 108 * ioctl will fail with ENOMEM. 109 * 110 * zfs_ioc_func_t *func 111 * The callback function that will perform the operation. 112 * 113 * The callback should return 0 on success, or an error number on 114 * failure. If the function fails, the userland ioctl will return -1, 115 * and errno will be set to the callback's return value. The callback 116 * will be called with the following arguments: 117 * 118 * const char *name 119 * The name of the pool or dataset to operate on, from 120 * zfs_cmd_t:zc_name. The 'namecheck' argument specifies the 121 * expected type (pool, dataset, or none). 122 * 123 * nvlist_t *innvl 124 * The input nvlist, deserialized from zfs_cmd_t:zc_nvlist_src. Or 125 * NULL if no input nvlist was provided. Changes to this nvlist are 126 * ignored. If the input nvlist could not be deserialized, the 127 * ioctl will fail and the callback will not be called. 128 * 129 * nvlist_t *outnvl 130 * The output nvlist, initially empty. The callback can fill it in, 131 * and it will be returned to userland by serializing it into 132 * zfs_cmd_t:zc_nvlist_dst. If it is non-empty, and serialization 133 * fails (e.g. because the caller didn't supply a large enough 134 * buffer), then the overall ioctl will fail. See the 135 * 'smush_nvlist' argument above for additional behaviors. 136 * 137 * There are two typical uses of the output nvlist: 138 * - To return state, e.g. property values. In this case, 139 * smush_outnvlist should be false. If the buffer was not large 140 * enough, the caller will reallocate a larger buffer and try 141 * the ioctl again. 142 * 143 * - To return multiple errors from an ioctl which makes on-disk 144 * changes. In this case, smush_outnvlist should be true. 145 * Ioctls which make on-disk modifications should generally not 146 * use the outnvl if they succeed, because the caller can not 147 * distinguish between the operation failing, and 148 * deserialization failing. 149 * 150 * IOCTL Interface Errors 151 * 152 * The following ioctl input errors can be returned: 153 * ZFS_ERR_IOC_CMD_UNAVAIL the ioctl number is not supported by kernel 154 * ZFS_ERR_IOC_ARG_UNAVAIL an input argument is not supported by kernel 155 * ZFS_ERR_IOC_ARG_REQUIRED a required input argument is missing 156 * ZFS_ERR_IOC_ARG_BADTYPE an input argument has an invalid type 157 */ 158 159 #include <sys/types.h> 160 #include <sys/param.h> 161 #include <sys/errno.h> 162 #include <sys/uio_impl.h> 163 #include <sys/file.h> 164 #include <sys/kmem.h> 165 #include <sys/cmn_err.h> 166 #include <sys/stat.h> 167 #include <sys/zfs_ioctl.h> 168 #include <sys/zfs_quota.h> 169 #include <sys/zfs_vfsops.h> 170 #include <sys/zfs_znode.h> 171 #include <sys/zap.h> 172 #include <sys/spa.h> 173 #include <sys/spa_impl.h> 174 #include <sys/vdev.h> 175 #include <sys/vdev_impl.h> 176 #include <sys/dmu.h> 177 #include <sys/dsl_dir.h> 178 #include <sys/dsl_dataset.h> 179 #include <sys/dsl_prop.h> 180 #include <sys/dsl_deleg.h> 181 #include <sys/dmu_objset.h> 182 #include <sys/dmu_impl.h> 183 #include <sys/dmu_redact.h> 184 #include <sys/dmu_tx.h> 185 #include <sys/sunddi.h> 186 #include <sys/policy.h> 187 #include <sys/zone.h> 188 #include <sys/nvpair.h> 189 #include <sys/pathname.h> 190 #include <sys/fs/zfs.h> 191 #include <sys/zfs_ctldir.h> 192 #include <sys/zfs_dir.h> 193 #include <sys/zfs_onexit.h> 194 #include <sys/zvol.h> 195 #include <sys/dsl_scan.h> 196 #include <sys/fm/util.h> 197 #include <sys/dsl_crypt.h> 198 #include <sys/rrwlock.h> 199 #include <sys/zfs_file.h> 200 201 #include <sys/dmu_recv.h> 202 #include <sys/dmu_send.h> 203 #include <sys/dmu_recv.h> 204 #include <sys/dsl_destroy.h> 205 #include <sys/dsl_bookmark.h> 206 #include <sys/dsl_userhold.h> 207 #include <sys/zfeature.h> 208 #include <sys/zcp.h> 209 #include <sys/zio_checksum.h> 210 #include <sys/vdev_removal.h> 211 #include <sys/vdev_impl.h> 212 #include <sys/vdev_initialize.h> 213 #include <sys/vdev_trim.h> 214 215 #include "zfs_namecheck.h" 216 #include "zfs_prop.h" 217 #include "zfs_deleg.h" 218 #include "zfs_comutil.h" 219 220 #include <sys/lua/lua.h> 221 #include <sys/lua/lauxlib.h> 222 #include <sys/zfs_ioctl_impl.h> 223 224 kmutex_t zfsdev_state_lock; 225 static zfsdev_state_t *zfsdev_state_list; 226 227 /* 228 * Limit maximum nvlist size. We don't want users passing in insane values 229 * for zc->zc_nvlist_src_size, since we will need to allocate that much memory. 230 * Defaults to 0=auto which is handled by platform code. 231 */ 232 uint64_t zfs_max_nvlist_src_size = 0; 233 234 /* 235 * When logging the output nvlist of an ioctl in the on-disk history, limit 236 * the logged size to this many bytes. This must be less than DMU_MAX_ACCESS. 237 * This applies primarily to zfs_ioc_channel_program(). 238 */ 239 static uint64_t zfs_history_output_max = 1024 * 1024; 240 241 uint_t zfs_fsyncer_key; 242 uint_t zfs_allow_log_key; 243 244 /* DATA_TYPE_ANY is used when zkey_type can vary. */ 245 #define DATA_TYPE_ANY DATA_TYPE_UNKNOWN 246 247 typedef struct zfs_ioc_vec { 248 zfs_ioc_legacy_func_t *zvec_legacy_func; 249 zfs_ioc_func_t *zvec_func; 250 zfs_secpolicy_func_t *zvec_secpolicy; 251 zfs_ioc_namecheck_t zvec_namecheck; 252 boolean_t zvec_allow_log; 253 zfs_ioc_poolcheck_t zvec_pool_check; 254 boolean_t zvec_smush_outnvlist; 255 const char *zvec_name; 256 const zfs_ioc_key_t *zvec_nvl_keys; 257 size_t zvec_nvl_key_count; 258 } zfs_ioc_vec_t; 259 260 /* This array is indexed by zfs_userquota_prop_t */ 261 static const char *userquota_perms[] = { 262 ZFS_DELEG_PERM_USERUSED, 263 ZFS_DELEG_PERM_USERQUOTA, 264 ZFS_DELEG_PERM_GROUPUSED, 265 ZFS_DELEG_PERM_GROUPQUOTA, 266 ZFS_DELEG_PERM_USEROBJUSED, 267 ZFS_DELEG_PERM_USEROBJQUOTA, 268 ZFS_DELEG_PERM_GROUPOBJUSED, 269 ZFS_DELEG_PERM_GROUPOBJQUOTA, 270 ZFS_DELEG_PERM_PROJECTUSED, 271 ZFS_DELEG_PERM_PROJECTQUOTA, 272 ZFS_DELEG_PERM_PROJECTOBJUSED, 273 ZFS_DELEG_PERM_PROJECTOBJQUOTA, 274 }; 275 276 static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc); 277 static int zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc); 278 static int zfs_check_settable(const char *name, nvpair_t *property, 279 cred_t *cr); 280 static int zfs_check_clearable(const char *dataset, nvlist_t *props, 281 nvlist_t **errors); 282 static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *, 283 boolean_t *); 284 int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *); 285 static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp); 286 287 static void 288 history_str_free(char *buf) 289 { 290 kmem_free(buf, HIS_MAX_RECORD_LEN); 291 } 292 293 static char * 294 history_str_get(zfs_cmd_t *zc) 295 { 296 char *buf; 297 298 if (zc->zc_history == 0) 299 return (NULL); 300 301 buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP); 302 if (copyinstr((void *)(uintptr_t)zc->zc_history, 303 buf, HIS_MAX_RECORD_LEN, NULL) != 0) { 304 history_str_free(buf); 305 return (NULL); 306 } 307 308 buf[HIS_MAX_RECORD_LEN -1] = '\0'; 309 310 return (buf); 311 } 312 313 /* 314 * Return non-zero if the spa version is less than requested version. 315 */ 316 static int 317 zfs_earlier_version(const char *name, int version) 318 { 319 spa_t *spa; 320 321 if (spa_open(name, &spa, FTAG) == 0) { 322 if (spa_version(spa) < version) { 323 spa_close(spa, FTAG); 324 return (1); 325 } 326 spa_close(spa, FTAG); 327 } 328 return (0); 329 } 330 331 /* 332 * Return TRUE if the ZPL version is less than requested version. 333 */ 334 static boolean_t 335 zpl_earlier_version(const char *name, int version) 336 { 337 objset_t *os; 338 boolean_t rc = B_TRUE; 339 340 if (dmu_objset_hold(name, FTAG, &os) == 0) { 341 uint64_t zplversion; 342 343 if (dmu_objset_type(os) != DMU_OST_ZFS) { 344 dmu_objset_rele(os, FTAG); 345 return (B_TRUE); 346 } 347 /* XXX reading from non-owned objset */ 348 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0) 349 rc = zplversion < version; 350 dmu_objset_rele(os, FTAG); 351 } 352 return (rc); 353 } 354 355 static void 356 zfs_log_history(zfs_cmd_t *zc) 357 { 358 spa_t *spa; 359 char *buf; 360 361 if ((buf = history_str_get(zc)) == NULL) 362 return; 363 364 if (spa_open(zc->zc_name, &spa, FTAG) == 0) { 365 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY) 366 (void) spa_history_log(spa, buf); 367 spa_close(spa, FTAG); 368 } 369 history_str_free(buf); 370 } 371 372 /* 373 * Policy for top-level read operations (list pools). Requires no privileges, 374 * and can be used in the local zone, as there is no associated dataset. 375 */ 376 static int 377 zfs_secpolicy_none(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 378 { 379 (void) zc, (void) innvl, (void) cr; 380 return (0); 381 } 382 383 /* 384 * Policy for dataset read operations (list children, get statistics). Requires 385 * no privileges, but must be visible in the local zone. 386 */ 387 static int 388 zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 389 { 390 (void) innvl, (void) cr; 391 if (INGLOBALZONE(curproc) || 392 zone_dataset_visible(zc->zc_name, NULL)) 393 return (0); 394 395 return (SET_ERROR(ENOENT)); 396 } 397 398 static int 399 zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr) 400 { 401 int writable = 1; 402 403 /* 404 * The dataset must be visible by this zone -- check this first 405 * so they don't see EPERM on something they shouldn't know about. 406 */ 407 if (!INGLOBALZONE(curproc) && 408 !zone_dataset_visible(dataset, &writable)) 409 return (SET_ERROR(ENOENT)); 410 411 if (INGLOBALZONE(curproc)) { 412 /* 413 * If the fs is zoned, only root can access it from the 414 * global zone. 415 */ 416 if (secpolicy_zfs(cr) && zoned) 417 return (SET_ERROR(EPERM)); 418 } else { 419 /* 420 * If we are in a local zone, the 'zoned' property must be set. 421 */ 422 if (!zoned) 423 return (SET_ERROR(EPERM)); 424 425 /* must be writable by this zone */ 426 if (!writable) 427 return (SET_ERROR(EPERM)); 428 } 429 return (0); 430 } 431 432 static int 433 zfs_dozonecheck(const char *dataset, cred_t *cr) 434 { 435 uint64_t zoned; 436 437 if (dsl_prop_get_integer(dataset, zfs_prop_to_name(ZFS_PROP_ZONED), 438 &zoned, NULL)) 439 return (SET_ERROR(ENOENT)); 440 441 return (zfs_dozonecheck_impl(dataset, zoned, cr)); 442 } 443 444 static int 445 zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr) 446 { 447 uint64_t zoned; 448 449 if (dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned)) 450 return (SET_ERROR(ENOENT)); 451 452 return (zfs_dozonecheck_impl(dataset, zoned, cr)); 453 } 454 455 static int 456 zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds, 457 const char *perm, cred_t *cr) 458 { 459 int error; 460 461 error = zfs_dozonecheck_ds(name, ds, cr); 462 if (error == 0) { 463 error = secpolicy_zfs(cr); 464 if (error != 0) 465 error = dsl_deleg_access_impl(ds, perm, cr); 466 } 467 return (error); 468 } 469 470 static int 471 zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr) 472 { 473 int error; 474 dsl_dataset_t *ds; 475 dsl_pool_t *dp; 476 477 /* 478 * First do a quick check for root in the global zone, which 479 * is allowed to do all write_perms. This ensures that zfs_ioc_* 480 * will get to handle nonexistent datasets. 481 */ 482 if (INGLOBALZONE(curproc) && secpolicy_zfs(cr) == 0) 483 return (0); 484 485 error = dsl_pool_hold(name, FTAG, &dp); 486 if (error != 0) 487 return (error); 488 489 error = dsl_dataset_hold(dp, name, FTAG, &ds); 490 if (error != 0) { 491 dsl_pool_rele(dp, FTAG); 492 return (error); 493 } 494 495 error = zfs_secpolicy_write_perms_ds(name, ds, perm, cr); 496 497 dsl_dataset_rele(ds, FTAG); 498 dsl_pool_rele(dp, FTAG); 499 return (error); 500 } 501 502 /* 503 * Policy for setting the security label property. 504 * 505 * Returns 0 for success, non-zero for access and other errors. 506 */ 507 static int 508 zfs_set_slabel_policy(const char *name, const char *strval, cred_t *cr) 509 { 510 #ifdef HAVE_MLSLABEL 511 char ds_hexsl[MAXNAMELEN]; 512 bslabel_t ds_sl, new_sl; 513 boolean_t new_default = FALSE; 514 uint64_t zoned; 515 int needed_priv = -1; 516 int error; 517 518 /* First get the existing dataset label. */ 519 error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 520 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 521 if (error != 0) 522 return (SET_ERROR(EPERM)); 523 524 if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) 525 new_default = TRUE; 526 527 /* The label must be translatable */ 528 if (!new_default && (hexstr_to_label(strval, &new_sl) != 0)) 529 return (SET_ERROR(EINVAL)); 530 531 /* 532 * In a non-global zone, disallow attempts to set a label that 533 * doesn't match that of the zone; otherwise no other checks 534 * are needed. 535 */ 536 if (!INGLOBALZONE(curproc)) { 537 if (new_default || !blequal(&new_sl, CR_SL(CRED()))) 538 return (SET_ERROR(EPERM)); 539 return (0); 540 } 541 542 /* 543 * For global-zone datasets (i.e., those whose zoned property is 544 * "off", verify that the specified new label is valid for the 545 * global zone. 546 */ 547 if (dsl_prop_get_integer(name, 548 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 549 return (SET_ERROR(EPERM)); 550 if (!zoned) { 551 if (zfs_check_global_label(name, strval) != 0) 552 return (SET_ERROR(EPERM)); 553 } 554 555 /* 556 * If the existing dataset label is nondefault, check if the 557 * dataset is mounted (label cannot be changed while mounted). 558 * Get the zfsvfs_t; if there isn't one, then the dataset isn't 559 * mounted (or isn't a dataset, doesn't exist, ...). 560 */ 561 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) { 562 objset_t *os; 563 static const char *setsl_tag = "setsl_tag"; 564 565 /* 566 * Try to own the dataset; abort if there is any error, 567 * (e.g., already mounted, in use, or other error). 568 */ 569 error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE, B_TRUE, 570 setsl_tag, &os); 571 if (error != 0) 572 return (SET_ERROR(EPERM)); 573 574 dmu_objset_disown(os, B_TRUE, setsl_tag); 575 576 if (new_default) { 577 needed_priv = PRIV_FILE_DOWNGRADE_SL; 578 goto out_check; 579 } 580 581 if (hexstr_to_label(strval, &new_sl) != 0) 582 return (SET_ERROR(EPERM)); 583 584 if (blstrictdom(&ds_sl, &new_sl)) 585 needed_priv = PRIV_FILE_DOWNGRADE_SL; 586 else if (blstrictdom(&new_sl, &ds_sl)) 587 needed_priv = PRIV_FILE_UPGRADE_SL; 588 } else { 589 /* dataset currently has a default label */ 590 if (!new_default) 591 needed_priv = PRIV_FILE_UPGRADE_SL; 592 } 593 594 out_check: 595 if (needed_priv != -1) 596 return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL)); 597 return (0); 598 #else 599 return (SET_ERROR(ENOTSUP)); 600 #endif /* HAVE_MLSLABEL */ 601 } 602 603 static int 604 zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval, 605 cred_t *cr) 606 { 607 char *strval; 608 609 /* 610 * Check permissions for special properties. 611 */ 612 switch (prop) { 613 default: 614 break; 615 case ZFS_PROP_ZONED: 616 /* 617 * Disallow setting of 'zoned' from within a local zone. 618 */ 619 if (!INGLOBALZONE(curproc)) 620 return (SET_ERROR(EPERM)); 621 break; 622 623 case ZFS_PROP_QUOTA: 624 case ZFS_PROP_FILESYSTEM_LIMIT: 625 case ZFS_PROP_SNAPSHOT_LIMIT: 626 if (!INGLOBALZONE(curproc)) { 627 uint64_t zoned; 628 char setpoint[ZFS_MAX_DATASET_NAME_LEN]; 629 /* 630 * Unprivileged users are allowed to modify the 631 * limit on things *under* (ie. contained by) 632 * the thing they own. 633 */ 634 if (dsl_prop_get_integer(dsname, 635 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, setpoint)) 636 return (SET_ERROR(EPERM)); 637 if (!zoned || strlen(dsname) <= strlen(setpoint)) 638 return (SET_ERROR(EPERM)); 639 } 640 break; 641 642 case ZFS_PROP_MLSLABEL: 643 if (!is_system_labeled()) 644 return (SET_ERROR(EPERM)); 645 646 if (nvpair_value_string(propval, &strval) == 0) { 647 int err; 648 649 err = zfs_set_slabel_policy(dsname, strval, CRED()); 650 if (err != 0) 651 return (err); 652 } 653 break; 654 } 655 656 return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr)); 657 } 658 659 static int 660 zfs_secpolicy_set_fsacl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 661 { 662 /* 663 * permission to set permissions will be evaluated later in 664 * dsl_deleg_can_allow() 665 */ 666 (void) innvl; 667 return (zfs_dozonecheck(zc->zc_name, cr)); 668 } 669 670 static int 671 zfs_secpolicy_rollback(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 672 { 673 (void) innvl; 674 return (zfs_secpolicy_write_perms(zc->zc_name, 675 ZFS_DELEG_PERM_ROLLBACK, cr)); 676 } 677 678 static int 679 zfs_secpolicy_send(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 680 { 681 (void) innvl; 682 dsl_pool_t *dp; 683 dsl_dataset_t *ds; 684 const char *cp; 685 int error; 686 687 /* 688 * Generate the current snapshot name from the given objsetid, then 689 * use that name for the secpolicy/zone checks. 690 */ 691 cp = strchr(zc->zc_name, '@'); 692 if (cp == NULL) 693 return (SET_ERROR(EINVAL)); 694 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 695 if (error != 0) 696 return (error); 697 698 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds); 699 if (error != 0) { 700 dsl_pool_rele(dp, FTAG); 701 return (error); 702 } 703 704 dsl_dataset_name(ds, zc->zc_name); 705 706 error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds, 707 ZFS_DELEG_PERM_SEND, cr); 708 dsl_dataset_rele(ds, FTAG); 709 dsl_pool_rele(dp, FTAG); 710 711 return (error); 712 } 713 714 static int 715 zfs_secpolicy_send_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 716 { 717 (void) innvl; 718 return (zfs_secpolicy_write_perms(zc->zc_name, 719 ZFS_DELEG_PERM_SEND, cr)); 720 } 721 722 static int 723 zfs_secpolicy_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 724 { 725 (void) zc, (void) innvl, (void) cr; 726 return (SET_ERROR(ENOTSUP)); 727 } 728 729 static int 730 zfs_secpolicy_smb_acl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 731 { 732 (void) zc, (void) innvl, (void) cr; 733 return (SET_ERROR(ENOTSUP)); 734 } 735 736 static int 737 zfs_get_parent(const char *datasetname, char *parent, int parentsize) 738 { 739 char *cp; 740 741 /* 742 * Remove the @bla or /bla from the end of the name to get the parent. 743 */ 744 (void) strlcpy(parent, datasetname, parentsize); 745 cp = strrchr(parent, '@'); 746 if (cp != NULL) { 747 cp[0] = '\0'; 748 } else { 749 cp = strrchr(parent, '/'); 750 if (cp == NULL) 751 return (SET_ERROR(ENOENT)); 752 cp[0] = '\0'; 753 } 754 755 return (0); 756 } 757 758 int 759 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 760 { 761 int error; 762 763 if ((error = zfs_secpolicy_write_perms(name, 764 ZFS_DELEG_PERM_MOUNT, cr)) != 0) 765 return (error); 766 767 return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr)); 768 } 769 770 static int 771 zfs_secpolicy_destroy(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 772 { 773 (void) innvl; 774 return (zfs_secpolicy_destroy_perms(zc->zc_name, cr)); 775 } 776 777 /* 778 * Destroying snapshots with delegated permissions requires 779 * descendant mount and destroy permissions. 780 */ 781 static int 782 zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 783 { 784 (void) zc; 785 nvlist_t *snaps; 786 nvpair_t *pair, *nextpair; 787 int error = 0; 788 789 snaps = fnvlist_lookup_nvlist(innvl, "snaps"); 790 791 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; 792 pair = nextpair) { 793 nextpair = nvlist_next_nvpair(snaps, pair); 794 error = zfs_secpolicy_destroy_perms(nvpair_name(pair), cr); 795 if (error == ENOENT) { 796 /* 797 * Ignore any snapshots that don't exist (we consider 798 * them "already destroyed"). Remove the name from the 799 * nvl here in case the snapshot is created between 800 * now and when we try to destroy it (in which case 801 * we don't want to destroy it since we haven't 802 * checked for permission). 803 */ 804 fnvlist_remove_nvpair(snaps, pair); 805 error = 0; 806 } 807 if (error != 0) 808 break; 809 } 810 811 return (error); 812 } 813 814 int 815 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 816 { 817 char parentname[ZFS_MAX_DATASET_NAME_LEN]; 818 int error; 819 820 if ((error = zfs_secpolicy_write_perms(from, 821 ZFS_DELEG_PERM_RENAME, cr)) != 0) 822 return (error); 823 824 if ((error = zfs_secpolicy_write_perms(from, 825 ZFS_DELEG_PERM_MOUNT, cr)) != 0) 826 return (error); 827 828 if ((error = zfs_get_parent(to, parentname, 829 sizeof (parentname))) != 0) 830 return (error); 831 832 if ((error = zfs_secpolicy_write_perms(parentname, 833 ZFS_DELEG_PERM_CREATE, cr)) != 0) 834 return (error); 835 836 if ((error = zfs_secpolicy_write_perms(parentname, 837 ZFS_DELEG_PERM_MOUNT, cr)) != 0) 838 return (error); 839 840 return (error); 841 } 842 843 static int 844 zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 845 { 846 (void) innvl; 847 return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr)); 848 } 849 850 static int 851 zfs_secpolicy_promote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 852 { 853 (void) innvl; 854 dsl_pool_t *dp; 855 dsl_dataset_t *clone; 856 int error; 857 858 error = zfs_secpolicy_write_perms(zc->zc_name, 859 ZFS_DELEG_PERM_PROMOTE, cr); 860 if (error != 0) 861 return (error); 862 863 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 864 if (error != 0) 865 return (error); 866 867 error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &clone); 868 869 if (error == 0) { 870 char parentname[ZFS_MAX_DATASET_NAME_LEN]; 871 dsl_dataset_t *origin = NULL; 872 dsl_dir_t *dd; 873 dd = clone->ds_dir; 874 875 error = dsl_dataset_hold_obj(dd->dd_pool, 876 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin); 877 if (error != 0) { 878 dsl_dataset_rele(clone, FTAG); 879 dsl_pool_rele(dp, FTAG); 880 return (error); 881 } 882 883 error = zfs_secpolicy_write_perms_ds(zc->zc_name, clone, 884 ZFS_DELEG_PERM_MOUNT, cr); 885 886 dsl_dataset_name(origin, parentname); 887 if (error == 0) { 888 error = zfs_secpolicy_write_perms_ds(parentname, origin, 889 ZFS_DELEG_PERM_PROMOTE, cr); 890 } 891 dsl_dataset_rele(clone, FTAG); 892 dsl_dataset_rele(origin, FTAG); 893 } 894 dsl_pool_rele(dp, FTAG); 895 return (error); 896 } 897 898 static int 899 zfs_secpolicy_recv(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 900 { 901 (void) innvl; 902 int error; 903 904 if ((error = zfs_secpolicy_write_perms(zc->zc_name, 905 ZFS_DELEG_PERM_RECEIVE, cr)) != 0) 906 return (error); 907 908 if ((error = zfs_secpolicy_write_perms(zc->zc_name, 909 ZFS_DELEG_PERM_MOUNT, cr)) != 0) 910 return (error); 911 912 return (zfs_secpolicy_write_perms(zc->zc_name, 913 ZFS_DELEG_PERM_CREATE, cr)); 914 } 915 916 int 917 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 918 { 919 return (zfs_secpolicy_write_perms(name, 920 ZFS_DELEG_PERM_SNAPSHOT, cr)); 921 } 922 923 /* 924 * Check for permission to create each snapshot in the nvlist. 925 */ 926 static int 927 zfs_secpolicy_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 928 { 929 (void) zc; 930 nvlist_t *snaps; 931 int error = 0; 932 nvpair_t *pair; 933 934 snaps = fnvlist_lookup_nvlist(innvl, "snaps"); 935 936 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; 937 pair = nvlist_next_nvpair(snaps, pair)) { 938 char *name = nvpair_name(pair); 939 char *atp = strchr(name, '@'); 940 941 if (atp == NULL) { 942 error = SET_ERROR(EINVAL); 943 break; 944 } 945 *atp = '\0'; 946 error = zfs_secpolicy_snapshot_perms(name, cr); 947 *atp = '@'; 948 if (error != 0) 949 break; 950 } 951 return (error); 952 } 953 954 /* 955 * Check for permission to create each bookmark in the nvlist. 956 */ 957 static int 958 zfs_secpolicy_bookmark(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 959 { 960 (void) zc; 961 int error = 0; 962 963 for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); 964 pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { 965 char *name = nvpair_name(pair); 966 char *hashp = strchr(name, '#'); 967 968 if (hashp == NULL) { 969 error = SET_ERROR(EINVAL); 970 break; 971 } 972 *hashp = '\0'; 973 error = zfs_secpolicy_write_perms(name, 974 ZFS_DELEG_PERM_BOOKMARK, cr); 975 *hashp = '#'; 976 if (error != 0) 977 break; 978 } 979 return (error); 980 } 981 982 static int 983 zfs_secpolicy_destroy_bookmarks(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 984 { 985 (void) zc; 986 nvpair_t *pair, *nextpair; 987 int error = 0; 988 989 for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; 990 pair = nextpair) { 991 char *name = nvpair_name(pair); 992 char *hashp = strchr(name, '#'); 993 nextpair = nvlist_next_nvpair(innvl, pair); 994 995 if (hashp == NULL) { 996 error = SET_ERROR(EINVAL); 997 break; 998 } 999 1000 *hashp = '\0'; 1001 error = zfs_secpolicy_write_perms(name, 1002 ZFS_DELEG_PERM_DESTROY, cr); 1003 *hashp = '#'; 1004 if (error == ENOENT) { 1005 /* 1006 * Ignore any filesystems that don't exist (we consider 1007 * their bookmarks "already destroyed"). Remove 1008 * the name from the nvl here in case the filesystem 1009 * is created between now and when we try to destroy 1010 * the bookmark (in which case we don't want to 1011 * destroy it since we haven't checked for permission). 1012 */ 1013 fnvlist_remove_nvpair(innvl, pair); 1014 error = 0; 1015 } 1016 if (error != 0) 1017 break; 1018 } 1019 1020 return (error); 1021 } 1022 1023 static int 1024 zfs_secpolicy_log_history(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1025 { 1026 (void) zc, (void) innvl, (void) cr; 1027 /* 1028 * Even root must have a proper TSD so that we know what pool 1029 * to log to. 1030 */ 1031 if (tsd_get(zfs_allow_log_key) == NULL) 1032 return (SET_ERROR(EPERM)); 1033 return (0); 1034 } 1035 1036 static int 1037 zfs_secpolicy_create_clone(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1038 { 1039 char parentname[ZFS_MAX_DATASET_NAME_LEN]; 1040 int error; 1041 char *origin; 1042 1043 if ((error = zfs_get_parent(zc->zc_name, parentname, 1044 sizeof (parentname))) != 0) 1045 return (error); 1046 1047 if (nvlist_lookup_string(innvl, "origin", &origin) == 0 && 1048 (error = zfs_secpolicy_write_perms(origin, 1049 ZFS_DELEG_PERM_CLONE, cr)) != 0) 1050 return (error); 1051 1052 if ((error = zfs_secpolicy_write_perms(parentname, 1053 ZFS_DELEG_PERM_CREATE, cr)) != 0) 1054 return (error); 1055 1056 return (zfs_secpolicy_write_perms(parentname, 1057 ZFS_DELEG_PERM_MOUNT, cr)); 1058 } 1059 1060 /* 1061 * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires 1062 * SYS_CONFIG privilege, which is not available in a local zone. 1063 */ 1064 int 1065 zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1066 { 1067 (void) zc, (void) innvl; 1068 1069 if (secpolicy_sys_config(cr, B_FALSE) != 0) 1070 return (SET_ERROR(EPERM)); 1071 1072 return (0); 1073 } 1074 1075 /* 1076 * Policy for object to name lookups. 1077 */ 1078 static int 1079 zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1080 { 1081 (void) innvl; 1082 int error; 1083 1084 if (secpolicy_sys_config(cr, B_FALSE) == 0) 1085 return (0); 1086 1087 error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr); 1088 return (error); 1089 } 1090 1091 /* 1092 * Policy for fault injection. Requires all privileges. 1093 */ 1094 static int 1095 zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1096 { 1097 (void) zc, (void) innvl; 1098 return (secpolicy_zinject(cr)); 1099 } 1100 1101 static int 1102 zfs_secpolicy_inherit_prop(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1103 { 1104 (void) innvl; 1105 zfs_prop_t prop = zfs_name_to_prop(zc->zc_value); 1106 1107 if (prop == ZPROP_USERPROP) { 1108 if (!zfs_prop_user(zc->zc_value)) 1109 return (SET_ERROR(EINVAL)); 1110 return (zfs_secpolicy_write_perms(zc->zc_name, 1111 ZFS_DELEG_PERM_USERPROP, cr)); 1112 } else { 1113 return (zfs_secpolicy_setprop(zc->zc_name, prop, 1114 NULL, cr)); 1115 } 1116 } 1117 1118 static int 1119 zfs_secpolicy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1120 { 1121 int err = zfs_secpolicy_read(zc, innvl, cr); 1122 if (err) 1123 return (err); 1124 1125 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) 1126 return (SET_ERROR(EINVAL)); 1127 1128 if (zc->zc_value[0] == 0) { 1129 /* 1130 * They are asking about a posix uid/gid. If it's 1131 * themself, allow it. 1132 */ 1133 if (zc->zc_objset_type == ZFS_PROP_USERUSED || 1134 zc->zc_objset_type == ZFS_PROP_USERQUOTA || 1135 zc->zc_objset_type == ZFS_PROP_USEROBJUSED || 1136 zc->zc_objset_type == ZFS_PROP_USEROBJQUOTA) { 1137 if (zc->zc_guid == crgetuid(cr)) 1138 return (0); 1139 } else if (zc->zc_objset_type == ZFS_PROP_GROUPUSED || 1140 zc->zc_objset_type == ZFS_PROP_GROUPQUOTA || 1141 zc->zc_objset_type == ZFS_PROP_GROUPOBJUSED || 1142 zc->zc_objset_type == ZFS_PROP_GROUPOBJQUOTA) { 1143 if (groupmember(zc->zc_guid, cr)) 1144 return (0); 1145 } 1146 /* else is for project quota/used */ 1147 } 1148 1149 return (zfs_secpolicy_write_perms(zc->zc_name, 1150 userquota_perms[zc->zc_objset_type], cr)); 1151 } 1152 1153 static int 1154 zfs_secpolicy_userspace_many(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1155 { 1156 int err = zfs_secpolicy_read(zc, innvl, cr); 1157 if (err) 1158 return (err); 1159 1160 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) 1161 return (SET_ERROR(EINVAL)); 1162 1163 return (zfs_secpolicy_write_perms(zc->zc_name, 1164 userquota_perms[zc->zc_objset_type], cr)); 1165 } 1166 1167 static int 1168 zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1169 { 1170 (void) innvl; 1171 return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION, 1172 NULL, cr)); 1173 } 1174 1175 static int 1176 zfs_secpolicy_hold(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1177 { 1178 (void) zc; 1179 nvpair_t *pair; 1180 nvlist_t *holds; 1181 int error; 1182 1183 holds = fnvlist_lookup_nvlist(innvl, "holds"); 1184 1185 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; 1186 pair = nvlist_next_nvpair(holds, pair)) { 1187 char fsname[ZFS_MAX_DATASET_NAME_LEN]; 1188 error = dmu_fsname(nvpair_name(pair), fsname); 1189 if (error != 0) 1190 return (error); 1191 error = zfs_secpolicy_write_perms(fsname, 1192 ZFS_DELEG_PERM_HOLD, cr); 1193 if (error != 0) 1194 return (error); 1195 } 1196 return (0); 1197 } 1198 1199 static int 1200 zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1201 { 1202 (void) zc; 1203 nvpair_t *pair; 1204 int error; 1205 1206 for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; 1207 pair = nvlist_next_nvpair(innvl, pair)) { 1208 char fsname[ZFS_MAX_DATASET_NAME_LEN]; 1209 error = dmu_fsname(nvpair_name(pair), fsname); 1210 if (error != 0) 1211 return (error); 1212 error = zfs_secpolicy_write_perms(fsname, 1213 ZFS_DELEG_PERM_RELEASE, cr); 1214 if (error != 0) 1215 return (error); 1216 } 1217 return (0); 1218 } 1219 1220 /* 1221 * Policy for allowing temporary snapshots to be taken or released 1222 */ 1223 static int 1224 zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1225 { 1226 /* 1227 * A temporary snapshot is the same as a snapshot, 1228 * hold, destroy and release all rolled into one. 1229 * Delegated diff alone is sufficient that we allow this. 1230 */ 1231 int error; 1232 1233 if (zfs_secpolicy_write_perms(zc->zc_name, 1234 ZFS_DELEG_PERM_DIFF, cr) == 0) 1235 return (0); 1236 1237 error = zfs_secpolicy_snapshot_perms(zc->zc_name, cr); 1238 1239 if (innvl != NULL) { 1240 if (error == 0) 1241 error = zfs_secpolicy_hold(zc, innvl, cr); 1242 if (error == 0) 1243 error = zfs_secpolicy_release(zc, innvl, cr); 1244 if (error == 0) 1245 error = zfs_secpolicy_destroy(zc, innvl, cr); 1246 } 1247 return (error); 1248 } 1249 1250 static int 1251 zfs_secpolicy_load_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1252 { 1253 return (zfs_secpolicy_write_perms(zc->zc_name, 1254 ZFS_DELEG_PERM_LOAD_KEY, cr)); 1255 } 1256 1257 static int 1258 zfs_secpolicy_change_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1259 { 1260 return (zfs_secpolicy_write_perms(zc->zc_name, 1261 ZFS_DELEG_PERM_CHANGE_KEY, cr)); 1262 } 1263 1264 /* 1265 * Returns the nvlist as specified by the user in the zfs_cmd_t. 1266 */ 1267 static int 1268 get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp) 1269 { 1270 char *packed; 1271 int error; 1272 nvlist_t *list = NULL; 1273 1274 /* 1275 * Read in and unpack the user-supplied nvlist. 1276 */ 1277 if (size == 0) 1278 return (SET_ERROR(EINVAL)); 1279 1280 packed = vmem_alloc(size, KM_SLEEP); 1281 1282 if (ddi_copyin((void *)(uintptr_t)nvl, packed, size, iflag) != 0) { 1283 vmem_free(packed, size); 1284 return (SET_ERROR(EFAULT)); 1285 } 1286 1287 if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) { 1288 vmem_free(packed, size); 1289 return (error); 1290 } 1291 1292 vmem_free(packed, size); 1293 1294 *nvp = list; 1295 return (0); 1296 } 1297 1298 /* 1299 * Reduce the size of this nvlist until it can be serialized in 'max' bytes. 1300 * Entries will be removed from the end of the nvlist, and one int32 entry 1301 * named "N_MORE_ERRORS" will be added indicating how many entries were 1302 * removed. 1303 */ 1304 static int 1305 nvlist_smush(nvlist_t *errors, size_t max) 1306 { 1307 size_t size; 1308 1309 size = fnvlist_size(errors); 1310 1311 if (size > max) { 1312 nvpair_t *more_errors; 1313 int n = 0; 1314 1315 if (max < 1024) 1316 return (SET_ERROR(ENOMEM)); 1317 1318 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0); 1319 more_errors = nvlist_prev_nvpair(errors, NULL); 1320 1321 do { 1322 nvpair_t *pair = nvlist_prev_nvpair(errors, 1323 more_errors); 1324 fnvlist_remove_nvpair(errors, pair); 1325 n++; 1326 size = fnvlist_size(errors); 1327 } while (size > max); 1328 1329 fnvlist_remove_nvpair(errors, more_errors); 1330 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n); 1331 ASSERT3U(fnvlist_size(errors), <=, max); 1332 } 1333 1334 return (0); 1335 } 1336 1337 static int 1338 put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl) 1339 { 1340 char *packed = NULL; 1341 int error = 0; 1342 size_t size; 1343 1344 size = fnvlist_size(nvl); 1345 1346 if (size > zc->zc_nvlist_dst_size) { 1347 error = SET_ERROR(ENOMEM); 1348 } else { 1349 packed = fnvlist_pack(nvl, &size); 1350 if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst, 1351 size, zc->zc_iflags) != 0) 1352 error = SET_ERROR(EFAULT); 1353 fnvlist_pack_free(packed, size); 1354 } 1355 1356 zc->zc_nvlist_dst_size = size; 1357 zc->zc_nvlist_dst_filled = B_TRUE; 1358 return (error); 1359 } 1360 1361 int 1362 getzfsvfs_impl(objset_t *os, zfsvfs_t **zfvp) 1363 { 1364 int error = 0; 1365 if (dmu_objset_type(os) != DMU_OST_ZFS) { 1366 return (SET_ERROR(EINVAL)); 1367 } 1368 1369 mutex_enter(&os->os_user_ptr_lock); 1370 *zfvp = dmu_objset_get_user(os); 1371 /* bump s_active only when non-zero to prevent umount race */ 1372 error = zfs_vfs_ref(zfvp); 1373 mutex_exit(&os->os_user_ptr_lock); 1374 return (error); 1375 } 1376 1377 int 1378 getzfsvfs(const char *dsname, zfsvfs_t **zfvp) 1379 { 1380 objset_t *os; 1381 int error; 1382 1383 error = dmu_objset_hold(dsname, FTAG, &os); 1384 if (error != 0) 1385 return (error); 1386 1387 error = getzfsvfs_impl(os, zfvp); 1388 dmu_objset_rele(os, FTAG); 1389 return (error); 1390 } 1391 1392 /* 1393 * Find a zfsvfs_t for a mounted filesystem, or create our own, in which 1394 * case its z_sb will be NULL, and it will be opened as the owner. 1395 * If 'writer' is set, the z_teardown_lock will be held for RW_WRITER, 1396 * which prevents all inode ops from running. 1397 */ 1398 static int 1399 zfsvfs_hold(const char *name, const void *tag, zfsvfs_t **zfvp, 1400 boolean_t writer) 1401 { 1402 int error = 0; 1403 1404 if (getzfsvfs(name, zfvp) != 0) 1405 error = zfsvfs_create(name, B_FALSE, zfvp); 1406 if (error == 0) { 1407 if (writer) 1408 ZFS_TEARDOWN_ENTER_WRITE(*zfvp, tag); 1409 else 1410 ZFS_TEARDOWN_ENTER_READ(*zfvp, tag); 1411 if ((*zfvp)->z_unmounted) { 1412 /* 1413 * XXX we could probably try again, since the unmounting 1414 * thread should be just about to disassociate the 1415 * objset from the zfsvfs. 1416 */ 1417 ZFS_TEARDOWN_EXIT(*zfvp, tag); 1418 return (SET_ERROR(EBUSY)); 1419 } 1420 } 1421 return (error); 1422 } 1423 1424 static void 1425 zfsvfs_rele(zfsvfs_t *zfsvfs, const void *tag) 1426 { 1427 ZFS_TEARDOWN_EXIT(zfsvfs, tag); 1428 1429 if (zfs_vfs_held(zfsvfs)) { 1430 zfs_vfs_rele(zfsvfs); 1431 } else { 1432 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); 1433 zfsvfs_free(zfsvfs); 1434 } 1435 } 1436 1437 static int 1438 zfs_ioc_pool_create(zfs_cmd_t *zc) 1439 { 1440 int error; 1441 nvlist_t *config, *props = NULL; 1442 nvlist_t *rootprops = NULL; 1443 nvlist_t *zplprops = NULL; 1444 dsl_crypto_params_t *dcp = NULL; 1445 const char *spa_name = zc->zc_name; 1446 boolean_t unload_wkey = B_TRUE; 1447 1448 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1449 zc->zc_iflags, &config))) 1450 return (error); 1451 1452 if (zc->zc_nvlist_src_size != 0 && (error = 1453 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 1454 zc->zc_iflags, &props))) { 1455 nvlist_free(config); 1456 return (error); 1457 } 1458 1459 if (props) { 1460 nvlist_t *nvl = NULL; 1461 nvlist_t *hidden_args = NULL; 1462 uint64_t version = SPA_VERSION; 1463 char *tname; 1464 1465 (void) nvlist_lookup_uint64(props, 1466 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version); 1467 if (!SPA_VERSION_IS_SUPPORTED(version)) { 1468 error = SET_ERROR(EINVAL); 1469 goto pool_props_bad; 1470 } 1471 (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl); 1472 if (nvl) { 1473 error = nvlist_dup(nvl, &rootprops, KM_SLEEP); 1474 if (error != 0) 1475 goto pool_props_bad; 1476 (void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS); 1477 } 1478 1479 (void) nvlist_lookup_nvlist(props, ZPOOL_HIDDEN_ARGS, 1480 &hidden_args); 1481 error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 1482 rootprops, hidden_args, &dcp); 1483 if (error != 0) 1484 goto pool_props_bad; 1485 (void) nvlist_remove_all(props, ZPOOL_HIDDEN_ARGS); 1486 1487 VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1488 error = zfs_fill_zplprops_root(version, rootprops, 1489 zplprops, NULL); 1490 if (error != 0) 1491 goto pool_props_bad; 1492 1493 if (nvlist_lookup_string(props, 1494 zpool_prop_to_name(ZPOOL_PROP_TNAME), &tname) == 0) 1495 spa_name = tname; 1496 } 1497 1498 error = spa_create(zc->zc_name, config, props, zplprops, dcp); 1499 1500 /* 1501 * Set the remaining root properties 1502 */ 1503 if (!error && (error = zfs_set_prop_nvlist(spa_name, 1504 ZPROP_SRC_LOCAL, rootprops, NULL)) != 0) { 1505 (void) spa_destroy(spa_name); 1506 unload_wkey = B_FALSE; /* spa_destroy() unloads wrapping keys */ 1507 } 1508 1509 pool_props_bad: 1510 nvlist_free(rootprops); 1511 nvlist_free(zplprops); 1512 nvlist_free(config); 1513 nvlist_free(props); 1514 dsl_crypto_params_free(dcp, unload_wkey && !!error); 1515 1516 return (error); 1517 } 1518 1519 static int 1520 zfs_ioc_pool_destroy(zfs_cmd_t *zc) 1521 { 1522 int error; 1523 zfs_log_history(zc); 1524 error = spa_destroy(zc->zc_name); 1525 1526 return (error); 1527 } 1528 1529 static int 1530 zfs_ioc_pool_import(zfs_cmd_t *zc) 1531 { 1532 nvlist_t *config, *props = NULL; 1533 uint64_t guid; 1534 int error; 1535 1536 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1537 zc->zc_iflags, &config)) != 0) 1538 return (error); 1539 1540 if (zc->zc_nvlist_src_size != 0 && (error = 1541 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 1542 zc->zc_iflags, &props))) { 1543 nvlist_free(config); 1544 return (error); 1545 } 1546 1547 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1548 guid != zc->zc_guid) 1549 error = SET_ERROR(EINVAL); 1550 else 1551 error = spa_import(zc->zc_name, config, props, zc->zc_cookie); 1552 1553 if (zc->zc_nvlist_dst != 0) { 1554 int err; 1555 1556 if ((err = put_nvlist(zc, config)) != 0) 1557 error = err; 1558 } 1559 1560 nvlist_free(config); 1561 nvlist_free(props); 1562 1563 return (error); 1564 } 1565 1566 static int 1567 zfs_ioc_pool_export(zfs_cmd_t *zc) 1568 { 1569 int error; 1570 boolean_t force = (boolean_t)zc->zc_cookie; 1571 boolean_t hardforce = (boolean_t)zc->zc_guid; 1572 1573 zfs_log_history(zc); 1574 error = spa_export(zc->zc_name, NULL, force, hardforce); 1575 1576 return (error); 1577 } 1578 1579 static int 1580 zfs_ioc_pool_configs(zfs_cmd_t *zc) 1581 { 1582 nvlist_t *configs; 1583 int error; 1584 1585 if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL) 1586 return (SET_ERROR(EEXIST)); 1587 1588 error = put_nvlist(zc, configs); 1589 1590 nvlist_free(configs); 1591 1592 return (error); 1593 } 1594 1595 /* 1596 * inputs: 1597 * zc_name name of the pool 1598 * 1599 * outputs: 1600 * zc_cookie real errno 1601 * zc_nvlist_dst config nvlist 1602 * zc_nvlist_dst_size size of config nvlist 1603 */ 1604 static int 1605 zfs_ioc_pool_stats(zfs_cmd_t *zc) 1606 { 1607 nvlist_t *config; 1608 int error; 1609 int ret = 0; 1610 1611 error = spa_get_stats(zc->zc_name, &config, zc->zc_value, 1612 sizeof (zc->zc_value)); 1613 1614 if (config != NULL) { 1615 ret = put_nvlist(zc, config); 1616 nvlist_free(config); 1617 1618 /* 1619 * The config may be present even if 'error' is non-zero. 1620 * In this case we return success, and preserve the real errno 1621 * in 'zc_cookie'. 1622 */ 1623 zc->zc_cookie = error; 1624 } else { 1625 ret = error; 1626 } 1627 1628 return (ret); 1629 } 1630 1631 /* 1632 * Try to import the given pool, returning pool stats as appropriate so that 1633 * user land knows which devices are available and overall pool health. 1634 */ 1635 static int 1636 zfs_ioc_pool_tryimport(zfs_cmd_t *zc) 1637 { 1638 nvlist_t *tryconfig, *config = NULL; 1639 int error; 1640 1641 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1642 zc->zc_iflags, &tryconfig)) != 0) 1643 return (error); 1644 1645 config = spa_tryimport(tryconfig); 1646 1647 nvlist_free(tryconfig); 1648 1649 if (config == NULL) 1650 return (SET_ERROR(EINVAL)); 1651 1652 error = put_nvlist(zc, config); 1653 nvlist_free(config); 1654 1655 return (error); 1656 } 1657 1658 /* 1659 * inputs: 1660 * zc_name name of the pool 1661 * zc_cookie scan func (pool_scan_func_t) 1662 * zc_flags scrub pause/resume flag (pool_scrub_cmd_t) 1663 */ 1664 static int 1665 zfs_ioc_pool_scan(zfs_cmd_t *zc) 1666 { 1667 spa_t *spa; 1668 int error; 1669 1670 if (zc->zc_flags >= POOL_SCRUB_FLAGS_END) 1671 return (SET_ERROR(EINVAL)); 1672 1673 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1674 return (error); 1675 1676 if (zc->zc_flags == POOL_SCRUB_PAUSE) 1677 error = spa_scrub_pause_resume(spa, POOL_SCRUB_PAUSE); 1678 else if (zc->zc_cookie == POOL_SCAN_NONE) 1679 error = spa_scan_stop(spa); 1680 else 1681 error = spa_scan(spa, zc->zc_cookie); 1682 1683 spa_close(spa, FTAG); 1684 1685 return (error); 1686 } 1687 1688 static int 1689 zfs_ioc_pool_freeze(zfs_cmd_t *zc) 1690 { 1691 spa_t *spa; 1692 int error; 1693 1694 error = spa_open(zc->zc_name, &spa, FTAG); 1695 if (error == 0) { 1696 spa_freeze(spa); 1697 spa_close(spa, FTAG); 1698 } 1699 return (error); 1700 } 1701 1702 static int 1703 zfs_ioc_pool_upgrade(zfs_cmd_t *zc) 1704 { 1705 spa_t *spa; 1706 int error; 1707 1708 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1709 return (error); 1710 1711 if (zc->zc_cookie < spa_version(spa) || 1712 !SPA_VERSION_IS_SUPPORTED(zc->zc_cookie)) { 1713 spa_close(spa, FTAG); 1714 return (SET_ERROR(EINVAL)); 1715 } 1716 1717 spa_upgrade(spa, zc->zc_cookie); 1718 spa_close(spa, FTAG); 1719 1720 return (error); 1721 } 1722 1723 static int 1724 zfs_ioc_pool_get_history(zfs_cmd_t *zc) 1725 { 1726 spa_t *spa; 1727 char *hist_buf; 1728 uint64_t size; 1729 int error; 1730 1731 if ((size = zc->zc_history_len) == 0) 1732 return (SET_ERROR(EINVAL)); 1733 1734 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1735 return (error); 1736 1737 if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { 1738 spa_close(spa, FTAG); 1739 return (SET_ERROR(ENOTSUP)); 1740 } 1741 1742 hist_buf = vmem_alloc(size, KM_SLEEP); 1743 if ((error = spa_history_get(spa, &zc->zc_history_offset, 1744 &zc->zc_history_len, hist_buf)) == 0) { 1745 error = ddi_copyout(hist_buf, 1746 (void *)(uintptr_t)zc->zc_history, 1747 zc->zc_history_len, zc->zc_iflags); 1748 } 1749 1750 spa_close(spa, FTAG); 1751 vmem_free(hist_buf, size); 1752 return (error); 1753 } 1754 1755 static int 1756 zfs_ioc_pool_reguid(zfs_cmd_t *zc) 1757 { 1758 spa_t *spa; 1759 int error; 1760 1761 error = spa_open(zc->zc_name, &spa, FTAG); 1762 if (error == 0) { 1763 error = spa_change_guid(spa); 1764 spa_close(spa, FTAG); 1765 } 1766 return (error); 1767 } 1768 1769 static int 1770 zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc) 1771 { 1772 return (dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value)); 1773 } 1774 1775 /* 1776 * inputs: 1777 * zc_name name of filesystem 1778 * zc_obj object to find 1779 * 1780 * outputs: 1781 * zc_value name of object 1782 */ 1783 static int 1784 zfs_ioc_obj_to_path(zfs_cmd_t *zc) 1785 { 1786 objset_t *os; 1787 int error; 1788 1789 /* XXX reading from objset not owned */ 1790 if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, 1791 FTAG, &os)) != 0) 1792 return (error); 1793 if (dmu_objset_type(os) != DMU_OST_ZFS) { 1794 dmu_objset_rele_flags(os, B_TRUE, FTAG); 1795 return (SET_ERROR(EINVAL)); 1796 } 1797 error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value, 1798 sizeof (zc->zc_value)); 1799 dmu_objset_rele_flags(os, B_TRUE, FTAG); 1800 1801 return (error); 1802 } 1803 1804 /* 1805 * inputs: 1806 * zc_name name of filesystem 1807 * zc_obj object to find 1808 * 1809 * outputs: 1810 * zc_stat stats on object 1811 * zc_value path to object 1812 */ 1813 static int 1814 zfs_ioc_obj_to_stats(zfs_cmd_t *zc) 1815 { 1816 objset_t *os; 1817 int error; 1818 1819 /* XXX reading from objset not owned */ 1820 if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, 1821 FTAG, &os)) != 0) 1822 return (error); 1823 if (dmu_objset_type(os) != DMU_OST_ZFS) { 1824 dmu_objset_rele_flags(os, B_TRUE, FTAG); 1825 return (SET_ERROR(EINVAL)); 1826 } 1827 error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value, 1828 sizeof (zc->zc_value)); 1829 dmu_objset_rele_flags(os, B_TRUE, FTAG); 1830 1831 return (error); 1832 } 1833 1834 static int 1835 zfs_ioc_vdev_add(zfs_cmd_t *zc) 1836 { 1837 spa_t *spa; 1838 int error; 1839 nvlist_t *config; 1840 1841 error = spa_open(zc->zc_name, &spa, FTAG); 1842 if (error != 0) 1843 return (error); 1844 1845 error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1846 zc->zc_iflags, &config); 1847 if (error == 0) { 1848 error = spa_vdev_add(spa, config); 1849 nvlist_free(config); 1850 } 1851 spa_close(spa, FTAG); 1852 return (error); 1853 } 1854 1855 /* 1856 * inputs: 1857 * zc_name name of the pool 1858 * zc_guid guid of vdev to remove 1859 * zc_cookie cancel removal 1860 */ 1861 static int 1862 zfs_ioc_vdev_remove(zfs_cmd_t *zc) 1863 { 1864 spa_t *spa; 1865 int error; 1866 1867 error = spa_open(zc->zc_name, &spa, FTAG); 1868 if (error != 0) 1869 return (error); 1870 if (zc->zc_cookie != 0) { 1871 error = spa_vdev_remove_cancel(spa); 1872 } else { 1873 error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE); 1874 } 1875 spa_close(spa, FTAG); 1876 return (error); 1877 } 1878 1879 static int 1880 zfs_ioc_vdev_set_state(zfs_cmd_t *zc) 1881 { 1882 spa_t *spa; 1883 int error; 1884 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 1885 1886 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1887 return (error); 1888 switch (zc->zc_cookie) { 1889 case VDEV_STATE_ONLINE: 1890 error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate); 1891 break; 1892 1893 case VDEV_STATE_OFFLINE: 1894 error = vdev_offline(spa, zc->zc_guid, zc->zc_obj); 1895 break; 1896 1897 case VDEV_STATE_FAULTED: 1898 if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && 1899 zc->zc_obj != VDEV_AUX_EXTERNAL && 1900 zc->zc_obj != VDEV_AUX_EXTERNAL_PERSIST) 1901 zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; 1902 1903 error = vdev_fault(spa, zc->zc_guid, zc->zc_obj); 1904 break; 1905 1906 case VDEV_STATE_DEGRADED: 1907 if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && 1908 zc->zc_obj != VDEV_AUX_EXTERNAL) 1909 zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; 1910 1911 error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj); 1912 break; 1913 1914 case VDEV_STATE_REMOVED: 1915 error = vdev_remove_wanted(spa, zc->zc_guid); 1916 break; 1917 1918 default: 1919 error = SET_ERROR(EINVAL); 1920 } 1921 zc->zc_cookie = newstate; 1922 spa_close(spa, FTAG); 1923 return (error); 1924 } 1925 1926 static int 1927 zfs_ioc_vdev_attach(zfs_cmd_t *zc) 1928 { 1929 spa_t *spa; 1930 nvlist_t *config; 1931 int replacing = zc->zc_cookie; 1932 int rebuild = zc->zc_simple; 1933 int error; 1934 1935 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1936 return (error); 1937 1938 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1939 zc->zc_iflags, &config)) == 0) { 1940 error = spa_vdev_attach(spa, zc->zc_guid, config, replacing, 1941 rebuild); 1942 nvlist_free(config); 1943 } 1944 1945 spa_close(spa, FTAG); 1946 return (error); 1947 } 1948 1949 static int 1950 zfs_ioc_vdev_detach(zfs_cmd_t *zc) 1951 { 1952 spa_t *spa; 1953 int error; 1954 1955 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1956 return (error); 1957 1958 error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE); 1959 1960 spa_close(spa, FTAG); 1961 return (error); 1962 } 1963 1964 static int 1965 zfs_ioc_vdev_split(zfs_cmd_t *zc) 1966 { 1967 spa_t *spa; 1968 nvlist_t *config, *props = NULL; 1969 int error; 1970 boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT); 1971 1972 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 1973 return (error); 1974 1975 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1976 zc->zc_iflags, &config))) { 1977 spa_close(spa, FTAG); 1978 return (error); 1979 } 1980 1981 if (zc->zc_nvlist_src_size != 0 && (error = 1982 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 1983 zc->zc_iflags, &props))) { 1984 spa_close(spa, FTAG); 1985 nvlist_free(config); 1986 return (error); 1987 } 1988 1989 error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp); 1990 1991 spa_close(spa, FTAG); 1992 1993 nvlist_free(config); 1994 nvlist_free(props); 1995 1996 return (error); 1997 } 1998 1999 static int 2000 zfs_ioc_vdev_setpath(zfs_cmd_t *zc) 2001 { 2002 spa_t *spa; 2003 const char *path = zc->zc_value; 2004 uint64_t guid = zc->zc_guid; 2005 int error; 2006 2007 error = spa_open(zc->zc_name, &spa, FTAG); 2008 if (error != 0) 2009 return (error); 2010 2011 error = spa_vdev_setpath(spa, guid, path); 2012 spa_close(spa, FTAG); 2013 return (error); 2014 } 2015 2016 static int 2017 zfs_ioc_vdev_setfru(zfs_cmd_t *zc) 2018 { 2019 spa_t *spa; 2020 const char *fru = zc->zc_value; 2021 uint64_t guid = zc->zc_guid; 2022 int error; 2023 2024 error = spa_open(zc->zc_name, &spa, FTAG); 2025 if (error != 0) 2026 return (error); 2027 2028 error = spa_vdev_setfru(spa, guid, fru); 2029 spa_close(spa, FTAG); 2030 return (error); 2031 } 2032 2033 static int 2034 zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os) 2035 { 2036 int error = 0; 2037 nvlist_t *nv; 2038 2039 dmu_objset_fast_stat(os, &zc->zc_objset_stats); 2040 2041 if (!zc->zc_simple && zc->zc_nvlist_dst != 0 && 2042 (error = dsl_prop_get_all(os, &nv)) == 0) { 2043 dmu_objset_stats(os, nv); 2044 /* 2045 * NB: zvol_get_stats() will read the objset contents, 2046 * which we aren't supposed to do with a 2047 * DS_MODE_USER hold, because it could be 2048 * inconsistent. So this is a bit of a workaround... 2049 * XXX reading without owning 2050 */ 2051 if (!zc->zc_objset_stats.dds_inconsistent && 2052 dmu_objset_type(os) == DMU_OST_ZVOL) { 2053 error = zvol_get_stats(os, nv); 2054 if (error == EIO) { 2055 nvlist_free(nv); 2056 return (error); 2057 } 2058 VERIFY0(error); 2059 } 2060 if (error == 0) 2061 error = put_nvlist(zc, nv); 2062 nvlist_free(nv); 2063 } 2064 2065 return (error); 2066 } 2067 2068 /* 2069 * inputs: 2070 * zc_name name of filesystem 2071 * zc_nvlist_dst_size size of buffer for property nvlist 2072 * 2073 * outputs: 2074 * zc_objset_stats stats 2075 * zc_nvlist_dst property nvlist 2076 * zc_nvlist_dst_size size of property nvlist 2077 */ 2078 static int 2079 zfs_ioc_objset_stats(zfs_cmd_t *zc) 2080 { 2081 objset_t *os; 2082 int error; 2083 2084 error = dmu_objset_hold(zc->zc_name, FTAG, &os); 2085 if (error == 0) { 2086 error = zfs_ioc_objset_stats_impl(zc, os); 2087 dmu_objset_rele(os, FTAG); 2088 } 2089 2090 return (error); 2091 } 2092 2093 /* 2094 * inputs: 2095 * zc_name name of filesystem 2096 * zc_nvlist_dst_size size of buffer for property nvlist 2097 * 2098 * outputs: 2099 * zc_nvlist_dst received property nvlist 2100 * zc_nvlist_dst_size size of received property nvlist 2101 * 2102 * Gets received properties (distinct from local properties on or after 2103 * SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from 2104 * local property values. 2105 */ 2106 static int 2107 zfs_ioc_objset_recvd_props(zfs_cmd_t *zc) 2108 { 2109 int error = 0; 2110 nvlist_t *nv; 2111 2112 /* 2113 * Without this check, we would return local property values if the 2114 * caller has not already received properties on or after 2115 * SPA_VERSION_RECVD_PROPS. 2116 */ 2117 if (!dsl_prop_get_hasrecvd(zc->zc_name)) 2118 return (SET_ERROR(ENOTSUP)); 2119 2120 if (zc->zc_nvlist_dst != 0 && 2121 (error = dsl_prop_get_received(zc->zc_name, &nv)) == 0) { 2122 error = put_nvlist(zc, nv); 2123 nvlist_free(nv); 2124 } 2125 2126 return (error); 2127 } 2128 2129 static int 2130 nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop) 2131 { 2132 uint64_t value; 2133 int error; 2134 2135 /* 2136 * zfs_get_zplprop() will either find a value or give us 2137 * the default value (if there is one). 2138 */ 2139 if ((error = zfs_get_zplprop(os, prop, &value)) != 0) 2140 return (error); 2141 VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0); 2142 return (0); 2143 } 2144 2145 /* 2146 * inputs: 2147 * zc_name name of filesystem 2148 * zc_nvlist_dst_size size of buffer for zpl property nvlist 2149 * 2150 * outputs: 2151 * zc_nvlist_dst zpl property nvlist 2152 * zc_nvlist_dst_size size of zpl property nvlist 2153 */ 2154 static int 2155 zfs_ioc_objset_zplprops(zfs_cmd_t *zc) 2156 { 2157 objset_t *os; 2158 int err; 2159 2160 /* XXX reading without owning */ 2161 if ((err = dmu_objset_hold(zc->zc_name, FTAG, &os))) 2162 return (err); 2163 2164 dmu_objset_fast_stat(os, &zc->zc_objset_stats); 2165 2166 /* 2167 * NB: nvl_add_zplprop() will read the objset contents, 2168 * which we aren't supposed to do with a DS_MODE_USER 2169 * hold, because it could be inconsistent. 2170 */ 2171 if (zc->zc_nvlist_dst != 0 && 2172 !zc->zc_objset_stats.dds_inconsistent && 2173 dmu_objset_type(os) == DMU_OST_ZFS) { 2174 nvlist_t *nv; 2175 2176 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2177 if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 && 2178 (err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 && 2179 (err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 && 2180 (err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0) 2181 err = put_nvlist(zc, nv); 2182 nvlist_free(nv); 2183 } else { 2184 err = SET_ERROR(ENOENT); 2185 } 2186 dmu_objset_rele(os, FTAG); 2187 return (err); 2188 } 2189 2190 /* 2191 * inputs: 2192 * zc_name name of filesystem 2193 * zc_cookie zap cursor 2194 * zc_nvlist_dst_size size of buffer for property nvlist 2195 * 2196 * outputs: 2197 * zc_name name of next filesystem 2198 * zc_cookie zap cursor 2199 * zc_objset_stats stats 2200 * zc_nvlist_dst property nvlist 2201 * zc_nvlist_dst_size size of property nvlist 2202 */ 2203 static int 2204 zfs_ioc_dataset_list_next(zfs_cmd_t *zc) 2205 { 2206 objset_t *os; 2207 int error; 2208 char *p; 2209 size_t orig_len = strlen(zc->zc_name); 2210 2211 top: 2212 if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os))) { 2213 if (error == ENOENT) 2214 error = SET_ERROR(ESRCH); 2215 return (error); 2216 } 2217 2218 p = strrchr(zc->zc_name, '/'); 2219 if (p == NULL || p[1] != '\0') 2220 (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name)); 2221 p = zc->zc_name + strlen(zc->zc_name); 2222 2223 do { 2224 error = dmu_dir_list_next(os, 2225 sizeof (zc->zc_name) - (p - zc->zc_name), p, 2226 NULL, &zc->zc_cookie); 2227 if (error == ENOENT) 2228 error = SET_ERROR(ESRCH); 2229 } while (error == 0 && zfs_dataset_name_hidden(zc->zc_name)); 2230 dmu_objset_rele(os, FTAG); 2231 2232 /* 2233 * If it's an internal dataset (ie. with a '$' in its name), 2234 * don't try to get stats for it, otherwise we'll return ENOENT. 2235 */ 2236 if (error == 0 && strchr(zc->zc_name, '$') == NULL) { 2237 error = zfs_ioc_objset_stats(zc); /* fill in the stats */ 2238 if (error == ENOENT) { 2239 /* We lost a race with destroy, get the next one. */ 2240 zc->zc_name[orig_len] = '\0'; 2241 goto top; 2242 } 2243 } 2244 return (error); 2245 } 2246 2247 /* 2248 * inputs: 2249 * zc_name name of filesystem 2250 * zc_cookie zap cursor 2251 * zc_nvlist_src iteration range nvlist 2252 * zc_nvlist_src_size size of iteration range nvlist 2253 * 2254 * outputs: 2255 * zc_name name of next snapshot 2256 * zc_objset_stats stats 2257 * zc_nvlist_dst property nvlist 2258 * zc_nvlist_dst_size size of property nvlist 2259 */ 2260 static int 2261 zfs_ioc_snapshot_list_next(zfs_cmd_t *zc) 2262 { 2263 int error; 2264 objset_t *os, *ossnap; 2265 dsl_dataset_t *ds; 2266 uint64_t min_txg = 0, max_txg = 0; 2267 2268 if (zc->zc_nvlist_src_size != 0) { 2269 nvlist_t *props = NULL; 2270 error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 2271 zc->zc_iflags, &props); 2272 if (error != 0) 2273 return (error); 2274 (void) nvlist_lookup_uint64(props, SNAP_ITER_MIN_TXG, 2275 &min_txg); 2276 (void) nvlist_lookup_uint64(props, SNAP_ITER_MAX_TXG, 2277 &max_txg); 2278 nvlist_free(props); 2279 } 2280 2281 error = dmu_objset_hold(zc->zc_name, FTAG, &os); 2282 if (error != 0) { 2283 return (error == ENOENT ? SET_ERROR(ESRCH) : error); 2284 } 2285 2286 /* 2287 * A dataset name of maximum length cannot have any snapshots, 2288 * so exit immediately. 2289 */ 2290 if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= 2291 ZFS_MAX_DATASET_NAME_LEN) { 2292 dmu_objset_rele(os, FTAG); 2293 return (SET_ERROR(ESRCH)); 2294 } 2295 2296 while (error == 0) { 2297 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2298 error = SET_ERROR(EINTR); 2299 break; 2300 } 2301 2302 error = dmu_snapshot_list_next(os, 2303 sizeof (zc->zc_name) - strlen(zc->zc_name), 2304 zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, 2305 &zc->zc_cookie, NULL); 2306 if (error == ENOENT) { 2307 error = SET_ERROR(ESRCH); 2308 break; 2309 } else if (error != 0) { 2310 break; 2311 } 2312 2313 error = dsl_dataset_hold_obj(dmu_objset_pool(os), zc->zc_obj, 2314 FTAG, &ds); 2315 if (error != 0) 2316 break; 2317 2318 if ((min_txg != 0 && dsl_get_creationtxg(ds) < min_txg) || 2319 (max_txg != 0 && dsl_get_creationtxg(ds) > max_txg)) { 2320 dsl_dataset_rele(ds, FTAG); 2321 /* undo snapshot name append */ 2322 *(strchr(zc->zc_name, '@') + 1) = '\0'; 2323 /* skip snapshot */ 2324 continue; 2325 } 2326 2327 if (zc->zc_simple) { 2328 dsl_dataset_fast_stat(ds, &zc->zc_objset_stats); 2329 dsl_dataset_rele(ds, FTAG); 2330 break; 2331 } 2332 2333 if ((error = dmu_objset_from_ds(ds, &ossnap)) != 0) { 2334 dsl_dataset_rele(ds, FTAG); 2335 break; 2336 } 2337 if ((error = zfs_ioc_objset_stats_impl(zc, ossnap)) != 0) { 2338 dsl_dataset_rele(ds, FTAG); 2339 break; 2340 } 2341 dsl_dataset_rele(ds, FTAG); 2342 break; 2343 } 2344 2345 dmu_objset_rele(os, FTAG); 2346 /* if we failed, undo the @ that we tacked on to zc_name */ 2347 if (error != 0) 2348 *strchr(zc->zc_name, '@') = '\0'; 2349 return (error); 2350 } 2351 2352 static int 2353 zfs_prop_set_userquota(const char *dsname, nvpair_t *pair) 2354 { 2355 const char *propname = nvpair_name(pair); 2356 uint64_t *valary; 2357 unsigned int vallen; 2358 const char *dash, *domain; 2359 zfs_userquota_prop_t type; 2360 uint64_t rid; 2361 uint64_t quota; 2362 zfsvfs_t *zfsvfs; 2363 int err; 2364 2365 if (nvpair_type(pair) == DATA_TYPE_NVLIST) { 2366 nvlist_t *attrs; 2367 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); 2368 if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 2369 &pair) != 0) 2370 return (SET_ERROR(EINVAL)); 2371 } 2372 2373 /* 2374 * A correctly constructed propname is encoded as 2375 * userquota@<rid>-<domain>. 2376 */ 2377 if ((dash = strchr(propname, '-')) == NULL || 2378 nvpair_value_uint64_array(pair, &valary, &vallen) != 0 || 2379 vallen != 3) 2380 return (SET_ERROR(EINVAL)); 2381 2382 domain = dash + 1; 2383 type = valary[0]; 2384 rid = valary[1]; 2385 quota = valary[2]; 2386 2387 err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE); 2388 if (err == 0) { 2389 err = zfs_set_userquota(zfsvfs, type, domain, rid, quota); 2390 zfsvfs_rele(zfsvfs, FTAG); 2391 } 2392 2393 return (err); 2394 } 2395 2396 /* 2397 * If the named property is one that has a special function to set its value, 2398 * return 0 on success and a positive error code on failure; otherwise if it is 2399 * not one of the special properties handled by this function, return -1. 2400 * 2401 * XXX: It would be better for callers of the property interface if we handled 2402 * these special cases in dsl_prop.c (in the dsl layer). 2403 */ 2404 static int 2405 zfs_prop_set_special(const char *dsname, zprop_source_t source, 2406 nvpair_t *pair) 2407 { 2408 const char *propname = nvpair_name(pair); 2409 zfs_prop_t prop = zfs_name_to_prop(propname); 2410 uint64_t intval = 0; 2411 const char *strval = NULL; 2412 int err = -1; 2413 2414 if (prop == ZPROP_USERPROP) { 2415 if (zfs_prop_userquota(propname)) 2416 return (zfs_prop_set_userquota(dsname, pair)); 2417 return (-1); 2418 } 2419 2420 if (nvpair_type(pair) == DATA_TYPE_NVLIST) { 2421 nvlist_t *attrs; 2422 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); 2423 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 2424 &pair) == 0); 2425 } 2426 2427 /* all special properties are numeric except for keylocation */ 2428 if (zfs_prop_get_type(prop) == PROP_TYPE_STRING) { 2429 strval = fnvpair_value_string(pair); 2430 } else { 2431 intval = fnvpair_value_uint64(pair); 2432 } 2433 2434 switch (prop) { 2435 case ZFS_PROP_QUOTA: 2436 err = dsl_dir_set_quota(dsname, source, intval); 2437 break; 2438 case ZFS_PROP_REFQUOTA: 2439 err = dsl_dataset_set_refquota(dsname, source, intval); 2440 break; 2441 case ZFS_PROP_FILESYSTEM_LIMIT: 2442 case ZFS_PROP_SNAPSHOT_LIMIT: 2443 if (intval == UINT64_MAX) { 2444 /* clearing the limit, just do it */ 2445 err = 0; 2446 } else { 2447 err = dsl_dir_activate_fs_ss_limit(dsname); 2448 } 2449 /* 2450 * Set err to -1 to force the zfs_set_prop_nvlist code down the 2451 * default path to set the value in the nvlist. 2452 */ 2453 if (err == 0) 2454 err = -1; 2455 break; 2456 case ZFS_PROP_KEYLOCATION: 2457 err = dsl_crypto_can_set_keylocation(dsname, strval); 2458 2459 /* 2460 * Set err to -1 to force the zfs_set_prop_nvlist code down the 2461 * default path to set the value in the nvlist. 2462 */ 2463 if (err == 0) 2464 err = -1; 2465 break; 2466 case ZFS_PROP_RESERVATION: 2467 err = dsl_dir_set_reservation(dsname, source, intval); 2468 break; 2469 case ZFS_PROP_REFRESERVATION: 2470 err = dsl_dataset_set_refreservation(dsname, source, intval); 2471 break; 2472 case ZFS_PROP_COMPRESSION: 2473 err = dsl_dataset_set_compression(dsname, source, intval); 2474 /* 2475 * Set err to -1 to force the zfs_set_prop_nvlist code down the 2476 * default path to set the value in the nvlist. 2477 */ 2478 if (err == 0) 2479 err = -1; 2480 break; 2481 case ZFS_PROP_VOLSIZE: 2482 err = zvol_set_volsize(dsname, intval); 2483 break; 2484 case ZFS_PROP_SNAPDEV: 2485 err = zvol_set_snapdev(dsname, source, intval); 2486 break; 2487 case ZFS_PROP_VOLMODE: 2488 err = zvol_set_volmode(dsname, source, intval); 2489 break; 2490 case ZFS_PROP_VERSION: 2491 { 2492 zfsvfs_t *zfsvfs; 2493 2494 if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0) 2495 break; 2496 2497 err = zfs_set_version(zfsvfs, intval); 2498 zfsvfs_rele(zfsvfs, FTAG); 2499 2500 if (err == 0 && intval >= ZPL_VERSION_USERSPACE) { 2501 zfs_cmd_t *zc; 2502 2503 zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); 2504 (void) strlcpy(zc->zc_name, dsname, 2505 sizeof (zc->zc_name)); 2506 (void) zfs_ioc_userspace_upgrade(zc); 2507 (void) zfs_ioc_id_quota_upgrade(zc); 2508 kmem_free(zc, sizeof (zfs_cmd_t)); 2509 } 2510 break; 2511 } 2512 default: 2513 err = -1; 2514 } 2515 2516 return (err); 2517 } 2518 2519 static boolean_t 2520 zfs_is_namespace_prop(zfs_prop_t prop) 2521 { 2522 switch (prop) { 2523 2524 case ZFS_PROP_ATIME: 2525 case ZFS_PROP_RELATIME: 2526 case ZFS_PROP_DEVICES: 2527 case ZFS_PROP_EXEC: 2528 case ZFS_PROP_SETUID: 2529 case ZFS_PROP_READONLY: 2530 case ZFS_PROP_XATTR: 2531 case ZFS_PROP_NBMAND: 2532 return (B_TRUE); 2533 2534 default: 2535 return (B_FALSE); 2536 } 2537 } 2538 2539 /* 2540 * This function is best effort. If it fails to set any of the given properties, 2541 * it continues to set as many as it can and returns the last error 2542 * encountered. If the caller provides a non-NULL errlist, it will be filled in 2543 * with the list of names of all the properties that failed along with the 2544 * corresponding error numbers. 2545 * 2546 * If every property is set successfully, zero is returned and errlist is not 2547 * modified. 2548 */ 2549 int 2550 zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl, 2551 nvlist_t *errlist) 2552 { 2553 nvpair_t *pair; 2554 nvpair_t *propval; 2555 int rv = 0; 2556 int err; 2557 uint64_t intval; 2558 const char *strval; 2559 boolean_t should_update_mount_cache = B_FALSE; 2560 2561 nvlist_t *genericnvl = fnvlist_alloc(); 2562 nvlist_t *retrynvl = fnvlist_alloc(); 2563 retry: 2564 pair = NULL; 2565 while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { 2566 const char *propname = nvpair_name(pair); 2567 zfs_prop_t prop = zfs_name_to_prop(propname); 2568 err = 0; 2569 2570 /* decode the property value */ 2571 propval = pair; 2572 if (nvpair_type(pair) == DATA_TYPE_NVLIST) { 2573 nvlist_t *attrs; 2574 attrs = fnvpair_value_nvlist(pair); 2575 if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 2576 &propval) != 0) 2577 err = SET_ERROR(EINVAL); 2578 } 2579 2580 /* Validate value type */ 2581 if (err == 0 && source == ZPROP_SRC_INHERITED) { 2582 /* inherited properties are expected to be booleans */ 2583 if (nvpair_type(propval) != DATA_TYPE_BOOLEAN) 2584 err = SET_ERROR(EINVAL); 2585 } else if (err == 0 && prop == ZPROP_USERPROP) { 2586 if (zfs_prop_user(propname)) { 2587 if (nvpair_type(propval) != DATA_TYPE_STRING) 2588 err = SET_ERROR(EINVAL); 2589 } else if (zfs_prop_userquota(propname)) { 2590 if (nvpair_type(propval) != 2591 DATA_TYPE_UINT64_ARRAY) 2592 err = SET_ERROR(EINVAL); 2593 } else { 2594 err = SET_ERROR(EINVAL); 2595 } 2596 } else if (err == 0) { 2597 if (nvpair_type(propval) == DATA_TYPE_STRING) { 2598 if (zfs_prop_get_type(prop) != PROP_TYPE_STRING) 2599 err = SET_ERROR(EINVAL); 2600 } else if (nvpair_type(propval) == DATA_TYPE_UINT64) { 2601 const char *unused; 2602 2603 intval = fnvpair_value_uint64(propval); 2604 2605 switch (zfs_prop_get_type(prop)) { 2606 case PROP_TYPE_NUMBER: 2607 break; 2608 case PROP_TYPE_STRING: 2609 err = SET_ERROR(EINVAL); 2610 break; 2611 case PROP_TYPE_INDEX: 2612 if (zfs_prop_index_to_string(prop, 2613 intval, &unused) != 0) 2614 err = 2615 SET_ERROR(ZFS_ERR_BADPROP); 2616 break; 2617 default: 2618 cmn_err(CE_PANIC, 2619 "unknown property type"); 2620 } 2621 } else { 2622 err = SET_ERROR(EINVAL); 2623 } 2624 } 2625 2626 /* Validate permissions */ 2627 if (err == 0) 2628 err = zfs_check_settable(dsname, pair, CRED()); 2629 2630 if (err == 0) { 2631 if (source == ZPROP_SRC_INHERITED) 2632 err = -1; /* does not need special handling */ 2633 else 2634 err = zfs_prop_set_special(dsname, source, 2635 pair); 2636 if (err == -1) { 2637 /* 2638 * For better performance we build up a list of 2639 * properties to set in a single transaction. 2640 */ 2641 err = nvlist_add_nvpair(genericnvl, pair); 2642 } else if (err != 0 && nvl != retrynvl) { 2643 /* 2644 * This may be a spurious error caused by 2645 * receiving quota and reservation out of order. 2646 * Try again in a second pass. 2647 */ 2648 err = nvlist_add_nvpair(retrynvl, pair); 2649 } 2650 } 2651 2652 if (err != 0) { 2653 if (errlist != NULL) 2654 fnvlist_add_int32(errlist, propname, err); 2655 rv = err; 2656 } 2657 2658 if (zfs_is_namespace_prop(prop)) 2659 should_update_mount_cache = B_TRUE; 2660 } 2661 2662 if (nvl != retrynvl && !nvlist_empty(retrynvl)) { 2663 nvl = retrynvl; 2664 goto retry; 2665 } 2666 2667 if (nvlist_empty(genericnvl)) 2668 goto out; 2669 2670 /* 2671 * Try to set them all in one batch. 2672 */ 2673 err = dsl_props_set(dsname, source, genericnvl); 2674 if (err == 0) 2675 goto out; 2676 2677 /* 2678 * If batching fails, we still want to set as many properties as we 2679 * can, so try setting them individually. 2680 */ 2681 pair = NULL; 2682 while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) { 2683 const char *propname = nvpair_name(pair); 2684 2685 propval = pair; 2686 if (nvpair_type(pair) == DATA_TYPE_NVLIST) { 2687 nvlist_t *attrs; 2688 attrs = fnvpair_value_nvlist(pair); 2689 propval = fnvlist_lookup_nvpair(attrs, ZPROP_VALUE); 2690 } 2691 2692 if (nvpair_type(propval) == DATA_TYPE_STRING) { 2693 strval = fnvpair_value_string(propval); 2694 err = dsl_prop_set_string(dsname, propname, 2695 source, strval); 2696 } else if (nvpair_type(propval) == DATA_TYPE_BOOLEAN) { 2697 err = dsl_prop_inherit(dsname, propname, source); 2698 } else { 2699 intval = fnvpair_value_uint64(propval); 2700 err = dsl_prop_set_int(dsname, propname, source, 2701 intval); 2702 } 2703 2704 if (err != 0) { 2705 if (errlist != NULL) { 2706 fnvlist_add_int32(errlist, propname, err); 2707 } 2708 rv = err; 2709 } 2710 } 2711 2712 out: 2713 if (should_update_mount_cache) 2714 zfs_ioctl_update_mount_cache(dsname); 2715 2716 nvlist_free(genericnvl); 2717 nvlist_free(retrynvl); 2718 2719 return (rv); 2720 } 2721 2722 /* 2723 * Check that all the properties are valid user properties. 2724 */ 2725 static int 2726 zfs_check_userprops(nvlist_t *nvl) 2727 { 2728 nvpair_t *pair = NULL; 2729 2730 while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { 2731 const char *propname = nvpair_name(pair); 2732 2733 if (!zfs_prop_user(propname) || 2734 nvpair_type(pair) != DATA_TYPE_STRING) 2735 return (SET_ERROR(EINVAL)); 2736 2737 if (strlen(propname) >= ZAP_MAXNAMELEN) 2738 return (SET_ERROR(ENAMETOOLONG)); 2739 2740 if (strlen(fnvpair_value_string(pair)) >= ZAP_MAXVALUELEN) 2741 return (SET_ERROR(E2BIG)); 2742 } 2743 return (0); 2744 } 2745 2746 static void 2747 props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops) 2748 { 2749 nvpair_t *pair; 2750 2751 VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2752 2753 pair = NULL; 2754 while ((pair = nvlist_next_nvpair(props, pair)) != NULL) { 2755 if (nvlist_exists(skipped, nvpair_name(pair))) 2756 continue; 2757 2758 VERIFY(nvlist_add_nvpair(*newprops, pair) == 0); 2759 } 2760 } 2761 2762 static int 2763 clear_received_props(const char *dsname, nvlist_t *props, 2764 nvlist_t *skipped) 2765 { 2766 int err = 0; 2767 nvlist_t *cleared_props = NULL; 2768 props_skip(props, skipped, &cleared_props); 2769 if (!nvlist_empty(cleared_props)) { 2770 /* 2771 * Acts on local properties until the dataset has received 2772 * properties at least once on or after SPA_VERSION_RECVD_PROPS. 2773 */ 2774 zprop_source_t flags = (ZPROP_SRC_NONE | 2775 (dsl_prop_get_hasrecvd(dsname) ? ZPROP_SRC_RECEIVED : 0)); 2776 err = zfs_set_prop_nvlist(dsname, flags, cleared_props, NULL); 2777 } 2778 nvlist_free(cleared_props); 2779 return (err); 2780 } 2781 2782 /* 2783 * inputs: 2784 * zc_name name of filesystem 2785 * zc_value name of property to set 2786 * zc_nvlist_src{_size} nvlist of properties to apply 2787 * zc_cookie received properties flag 2788 * 2789 * outputs: 2790 * zc_nvlist_dst{_size} error for each unapplied received property 2791 */ 2792 static int 2793 zfs_ioc_set_prop(zfs_cmd_t *zc) 2794 { 2795 nvlist_t *nvl; 2796 boolean_t received = zc->zc_cookie; 2797 zprop_source_t source = (received ? ZPROP_SRC_RECEIVED : 2798 ZPROP_SRC_LOCAL); 2799 nvlist_t *errors; 2800 int error; 2801 2802 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 2803 zc->zc_iflags, &nvl)) != 0) 2804 return (error); 2805 2806 if (received) { 2807 nvlist_t *origprops; 2808 2809 if (dsl_prop_get_received(zc->zc_name, &origprops) == 0) { 2810 (void) clear_received_props(zc->zc_name, 2811 origprops, nvl); 2812 nvlist_free(origprops); 2813 } 2814 2815 error = dsl_prop_set_hasrecvd(zc->zc_name); 2816 } 2817 2818 errors = fnvlist_alloc(); 2819 if (error == 0) 2820 error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, errors); 2821 2822 if (zc->zc_nvlist_dst != 0 && errors != NULL) { 2823 (void) put_nvlist(zc, errors); 2824 } 2825 2826 nvlist_free(errors); 2827 nvlist_free(nvl); 2828 return (error); 2829 } 2830 2831 /* 2832 * inputs: 2833 * zc_name name of filesystem 2834 * zc_value name of property to inherit 2835 * zc_cookie revert to received value if TRUE 2836 * 2837 * outputs: none 2838 */ 2839 static int 2840 zfs_ioc_inherit_prop(zfs_cmd_t *zc) 2841 { 2842 const char *propname = zc->zc_value; 2843 zfs_prop_t prop = zfs_name_to_prop(propname); 2844 boolean_t received = zc->zc_cookie; 2845 zprop_source_t source = (received 2846 ? ZPROP_SRC_NONE /* revert to received value, if any */ 2847 : ZPROP_SRC_INHERITED); /* explicitly inherit */ 2848 nvlist_t *dummy; 2849 nvpair_t *pair; 2850 zprop_type_t type; 2851 int err; 2852 2853 if (!received) { 2854 /* 2855 * Only check this in the non-received case. We want to allow 2856 * 'inherit -S' to revert non-inheritable properties like quota 2857 * and reservation to the received or default values even though 2858 * they are not considered inheritable. 2859 */ 2860 if (prop != ZPROP_USERPROP && !zfs_prop_inheritable(prop)) 2861 return (SET_ERROR(EINVAL)); 2862 } 2863 2864 if (prop == ZPROP_USERPROP) { 2865 if (!zfs_prop_user(propname)) 2866 return (SET_ERROR(EINVAL)); 2867 2868 type = PROP_TYPE_STRING; 2869 } else if (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION) { 2870 return (SET_ERROR(EINVAL)); 2871 } else { 2872 type = zfs_prop_get_type(prop); 2873 } 2874 2875 /* 2876 * zfs_prop_set_special() expects properties in the form of an 2877 * nvpair with type info. 2878 */ 2879 dummy = fnvlist_alloc(); 2880 2881 switch (type) { 2882 case PROP_TYPE_STRING: 2883 VERIFY(0 == nvlist_add_string(dummy, propname, "")); 2884 break; 2885 case PROP_TYPE_NUMBER: 2886 case PROP_TYPE_INDEX: 2887 VERIFY(0 == nvlist_add_uint64(dummy, propname, 0)); 2888 break; 2889 default: 2890 err = SET_ERROR(EINVAL); 2891 goto errout; 2892 } 2893 2894 pair = nvlist_next_nvpair(dummy, NULL); 2895 if (pair == NULL) { 2896 err = SET_ERROR(EINVAL); 2897 } else { 2898 err = zfs_prop_set_special(zc->zc_name, source, pair); 2899 if (err == -1) /* property is not "special", needs handling */ 2900 err = dsl_prop_inherit(zc->zc_name, zc->zc_value, 2901 source); 2902 } 2903 2904 errout: 2905 nvlist_free(dummy); 2906 return (err); 2907 } 2908 2909 static int 2910 zfs_ioc_pool_set_props(zfs_cmd_t *zc) 2911 { 2912 nvlist_t *props; 2913 spa_t *spa; 2914 int error; 2915 nvpair_t *pair; 2916 2917 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 2918 zc->zc_iflags, &props))) 2919 return (error); 2920 2921 /* 2922 * If the only property is the configfile, then just do a spa_lookup() 2923 * to handle the faulted case. 2924 */ 2925 pair = nvlist_next_nvpair(props, NULL); 2926 if (pair != NULL && strcmp(nvpair_name(pair), 2927 zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 && 2928 nvlist_next_nvpair(props, pair) == NULL) { 2929 mutex_enter(&spa_namespace_lock); 2930 if ((spa = spa_lookup(zc->zc_name)) != NULL) { 2931 spa_configfile_set(spa, props, B_FALSE); 2932 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 2933 } 2934 mutex_exit(&spa_namespace_lock); 2935 if (spa != NULL) { 2936 nvlist_free(props); 2937 return (0); 2938 } 2939 } 2940 2941 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { 2942 nvlist_free(props); 2943 return (error); 2944 } 2945 2946 error = spa_prop_set(spa, props); 2947 2948 nvlist_free(props); 2949 spa_close(spa, FTAG); 2950 2951 return (error); 2952 } 2953 2954 static int 2955 zfs_ioc_pool_get_props(zfs_cmd_t *zc) 2956 { 2957 spa_t *spa; 2958 int error; 2959 nvlist_t *nvp = NULL; 2960 2961 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { 2962 /* 2963 * If the pool is faulted, there may be properties we can still 2964 * get (such as altroot and cachefile), so attempt to get them 2965 * anyway. 2966 */ 2967 mutex_enter(&spa_namespace_lock); 2968 if ((spa = spa_lookup(zc->zc_name)) != NULL) 2969 error = spa_prop_get(spa, &nvp); 2970 mutex_exit(&spa_namespace_lock); 2971 } else { 2972 error = spa_prop_get(spa, &nvp); 2973 spa_close(spa, FTAG); 2974 } 2975 2976 if (error == 0 && zc->zc_nvlist_dst != 0) 2977 error = put_nvlist(zc, nvp); 2978 else 2979 error = SET_ERROR(EFAULT); 2980 2981 nvlist_free(nvp); 2982 return (error); 2983 } 2984 2985 /* 2986 * innvl: { 2987 * "vdevprops_set_vdev" -> guid 2988 * "vdevprops_set_props" -> { prop -> value } 2989 * } 2990 * 2991 * outnvl: propname -> error code (int32) 2992 */ 2993 static const zfs_ioc_key_t zfs_keys_vdev_set_props[] = { 2994 {ZPOOL_VDEV_PROPS_SET_VDEV, DATA_TYPE_UINT64, 0}, 2995 {ZPOOL_VDEV_PROPS_SET_PROPS, DATA_TYPE_NVLIST, 0} 2996 }; 2997 2998 static int 2999 zfs_ioc_vdev_set_props(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 3000 { 3001 spa_t *spa; 3002 int error; 3003 vdev_t *vd; 3004 uint64_t vdev_guid; 3005 3006 /* Early validation */ 3007 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 3008 &vdev_guid) != 0) 3009 return (SET_ERROR(EINVAL)); 3010 3011 if (outnvl == NULL) 3012 return (SET_ERROR(EINVAL)); 3013 3014 if ((error = spa_open(poolname, &spa, FTAG)) != 0) 3015 return (error); 3016 3017 ASSERT(spa_writeable(spa)); 3018 3019 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) { 3020 spa_close(spa, FTAG); 3021 return (SET_ERROR(ENOENT)); 3022 } 3023 3024 error = vdev_prop_set(vd, innvl, outnvl); 3025 3026 spa_close(spa, FTAG); 3027 3028 return (error); 3029 } 3030 3031 /* 3032 * innvl: { 3033 * "vdevprops_get_vdev" -> guid 3034 * (optional) "vdevprops_get_props" -> { propname -> propid } 3035 * } 3036 * 3037 * outnvl: propname -> value 3038 */ 3039 static const zfs_ioc_key_t zfs_keys_vdev_get_props[] = { 3040 {ZPOOL_VDEV_PROPS_GET_VDEV, DATA_TYPE_UINT64, 0}, 3041 {ZPOOL_VDEV_PROPS_GET_PROPS, DATA_TYPE_NVLIST, ZK_OPTIONAL} 3042 }; 3043 3044 static int 3045 zfs_ioc_vdev_get_props(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 3046 { 3047 spa_t *spa; 3048 int error; 3049 vdev_t *vd; 3050 uint64_t vdev_guid; 3051 3052 /* Early validation */ 3053 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 3054 &vdev_guid) != 0) 3055 return (SET_ERROR(EINVAL)); 3056 3057 if (outnvl == NULL) 3058 return (SET_ERROR(EINVAL)); 3059 3060 if ((error = spa_open(poolname, &spa, FTAG)) != 0) 3061 return (error); 3062 3063 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) { 3064 spa_close(spa, FTAG); 3065 return (SET_ERROR(ENOENT)); 3066 } 3067 3068 error = vdev_prop_get(vd, innvl, outnvl); 3069 3070 spa_close(spa, FTAG); 3071 3072 return (error); 3073 } 3074 3075 /* 3076 * inputs: 3077 * zc_name name of filesystem 3078 * zc_nvlist_src{_size} nvlist of delegated permissions 3079 * zc_perm_action allow/unallow flag 3080 * 3081 * outputs: none 3082 */ 3083 static int 3084 zfs_ioc_set_fsacl(zfs_cmd_t *zc) 3085 { 3086 int error; 3087 nvlist_t *fsaclnv = NULL; 3088 3089 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 3090 zc->zc_iflags, &fsaclnv)) != 0) 3091 return (error); 3092 3093 /* 3094 * Verify nvlist is constructed correctly 3095 */ 3096 if (zfs_deleg_verify_nvlist(fsaclnv) != 0) { 3097 nvlist_free(fsaclnv); 3098 return (SET_ERROR(EINVAL)); 3099 } 3100 3101 /* 3102 * If we don't have PRIV_SYS_MOUNT, then validate 3103 * that user is allowed to hand out each permission in 3104 * the nvlist(s) 3105 */ 3106 3107 error = secpolicy_zfs(CRED()); 3108 if (error != 0) { 3109 if (zc->zc_perm_action == B_FALSE) { 3110 error = dsl_deleg_can_allow(zc->zc_name, 3111 fsaclnv, CRED()); 3112 } else { 3113 error = dsl_deleg_can_unallow(zc->zc_name, 3114 fsaclnv, CRED()); 3115 } 3116 } 3117 3118 if (error == 0) 3119 error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action); 3120 3121 nvlist_free(fsaclnv); 3122 return (error); 3123 } 3124 3125 /* 3126 * inputs: 3127 * zc_name name of filesystem 3128 * 3129 * outputs: 3130 * zc_nvlist_src{_size} nvlist of delegated permissions 3131 */ 3132 static int 3133 zfs_ioc_get_fsacl(zfs_cmd_t *zc) 3134 { 3135 nvlist_t *nvp; 3136 int error; 3137 3138 if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) { 3139 error = put_nvlist(zc, nvp); 3140 nvlist_free(nvp); 3141 } 3142 3143 return (error); 3144 } 3145 3146 static void 3147 zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3148 { 3149 zfs_creat_t *zct = arg; 3150 3151 zfs_create_fs(os, cr, zct->zct_zplprops, tx); 3152 } 3153 3154 #define ZFS_PROP_UNDEFINED ((uint64_t)-1) 3155 3156 /* 3157 * inputs: 3158 * os parent objset pointer (NULL if root fs) 3159 * fuids_ok fuids allowed in this version of the spa? 3160 * sa_ok SAs allowed in this version of the spa? 3161 * createprops list of properties requested by creator 3162 * 3163 * outputs: 3164 * zplprops values for the zplprops we attach to the master node object 3165 * is_ci true if requested file system will be purely case-insensitive 3166 * 3167 * Determine the settings for utf8only, normalization and 3168 * casesensitivity. Specific values may have been requested by the 3169 * creator and/or we can inherit values from the parent dataset. If 3170 * the file system is of too early a vintage, a creator can not 3171 * request settings for these properties, even if the requested 3172 * setting is the default value. We don't actually want to create dsl 3173 * properties for these, so remove them from the source nvlist after 3174 * processing. 3175 */ 3176 static int 3177 zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver, 3178 boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops, 3179 nvlist_t *zplprops, boolean_t *is_ci) 3180 { 3181 uint64_t sense = ZFS_PROP_UNDEFINED; 3182 uint64_t norm = ZFS_PROP_UNDEFINED; 3183 uint64_t u8 = ZFS_PROP_UNDEFINED; 3184 int error; 3185 3186 ASSERT(zplprops != NULL); 3187 3188 /* parent dataset must be a filesystem */ 3189 if (os != NULL && os->os_phys->os_type != DMU_OST_ZFS) 3190 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 3191 3192 /* 3193 * Pull out creator prop choices, if any. 3194 */ 3195 if (createprops) { 3196 (void) nvlist_lookup_uint64(createprops, 3197 zfs_prop_to_name(ZFS_PROP_VERSION), &zplver); 3198 (void) nvlist_lookup_uint64(createprops, 3199 zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm); 3200 (void) nvlist_remove_all(createprops, 3201 zfs_prop_to_name(ZFS_PROP_NORMALIZE)); 3202 (void) nvlist_lookup_uint64(createprops, 3203 zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8); 3204 (void) nvlist_remove_all(createprops, 3205 zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); 3206 (void) nvlist_lookup_uint64(createprops, 3207 zfs_prop_to_name(ZFS_PROP_CASE), &sense); 3208 (void) nvlist_remove_all(createprops, 3209 zfs_prop_to_name(ZFS_PROP_CASE)); 3210 } 3211 3212 /* 3213 * If the zpl version requested is whacky or the file system 3214 * or pool is version is too "young" to support normalization 3215 * and the creator tried to set a value for one of the props, 3216 * error out. 3217 */ 3218 if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) || 3219 (zplver >= ZPL_VERSION_FUID && !fuids_ok) || 3220 (zplver >= ZPL_VERSION_SA && !sa_ok) || 3221 (zplver < ZPL_VERSION_NORMALIZATION && 3222 (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED || 3223 sense != ZFS_PROP_UNDEFINED))) 3224 return (SET_ERROR(ENOTSUP)); 3225 3226 /* 3227 * Put the version in the zplprops 3228 */ 3229 VERIFY(nvlist_add_uint64(zplprops, 3230 zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0); 3231 3232 if (norm == ZFS_PROP_UNDEFINED && 3233 (error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm)) != 0) 3234 return (error); 3235 VERIFY(nvlist_add_uint64(zplprops, 3236 zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0); 3237 3238 /* 3239 * If we're normalizing, names must always be valid UTF-8 strings. 3240 */ 3241 if (norm) 3242 u8 = 1; 3243 if (u8 == ZFS_PROP_UNDEFINED && 3244 (error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8)) != 0) 3245 return (error); 3246 VERIFY(nvlist_add_uint64(zplprops, 3247 zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0); 3248 3249 if (sense == ZFS_PROP_UNDEFINED && 3250 (error = zfs_get_zplprop(os, ZFS_PROP_CASE, &sense)) != 0) 3251 return (error); 3252 VERIFY(nvlist_add_uint64(zplprops, 3253 zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0); 3254 3255 if (is_ci) 3256 *is_ci = (sense == ZFS_CASE_INSENSITIVE); 3257 3258 return (0); 3259 } 3260 3261 static int 3262 zfs_fill_zplprops(const char *dataset, nvlist_t *createprops, 3263 nvlist_t *zplprops, boolean_t *is_ci) 3264 { 3265 boolean_t fuids_ok, sa_ok; 3266 uint64_t zplver = ZPL_VERSION; 3267 objset_t *os = NULL; 3268 char parentname[ZFS_MAX_DATASET_NAME_LEN]; 3269 spa_t *spa; 3270 uint64_t spa_vers; 3271 int error; 3272 3273 zfs_get_parent(dataset, parentname, sizeof (parentname)); 3274 3275 if ((error = spa_open(dataset, &spa, FTAG)) != 0) 3276 return (error); 3277 3278 spa_vers = spa_version(spa); 3279 spa_close(spa, FTAG); 3280 3281 zplver = zfs_zpl_version_map(spa_vers); 3282 fuids_ok = (zplver >= ZPL_VERSION_FUID); 3283 sa_ok = (zplver >= ZPL_VERSION_SA); 3284 3285 /* 3286 * Open parent object set so we can inherit zplprop values. 3287 */ 3288 if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0) 3289 return (error); 3290 3291 error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops, 3292 zplprops, is_ci); 3293 dmu_objset_rele(os, FTAG); 3294 return (error); 3295 } 3296 3297 static int 3298 zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops, 3299 nvlist_t *zplprops, boolean_t *is_ci) 3300 { 3301 boolean_t fuids_ok; 3302 boolean_t sa_ok; 3303 uint64_t zplver = ZPL_VERSION; 3304 int error; 3305 3306 zplver = zfs_zpl_version_map(spa_vers); 3307 fuids_ok = (zplver >= ZPL_VERSION_FUID); 3308 sa_ok = (zplver >= ZPL_VERSION_SA); 3309 3310 error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok, 3311 createprops, zplprops, is_ci); 3312 return (error); 3313 } 3314 3315 /* 3316 * innvl: { 3317 * "type" -> dmu_objset_type_t (int32) 3318 * (optional) "props" -> { prop -> value } 3319 * (optional) "hidden_args" -> { "wkeydata" -> value } 3320 * raw uint8_t array of encryption wrapping key data (32 bytes) 3321 * } 3322 * 3323 * outnvl: propname -> error code (int32) 3324 */ 3325 3326 static const zfs_ioc_key_t zfs_keys_create[] = { 3327 {"type", DATA_TYPE_INT32, 0}, 3328 {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 3329 {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 3330 }; 3331 3332 static int 3333 zfs_ioc_create(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 3334 { 3335 int error = 0; 3336 zfs_creat_t zct = { 0 }; 3337 nvlist_t *nvprops = NULL; 3338 nvlist_t *hidden_args = NULL; 3339 void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); 3340 dmu_objset_type_t type; 3341 boolean_t is_insensitive = B_FALSE; 3342 dsl_crypto_params_t *dcp = NULL; 3343 3344 type = (dmu_objset_type_t)fnvlist_lookup_int32(innvl, "type"); 3345 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); 3346 (void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); 3347 3348 switch (type) { 3349 case DMU_OST_ZFS: 3350 cbfunc = zfs_create_cb; 3351 break; 3352 3353 case DMU_OST_ZVOL: 3354 cbfunc = zvol_create_cb; 3355 break; 3356 3357 default: 3358 cbfunc = NULL; 3359 break; 3360 } 3361 if (strchr(fsname, '@') || 3362 strchr(fsname, '%')) 3363 return (SET_ERROR(EINVAL)); 3364 3365 zct.zct_props = nvprops; 3366 3367 if (cbfunc == NULL) 3368 return (SET_ERROR(EINVAL)); 3369 3370 if (type == DMU_OST_ZVOL) { 3371 uint64_t volsize, volblocksize; 3372 3373 if (nvprops == NULL) 3374 return (SET_ERROR(EINVAL)); 3375 if (nvlist_lookup_uint64(nvprops, 3376 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0) 3377 return (SET_ERROR(EINVAL)); 3378 3379 if ((error = nvlist_lookup_uint64(nvprops, 3380 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 3381 &volblocksize)) != 0 && error != ENOENT) 3382 return (SET_ERROR(EINVAL)); 3383 3384 if (error != 0) 3385 volblocksize = zfs_prop_default_numeric( 3386 ZFS_PROP_VOLBLOCKSIZE); 3387 3388 if ((error = zvol_check_volblocksize(fsname, 3389 volblocksize)) != 0 || 3390 (error = zvol_check_volsize(volsize, 3391 volblocksize)) != 0) 3392 return (error); 3393 } else if (type == DMU_OST_ZFS) { 3394 int error; 3395 3396 /* 3397 * We have to have normalization and 3398 * case-folding flags correct when we do the 3399 * file system creation, so go figure them out 3400 * now. 3401 */ 3402 VERIFY(nvlist_alloc(&zct.zct_zplprops, 3403 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3404 error = zfs_fill_zplprops(fsname, nvprops, 3405 zct.zct_zplprops, &is_insensitive); 3406 if (error != 0) { 3407 nvlist_free(zct.zct_zplprops); 3408 return (error); 3409 } 3410 } 3411 3412 error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, nvprops, 3413 hidden_args, &dcp); 3414 if (error != 0) { 3415 nvlist_free(zct.zct_zplprops); 3416 return (error); 3417 } 3418 3419 error = dmu_objset_create(fsname, type, 3420 is_insensitive ? DS_FLAG_CI_DATASET : 0, dcp, cbfunc, &zct); 3421 3422 nvlist_free(zct.zct_zplprops); 3423 dsl_crypto_params_free(dcp, !!error); 3424 3425 /* 3426 * It would be nice to do this atomically. 3427 */ 3428 if (error == 0) { 3429 error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, 3430 nvprops, outnvl); 3431 if (error != 0) { 3432 spa_t *spa; 3433 int error2; 3434 3435 /* 3436 * Volumes will return EBUSY and cannot be destroyed 3437 * until all asynchronous minor handling (e.g. from 3438 * setting the volmode property) has completed. Wait for 3439 * the spa_zvol_taskq to drain then retry. 3440 */ 3441 error2 = dsl_destroy_head(fsname); 3442 while ((error2 == EBUSY) && (type == DMU_OST_ZVOL)) { 3443 error2 = spa_open(fsname, &spa, FTAG); 3444 if (error2 == 0) { 3445 taskq_wait(spa->spa_zvol_taskq); 3446 spa_close(spa, FTAG); 3447 } 3448 error2 = dsl_destroy_head(fsname); 3449 } 3450 } 3451 } 3452 return (error); 3453 } 3454 3455 /* 3456 * innvl: { 3457 * "origin" -> name of origin snapshot 3458 * (optional) "props" -> { prop -> value } 3459 * (optional) "hidden_args" -> { "wkeydata" -> value } 3460 * raw uint8_t array of encryption wrapping key data (32 bytes) 3461 * } 3462 * 3463 * outputs: 3464 * outnvl: propname -> error code (int32) 3465 */ 3466 static const zfs_ioc_key_t zfs_keys_clone[] = { 3467 {"origin", DATA_TYPE_STRING, 0}, 3468 {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 3469 {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 3470 }; 3471 3472 static int 3473 zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 3474 { 3475 int error = 0; 3476 nvlist_t *nvprops = NULL; 3477 const char *origin_name; 3478 3479 origin_name = fnvlist_lookup_string(innvl, "origin"); 3480 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); 3481 3482 if (strchr(fsname, '@') || 3483 strchr(fsname, '%')) 3484 return (SET_ERROR(EINVAL)); 3485 3486 if (dataset_namecheck(origin_name, NULL, NULL) != 0) 3487 return (SET_ERROR(EINVAL)); 3488 3489 error = dmu_objset_clone(fsname, origin_name); 3490 3491 /* 3492 * It would be nice to do this atomically. 3493 */ 3494 if (error == 0) { 3495 error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, 3496 nvprops, outnvl); 3497 if (error != 0) 3498 (void) dsl_destroy_head(fsname); 3499 } 3500 return (error); 3501 } 3502 3503 static const zfs_ioc_key_t zfs_keys_remap[] = { 3504 /* no nvl keys */ 3505 }; 3506 3507 static int 3508 zfs_ioc_remap(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 3509 { 3510 /* This IOCTL is no longer supported. */ 3511 (void) fsname, (void) innvl, (void) outnvl; 3512 return (0); 3513 } 3514 3515 /* 3516 * innvl: { 3517 * "snaps" -> { snapshot1, snapshot2 } 3518 * (optional) "props" -> { prop -> value (string) } 3519 * } 3520 * 3521 * outnvl: snapshot -> error code (int32) 3522 */ 3523 static const zfs_ioc_key_t zfs_keys_snapshot[] = { 3524 {"snaps", DATA_TYPE_NVLIST, 0}, 3525 {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 3526 }; 3527 3528 static int 3529 zfs_ioc_snapshot(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 3530 { 3531 nvlist_t *snaps; 3532 nvlist_t *props = NULL; 3533 int error, poollen; 3534 nvpair_t *pair; 3535 3536 (void) nvlist_lookup_nvlist(innvl, "props", &props); 3537 if (!nvlist_empty(props) && 3538 zfs_earlier_version(poolname, SPA_VERSION_SNAP_PROPS)) 3539 return (SET_ERROR(ENOTSUP)); 3540 if ((error = zfs_check_userprops(props)) != 0) 3541 return (error); 3542 3543 snaps = fnvlist_lookup_nvlist(innvl, "snaps"); 3544 poollen = strlen(poolname); 3545 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; 3546 pair = nvlist_next_nvpair(snaps, pair)) { 3547 const char *name = nvpair_name(pair); 3548 char *cp = strchr(name, '@'); 3549 3550 /* 3551 * The snap name must contain an @, and the part after it must 3552 * contain only valid characters. 3553 */ 3554 if (cp == NULL || 3555 zfs_component_namecheck(cp + 1, NULL, NULL) != 0) 3556 return (SET_ERROR(EINVAL)); 3557 3558 /* 3559 * The snap must be in the specified pool. 3560 */ 3561 if (strncmp(name, poolname, poollen) != 0 || 3562 (name[poollen] != '/' && name[poollen] != '@')) 3563 return (SET_ERROR(EXDEV)); 3564 3565 /* 3566 * Check for permission to set the properties on the fs. 3567 */ 3568 if (!nvlist_empty(props)) { 3569 *cp = '\0'; 3570 error = zfs_secpolicy_write_perms(name, 3571 ZFS_DELEG_PERM_USERPROP, CRED()); 3572 *cp = '@'; 3573 if (error != 0) 3574 return (error); 3575 } 3576 3577 /* This must be the only snap of this fs. */ 3578 for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair); 3579 pair2 != NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) { 3580 if (strncmp(name, nvpair_name(pair2), cp - name + 1) 3581 == 0) { 3582 return (SET_ERROR(EXDEV)); 3583 } 3584 } 3585 } 3586 3587 error = dsl_dataset_snapshot(snaps, props, outnvl); 3588 3589 return (error); 3590 } 3591 3592 /* 3593 * innvl: "message" -> string 3594 */ 3595 static const zfs_ioc_key_t zfs_keys_log_history[] = { 3596 {"message", DATA_TYPE_STRING, 0}, 3597 }; 3598 3599 static int 3600 zfs_ioc_log_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl) 3601 { 3602 (void) unused, (void) outnvl; 3603 const char *message; 3604 char *poolname; 3605 spa_t *spa; 3606 int error; 3607 3608 /* 3609 * The poolname in the ioctl is not set, we get it from the TSD, 3610 * which was set at the end of the last successful ioctl that allows 3611 * logging. The secpolicy func already checked that it is set. 3612 * Only one log ioctl is allowed after each successful ioctl, so 3613 * we clear the TSD here. 3614 */ 3615 poolname = tsd_get(zfs_allow_log_key); 3616 if (poolname == NULL) 3617 return (SET_ERROR(EINVAL)); 3618 (void) tsd_set(zfs_allow_log_key, NULL); 3619 error = spa_open(poolname, &spa, FTAG); 3620 kmem_strfree(poolname); 3621 if (error != 0) 3622 return (error); 3623 3624 message = fnvlist_lookup_string(innvl, "message"); 3625 3626 if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { 3627 spa_close(spa, FTAG); 3628 return (SET_ERROR(ENOTSUP)); 3629 } 3630 3631 error = spa_history_log(spa, message); 3632 spa_close(spa, FTAG); 3633 return (error); 3634 } 3635 3636 /* 3637 * This ioctl is used to set the bootenv configuration on the current 3638 * pool. This configuration is stored in the second padding area of the label, 3639 * and it is used by the bootloader(s) to store the bootloader and/or system 3640 * specific data. 3641 * The data is stored as nvlist data stream, and is protected by 3642 * an embedded checksum. 3643 * The version can have two possible values: 3644 * VB_RAW: nvlist should have key GRUB_ENVMAP, value DATA_TYPE_STRING. 3645 * VB_NVLIST: nvlist with arbitrary <key, value> pairs. 3646 */ 3647 static const zfs_ioc_key_t zfs_keys_set_bootenv[] = { 3648 {"version", DATA_TYPE_UINT64, 0}, 3649 {"<keys>", DATA_TYPE_ANY, ZK_OPTIONAL | ZK_WILDCARDLIST}, 3650 }; 3651 3652 static int 3653 zfs_ioc_set_bootenv(const char *name, nvlist_t *innvl, nvlist_t *outnvl) 3654 { 3655 int error; 3656 spa_t *spa; 3657 3658 if ((error = spa_open(name, &spa, FTAG)) != 0) 3659 return (error); 3660 spa_vdev_state_enter(spa, SCL_ALL); 3661 error = vdev_label_write_bootenv(spa->spa_root_vdev, innvl); 3662 (void) spa_vdev_state_exit(spa, NULL, 0); 3663 spa_close(spa, FTAG); 3664 return (error); 3665 } 3666 3667 static const zfs_ioc_key_t zfs_keys_get_bootenv[] = { 3668 /* no nvl keys */ 3669 }; 3670 3671 static int 3672 zfs_ioc_get_bootenv(const char *name, nvlist_t *innvl, nvlist_t *outnvl) 3673 { 3674 spa_t *spa; 3675 int error; 3676 3677 if ((error = spa_open(name, &spa, FTAG)) != 0) 3678 return (error); 3679 spa_vdev_state_enter(spa, SCL_ALL); 3680 error = vdev_label_read_bootenv(spa->spa_root_vdev, outnvl); 3681 (void) spa_vdev_state_exit(spa, NULL, 0); 3682 spa_close(spa, FTAG); 3683 return (error); 3684 } 3685 3686 /* 3687 * The dp_config_rwlock must not be held when calling this, because the 3688 * unmount may need to write out data. 3689 * 3690 * This function is best-effort. Callers must deal gracefully if it 3691 * remains mounted (or is remounted after this call). 3692 * 3693 * Returns 0 if the argument is not a snapshot, or it is not currently a 3694 * filesystem, or we were able to unmount it. Returns error code otherwise. 3695 */ 3696 void 3697 zfs_unmount_snap(const char *snapname) 3698 { 3699 if (strchr(snapname, '@') == NULL) 3700 return; 3701 3702 (void) zfsctl_snapshot_unmount(snapname, MNT_FORCE); 3703 } 3704 3705 static int 3706 zfs_unmount_snap_cb(const char *snapname, void *arg) 3707 { 3708 (void) arg; 3709 zfs_unmount_snap(snapname); 3710 return (0); 3711 } 3712 3713 /* 3714 * When a clone is destroyed, its origin may also need to be destroyed, 3715 * in which case it must be unmounted. This routine will do that unmount 3716 * if necessary. 3717 */ 3718 void 3719 zfs_destroy_unmount_origin(const char *fsname) 3720 { 3721 int error; 3722 objset_t *os; 3723 dsl_dataset_t *ds; 3724 3725 error = dmu_objset_hold(fsname, FTAG, &os); 3726 if (error != 0) 3727 return; 3728 ds = dmu_objset_ds(os); 3729 if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev)) { 3730 char originname[ZFS_MAX_DATASET_NAME_LEN]; 3731 dsl_dataset_name(ds->ds_prev, originname); 3732 dmu_objset_rele(os, FTAG); 3733 zfs_unmount_snap(originname); 3734 } else { 3735 dmu_objset_rele(os, FTAG); 3736 } 3737 } 3738 3739 /* 3740 * innvl: { 3741 * "snaps" -> { snapshot1, snapshot2 } 3742 * (optional boolean) "defer" 3743 * } 3744 * 3745 * outnvl: snapshot -> error code (int32) 3746 */ 3747 static const zfs_ioc_key_t zfs_keys_destroy_snaps[] = { 3748 {"snaps", DATA_TYPE_NVLIST, 0}, 3749 {"defer", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 3750 }; 3751 3752 static int 3753 zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 3754 { 3755 int poollen; 3756 nvlist_t *snaps; 3757 nvpair_t *pair; 3758 boolean_t defer; 3759 spa_t *spa; 3760 3761 snaps = fnvlist_lookup_nvlist(innvl, "snaps"); 3762 defer = nvlist_exists(innvl, "defer"); 3763 3764 poollen = strlen(poolname); 3765 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; 3766 pair = nvlist_next_nvpair(snaps, pair)) { 3767 const char *name = nvpair_name(pair); 3768 3769 /* 3770 * The snap must be in the specified pool to prevent the 3771 * invalid removal of zvol minors below. 3772 */ 3773 if (strncmp(name, poolname, poollen) != 0 || 3774 (name[poollen] != '/' && name[poollen] != '@')) 3775 return (SET_ERROR(EXDEV)); 3776 3777 zfs_unmount_snap(nvpair_name(pair)); 3778 if (spa_open(name, &spa, FTAG) == 0) { 3779 zvol_remove_minors(spa, name, B_TRUE); 3780 spa_close(spa, FTAG); 3781 } 3782 } 3783 3784 return (dsl_destroy_snapshots_nvl(snaps, defer, outnvl)); 3785 } 3786 3787 /* 3788 * Create bookmarks. The bookmark names are of the form <fs>#<bmark>. 3789 * All bookmarks and snapshots must be in the same pool. 3790 * dsl_bookmark_create_nvl_validate describes the nvlist schema in more detail. 3791 * 3792 * innvl: { 3793 * new_bookmark1 -> existing_snapshot, 3794 * new_bookmark2 -> existing_bookmark, 3795 * } 3796 * 3797 * outnvl: bookmark -> error code (int32) 3798 * 3799 */ 3800 static const zfs_ioc_key_t zfs_keys_bookmark[] = { 3801 {"<bookmark>...", DATA_TYPE_STRING, ZK_WILDCARDLIST}, 3802 }; 3803 3804 static int 3805 zfs_ioc_bookmark(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 3806 { 3807 (void) poolname; 3808 return (dsl_bookmark_create(innvl, outnvl)); 3809 } 3810 3811 /* 3812 * innvl: { 3813 * property 1, property 2, ... 3814 * } 3815 * 3816 * outnvl: { 3817 * bookmark name 1 -> { property 1, property 2, ... }, 3818 * bookmark name 2 -> { property 1, property 2, ... } 3819 * } 3820 * 3821 */ 3822 static const zfs_ioc_key_t zfs_keys_get_bookmarks[] = { 3823 {"<property>...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST | ZK_OPTIONAL}, 3824 }; 3825 3826 static int 3827 zfs_ioc_get_bookmarks(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 3828 { 3829 return (dsl_get_bookmarks(fsname, innvl, outnvl)); 3830 } 3831 3832 /* 3833 * innvl is not used. 3834 * 3835 * outnvl: { 3836 * property 1, property 2, ... 3837 * } 3838 * 3839 */ 3840 static const zfs_ioc_key_t zfs_keys_get_bookmark_props[] = { 3841 /* no nvl keys */ 3842 }; 3843 3844 static int 3845 zfs_ioc_get_bookmark_props(const char *bookmark, nvlist_t *innvl, 3846 nvlist_t *outnvl) 3847 { 3848 (void) innvl; 3849 char fsname[ZFS_MAX_DATASET_NAME_LEN]; 3850 char *bmname; 3851 3852 bmname = strchr(bookmark, '#'); 3853 if (bmname == NULL) 3854 return (SET_ERROR(EINVAL)); 3855 bmname++; 3856 3857 (void) strlcpy(fsname, bookmark, sizeof (fsname)); 3858 *(strchr(fsname, '#')) = '\0'; 3859 3860 return (dsl_get_bookmark_props(fsname, bmname, outnvl)); 3861 } 3862 3863 /* 3864 * innvl: { 3865 * bookmark name 1, bookmark name 2 3866 * } 3867 * 3868 * outnvl: bookmark -> error code (int32) 3869 * 3870 */ 3871 static const zfs_ioc_key_t zfs_keys_destroy_bookmarks[] = { 3872 {"<bookmark>...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST}, 3873 }; 3874 3875 static int 3876 zfs_ioc_destroy_bookmarks(const char *poolname, nvlist_t *innvl, 3877 nvlist_t *outnvl) 3878 { 3879 int error, poollen; 3880 3881 poollen = strlen(poolname); 3882 for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); 3883 pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { 3884 const char *name = nvpair_name(pair); 3885 const char *cp = strchr(name, '#'); 3886 3887 /* 3888 * The bookmark name must contain an #, and the part after it 3889 * must contain only valid characters. 3890 */ 3891 if (cp == NULL || 3892 zfs_component_namecheck(cp + 1, NULL, NULL) != 0) 3893 return (SET_ERROR(EINVAL)); 3894 3895 /* 3896 * The bookmark must be in the specified pool. 3897 */ 3898 if (strncmp(name, poolname, poollen) != 0 || 3899 (name[poollen] != '/' && name[poollen] != '#')) 3900 return (SET_ERROR(EXDEV)); 3901 } 3902 3903 error = dsl_bookmark_destroy(innvl, outnvl); 3904 return (error); 3905 } 3906 3907 static const zfs_ioc_key_t zfs_keys_channel_program[] = { 3908 {"program", DATA_TYPE_STRING, 0}, 3909 {"arg", DATA_TYPE_ANY, 0}, 3910 {"sync", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, 3911 {"instrlimit", DATA_TYPE_UINT64, ZK_OPTIONAL}, 3912 {"memlimit", DATA_TYPE_UINT64, ZK_OPTIONAL}, 3913 }; 3914 3915 static int 3916 zfs_ioc_channel_program(const char *poolname, nvlist_t *innvl, 3917 nvlist_t *outnvl) 3918 { 3919 char *program; 3920 uint64_t instrlimit, memlimit; 3921 boolean_t sync_flag; 3922 nvpair_t *nvarg = NULL; 3923 3924 program = fnvlist_lookup_string(innvl, ZCP_ARG_PROGRAM); 3925 if (0 != nvlist_lookup_boolean_value(innvl, ZCP_ARG_SYNC, &sync_flag)) { 3926 sync_flag = B_TRUE; 3927 } 3928 if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_INSTRLIMIT, &instrlimit)) { 3929 instrlimit = ZCP_DEFAULT_INSTRLIMIT; 3930 } 3931 if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_MEMLIMIT, &memlimit)) { 3932 memlimit = ZCP_DEFAULT_MEMLIMIT; 3933 } 3934 nvarg = fnvlist_lookup_nvpair(innvl, ZCP_ARG_ARGLIST); 3935 3936 if (instrlimit == 0 || instrlimit > zfs_lua_max_instrlimit) 3937 return (SET_ERROR(EINVAL)); 3938 if (memlimit == 0 || memlimit > zfs_lua_max_memlimit) 3939 return (SET_ERROR(EINVAL)); 3940 3941 return (zcp_eval(poolname, program, sync_flag, instrlimit, memlimit, 3942 nvarg, outnvl)); 3943 } 3944 3945 /* 3946 * innvl: unused 3947 * outnvl: empty 3948 */ 3949 static const zfs_ioc_key_t zfs_keys_pool_checkpoint[] = { 3950 /* no nvl keys */ 3951 }; 3952 3953 static int 3954 zfs_ioc_pool_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 3955 { 3956 (void) innvl, (void) outnvl; 3957 return (spa_checkpoint(poolname)); 3958 } 3959 3960 /* 3961 * innvl: unused 3962 * outnvl: empty 3963 */ 3964 static const zfs_ioc_key_t zfs_keys_pool_discard_checkpoint[] = { 3965 /* no nvl keys */ 3966 }; 3967 3968 static int 3969 zfs_ioc_pool_discard_checkpoint(const char *poolname, nvlist_t *innvl, 3970 nvlist_t *outnvl) 3971 { 3972 (void) innvl, (void) outnvl; 3973 return (spa_checkpoint_discard(poolname)); 3974 } 3975 3976 /* 3977 * inputs: 3978 * zc_name name of dataset to destroy 3979 * zc_defer_destroy mark for deferred destroy 3980 * 3981 * outputs: none 3982 */ 3983 static int 3984 zfs_ioc_destroy(zfs_cmd_t *zc) 3985 { 3986 objset_t *os; 3987 dmu_objset_type_t ost; 3988 int err; 3989 3990 err = dmu_objset_hold(zc->zc_name, FTAG, &os); 3991 if (err != 0) 3992 return (err); 3993 ost = dmu_objset_type(os); 3994 dmu_objset_rele(os, FTAG); 3995 3996 if (ost == DMU_OST_ZFS) 3997 zfs_unmount_snap(zc->zc_name); 3998 3999 if (strchr(zc->zc_name, '@')) { 4000 err = dsl_destroy_snapshot(zc->zc_name, zc->zc_defer_destroy); 4001 } else { 4002 err = dsl_destroy_head(zc->zc_name); 4003 if (err == EEXIST) { 4004 /* 4005 * It is possible that the given DS may have 4006 * hidden child (%recv) datasets - "leftovers" 4007 * resulting from the previously interrupted 4008 * 'zfs receive'. 4009 * 4010 * 6 extra bytes for /%recv 4011 */ 4012 char namebuf[ZFS_MAX_DATASET_NAME_LEN + 6]; 4013 4014 if (snprintf(namebuf, sizeof (namebuf), "%s/%s", 4015 zc->zc_name, recv_clone_name) >= 4016 sizeof (namebuf)) 4017 return (SET_ERROR(EINVAL)); 4018 4019 /* 4020 * Try to remove the hidden child (%recv) and after 4021 * that try to remove the target dataset. 4022 * If the hidden child (%recv) does not exist 4023 * the original error (EEXIST) will be returned 4024 */ 4025 err = dsl_destroy_head(namebuf); 4026 if (err == 0) 4027 err = dsl_destroy_head(zc->zc_name); 4028 else if (err == ENOENT) 4029 err = SET_ERROR(EEXIST); 4030 } 4031 } 4032 4033 return (err); 4034 } 4035 4036 /* 4037 * innvl: { 4038 * "initialize_command" -> POOL_INITIALIZE_{CANCEL|START|SUSPEND} (uint64) 4039 * "initialize_vdevs": { -> guids to initialize (nvlist) 4040 * "vdev_path_1": vdev_guid_1, (uint64), 4041 * "vdev_path_2": vdev_guid_2, (uint64), 4042 * ... 4043 * }, 4044 * } 4045 * 4046 * outnvl: { 4047 * "initialize_vdevs": { -> initialization errors (nvlist) 4048 * "vdev_path_1": errno, see function body for possible errnos (uint64) 4049 * "vdev_path_2": errno, ... (uint64) 4050 * ... 4051 * } 4052 * } 4053 * 4054 * EINVAL is returned for an unknown commands or if any of the provided vdev 4055 * guids have be specified with a type other than uint64. 4056 */ 4057 static const zfs_ioc_key_t zfs_keys_pool_initialize[] = { 4058 {ZPOOL_INITIALIZE_COMMAND, DATA_TYPE_UINT64, 0}, 4059 {ZPOOL_INITIALIZE_VDEVS, DATA_TYPE_NVLIST, 0} 4060 }; 4061 4062 static int 4063 zfs_ioc_pool_initialize(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 4064 { 4065 uint64_t cmd_type; 4066 if (nvlist_lookup_uint64(innvl, ZPOOL_INITIALIZE_COMMAND, 4067 &cmd_type) != 0) { 4068 return (SET_ERROR(EINVAL)); 4069 } 4070 4071 if (!(cmd_type == POOL_INITIALIZE_CANCEL || 4072 cmd_type == POOL_INITIALIZE_START || 4073 cmd_type == POOL_INITIALIZE_SUSPEND)) { 4074 return (SET_ERROR(EINVAL)); 4075 } 4076 4077 nvlist_t *vdev_guids; 4078 if (nvlist_lookup_nvlist(innvl, ZPOOL_INITIALIZE_VDEVS, 4079 &vdev_guids) != 0) { 4080 return (SET_ERROR(EINVAL)); 4081 } 4082 4083 for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL); 4084 pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) { 4085 uint64_t vdev_guid; 4086 if (nvpair_value_uint64(pair, &vdev_guid) != 0) { 4087 return (SET_ERROR(EINVAL)); 4088 } 4089 } 4090 4091 spa_t *spa; 4092 int error = spa_open(poolname, &spa, FTAG); 4093 if (error != 0) 4094 return (error); 4095 4096 nvlist_t *vdev_errlist = fnvlist_alloc(); 4097 int total_errors = spa_vdev_initialize(spa, vdev_guids, cmd_type, 4098 vdev_errlist); 4099 4100 if (fnvlist_size(vdev_errlist) > 0) { 4101 fnvlist_add_nvlist(outnvl, ZPOOL_INITIALIZE_VDEVS, 4102 vdev_errlist); 4103 } 4104 fnvlist_free(vdev_errlist); 4105 4106 spa_close(spa, FTAG); 4107 return (total_errors > 0 ? SET_ERROR(EINVAL) : 0); 4108 } 4109 4110 /* 4111 * innvl: { 4112 * "trim_command" -> POOL_TRIM_{CANCEL|START|SUSPEND} (uint64) 4113 * "trim_vdevs": { -> guids to TRIM (nvlist) 4114 * "vdev_path_1": vdev_guid_1, (uint64), 4115 * "vdev_path_2": vdev_guid_2, (uint64), 4116 * ... 4117 * }, 4118 * "trim_rate" -> Target TRIM rate in bytes/sec. 4119 * "trim_secure" -> Set to request a secure TRIM. 4120 * } 4121 * 4122 * outnvl: { 4123 * "trim_vdevs": { -> TRIM errors (nvlist) 4124 * "vdev_path_1": errno, see function body for possible errnos (uint64) 4125 * "vdev_path_2": errno, ... (uint64) 4126 * ... 4127 * } 4128 * } 4129 * 4130 * EINVAL is returned for an unknown commands or if any of the provided vdev 4131 * guids have be specified with a type other than uint64. 4132 */ 4133 static const zfs_ioc_key_t zfs_keys_pool_trim[] = { 4134 {ZPOOL_TRIM_COMMAND, DATA_TYPE_UINT64, 0}, 4135 {ZPOOL_TRIM_VDEVS, DATA_TYPE_NVLIST, 0}, 4136 {ZPOOL_TRIM_RATE, DATA_TYPE_UINT64, ZK_OPTIONAL}, 4137 {ZPOOL_TRIM_SECURE, DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, 4138 }; 4139 4140 static int 4141 zfs_ioc_pool_trim(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) 4142 { 4143 uint64_t cmd_type; 4144 if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_COMMAND, &cmd_type) != 0) 4145 return (SET_ERROR(EINVAL)); 4146 4147 if (!(cmd_type == POOL_TRIM_CANCEL || 4148 cmd_type == POOL_TRIM_START || 4149 cmd_type == POOL_TRIM_SUSPEND)) { 4150 return (SET_ERROR(EINVAL)); 4151 } 4152 4153 nvlist_t *vdev_guids; 4154 if (nvlist_lookup_nvlist(innvl, ZPOOL_TRIM_VDEVS, &vdev_guids) != 0) 4155 return (SET_ERROR(EINVAL)); 4156 4157 for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL); 4158 pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) { 4159 uint64_t vdev_guid; 4160 if (nvpair_value_uint64(pair, &vdev_guid) != 0) { 4161 return (SET_ERROR(EINVAL)); 4162 } 4163 } 4164 4165 /* Optional, defaults to maximum rate when not provided */ 4166 uint64_t rate; 4167 if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_RATE, &rate) != 0) 4168 rate = 0; 4169 4170 /* Optional, defaults to standard TRIM when not provided */ 4171 boolean_t secure; 4172 if (nvlist_lookup_boolean_value(innvl, ZPOOL_TRIM_SECURE, 4173 &secure) != 0) { 4174 secure = B_FALSE; 4175 } 4176 4177 spa_t *spa; 4178 int error = spa_open(poolname, &spa, FTAG); 4179 if (error != 0) 4180 return (error); 4181 4182 nvlist_t *vdev_errlist = fnvlist_alloc(); 4183 int total_errors = spa_vdev_trim(spa, vdev_guids, cmd_type, 4184 rate, !!zfs_trim_metaslab_skip, secure, vdev_errlist); 4185 4186 if (fnvlist_size(vdev_errlist) > 0) 4187 fnvlist_add_nvlist(outnvl, ZPOOL_TRIM_VDEVS, vdev_errlist); 4188 4189 fnvlist_free(vdev_errlist); 4190 4191 spa_close(spa, FTAG); 4192 return (total_errors > 0 ? SET_ERROR(EINVAL) : 0); 4193 } 4194 4195 /* 4196 * This ioctl waits for activity of a particular type to complete. If there is 4197 * no activity of that type in progress, it returns immediately, and the 4198 * returned value "waited" is false. If there is activity in progress, and no 4199 * tag is passed in, the ioctl blocks until all activity of that type is 4200 * complete, and then returns with "waited" set to true. 4201 * 4202 * If a tag is provided, it identifies a particular instance of an activity to 4203 * wait for. Currently, this is only valid for use with 'initialize', because 4204 * that is the only activity for which there can be multiple instances running 4205 * concurrently. In the case of 'initialize', the tag corresponds to the guid of 4206 * the vdev on which to wait. 4207 * 4208 * If a thread waiting in the ioctl receives a signal, the call will return 4209 * immediately, and the return value will be EINTR. 4210 * 4211 * innvl: { 4212 * "wait_activity" -> int32_t 4213 * (optional) "wait_tag" -> uint64_t 4214 * } 4215 * 4216 * outnvl: "waited" -> boolean_t 4217 */ 4218 static const zfs_ioc_key_t zfs_keys_pool_wait[] = { 4219 {ZPOOL_WAIT_ACTIVITY, DATA_TYPE_INT32, 0}, 4220 {ZPOOL_WAIT_TAG, DATA_TYPE_UINT64, ZK_OPTIONAL}, 4221 }; 4222 4223 static int 4224 zfs_ioc_wait(const char *name, nvlist_t *innvl, nvlist_t *outnvl) 4225 { 4226 int32_t activity; 4227 uint64_t tag; 4228 boolean_t waited; 4229 int error; 4230 4231 if (nvlist_lookup_int32(innvl, ZPOOL_WAIT_ACTIVITY, &activity) != 0) 4232 return (EINVAL); 4233 4234 if (nvlist_lookup_uint64(innvl, ZPOOL_WAIT_TAG, &tag) == 0) 4235 error = spa_wait_tag(name, activity, tag, &waited); 4236 else 4237 error = spa_wait(name, activity, &waited); 4238 4239 if (error == 0) 4240 fnvlist_add_boolean_value(outnvl, ZPOOL_WAIT_WAITED, waited); 4241 4242 return (error); 4243 } 4244 4245 /* 4246 * This ioctl waits for activity of a particular type to complete. If there is 4247 * no activity of that type in progress, it returns immediately, and the 4248 * returned value "waited" is false. If there is activity in progress, and no 4249 * tag is passed in, the ioctl blocks until all activity of that type is 4250 * complete, and then returns with "waited" set to true. 4251 * 4252 * If a thread waiting in the ioctl receives a signal, the call will return 4253 * immediately, and the return value will be EINTR. 4254 * 4255 * innvl: { 4256 * "wait_activity" -> int32_t 4257 * } 4258 * 4259 * outnvl: "waited" -> boolean_t 4260 */ 4261 static const zfs_ioc_key_t zfs_keys_fs_wait[] = { 4262 {ZFS_WAIT_ACTIVITY, DATA_TYPE_INT32, 0}, 4263 }; 4264 4265 static int 4266 zfs_ioc_wait_fs(const char *name, nvlist_t *innvl, nvlist_t *outnvl) 4267 { 4268 int32_t activity; 4269 boolean_t waited = B_FALSE; 4270 int error; 4271 dsl_pool_t *dp; 4272 dsl_dir_t *dd; 4273 dsl_dataset_t *ds; 4274 4275 if (nvlist_lookup_int32(innvl, ZFS_WAIT_ACTIVITY, &activity) != 0) 4276 return (SET_ERROR(EINVAL)); 4277 4278 if (activity >= ZFS_WAIT_NUM_ACTIVITIES || activity < 0) 4279 return (SET_ERROR(EINVAL)); 4280 4281 if ((error = dsl_pool_hold(name, FTAG, &dp)) != 0) 4282 return (error); 4283 4284 if ((error = dsl_dataset_hold(dp, name, FTAG, &ds)) != 0) { 4285 dsl_pool_rele(dp, FTAG); 4286 return (error); 4287 } 4288 4289 dd = ds->ds_dir; 4290 mutex_enter(&dd->dd_activity_lock); 4291 dd->dd_activity_waiters++; 4292 4293 /* 4294 * We get a long-hold here so that the dsl_dataset_t and dsl_dir_t 4295 * aren't evicted while we're waiting. Normally this is prevented by 4296 * holding the pool, but we can't do that while we're waiting since 4297 * that would prevent TXGs from syncing out. Some of the functionality 4298 * of long-holds (e.g. preventing deletion) is unnecessary for this 4299 * case, since we would cancel the waiters before proceeding with a 4300 * deletion. An alternative mechanism for keeping the dataset around 4301 * could be developed but this is simpler. 4302 */ 4303 dsl_dataset_long_hold(ds, FTAG); 4304 dsl_pool_rele(dp, FTAG); 4305 4306 error = dsl_dir_wait(dd, ds, activity, &waited); 4307 4308 dsl_dataset_long_rele(ds, FTAG); 4309 dd->dd_activity_waiters--; 4310 if (dd->dd_activity_waiters == 0) 4311 cv_signal(&dd->dd_activity_cv); 4312 mutex_exit(&dd->dd_activity_lock); 4313 4314 dsl_dataset_rele(ds, FTAG); 4315 4316 if (error == 0) 4317 fnvlist_add_boolean_value(outnvl, ZFS_WAIT_WAITED, waited); 4318 4319 return (error); 4320 } 4321 4322 /* 4323 * fsname is name of dataset to rollback (to most recent snapshot) 4324 * 4325 * innvl may contain name of expected target snapshot 4326 * 4327 * outnvl: "target" -> name of most recent snapshot 4328 * } 4329 */ 4330 static const zfs_ioc_key_t zfs_keys_rollback[] = { 4331 {"target", DATA_TYPE_STRING, ZK_OPTIONAL}, 4332 }; 4333 4334 static int 4335 zfs_ioc_rollback(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 4336 { 4337 zfsvfs_t *zfsvfs; 4338 zvol_state_handle_t *zv; 4339 char *target = NULL; 4340 int error; 4341 4342 (void) nvlist_lookup_string(innvl, "target", &target); 4343 if (target != NULL) { 4344 const char *cp = strchr(target, '@'); 4345 4346 /* 4347 * The snap name must contain an @, and the part after it must 4348 * contain only valid characters. 4349 */ 4350 if (cp == NULL || 4351 zfs_component_namecheck(cp + 1, NULL, NULL) != 0) 4352 return (SET_ERROR(EINVAL)); 4353 } 4354 4355 if (getzfsvfs(fsname, &zfsvfs) == 0) { 4356 dsl_dataset_t *ds; 4357 4358 ds = dmu_objset_ds(zfsvfs->z_os); 4359 error = zfs_suspend_fs(zfsvfs); 4360 if (error == 0) { 4361 int resume_err; 4362 4363 error = dsl_dataset_rollback(fsname, target, zfsvfs, 4364 outnvl); 4365 resume_err = zfs_resume_fs(zfsvfs, ds); 4366 error = error ? error : resume_err; 4367 } 4368 zfs_vfs_rele(zfsvfs); 4369 } else if ((zv = zvol_suspend(fsname)) != NULL) { 4370 error = dsl_dataset_rollback(fsname, target, zvol_tag(zv), 4371 outnvl); 4372 zvol_resume(zv); 4373 } else { 4374 error = dsl_dataset_rollback(fsname, target, NULL, outnvl); 4375 } 4376 return (error); 4377 } 4378 4379 static int 4380 recursive_unmount(const char *fsname, void *arg) 4381 { 4382 const char *snapname = arg; 4383 char *fullname; 4384 4385 fullname = kmem_asprintf("%s@%s", fsname, snapname); 4386 zfs_unmount_snap(fullname); 4387 kmem_strfree(fullname); 4388 4389 return (0); 4390 } 4391 4392 /* 4393 * 4394 * snapname is the snapshot to redact. 4395 * innvl: { 4396 * "bookname" -> (string) 4397 * shortname of the redaction bookmark to generate 4398 * "snapnv" -> (nvlist, values ignored) 4399 * snapshots to redact snapname with respect to 4400 * } 4401 * 4402 * outnvl is unused 4403 */ 4404 4405 static const zfs_ioc_key_t zfs_keys_redact[] = { 4406 {"bookname", DATA_TYPE_STRING, 0}, 4407 {"snapnv", DATA_TYPE_NVLIST, 0}, 4408 }; 4409 4410 static int 4411 zfs_ioc_redact(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) 4412 { 4413 (void) outnvl; 4414 nvlist_t *redactnvl = NULL; 4415 char *redactbook = NULL; 4416 4417 if (nvlist_lookup_nvlist(innvl, "snapnv", &redactnvl) != 0) 4418 return (SET_ERROR(EINVAL)); 4419 if (fnvlist_num_pairs(redactnvl) == 0) 4420 return (SET_ERROR(ENXIO)); 4421 if (nvlist_lookup_string(innvl, "bookname", &redactbook) != 0) 4422 return (SET_ERROR(EINVAL)); 4423 4424 return (dmu_redact_snap(snapname, redactnvl, redactbook)); 4425 } 4426 4427 /* 4428 * inputs: 4429 * zc_name old name of dataset 4430 * zc_value new name of dataset 4431 * zc_cookie recursive flag (only valid for snapshots) 4432 * 4433 * outputs: none 4434 */ 4435 static int 4436 zfs_ioc_rename(zfs_cmd_t *zc) 4437 { 4438 objset_t *os; 4439 dmu_objset_type_t ost; 4440 boolean_t recursive = zc->zc_cookie & 1; 4441 boolean_t nounmount = !!(zc->zc_cookie & 2); 4442 char *at; 4443 int err; 4444 4445 /* "zfs rename" from and to ...%recv datasets should both fail */ 4446 zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; 4447 zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; 4448 if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || 4449 dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || 4450 strchr(zc->zc_name, '%') || strchr(zc->zc_value, '%')) 4451 return (SET_ERROR(EINVAL)); 4452 4453 err = dmu_objset_hold(zc->zc_name, FTAG, &os); 4454 if (err != 0) 4455 return (err); 4456 ost = dmu_objset_type(os); 4457 dmu_objset_rele(os, FTAG); 4458 4459 at = strchr(zc->zc_name, '@'); 4460 if (at != NULL) { 4461 /* snaps must be in same fs */ 4462 int error; 4463 4464 if (strncmp(zc->zc_name, zc->zc_value, at - zc->zc_name + 1)) 4465 return (SET_ERROR(EXDEV)); 4466 *at = '\0'; 4467 if (ost == DMU_OST_ZFS && !nounmount) { 4468 error = dmu_objset_find(zc->zc_name, 4469 recursive_unmount, at + 1, 4470 recursive ? DS_FIND_CHILDREN : 0); 4471 if (error != 0) { 4472 *at = '@'; 4473 return (error); 4474 } 4475 } 4476 error = dsl_dataset_rename_snapshot(zc->zc_name, 4477 at + 1, strchr(zc->zc_value, '@') + 1, recursive); 4478 *at = '@'; 4479 4480 return (error); 4481 } else { 4482 return (dsl_dir_rename(zc->zc_name, zc->zc_value)); 4483 } 4484 } 4485 4486 static int 4487 zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr) 4488 { 4489 const char *propname = nvpair_name(pair); 4490 boolean_t issnap = (strchr(dsname, '@') != NULL); 4491 zfs_prop_t prop = zfs_name_to_prop(propname); 4492 uint64_t intval, compval; 4493 int err; 4494 4495 if (prop == ZPROP_USERPROP) { 4496 if (zfs_prop_user(propname)) { 4497 if ((err = zfs_secpolicy_write_perms(dsname, 4498 ZFS_DELEG_PERM_USERPROP, cr))) 4499 return (err); 4500 return (0); 4501 } 4502 4503 if (!issnap && zfs_prop_userquota(propname)) { 4504 const char *perm = NULL; 4505 const char *uq_prefix = 4506 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA]; 4507 const char *gq_prefix = 4508 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA]; 4509 const char *uiq_prefix = 4510 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA]; 4511 const char *giq_prefix = 4512 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA]; 4513 const char *pq_prefix = 4514 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA]; 4515 const char *piq_prefix = zfs_userquota_prop_prefixes[\ 4516 ZFS_PROP_PROJECTOBJQUOTA]; 4517 4518 if (strncmp(propname, uq_prefix, 4519 strlen(uq_prefix)) == 0) { 4520 perm = ZFS_DELEG_PERM_USERQUOTA; 4521 } else if (strncmp(propname, uiq_prefix, 4522 strlen(uiq_prefix)) == 0) { 4523 perm = ZFS_DELEG_PERM_USEROBJQUOTA; 4524 } else if (strncmp(propname, gq_prefix, 4525 strlen(gq_prefix)) == 0) { 4526 perm = ZFS_DELEG_PERM_GROUPQUOTA; 4527 } else if (strncmp(propname, giq_prefix, 4528 strlen(giq_prefix)) == 0) { 4529 perm = ZFS_DELEG_PERM_GROUPOBJQUOTA; 4530 } else if (strncmp(propname, pq_prefix, 4531 strlen(pq_prefix)) == 0) { 4532 perm = ZFS_DELEG_PERM_PROJECTQUOTA; 4533 } else if (strncmp(propname, piq_prefix, 4534 strlen(piq_prefix)) == 0) { 4535 perm = ZFS_DELEG_PERM_PROJECTOBJQUOTA; 4536 } else { 4537 /* {USER|GROUP|PROJECT}USED are read-only */ 4538 return (SET_ERROR(EINVAL)); 4539 } 4540 4541 if ((err = zfs_secpolicy_write_perms(dsname, perm, cr))) 4542 return (err); 4543 return (0); 4544 } 4545 4546 return (SET_ERROR(EINVAL)); 4547 } 4548 4549 if (issnap) 4550 return (SET_ERROR(EINVAL)); 4551 4552 if (nvpair_type(pair) == DATA_TYPE_NVLIST) { 4553 /* 4554 * dsl_prop_get_all_impl() returns properties in this 4555 * format. 4556 */ 4557 nvlist_t *attrs; 4558 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); 4559 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 4560 &pair) == 0); 4561 } 4562 4563 /* 4564 * Check that this value is valid for this pool version 4565 */ 4566 switch (prop) { 4567 case ZFS_PROP_COMPRESSION: 4568 /* 4569 * If the user specified gzip compression, make sure 4570 * the SPA supports it. We ignore any errors here since 4571 * we'll catch them later. 4572 */ 4573 if (nvpair_value_uint64(pair, &intval) == 0) { 4574 compval = ZIO_COMPRESS_ALGO(intval); 4575 if (compval >= ZIO_COMPRESS_GZIP_1 && 4576 compval <= ZIO_COMPRESS_GZIP_9 && 4577 zfs_earlier_version(dsname, 4578 SPA_VERSION_GZIP_COMPRESSION)) { 4579 return (SET_ERROR(ENOTSUP)); 4580 } 4581 4582 if (compval == ZIO_COMPRESS_ZLE && 4583 zfs_earlier_version(dsname, 4584 SPA_VERSION_ZLE_COMPRESSION)) 4585 return (SET_ERROR(ENOTSUP)); 4586 4587 if (compval == ZIO_COMPRESS_LZ4) { 4588 spa_t *spa; 4589 4590 if ((err = spa_open(dsname, &spa, FTAG)) != 0) 4591 return (err); 4592 4593 if (!spa_feature_is_enabled(spa, 4594 SPA_FEATURE_LZ4_COMPRESS)) { 4595 spa_close(spa, FTAG); 4596 return (SET_ERROR(ENOTSUP)); 4597 } 4598 spa_close(spa, FTAG); 4599 } 4600 4601 if (compval == ZIO_COMPRESS_ZSTD) { 4602 spa_t *spa; 4603 4604 if ((err = spa_open(dsname, &spa, FTAG)) != 0) 4605 return (err); 4606 4607 if (!spa_feature_is_enabled(spa, 4608 SPA_FEATURE_ZSTD_COMPRESS)) { 4609 spa_close(spa, FTAG); 4610 return (SET_ERROR(ENOTSUP)); 4611 } 4612 spa_close(spa, FTAG); 4613 } 4614 } 4615 break; 4616 4617 case ZFS_PROP_COPIES: 4618 if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS)) 4619 return (SET_ERROR(ENOTSUP)); 4620 break; 4621 4622 case ZFS_PROP_VOLBLOCKSIZE: 4623 case ZFS_PROP_RECORDSIZE: 4624 /* Record sizes above 128k need the feature to be enabled */ 4625 if (nvpair_value_uint64(pair, &intval) == 0 && 4626 intval > SPA_OLD_MAXBLOCKSIZE) { 4627 spa_t *spa; 4628 4629 /* 4630 * We don't allow setting the property above 1MB, 4631 * unless the tunable has been changed. 4632 */ 4633 if (intval > zfs_max_recordsize || 4634 intval > SPA_MAXBLOCKSIZE) 4635 return (SET_ERROR(ERANGE)); 4636 4637 if ((err = spa_open(dsname, &spa, FTAG)) != 0) 4638 return (err); 4639 4640 if (!spa_feature_is_enabled(spa, 4641 SPA_FEATURE_LARGE_BLOCKS)) { 4642 spa_close(spa, FTAG); 4643 return (SET_ERROR(ENOTSUP)); 4644 } 4645 spa_close(spa, FTAG); 4646 } 4647 break; 4648 4649 case ZFS_PROP_DNODESIZE: 4650 /* Dnode sizes above 512 need the feature to be enabled */ 4651 if (nvpair_value_uint64(pair, &intval) == 0 && 4652 intval != ZFS_DNSIZE_LEGACY) { 4653 spa_t *spa; 4654 4655 if ((err = spa_open(dsname, &spa, FTAG)) != 0) 4656 return (err); 4657 4658 if (!spa_feature_is_enabled(spa, 4659 SPA_FEATURE_LARGE_DNODE)) { 4660 spa_close(spa, FTAG); 4661 return (SET_ERROR(ENOTSUP)); 4662 } 4663 spa_close(spa, FTAG); 4664 } 4665 break; 4666 4667 case ZFS_PROP_SPECIAL_SMALL_BLOCKS: 4668 /* 4669 * This property could require the allocation classes 4670 * feature to be active for setting, however we allow 4671 * it so that tests of settable properties succeed. 4672 * The CLI will issue a warning in this case. 4673 */ 4674 break; 4675 4676 case ZFS_PROP_SHARESMB: 4677 if (zpl_earlier_version(dsname, ZPL_VERSION_FUID)) 4678 return (SET_ERROR(ENOTSUP)); 4679 break; 4680 4681 case ZFS_PROP_ACLINHERIT: 4682 if (nvpair_type(pair) == DATA_TYPE_UINT64 && 4683 nvpair_value_uint64(pair, &intval) == 0) { 4684 if (intval == ZFS_ACL_PASSTHROUGH_X && 4685 zfs_earlier_version(dsname, 4686 SPA_VERSION_PASSTHROUGH_X)) 4687 return (SET_ERROR(ENOTSUP)); 4688 } 4689 break; 4690 case ZFS_PROP_CHECKSUM: 4691 case ZFS_PROP_DEDUP: 4692 { 4693 spa_feature_t feature; 4694 spa_t *spa; 4695 int err; 4696 4697 /* dedup feature version checks */ 4698 if (prop == ZFS_PROP_DEDUP && 4699 zfs_earlier_version(dsname, SPA_VERSION_DEDUP)) 4700 return (SET_ERROR(ENOTSUP)); 4701 4702 if (nvpair_type(pair) == DATA_TYPE_UINT64 && 4703 nvpair_value_uint64(pair, &intval) == 0) { 4704 /* check prop value is enabled in features */ 4705 feature = zio_checksum_to_feature( 4706 intval & ZIO_CHECKSUM_MASK); 4707 if (feature == SPA_FEATURE_NONE) 4708 break; 4709 4710 if ((err = spa_open(dsname, &spa, FTAG)) != 0) 4711 return (err); 4712 4713 if (!spa_feature_is_enabled(spa, feature)) { 4714 spa_close(spa, FTAG); 4715 return (SET_ERROR(ENOTSUP)); 4716 } 4717 spa_close(spa, FTAG); 4718 } 4719 break; 4720 } 4721 4722 default: 4723 break; 4724 } 4725 4726 return (zfs_secpolicy_setprop(dsname, prop, pair, CRED())); 4727 } 4728 4729 /* 4730 * Removes properties from the given props list that fail permission checks 4731 * needed to clear them and to restore them in case of a receive error. For each 4732 * property, make sure we have both set and inherit permissions. 4733 * 4734 * Returns the first error encountered if any permission checks fail. If the 4735 * caller provides a non-NULL errlist, it also gives the complete list of names 4736 * of all the properties that failed a permission check along with the 4737 * corresponding error numbers. The caller is responsible for freeing the 4738 * returned errlist. 4739 * 4740 * If every property checks out successfully, zero is returned and the list 4741 * pointed at by errlist is NULL. 4742 */ 4743 static int 4744 zfs_check_clearable(const char *dataset, nvlist_t *props, nvlist_t **errlist) 4745 { 4746 zfs_cmd_t *zc; 4747 nvpair_t *pair, *next_pair; 4748 nvlist_t *errors; 4749 int err, rv = 0; 4750 4751 if (props == NULL) 4752 return (0); 4753 4754 VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4755 4756 zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP); 4757 (void) strlcpy(zc->zc_name, dataset, sizeof (zc->zc_name)); 4758 pair = nvlist_next_nvpair(props, NULL); 4759 while (pair != NULL) { 4760 next_pair = nvlist_next_nvpair(props, pair); 4761 4762 (void) strlcpy(zc->zc_value, nvpair_name(pair), 4763 sizeof (zc->zc_value)); 4764 if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 || 4765 (err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) { 4766 VERIFY(nvlist_remove_nvpair(props, pair) == 0); 4767 VERIFY(nvlist_add_int32(errors, 4768 zc->zc_value, err) == 0); 4769 } 4770 pair = next_pair; 4771 } 4772 kmem_free(zc, sizeof (zfs_cmd_t)); 4773 4774 if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) { 4775 nvlist_free(errors); 4776 errors = NULL; 4777 } else { 4778 VERIFY(nvpair_value_int32(pair, &rv) == 0); 4779 } 4780 4781 if (errlist == NULL) 4782 nvlist_free(errors); 4783 else 4784 *errlist = errors; 4785 4786 return (rv); 4787 } 4788 4789 static boolean_t 4790 propval_equals(nvpair_t *p1, nvpair_t *p2) 4791 { 4792 if (nvpair_type(p1) == DATA_TYPE_NVLIST) { 4793 /* dsl_prop_get_all_impl() format */ 4794 nvlist_t *attrs; 4795 VERIFY(nvpair_value_nvlist(p1, &attrs) == 0); 4796 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 4797 &p1) == 0); 4798 } 4799 4800 if (nvpair_type(p2) == DATA_TYPE_NVLIST) { 4801 nvlist_t *attrs; 4802 VERIFY(nvpair_value_nvlist(p2, &attrs) == 0); 4803 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, 4804 &p2) == 0); 4805 } 4806 4807 if (nvpair_type(p1) != nvpair_type(p2)) 4808 return (B_FALSE); 4809 4810 if (nvpair_type(p1) == DATA_TYPE_STRING) { 4811 char *valstr1, *valstr2; 4812 4813 VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0); 4814 VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0); 4815 return (strcmp(valstr1, valstr2) == 0); 4816 } else { 4817 uint64_t intval1, intval2; 4818 4819 VERIFY(nvpair_value_uint64(p1, &intval1) == 0); 4820 VERIFY(nvpair_value_uint64(p2, &intval2) == 0); 4821 return (intval1 == intval2); 4822 } 4823 } 4824 4825 /* 4826 * Remove properties from props if they are not going to change (as determined 4827 * by comparison with origprops). Remove them from origprops as well, since we 4828 * do not need to clear or restore properties that won't change. 4829 */ 4830 static void 4831 props_reduce(nvlist_t *props, nvlist_t *origprops) 4832 { 4833 nvpair_t *pair, *next_pair; 4834 4835 if (origprops == NULL) 4836 return; /* all props need to be received */ 4837 4838 pair = nvlist_next_nvpair(props, NULL); 4839 while (pair != NULL) { 4840 const char *propname = nvpair_name(pair); 4841 nvpair_t *match; 4842 4843 next_pair = nvlist_next_nvpair(props, pair); 4844 4845 if ((nvlist_lookup_nvpair(origprops, propname, 4846 &match) != 0) || !propval_equals(pair, match)) 4847 goto next; /* need to set received value */ 4848 4849 /* don't clear the existing received value */ 4850 (void) nvlist_remove_nvpair(origprops, match); 4851 /* don't bother receiving the property */ 4852 (void) nvlist_remove_nvpair(props, pair); 4853 next: 4854 pair = next_pair; 4855 } 4856 } 4857 4858 /* 4859 * Extract properties that cannot be set PRIOR to the receipt of a dataset. 4860 * For example, refquota cannot be set until after the receipt of a dataset, 4861 * because in replication streams, an older/earlier snapshot may exceed the 4862 * refquota. We want to receive the older/earlier snapshot, but setting 4863 * refquota pre-receipt will set the dsl's ACTUAL quota, which will prevent 4864 * the older/earlier snapshot from being received (with EDQUOT). 4865 * 4866 * The ZFS test "zfs_receive_011_pos" demonstrates such a scenario. 4867 * 4868 * libzfs will need to be judicious handling errors encountered by props 4869 * extracted by this function. 4870 */ 4871 static nvlist_t * 4872 extract_delay_props(nvlist_t *props) 4873 { 4874 nvlist_t *delayprops; 4875 nvpair_t *nvp, *tmp; 4876 static const zfs_prop_t delayable[] = { 4877 ZFS_PROP_REFQUOTA, 4878 ZFS_PROP_KEYLOCATION, 4879 /* 4880 * Setting ZFS_PROP_SHARESMB requires the objset type to be 4881 * known, which is not possible prior to receipt of raw sends. 4882 */ 4883 ZFS_PROP_SHARESMB, 4884 0 4885 }; 4886 int i; 4887 4888 VERIFY(nvlist_alloc(&delayprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4889 4890 for (nvp = nvlist_next_nvpair(props, NULL); nvp != NULL; 4891 nvp = nvlist_next_nvpair(props, nvp)) { 4892 /* 4893 * strcmp() is safe because zfs_prop_to_name() always returns 4894 * a bounded string. 4895 */ 4896 for (i = 0; delayable[i] != 0; i++) { 4897 if (strcmp(zfs_prop_to_name(delayable[i]), 4898 nvpair_name(nvp)) == 0) { 4899 break; 4900 } 4901 } 4902 if (delayable[i] != 0) { 4903 tmp = nvlist_prev_nvpair(props, nvp); 4904 VERIFY(nvlist_add_nvpair(delayprops, nvp) == 0); 4905 VERIFY(nvlist_remove_nvpair(props, nvp) == 0); 4906 nvp = tmp; 4907 } 4908 } 4909 4910 if (nvlist_empty(delayprops)) { 4911 nvlist_free(delayprops); 4912 delayprops = NULL; 4913 } 4914 return (delayprops); 4915 } 4916 4917 static void 4918 zfs_allow_log_destroy(void *arg) 4919 { 4920 char *poolname = arg; 4921 4922 if (poolname != NULL) 4923 kmem_strfree(poolname); 4924 } 4925 4926 #ifdef ZFS_DEBUG 4927 static boolean_t zfs_ioc_recv_inject_err; 4928 #endif 4929 4930 /* 4931 * nvlist 'errors' is always allocated. It will contain descriptions of 4932 * encountered errors, if any. It's the callers responsibility to free. 4933 */ 4934 static int 4935 zfs_ioc_recv_impl(char *tofs, char *tosnap, char *origin, nvlist_t *recvprops, 4936 nvlist_t *localprops, nvlist_t *hidden_args, boolean_t force, 4937 boolean_t heal, boolean_t resumable, int input_fd, 4938 dmu_replay_record_t *begin_record, uint64_t *read_bytes, 4939 uint64_t *errflags, nvlist_t **errors) 4940 { 4941 dmu_recv_cookie_t drc; 4942 int error = 0; 4943 int props_error = 0; 4944 offset_t off, noff; 4945 nvlist_t *local_delayprops = NULL; 4946 nvlist_t *recv_delayprops = NULL; 4947 nvlist_t *inherited_delayprops = NULL; 4948 nvlist_t *origprops = NULL; /* existing properties */ 4949 nvlist_t *origrecvd = NULL; /* existing received properties */ 4950 boolean_t first_recvd_props = B_FALSE; 4951 boolean_t tofs_was_redacted; 4952 zfs_file_t *input_fp; 4953 4954 *read_bytes = 0; 4955 *errflags = 0; 4956 *errors = fnvlist_alloc(); 4957 off = 0; 4958 4959 if ((input_fp = zfs_file_get(input_fd)) == NULL) 4960 return (SET_ERROR(EBADF)); 4961 4962 noff = off = zfs_file_off(input_fp); 4963 error = dmu_recv_begin(tofs, tosnap, begin_record, force, heal, 4964 resumable, localprops, hidden_args, origin, &drc, input_fp, 4965 &off); 4966 if (error != 0) 4967 goto out; 4968 tofs_was_redacted = dsl_get_redacted(drc.drc_ds); 4969 4970 /* 4971 * Set properties before we receive the stream so that they are applied 4972 * to the new data. Note that we must call dmu_recv_stream() if 4973 * dmu_recv_begin() succeeds. 4974 */ 4975 if (recvprops != NULL && !drc.drc_newfs) { 4976 if (spa_version(dsl_dataset_get_spa(drc.drc_ds)) >= 4977 SPA_VERSION_RECVD_PROPS && 4978 !dsl_prop_get_hasrecvd(tofs)) 4979 first_recvd_props = B_TRUE; 4980 4981 /* 4982 * If new received properties are supplied, they are to 4983 * completely replace the existing received properties, 4984 * so stash away the existing ones. 4985 */ 4986 if (dsl_prop_get_received(tofs, &origrecvd) == 0) { 4987 nvlist_t *errlist = NULL; 4988 /* 4989 * Don't bother writing a property if its value won't 4990 * change (and avoid the unnecessary security checks). 4991 * 4992 * The first receive after SPA_VERSION_RECVD_PROPS is a 4993 * special case where we blow away all local properties 4994 * regardless. 4995 */ 4996 if (!first_recvd_props) 4997 props_reduce(recvprops, origrecvd); 4998 if (zfs_check_clearable(tofs, origrecvd, &errlist) != 0) 4999 (void) nvlist_merge(*errors, errlist, 0); 5000 nvlist_free(errlist); 5001 5002 if (clear_received_props(tofs, origrecvd, 5003 first_recvd_props ? NULL : recvprops) != 0) 5004 *errflags |= ZPROP_ERR_NOCLEAR; 5005 } else { 5006 *errflags |= ZPROP_ERR_NOCLEAR; 5007 } 5008 } 5009 5010 /* 5011 * Stash away existing properties so we can restore them on error unless 5012 * we're doing the first receive after SPA_VERSION_RECVD_PROPS, in which 5013 * case "origrecvd" will take care of that. 5014 */ 5015 if (localprops != NULL && !drc.drc_newfs && !first_recvd_props) { 5016 objset_t *os; 5017 if (dmu_objset_hold(tofs, FTAG, &os) == 0) { 5018 if (dsl_prop_get_all(os, &origprops) != 0) { 5019 *errflags |= ZPROP_ERR_NOCLEAR; 5020 } 5021 dmu_objset_rele(os, FTAG); 5022 } else { 5023 *errflags |= ZPROP_ERR_NOCLEAR; 5024 } 5025 } 5026 5027 if (recvprops != NULL) { 5028 props_error = dsl_prop_set_hasrecvd(tofs); 5029 5030 if (props_error == 0) { 5031 recv_delayprops = extract_delay_props(recvprops); 5032 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, 5033 recvprops, *errors); 5034 } 5035 } 5036 5037 if (localprops != NULL) { 5038 nvlist_t *oprops = fnvlist_alloc(); 5039 nvlist_t *xprops = fnvlist_alloc(); 5040 nvpair_t *nvp = NULL; 5041 5042 while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) { 5043 if (nvpair_type(nvp) == DATA_TYPE_BOOLEAN) { 5044 /* -x property */ 5045 const char *name = nvpair_name(nvp); 5046 zfs_prop_t prop = zfs_name_to_prop(name); 5047 if (prop != ZPROP_USERPROP) { 5048 if (!zfs_prop_inheritable(prop)) 5049 continue; 5050 } else if (!zfs_prop_user(name)) 5051 continue; 5052 fnvlist_add_boolean(xprops, name); 5053 } else { 5054 /* -o property=value */ 5055 fnvlist_add_nvpair(oprops, nvp); 5056 } 5057 } 5058 5059 local_delayprops = extract_delay_props(oprops); 5060 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, 5061 oprops, *errors); 5062 inherited_delayprops = extract_delay_props(xprops); 5063 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, 5064 xprops, *errors); 5065 5066 nvlist_free(oprops); 5067 nvlist_free(xprops); 5068 } 5069 5070 error = dmu_recv_stream(&drc, &off); 5071 5072 if (error == 0) { 5073 zfsvfs_t *zfsvfs = NULL; 5074 zvol_state_handle_t *zv = NULL; 5075 5076 if (getzfsvfs(tofs, &zfsvfs) == 0) { 5077 /* online recv */ 5078 dsl_dataset_t *ds; 5079 int end_err; 5080 boolean_t stream_is_redacted = DMU_GET_FEATUREFLAGS( 5081 begin_record->drr_u.drr_begin. 5082 drr_versioninfo) & DMU_BACKUP_FEATURE_REDACTED; 5083 5084 ds = dmu_objset_ds(zfsvfs->z_os); 5085 error = zfs_suspend_fs(zfsvfs); 5086 /* 5087 * If the suspend fails, then the recv_end will 5088 * likely also fail, and clean up after itself. 5089 */ 5090 end_err = dmu_recv_end(&drc, zfsvfs); 5091 /* 5092 * If the dataset was not redacted, but we received a 5093 * redacted stream onto it, we need to unmount the 5094 * dataset. Otherwise, resume the filesystem. 5095 */ 5096 if (error == 0 && !drc.drc_newfs && 5097 stream_is_redacted && !tofs_was_redacted) { 5098 error = zfs_end_fs(zfsvfs, ds); 5099 } else if (error == 0) { 5100 error = zfs_resume_fs(zfsvfs, ds); 5101 } 5102 error = error ? error : end_err; 5103 zfs_vfs_rele(zfsvfs); 5104 } else if ((zv = zvol_suspend(tofs)) != NULL) { 5105 error = dmu_recv_end(&drc, zvol_tag(zv)); 5106 zvol_resume(zv); 5107 } else { 5108 error = dmu_recv_end(&drc, NULL); 5109 } 5110 5111 /* Set delayed properties now, after we're done receiving. */ 5112 if (recv_delayprops != NULL && error == 0) { 5113 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, 5114 recv_delayprops, *errors); 5115 } 5116 if (local_delayprops != NULL && error == 0) { 5117 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, 5118 local_delayprops, *errors); 5119 } 5120 if (inherited_delayprops != NULL && error == 0) { 5121 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, 5122 inherited_delayprops, *errors); 5123 } 5124 } 5125 5126 /* 5127 * Merge delayed props back in with initial props, in case 5128 * we're DEBUG and zfs_ioc_recv_inject_err is set (which means 5129 * we have to make sure clear_received_props() includes 5130 * the delayed properties). 5131 * 5132 * Since zfs_ioc_recv_inject_err is only in DEBUG kernels, 5133 * using ASSERT() will be just like a VERIFY. 5134 */ 5135 if (recv_delayprops != NULL) { 5136 ASSERT(nvlist_merge(recvprops, recv_delayprops, 0) == 0); 5137 nvlist_free(recv_delayprops); 5138 } 5139 if (local_delayprops != NULL) { 5140 ASSERT(nvlist_merge(localprops, local_delayprops, 0) == 0); 5141 nvlist_free(local_delayprops); 5142 } 5143 if (inherited_delayprops != NULL) { 5144 ASSERT(nvlist_merge(localprops, inherited_delayprops, 0) == 0); 5145 nvlist_free(inherited_delayprops); 5146 } 5147 *read_bytes = off - noff; 5148 5149 #ifdef ZFS_DEBUG 5150 if (zfs_ioc_recv_inject_err) { 5151 zfs_ioc_recv_inject_err = B_FALSE; 5152 error = 1; 5153 } 5154 #endif 5155 5156 /* 5157 * On error, restore the original props. 5158 */ 5159 if (error != 0 && recvprops != NULL && !drc.drc_newfs) { 5160 if (clear_received_props(tofs, recvprops, NULL) != 0) { 5161 /* 5162 * We failed to clear the received properties. 5163 * Since we may have left a $recvd value on the 5164 * system, we can't clear the $hasrecvd flag. 5165 */ 5166 *errflags |= ZPROP_ERR_NORESTORE; 5167 } else if (first_recvd_props) { 5168 dsl_prop_unset_hasrecvd(tofs); 5169 } 5170 5171 if (origrecvd == NULL && !drc.drc_newfs) { 5172 /* We failed to stash the original properties. */ 5173 *errflags |= ZPROP_ERR_NORESTORE; 5174 } 5175 5176 /* 5177 * dsl_props_set() will not convert RECEIVED to LOCAL on or 5178 * after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL 5179 * explicitly if we're restoring local properties cleared in the 5180 * first new-style receive. 5181 */ 5182 if (origrecvd != NULL && 5183 zfs_set_prop_nvlist(tofs, (first_recvd_props ? 5184 ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED), 5185 origrecvd, NULL) != 0) { 5186 /* 5187 * We stashed the original properties but failed to 5188 * restore them. 5189 */ 5190 *errflags |= ZPROP_ERR_NORESTORE; 5191 } 5192 } 5193 if (error != 0 && localprops != NULL && !drc.drc_newfs && 5194 !first_recvd_props) { 5195 nvlist_t *setprops; 5196 nvlist_t *inheritprops; 5197 nvpair_t *nvp; 5198 5199 if (origprops == NULL) { 5200 /* We failed to stash the original properties. */ 5201 *errflags |= ZPROP_ERR_NORESTORE; 5202 goto out; 5203 } 5204 5205 /* Restore original props */ 5206 setprops = fnvlist_alloc(); 5207 inheritprops = fnvlist_alloc(); 5208 nvp = NULL; 5209 while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) { 5210 const char *name = nvpair_name(nvp); 5211 const char *source; 5212 nvlist_t *attrs; 5213 5214 if (!nvlist_exists(origprops, name)) { 5215 /* 5216 * Property was not present or was explicitly 5217 * inherited before the receive, restore this. 5218 */ 5219 fnvlist_add_boolean(inheritprops, name); 5220 continue; 5221 } 5222 attrs = fnvlist_lookup_nvlist(origprops, name); 5223 source = fnvlist_lookup_string(attrs, ZPROP_SOURCE); 5224 5225 /* Skip received properties */ 5226 if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0) 5227 continue; 5228 5229 if (strcmp(source, tofs) == 0) { 5230 /* Property was locally set */ 5231 fnvlist_add_nvlist(setprops, name, attrs); 5232 } else { 5233 /* Property was implicitly inherited */ 5234 fnvlist_add_boolean(inheritprops, name); 5235 } 5236 } 5237 5238 if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, setprops, 5239 NULL) != 0) 5240 *errflags |= ZPROP_ERR_NORESTORE; 5241 if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, inheritprops, 5242 NULL) != 0) 5243 *errflags |= ZPROP_ERR_NORESTORE; 5244 5245 nvlist_free(setprops); 5246 nvlist_free(inheritprops); 5247 } 5248 out: 5249 zfs_file_put(input_fp); 5250 nvlist_free(origrecvd); 5251 nvlist_free(origprops); 5252 5253 if (error == 0) 5254 error = props_error; 5255 5256 return (error); 5257 } 5258 5259 /* 5260 * inputs: 5261 * zc_name name of containing filesystem (unused) 5262 * zc_nvlist_src{_size} nvlist of properties to apply 5263 * zc_nvlist_conf{_size} nvlist of properties to exclude 5264 * (DATA_TYPE_BOOLEAN) and override (everything else) 5265 * zc_value name of snapshot to create 5266 * zc_string name of clone origin (if DRR_FLAG_CLONE) 5267 * zc_cookie file descriptor to recv from 5268 * zc_begin_record the BEGIN record of the stream (not byteswapped) 5269 * zc_guid force flag 5270 * 5271 * outputs: 5272 * zc_cookie number of bytes read 5273 * zc_obj zprop_errflags_t 5274 * zc_nvlist_dst{_size} error for each unapplied received property 5275 */ 5276 static int 5277 zfs_ioc_recv(zfs_cmd_t *zc) 5278 { 5279 dmu_replay_record_t begin_record; 5280 nvlist_t *errors = NULL; 5281 nvlist_t *recvdprops = NULL; 5282 nvlist_t *localprops = NULL; 5283 char *origin = NULL; 5284 char *tosnap; 5285 char tofs[ZFS_MAX_DATASET_NAME_LEN]; 5286 int error = 0; 5287 5288 if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || 5289 strchr(zc->zc_value, '@') == NULL || 5290 strchr(zc->zc_value, '%')) 5291 return (SET_ERROR(EINVAL)); 5292 5293 (void) strlcpy(tofs, zc->zc_value, sizeof (tofs)); 5294 tosnap = strchr(tofs, '@'); 5295 *tosnap++ = '\0'; 5296 5297 if (zc->zc_nvlist_src != 0 && 5298 (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 5299 zc->zc_iflags, &recvdprops)) != 0) 5300 return (error); 5301 5302 if (zc->zc_nvlist_conf != 0 && 5303 (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 5304 zc->zc_iflags, &localprops)) != 0) 5305 return (error); 5306 5307 if (zc->zc_string[0]) 5308 origin = zc->zc_string; 5309 5310 begin_record.drr_type = DRR_BEGIN; 5311 begin_record.drr_payloadlen = 0; 5312 begin_record.drr_u.drr_begin = zc->zc_begin_record; 5313 5314 error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvdprops, localprops, 5315 NULL, zc->zc_guid, B_FALSE, B_FALSE, zc->zc_cookie, &begin_record, 5316 &zc->zc_cookie, &zc->zc_obj, &errors); 5317 nvlist_free(recvdprops); 5318 nvlist_free(localprops); 5319 5320 /* 5321 * Now that all props, initial and delayed, are set, report the prop 5322 * errors to the caller. 5323 */ 5324 if (zc->zc_nvlist_dst_size != 0 && errors != NULL && 5325 (nvlist_smush(errors, zc->zc_nvlist_dst_size) != 0 || 5326 put_nvlist(zc, errors) != 0)) { 5327 /* 5328 * Caller made zc->zc_nvlist_dst less than the minimum expected 5329 * size or supplied an invalid address. 5330 */ 5331 error = SET_ERROR(EINVAL); 5332 } 5333 5334 nvlist_free(errors); 5335 5336 return (error); 5337 } 5338 5339 /* 5340 * innvl: { 5341 * "snapname" -> full name of the snapshot to create 5342 * (optional) "props" -> received properties to set (nvlist) 5343 * (optional) "localprops" -> override and exclude properties (nvlist) 5344 * (optional) "origin" -> name of clone origin (DRR_FLAG_CLONE) 5345 * "begin_record" -> non-byteswapped dmu_replay_record_t 5346 * "input_fd" -> file descriptor to read stream from (int32) 5347 * (optional) "force" -> force flag (value ignored) 5348 * (optional) "heal" -> use send stream to heal data corruption 5349 * (optional) "resumable" -> resumable flag (value ignored) 5350 * (optional) "cleanup_fd" -> unused 5351 * (optional) "action_handle" -> unused 5352 * (optional) "hidden_args" -> { "wkeydata" -> value } 5353 * } 5354 * 5355 * outnvl: { 5356 * "read_bytes" -> number of bytes read 5357 * "error_flags" -> zprop_errflags_t 5358 * "errors" -> error for each unapplied received property (nvlist) 5359 * } 5360 */ 5361 static const zfs_ioc_key_t zfs_keys_recv_new[] = { 5362 {"snapname", DATA_TYPE_STRING, 0}, 5363 {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 5364 {"localprops", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 5365 {"origin", DATA_TYPE_STRING, ZK_OPTIONAL}, 5366 {"begin_record", DATA_TYPE_BYTE_ARRAY, 0}, 5367 {"input_fd", DATA_TYPE_INT32, 0}, 5368 {"force", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 5369 {"heal", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 5370 {"resumable", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 5371 {"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL}, 5372 {"action_handle", DATA_TYPE_UINT64, ZK_OPTIONAL}, 5373 {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 5374 }; 5375 5376 static int 5377 zfs_ioc_recv_new(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 5378 { 5379 dmu_replay_record_t *begin_record; 5380 uint_t begin_record_size; 5381 nvlist_t *errors = NULL; 5382 nvlist_t *recvprops = NULL; 5383 nvlist_t *localprops = NULL; 5384 nvlist_t *hidden_args = NULL; 5385 char *snapname; 5386 char *origin = NULL; 5387 char *tosnap; 5388 char tofs[ZFS_MAX_DATASET_NAME_LEN]; 5389 boolean_t force; 5390 boolean_t heal; 5391 boolean_t resumable; 5392 uint64_t read_bytes = 0; 5393 uint64_t errflags = 0; 5394 int input_fd = -1; 5395 int error; 5396 5397 snapname = fnvlist_lookup_string(innvl, "snapname"); 5398 5399 if (dataset_namecheck(snapname, NULL, NULL) != 0 || 5400 strchr(snapname, '@') == NULL || 5401 strchr(snapname, '%')) 5402 return (SET_ERROR(EINVAL)); 5403 5404 (void) strlcpy(tofs, snapname, sizeof (tofs)); 5405 tosnap = strchr(tofs, '@'); 5406 *tosnap++ = '\0'; 5407 5408 error = nvlist_lookup_string(innvl, "origin", &origin); 5409 if (error && error != ENOENT) 5410 return (error); 5411 5412 error = nvlist_lookup_byte_array(innvl, "begin_record", 5413 (uchar_t **)&begin_record, &begin_record_size); 5414 if (error != 0 || begin_record_size != sizeof (*begin_record)) 5415 return (SET_ERROR(EINVAL)); 5416 5417 input_fd = fnvlist_lookup_int32(innvl, "input_fd"); 5418 5419 force = nvlist_exists(innvl, "force"); 5420 heal = nvlist_exists(innvl, "heal"); 5421 resumable = nvlist_exists(innvl, "resumable"); 5422 5423 /* we still use "props" here for backwards compatibility */ 5424 error = nvlist_lookup_nvlist(innvl, "props", &recvprops); 5425 if (error && error != ENOENT) 5426 return (error); 5427 5428 error = nvlist_lookup_nvlist(innvl, "localprops", &localprops); 5429 if (error && error != ENOENT) 5430 return (error); 5431 5432 error = nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); 5433 if (error && error != ENOENT) 5434 return (error); 5435 5436 error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvprops, localprops, 5437 hidden_args, force, heal, resumable, input_fd, begin_record, 5438 &read_bytes, &errflags, &errors); 5439 5440 fnvlist_add_uint64(outnvl, "read_bytes", read_bytes); 5441 fnvlist_add_uint64(outnvl, "error_flags", errflags); 5442 fnvlist_add_nvlist(outnvl, "errors", errors); 5443 5444 nvlist_free(errors); 5445 nvlist_free(recvprops); 5446 nvlist_free(localprops); 5447 5448 return (error); 5449 } 5450 5451 typedef struct dump_bytes_io { 5452 zfs_file_t *dbi_fp; 5453 caddr_t dbi_buf; 5454 int dbi_len; 5455 int dbi_err; 5456 } dump_bytes_io_t; 5457 5458 static void 5459 dump_bytes_cb(void *arg) 5460 { 5461 dump_bytes_io_t *dbi = (dump_bytes_io_t *)arg; 5462 zfs_file_t *fp; 5463 caddr_t buf; 5464 5465 fp = dbi->dbi_fp; 5466 buf = dbi->dbi_buf; 5467 5468 dbi->dbi_err = zfs_file_write(fp, buf, dbi->dbi_len, NULL); 5469 } 5470 5471 static int 5472 dump_bytes(objset_t *os, void *buf, int len, void *arg) 5473 { 5474 dump_bytes_io_t dbi; 5475 5476 dbi.dbi_fp = arg; 5477 dbi.dbi_buf = buf; 5478 dbi.dbi_len = len; 5479 5480 #if defined(HAVE_LARGE_STACKS) 5481 dump_bytes_cb(&dbi); 5482 #else 5483 /* 5484 * The vn_rdwr() call is performed in a taskq to ensure that there is 5485 * always enough stack space to write safely to the target filesystem. 5486 * The ZIO_TYPE_FREE threads are used because there can be a lot of 5487 * them and they are used in vdev_file.c for a similar purpose. 5488 */ 5489 spa_taskq_dispatch_sync(dmu_objset_spa(os), ZIO_TYPE_FREE, 5490 ZIO_TASKQ_ISSUE, dump_bytes_cb, &dbi, TQ_SLEEP); 5491 #endif /* HAVE_LARGE_STACKS */ 5492 5493 return (dbi.dbi_err); 5494 } 5495 5496 /* 5497 * inputs: 5498 * zc_name name of snapshot to send 5499 * zc_cookie file descriptor to send stream to 5500 * zc_obj fromorigin flag (mutually exclusive with zc_fromobj) 5501 * zc_sendobj objsetid of snapshot to send 5502 * zc_fromobj objsetid of incremental fromsnap (may be zero) 5503 * zc_guid if set, estimate size of stream only. zc_cookie is ignored. 5504 * output size in zc_objset_type. 5505 * zc_flags lzc_send_flags 5506 * 5507 * outputs: 5508 * zc_objset_type estimated size, if zc_guid is set 5509 * 5510 * NOTE: This is no longer the preferred interface, any new functionality 5511 * should be added to zfs_ioc_send_new() instead. 5512 */ 5513 static int 5514 zfs_ioc_send(zfs_cmd_t *zc) 5515 { 5516 int error; 5517 offset_t off; 5518 boolean_t estimate = (zc->zc_guid != 0); 5519 boolean_t embedok = (zc->zc_flags & 0x1); 5520 boolean_t large_block_ok = (zc->zc_flags & 0x2); 5521 boolean_t compressok = (zc->zc_flags & 0x4); 5522 boolean_t rawok = (zc->zc_flags & 0x8); 5523 boolean_t savedok = (zc->zc_flags & 0x10); 5524 5525 if (zc->zc_obj != 0) { 5526 dsl_pool_t *dp; 5527 dsl_dataset_t *tosnap; 5528 5529 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 5530 if (error != 0) 5531 return (error); 5532 5533 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); 5534 if (error != 0) { 5535 dsl_pool_rele(dp, FTAG); 5536 return (error); 5537 } 5538 5539 if (dsl_dir_is_clone(tosnap->ds_dir)) 5540 zc->zc_fromobj = 5541 dsl_dir_phys(tosnap->ds_dir)->dd_origin_obj; 5542 dsl_dataset_rele(tosnap, FTAG); 5543 dsl_pool_rele(dp, FTAG); 5544 } 5545 5546 if (estimate) { 5547 dsl_pool_t *dp; 5548 dsl_dataset_t *tosnap; 5549 dsl_dataset_t *fromsnap = NULL; 5550 5551 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 5552 if (error != 0) 5553 return (error); 5554 5555 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, 5556 FTAG, &tosnap); 5557 if (error != 0) { 5558 dsl_pool_rele(dp, FTAG); 5559 return (error); 5560 } 5561 5562 if (zc->zc_fromobj != 0) { 5563 error = dsl_dataset_hold_obj(dp, zc->zc_fromobj, 5564 FTAG, &fromsnap); 5565 if (error != 0) { 5566 dsl_dataset_rele(tosnap, FTAG); 5567 dsl_pool_rele(dp, FTAG); 5568 return (error); 5569 } 5570 } 5571 5572 error = dmu_send_estimate_fast(tosnap, fromsnap, NULL, 5573 compressok || rawok, savedok, &zc->zc_objset_type); 5574 5575 if (fromsnap != NULL) 5576 dsl_dataset_rele(fromsnap, FTAG); 5577 dsl_dataset_rele(tosnap, FTAG); 5578 dsl_pool_rele(dp, FTAG); 5579 } else { 5580 zfs_file_t *fp; 5581 dmu_send_outparams_t out = {0}; 5582 5583 if ((fp = zfs_file_get(zc->zc_cookie)) == NULL) 5584 return (SET_ERROR(EBADF)); 5585 5586 off = zfs_file_off(fp); 5587 out.dso_outfunc = dump_bytes; 5588 out.dso_arg = fp; 5589 out.dso_dryrun = B_FALSE; 5590 error = dmu_send_obj(zc->zc_name, zc->zc_sendobj, 5591 zc->zc_fromobj, embedok, large_block_ok, compressok, 5592 rawok, savedok, zc->zc_cookie, &off, &out); 5593 5594 zfs_file_put(fp); 5595 } 5596 return (error); 5597 } 5598 5599 /* 5600 * inputs: 5601 * zc_name name of snapshot on which to report progress 5602 * zc_cookie file descriptor of send stream 5603 * 5604 * outputs: 5605 * zc_cookie number of bytes written in send stream thus far 5606 * zc_objset_type logical size of data traversed by send thus far 5607 */ 5608 static int 5609 zfs_ioc_send_progress(zfs_cmd_t *zc) 5610 { 5611 dsl_pool_t *dp; 5612 dsl_dataset_t *ds; 5613 dmu_sendstatus_t *dsp = NULL; 5614 int error; 5615 5616 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 5617 if (error != 0) 5618 return (error); 5619 5620 error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); 5621 if (error != 0) { 5622 dsl_pool_rele(dp, FTAG); 5623 return (error); 5624 } 5625 5626 mutex_enter(&ds->ds_sendstream_lock); 5627 5628 /* 5629 * Iterate over all the send streams currently active on this dataset. 5630 * If there's one which matches the specified file descriptor _and_ the 5631 * stream was started by the current process, return the progress of 5632 * that stream. 5633 */ 5634 5635 for (dsp = list_head(&ds->ds_sendstreams); dsp != NULL; 5636 dsp = list_next(&ds->ds_sendstreams, dsp)) { 5637 if (dsp->dss_outfd == zc->zc_cookie && 5638 zfs_proc_is_caller(dsp->dss_proc)) 5639 break; 5640 } 5641 5642 if (dsp != NULL) { 5643 zc->zc_cookie = atomic_cas_64((volatile uint64_t *)dsp->dss_off, 5644 0, 0); 5645 /* This is the closest thing we have to atomic_read_64. */ 5646 zc->zc_objset_type = atomic_cas_64(&dsp->dss_blocks, 0, 0); 5647 } else { 5648 error = SET_ERROR(ENOENT); 5649 } 5650 5651 mutex_exit(&ds->ds_sendstream_lock); 5652 dsl_dataset_rele(ds, FTAG); 5653 dsl_pool_rele(dp, FTAG); 5654 return (error); 5655 } 5656 5657 static int 5658 zfs_ioc_inject_fault(zfs_cmd_t *zc) 5659 { 5660 int id, error; 5661 5662 error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id, 5663 &zc->zc_inject_record); 5664 5665 if (error == 0) 5666 zc->zc_guid = (uint64_t)id; 5667 5668 return (error); 5669 } 5670 5671 static int 5672 zfs_ioc_clear_fault(zfs_cmd_t *zc) 5673 { 5674 return (zio_clear_fault((int)zc->zc_guid)); 5675 } 5676 5677 static int 5678 zfs_ioc_inject_list_next(zfs_cmd_t *zc) 5679 { 5680 int id = (int)zc->zc_guid; 5681 int error; 5682 5683 error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name), 5684 &zc->zc_inject_record); 5685 5686 zc->zc_guid = id; 5687 5688 return (error); 5689 } 5690 5691 static int 5692 zfs_ioc_error_log(zfs_cmd_t *zc) 5693 { 5694 spa_t *spa; 5695 int error; 5696 5697 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) 5698 return (error); 5699 5700 error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst, 5701 &zc->zc_nvlist_dst_size); 5702 5703 spa_close(spa, FTAG); 5704 5705 return (error); 5706 } 5707 5708 static int 5709 zfs_ioc_clear(zfs_cmd_t *zc) 5710 { 5711 spa_t *spa; 5712 vdev_t *vd; 5713 int error; 5714 5715 /* 5716 * On zpool clear we also fix up missing slogs 5717 */ 5718 mutex_enter(&spa_namespace_lock); 5719 spa = spa_lookup(zc->zc_name); 5720 if (spa == NULL) { 5721 mutex_exit(&spa_namespace_lock); 5722 return (SET_ERROR(EIO)); 5723 } 5724 if (spa_get_log_state(spa) == SPA_LOG_MISSING) { 5725 /* we need to let spa_open/spa_load clear the chains */ 5726 spa_set_log_state(spa, SPA_LOG_CLEAR); 5727 } 5728 spa->spa_last_open_failed = 0; 5729 mutex_exit(&spa_namespace_lock); 5730 5731 if (zc->zc_cookie & ZPOOL_NO_REWIND) { 5732 error = spa_open(zc->zc_name, &spa, FTAG); 5733 } else { 5734 nvlist_t *policy; 5735 nvlist_t *config = NULL; 5736 5737 if (zc->zc_nvlist_src == 0) 5738 return (SET_ERROR(EINVAL)); 5739 5740 if ((error = get_nvlist(zc->zc_nvlist_src, 5741 zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) { 5742 error = spa_open_rewind(zc->zc_name, &spa, FTAG, 5743 policy, &config); 5744 if (config != NULL) { 5745 int err; 5746 5747 if ((err = put_nvlist(zc, config)) != 0) 5748 error = err; 5749 nvlist_free(config); 5750 } 5751 nvlist_free(policy); 5752 } 5753 } 5754 5755 if (error != 0) 5756 return (error); 5757 5758 /* 5759 * If multihost is enabled, resuming I/O is unsafe as another 5760 * host may have imported the pool. 5761 */ 5762 if (spa_multihost(spa) && spa_suspended(spa)) 5763 return (SET_ERROR(EINVAL)); 5764 5765 spa_vdev_state_enter(spa, SCL_NONE); 5766 5767 if (zc->zc_guid == 0) { 5768 vd = NULL; 5769 } else { 5770 vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE); 5771 if (vd == NULL) { 5772 error = SET_ERROR(ENODEV); 5773 (void) spa_vdev_state_exit(spa, NULL, error); 5774 spa_close(spa, FTAG); 5775 return (error); 5776 } 5777 } 5778 5779 vdev_clear(spa, vd); 5780 5781 (void) spa_vdev_state_exit(spa, spa_suspended(spa) ? 5782 NULL : spa->spa_root_vdev, 0); 5783 5784 /* 5785 * Resume any suspended I/Os. 5786 */ 5787 if (zio_resume(spa) != 0) 5788 error = SET_ERROR(EIO); 5789 5790 spa_close(spa, FTAG); 5791 5792 return (error); 5793 } 5794 5795 /* 5796 * Reopen all the vdevs associated with the pool. 5797 * 5798 * innvl: { 5799 * "scrub_restart" -> when true and scrub is running, allow to restart 5800 * scrub as the side effect of the reopen (boolean). 5801 * } 5802 * 5803 * outnvl is unused 5804 */ 5805 static const zfs_ioc_key_t zfs_keys_pool_reopen[] = { 5806 {"scrub_restart", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, 5807 }; 5808 5809 static int 5810 zfs_ioc_pool_reopen(const char *pool, nvlist_t *innvl, nvlist_t *outnvl) 5811 { 5812 (void) outnvl; 5813 spa_t *spa; 5814 int error; 5815 boolean_t rc, scrub_restart = B_TRUE; 5816 5817 if (innvl) { 5818 error = nvlist_lookup_boolean_value(innvl, 5819 "scrub_restart", &rc); 5820 if (error == 0) 5821 scrub_restart = rc; 5822 } 5823 5824 error = spa_open(pool, &spa, FTAG); 5825 if (error != 0) 5826 return (error); 5827 5828 spa_vdev_state_enter(spa, SCL_NONE); 5829 5830 /* 5831 * If the scrub_restart flag is B_FALSE and a scrub is already 5832 * in progress then set spa_scrub_reopen flag to B_TRUE so that 5833 * we don't restart the scrub as a side effect of the reopen. 5834 * Otherwise, let vdev_open() decided if a resilver is required. 5835 */ 5836 5837 spa->spa_scrub_reopen = (!scrub_restart && 5838 dsl_scan_scrubbing(spa->spa_dsl_pool)); 5839 vdev_reopen(spa->spa_root_vdev); 5840 spa->spa_scrub_reopen = B_FALSE; 5841 5842 (void) spa_vdev_state_exit(spa, NULL, 0); 5843 spa_close(spa, FTAG); 5844 return (0); 5845 } 5846 5847 /* 5848 * inputs: 5849 * zc_name name of filesystem 5850 * 5851 * outputs: 5852 * zc_string name of conflicting snapshot, if there is one 5853 */ 5854 static int 5855 zfs_ioc_promote(zfs_cmd_t *zc) 5856 { 5857 dsl_pool_t *dp; 5858 dsl_dataset_t *ds, *ods; 5859 char origin[ZFS_MAX_DATASET_NAME_LEN]; 5860 char *cp; 5861 int error; 5862 5863 zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; 5864 if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || 5865 strchr(zc->zc_name, '%')) 5866 return (SET_ERROR(EINVAL)); 5867 5868 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 5869 if (error != 0) 5870 return (error); 5871 5872 error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); 5873 if (error != 0) { 5874 dsl_pool_rele(dp, FTAG); 5875 return (error); 5876 } 5877 5878 if (!dsl_dir_is_clone(ds->ds_dir)) { 5879 dsl_dataset_rele(ds, FTAG); 5880 dsl_pool_rele(dp, FTAG); 5881 return (SET_ERROR(EINVAL)); 5882 } 5883 5884 error = dsl_dataset_hold_obj(dp, 5885 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &ods); 5886 if (error != 0) { 5887 dsl_dataset_rele(ds, FTAG); 5888 dsl_pool_rele(dp, FTAG); 5889 return (error); 5890 } 5891 5892 dsl_dataset_name(ods, origin); 5893 dsl_dataset_rele(ods, FTAG); 5894 dsl_dataset_rele(ds, FTAG); 5895 dsl_pool_rele(dp, FTAG); 5896 5897 /* 5898 * We don't need to unmount *all* the origin fs's snapshots, but 5899 * it's easier. 5900 */ 5901 cp = strchr(origin, '@'); 5902 if (cp) 5903 *cp = '\0'; 5904 (void) dmu_objset_find(origin, 5905 zfs_unmount_snap_cb, NULL, DS_FIND_SNAPSHOTS); 5906 return (dsl_dataset_promote(zc->zc_name, zc->zc_string)); 5907 } 5908 5909 /* 5910 * Retrieve a single {user|group|project}{used|quota}@... property. 5911 * 5912 * inputs: 5913 * zc_name name of filesystem 5914 * zc_objset_type zfs_userquota_prop_t 5915 * zc_value domain name (eg. "S-1-234-567-89") 5916 * zc_guid RID/UID/GID 5917 * 5918 * outputs: 5919 * zc_cookie property value 5920 */ 5921 static int 5922 zfs_ioc_userspace_one(zfs_cmd_t *zc) 5923 { 5924 zfsvfs_t *zfsvfs; 5925 int error; 5926 5927 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) 5928 return (SET_ERROR(EINVAL)); 5929 5930 error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); 5931 if (error != 0) 5932 return (error); 5933 5934 error = zfs_userspace_one(zfsvfs, 5935 zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie); 5936 zfsvfs_rele(zfsvfs, FTAG); 5937 5938 return (error); 5939 } 5940 5941 /* 5942 * inputs: 5943 * zc_name name of filesystem 5944 * zc_cookie zap cursor 5945 * zc_objset_type zfs_userquota_prop_t 5946 * zc_nvlist_dst[_size] buffer to fill (not really an nvlist) 5947 * 5948 * outputs: 5949 * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t) 5950 * zc_cookie zap cursor 5951 */ 5952 static int 5953 zfs_ioc_userspace_many(zfs_cmd_t *zc) 5954 { 5955 zfsvfs_t *zfsvfs; 5956 int bufsize = zc->zc_nvlist_dst_size; 5957 5958 if (bufsize <= 0) 5959 return (SET_ERROR(ENOMEM)); 5960 5961 int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); 5962 if (error != 0) 5963 return (error); 5964 5965 void *buf = vmem_alloc(bufsize, KM_SLEEP); 5966 5967 error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie, 5968 buf, &zc->zc_nvlist_dst_size); 5969 5970 if (error == 0) { 5971 error = xcopyout(buf, 5972 (void *)(uintptr_t)zc->zc_nvlist_dst, 5973 zc->zc_nvlist_dst_size); 5974 } 5975 vmem_free(buf, bufsize); 5976 zfsvfs_rele(zfsvfs, FTAG); 5977 5978 return (error); 5979 } 5980 5981 /* 5982 * inputs: 5983 * zc_name name of filesystem 5984 * 5985 * outputs: 5986 * none 5987 */ 5988 static int 5989 zfs_ioc_userspace_upgrade(zfs_cmd_t *zc) 5990 { 5991 int error = 0; 5992 zfsvfs_t *zfsvfs; 5993 5994 if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { 5995 if (!dmu_objset_userused_enabled(zfsvfs->z_os)) { 5996 /* 5997 * If userused is not enabled, it may be because the 5998 * objset needs to be closed & reopened (to grow the 5999 * objset_phys_t). Suspend/resume the fs will do that. 6000 */ 6001 dsl_dataset_t *ds, *newds; 6002 6003 ds = dmu_objset_ds(zfsvfs->z_os); 6004 error = zfs_suspend_fs(zfsvfs); 6005 if (error == 0) { 6006 dmu_objset_refresh_ownership(ds, &newds, 6007 B_TRUE, zfsvfs); 6008 error = zfs_resume_fs(zfsvfs, newds); 6009 } 6010 } 6011 if (error == 0) { 6012 mutex_enter(&zfsvfs->z_os->os_upgrade_lock); 6013 if (zfsvfs->z_os->os_upgrade_id == 0) { 6014 /* clear potential error code and retry */ 6015 zfsvfs->z_os->os_upgrade_status = 0; 6016 mutex_exit(&zfsvfs->z_os->os_upgrade_lock); 6017 6018 dsl_pool_config_enter( 6019 dmu_objset_pool(zfsvfs->z_os), FTAG); 6020 dmu_objset_userspace_upgrade(zfsvfs->z_os); 6021 dsl_pool_config_exit( 6022 dmu_objset_pool(zfsvfs->z_os), FTAG); 6023 } else { 6024 mutex_exit(&zfsvfs->z_os->os_upgrade_lock); 6025 } 6026 6027 taskq_wait_id(zfsvfs->z_os->os_spa->spa_upgrade_taskq, 6028 zfsvfs->z_os->os_upgrade_id); 6029 error = zfsvfs->z_os->os_upgrade_status; 6030 } 6031 zfs_vfs_rele(zfsvfs); 6032 } else { 6033 objset_t *os; 6034 6035 /* XXX kind of reading contents without owning */ 6036 error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os); 6037 if (error != 0) 6038 return (error); 6039 6040 mutex_enter(&os->os_upgrade_lock); 6041 if (os->os_upgrade_id == 0) { 6042 /* clear potential error code and retry */ 6043 os->os_upgrade_status = 0; 6044 mutex_exit(&os->os_upgrade_lock); 6045 6046 dmu_objset_userspace_upgrade(os); 6047 } else { 6048 mutex_exit(&os->os_upgrade_lock); 6049 } 6050 6051 dsl_pool_rele(dmu_objset_pool(os), FTAG); 6052 6053 taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id); 6054 error = os->os_upgrade_status; 6055 6056 dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT, 6057 FTAG); 6058 } 6059 return (error); 6060 } 6061 6062 /* 6063 * inputs: 6064 * zc_name name of filesystem 6065 * 6066 * outputs: 6067 * none 6068 */ 6069 static int 6070 zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc) 6071 { 6072 objset_t *os; 6073 int error; 6074 6075 error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os); 6076 if (error != 0) 6077 return (error); 6078 6079 if (dmu_objset_userobjspace_upgradable(os) || 6080 dmu_objset_projectquota_upgradable(os)) { 6081 mutex_enter(&os->os_upgrade_lock); 6082 if (os->os_upgrade_id == 0) { 6083 /* clear potential error code and retry */ 6084 os->os_upgrade_status = 0; 6085 mutex_exit(&os->os_upgrade_lock); 6086 6087 dmu_objset_id_quota_upgrade(os); 6088 } else { 6089 mutex_exit(&os->os_upgrade_lock); 6090 } 6091 6092 dsl_pool_rele(dmu_objset_pool(os), FTAG); 6093 6094 taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id); 6095 error = os->os_upgrade_status; 6096 } else { 6097 dsl_pool_rele(dmu_objset_pool(os), FTAG); 6098 } 6099 6100 dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT, FTAG); 6101 6102 return (error); 6103 } 6104 6105 static int 6106 zfs_ioc_share(zfs_cmd_t *zc) 6107 { 6108 return (SET_ERROR(ENOSYS)); 6109 } 6110 6111 /* 6112 * inputs: 6113 * zc_name name of containing filesystem 6114 * zc_obj object # beyond which we want next in-use object # 6115 * 6116 * outputs: 6117 * zc_obj next in-use object # 6118 */ 6119 static int 6120 zfs_ioc_next_obj(zfs_cmd_t *zc) 6121 { 6122 objset_t *os = NULL; 6123 int error; 6124 6125 error = dmu_objset_hold(zc->zc_name, FTAG, &os); 6126 if (error != 0) 6127 return (error); 6128 6129 error = dmu_object_next(os, &zc->zc_obj, B_FALSE, 0); 6130 6131 dmu_objset_rele(os, FTAG); 6132 return (error); 6133 } 6134 6135 /* 6136 * inputs: 6137 * zc_name name of filesystem 6138 * zc_value prefix name for snapshot 6139 * zc_cleanup_fd cleanup-on-exit file descriptor for calling process 6140 * 6141 * outputs: 6142 * zc_value short name of new snapshot 6143 */ 6144 static int 6145 zfs_ioc_tmp_snapshot(zfs_cmd_t *zc) 6146 { 6147 char *snap_name; 6148 char *hold_name; 6149 minor_t minor; 6150 6151 zfs_file_t *fp = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor); 6152 if (fp == NULL) 6153 return (SET_ERROR(EBADF)); 6154 6155 snap_name = kmem_asprintf("%s-%016llx", zc->zc_value, 6156 (u_longlong_t)ddi_get_lbolt64()); 6157 hold_name = kmem_asprintf("%%%s", zc->zc_value); 6158 6159 int error = dsl_dataset_snapshot_tmp(zc->zc_name, snap_name, minor, 6160 hold_name); 6161 if (error == 0) 6162 (void) strlcpy(zc->zc_value, snap_name, 6163 sizeof (zc->zc_value)); 6164 kmem_strfree(snap_name); 6165 kmem_strfree(hold_name); 6166 zfs_onexit_fd_rele(fp); 6167 return (error); 6168 } 6169 6170 /* 6171 * inputs: 6172 * zc_name name of "to" snapshot 6173 * zc_value name of "from" snapshot 6174 * zc_cookie file descriptor to write diff data on 6175 * 6176 * outputs: 6177 * dmu_diff_record_t's to the file descriptor 6178 */ 6179 static int 6180 zfs_ioc_diff(zfs_cmd_t *zc) 6181 { 6182 zfs_file_t *fp; 6183 offset_t off; 6184 int error; 6185 6186 if ((fp = zfs_file_get(zc->zc_cookie)) == NULL) 6187 return (SET_ERROR(EBADF)); 6188 6189 off = zfs_file_off(fp); 6190 error = dmu_diff(zc->zc_name, zc->zc_value, fp, &off); 6191 6192 zfs_file_put(fp); 6193 6194 return (error); 6195 } 6196 6197 static int 6198 zfs_ioc_smb_acl(zfs_cmd_t *zc) 6199 { 6200 return (SET_ERROR(ENOTSUP)); 6201 } 6202 6203 /* 6204 * innvl: { 6205 * "holds" -> { snapname -> holdname (string), ... } 6206 * (optional) "cleanup_fd" -> fd (int32) 6207 * } 6208 * 6209 * outnvl: { 6210 * snapname -> error value (int32) 6211 * ... 6212 * } 6213 */ 6214 static const zfs_ioc_key_t zfs_keys_hold[] = { 6215 {"holds", DATA_TYPE_NVLIST, 0}, 6216 {"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL}, 6217 }; 6218 6219 static int 6220 zfs_ioc_hold(const char *pool, nvlist_t *args, nvlist_t *errlist) 6221 { 6222 (void) pool; 6223 nvpair_t *pair; 6224 nvlist_t *holds; 6225 int cleanup_fd = -1; 6226 int error; 6227 minor_t minor = 0; 6228 zfs_file_t *fp = NULL; 6229 6230 holds = fnvlist_lookup_nvlist(args, "holds"); 6231 6232 /* make sure the user didn't pass us any invalid (empty) tags */ 6233 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; 6234 pair = nvlist_next_nvpair(holds, pair)) { 6235 char *htag; 6236 6237 error = nvpair_value_string(pair, &htag); 6238 if (error != 0) 6239 return (SET_ERROR(error)); 6240 6241 if (strlen(htag) == 0) 6242 return (SET_ERROR(EINVAL)); 6243 } 6244 6245 if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) { 6246 fp = zfs_onexit_fd_hold(cleanup_fd, &minor); 6247 if (fp == NULL) 6248 return (SET_ERROR(EBADF)); 6249 } 6250 6251 error = dsl_dataset_user_hold(holds, minor, errlist); 6252 if (fp != NULL) { 6253 ASSERT3U(minor, !=, 0); 6254 zfs_onexit_fd_rele(fp); 6255 } 6256 return (SET_ERROR(error)); 6257 } 6258 6259 /* 6260 * innvl is not used. 6261 * 6262 * outnvl: { 6263 * holdname -> time added (uint64 seconds since epoch) 6264 * ... 6265 * } 6266 */ 6267 static const zfs_ioc_key_t zfs_keys_get_holds[] = { 6268 /* no nvl keys */ 6269 }; 6270 6271 static int 6272 zfs_ioc_get_holds(const char *snapname, nvlist_t *args, nvlist_t *outnvl) 6273 { 6274 (void) args; 6275 return (dsl_dataset_get_holds(snapname, outnvl)); 6276 } 6277 6278 /* 6279 * innvl: { 6280 * snapname -> { holdname, ... } 6281 * ... 6282 * } 6283 * 6284 * outnvl: { 6285 * snapname -> error value (int32) 6286 * ... 6287 * } 6288 */ 6289 static const zfs_ioc_key_t zfs_keys_release[] = { 6290 {"<snapname>...", DATA_TYPE_NVLIST, ZK_WILDCARDLIST}, 6291 }; 6292 6293 static int 6294 zfs_ioc_release(const char *pool, nvlist_t *holds, nvlist_t *errlist) 6295 { 6296 (void) pool; 6297 return (dsl_dataset_user_release(holds, errlist)); 6298 } 6299 6300 /* 6301 * inputs: 6302 * zc_guid flags (ZEVENT_NONBLOCK) 6303 * zc_cleanup_fd zevent file descriptor 6304 * 6305 * outputs: 6306 * zc_nvlist_dst next nvlist event 6307 * zc_cookie dropped events since last get 6308 */ 6309 static int 6310 zfs_ioc_events_next(zfs_cmd_t *zc) 6311 { 6312 zfs_zevent_t *ze; 6313 nvlist_t *event = NULL; 6314 minor_t minor; 6315 uint64_t dropped = 0; 6316 int error; 6317 6318 zfs_file_t *fp = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze); 6319 if (fp == NULL) 6320 return (SET_ERROR(EBADF)); 6321 6322 do { 6323 error = zfs_zevent_next(ze, &event, 6324 &zc->zc_nvlist_dst_size, &dropped); 6325 if (event != NULL) { 6326 zc->zc_cookie = dropped; 6327 error = put_nvlist(zc, event); 6328 nvlist_free(event); 6329 } 6330 6331 if (zc->zc_guid & ZEVENT_NONBLOCK) 6332 break; 6333 6334 if ((error == 0) || (error != ENOENT)) 6335 break; 6336 6337 error = zfs_zevent_wait(ze); 6338 if (error != 0) 6339 break; 6340 } while (1); 6341 6342 zfs_zevent_fd_rele(fp); 6343 6344 return (error); 6345 } 6346 6347 /* 6348 * outputs: 6349 * zc_cookie cleared events count 6350 */ 6351 static int 6352 zfs_ioc_events_clear(zfs_cmd_t *zc) 6353 { 6354 uint_t count; 6355 6356 zfs_zevent_drain_all(&count); 6357 zc->zc_cookie = count; 6358 6359 return (0); 6360 } 6361 6362 /* 6363 * inputs: 6364 * zc_guid eid | ZEVENT_SEEK_START | ZEVENT_SEEK_END 6365 * zc_cleanup zevent file descriptor 6366 */ 6367 static int 6368 zfs_ioc_events_seek(zfs_cmd_t *zc) 6369 { 6370 zfs_zevent_t *ze; 6371 minor_t minor; 6372 int error; 6373 6374 zfs_file_t *fp = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze); 6375 if (fp == NULL) 6376 return (SET_ERROR(EBADF)); 6377 6378 error = zfs_zevent_seek(ze, zc->zc_guid); 6379 zfs_zevent_fd_rele(fp); 6380 6381 return (error); 6382 } 6383 6384 /* 6385 * inputs: 6386 * zc_name name of later filesystem or snapshot 6387 * zc_value full name of old snapshot or bookmark 6388 * 6389 * outputs: 6390 * zc_cookie space in bytes 6391 * zc_objset_type compressed space in bytes 6392 * zc_perm_action uncompressed space in bytes 6393 */ 6394 static int 6395 zfs_ioc_space_written(zfs_cmd_t *zc) 6396 { 6397 int error; 6398 dsl_pool_t *dp; 6399 dsl_dataset_t *new; 6400 6401 error = dsl_pool_hold(zc->zc_name, FTAG, &dp); 6402 if (error != 0) 6403 return (error); 6404 error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &new); 6405 if (error != 0) { 6406 dsl_pool_rele(dp, FTAG); 6407 return (error); 6408 } 6409 if (strchr(zc->zc_value, '#') != NULL) { 6410 zfs_bookmark_phys_t bmp; 6411 error = dsl_bookmark_lookup(dp, zc->zc_value, 6412 new, &bmp); 6413 if (error == 0) { 6414 error = dsl_dataset_space_written_bookmark(&bmp, new, 6415 &zc->zc_cookie, 6416 &zc->zc_objset_type, &zc->zc_perm_action); 6417 } 6418 } else { 6419 dsl_dataset_t *old; 6420 error = dsl_dataset_hold(dp, zc->zc_value, FTAG, &old); 6421 6422 if (error == 0) { 6423 error = dsl_dataset_space_written(old, new, 6424 &zc->zc_cookie, 6425 &zc->zc_objset_type, &zc->zc_perm_action); 6426 dsl_dataset_rele(old, FTAG); 6427 } 6428 } 6429 dsl_dataset_rele(new, FTAG); 6430 dsl_pool_rele(dp, FTAG); 6431 return (error); 6432 } 6433 6434 /* 6435 * innvl: { 6436 * "firstsnap" -> snapshot name 6437 * } 6438 * 6439 * outnvl: { 6440 * "used" -> space in bytes 6441 * "compressed" -> compressed space in bytes 6442 * "uncompressed" -> uncompressed space in bytes 6443 * } 6444 */ 6445 static const zfs_ioc_key_t zfs_keys_space_snaps[] = { 6446 {"firstsnap", DATA_TYPE_STRING, 0}, 6447 }; 6448 6449 static int 6450 zfs_ioc_space_snaps(const char *lastsnap, nvlist_t *innvl, nvlist_t *outnvl) 6451 { 6452 int error; 6453 dsl_pool_t *dp; 6454 dsl_dataset_t *new, *old; 6455 char *firstsnap; 6456 uint64_t used, comp, uncomp; 6457 6458 firstsnap = fnvlist_lookup_string(innvl, "firstsnap"); 6459 6460 error = dsl_pool_hold(lastsnap, FTAG, &dp); 6461 if (error != 0) 6462 return (error); 6463 6464 error = dsl_dataset_hold(dp, lastsnap, FTAG, &new); 6465 if (error == 0 && !new->ds_is_snapshot) { 6466 dsl_dataset_rele(new, FTAG); 6467 error = SET_ERROR(EINVAL); 6468 } 6469 if (error != 0) { 6470 dsl_pool_rele(dp, FTAG); 6471 return (error); 6472 } 6473 error = dsl_dataset_hold(dp, firstsnap, FTAG, &old); 6474 if (error == 0 && !old->ds_is_snapshot) { 6475 dsl_dataset_rele(old, FTAG); 6476 error = SET_ERROR(EINVAL); 6477 } 6478 if (error != 0) { 6479 dsl_dataset_rele(new, FTAG); 6480 dsl_pool_rele(dp, FTAG); 6481 return (error); 6482 } 6483 6484 error = dsl_dataset_space_wouldfree(old, new, &used, &comp, &uncomp); 6485 dsl_dataset_rele(old, FTAG); 6486 dsl_dataset_rele(new, FTAG); 6487 dsl_pool_rele(dp, FTAG); 6488 fnvlist_add_uint64(outnvl, "used", used); 6489 fnvlist_add_uint64(outnvl, "compressed", comp); 6490 fnvlist_add_uint64(outnvl, "uncompressed", uncomp); 6491 return (error); 6492 } 6493 6494 /* 6495 * innvl: { 6496 * "fd" -> file descriptor to write stream to (int32) 6497 * (optional) "fromsnap" -> full snap name to send an incremental from 6498 * (optional) "largeblockok" -> (value ignored) 6499 * indicates that blocks > 128KB are permitted 6500 * (optional) "embedok" -> (value ignored) 6501 * presence indicates DRR_WRITE_EMBEDDED records are permitted 6502 * (optional) "compressok" -> (value ignored) 6503 * presence indicates compressed DRR_WRITE records are permitted 6504 * (optional) "rawok" -> (value ignored) 6505 * presence indicates raw encrypted records should be used. 6506 * (optional) "savedok" -> (value ignored) 6507 * presence indicates we should send a partially received snapshot 6508 * (optional) "resume_object" and "resume_offset" -> (uint64) 6509 * if present, resume send stream from specified object and offset. 6510 * (optional) "redactbook" -> (string) 6511 * if present, use this bookmark's redaction list to generate a redacted 6512 * send stream 6513 * } 6514 * 6515 * outnvl is unused 6516 */ 6517 static const zfs_ioc_key_t zfs_keys_send_new[] = { 6518 {"fd", DATA_TYPE_INT32, 0}, 6519 {"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL}, 6520 {"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6521 {"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6522 {"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6523 {"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6524 {"savedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6525 {"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL}, 6526 {"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL}, 6527 {"redactbook", DATA_TYPE_STRING, ZK_OPTIONAL}, 6528 }; 6529 6530 static int 6531 zfs_ioc_send_new(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) 6532 { 6533 (void) outnvl; 6534 int error; 6535 offset_t off; 6536 char *fromname = NULL; 6537 int fd; 6538 zfs_file_t *fp; 6539 boolean_t largeblockok; 6540 boolean_t embedok; 6541 boolean_t compressok; 6542 boolean_t rawok; 6543 boolean_t savedok; 6544 uint64_t resumeobj = 0; 6545 uint64_t resumeoff = 0; 6546 char *redactbook = NULL; 6547 6548 fd = fnvlist_lookup_int32(innvl, "fd"); 6549 6550 (void) nvlist_lookup_string(innvl, "fromsnap", &fromname); 6551 6552 largeblockok = nvlist_exists(innvl, "largeblockok"); 6553 embedok = nvlist_exists(innvl, "embedok"); 6554 compressok = nvlist_exists(innvl, "compressok"); 6555 rawok = nvlist_exists(innvl, "rawok"); 6556 savedok = nvlist_exists(innvl, "savedok"); 6557 6558 (void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj); 6559 (void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff); 6560 6561 (void) nvlist_lookup_string(innvl, "redactbook", &redactbook); 6562 6563 if ((fp = zfs_file_get(fd)) == NULL) 6564 return (SET_ERROR(EBADF)); 6565 6566 off = zfs_file_off(fp); 6567 6568 dmu_send_outparams_t out = {0}; 6569 out.dso_outfunc = dump_bytes; 6570 out.dso_arg = fp; 6571 out.dso_dryrun = B_FALSE; 6572 error = dmu_send(snapname, fromname, embedok, largeblockok, 6573 compressok, rawok, savedok, resumeobj, resumeoff, 6574 redactbook, fd, &off, &out); 6575 6576 zfs_file_put(fp); 6577 return (error); 6578 } 6579 6580 static int 6581 send_space_sum(objset_t *os, void *buf, int len, void *arg) 6582 { 6583 (void) os, (void) buf; 6584 uint64_t *size = arg; 6585 6586 *size += len; 6587 return (0); 6588 } 6589 6590 /* 6591 * Determine approximately how large a zfs send stream will be -- the number 6592 * of bytes that will be written to the fd supplied to zfs_ioc_send_new(). 6593 * 6594 * innvl: { 6595 * (optional) "from" -> full snap or bookmark name to send an incremental 6596 * from 6597 * (optional) "largeblockok" -> (value ignored) 6598 * indicates that blocks > 128KB are permitted 6599 * (optional) "embedok" -> (value ignored) 6600 * presence indicates DRR_WRITE_EMBEDDED records are permitted 6601 * (optional) "compressok" -> (value ignored) 6602 * presence indicates compressed DRR_WRITE records are permitted 6603 * (optional) "rawok" -> (value ignored) 6604 * presence indicates raw encrypted records should be used. 6605 * (optional) "resume_object" and "resume_offset" -> (uint64) 6606 * if present, resume send stream from specified object and offset. 6607 * (optional) "fd" -> file descriptor to use as a cookie for progress 6608 * tracking (int32) 6609 * } 6610 * 6611 * outnvl: { 6612 * "space" -> bytes of space (uint64) 6613 * } 6614 */ 6615 static const zfs_ioc_key_t zfs_keys_send_space[] = { 6616 {"from", DATA_TYPE_STRING, ZK_OPTIONAL}, 6617 {"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL}, 6618 {"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6619 {"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6620 {"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6621 {"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6622 {"fd", DATA_TYPE_INT32, ZK_OPTIONAL}, 6623 {"redactbook", DATA_TYPE_STRING, ZK_OPTIONAL}, 6624 {"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL}, 6625 {"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL}, 6626 {"bytes", DATA_TYPE_UINT64, ZK_OPTIONAL}, 6627 }; 6628 6629 static int 6630 zfs_ioc_send_space(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) 6631 { 6632 dsl_pool_t *dp; 6633 dsl_dataset_t *tosnap; 6634 dsl_dataset_t *fromsnap = NULL; 6635 int error; 6636 char *fromname = NULL; 6637 char *redactlist_book = NULL; 6638 boolean_t largeblockok; 6639 boolean_t embedok; 6640 boolean_t compressok; 6641 boolean_t rawok; 6642 boolean_t savedok; 6643 uint64_t space = 0; 6644 boolean_t full_estimate = B_FALSE; 6645 uint64_t resumeobj = 0; 6646 uint64_t resumeoff = 0; 6647 uint64_t resume_bytes = 0; 6648 int32_t fd = -1; 6649 zfs_bookmark_phys_t zbm = {0}; 6650 6651 error = dsl_pool_hold(snapname, FTAG, &dp); 6652 if (error != 0) 6653 return (error); 6654 6655 error = dsl_dataset_hold(dp, snapname, FTAG, &tosnap); 6656 if (error != 0) { 6657 dsl_pool_rele(dp, FTAG); 6658 return (error); 6659 } 6660 (void) nvlist_lookup_int32(innvl, "fd", &fd); 6661 6662 largeblockok = nvlist_exists(innvl, "largeblockok"); 6663 embedok = nvlist_exists(innvl, "embedok"); 6664 compressok = nvlist_exists(innvl, "compressok"); 6665 rawok = nvlist_exists(innvl, "rawok"); 6666 savedok = nvlist_exists(innvl, "savedok"); 6667 boolean_t from = (nvlist_lookup_string(innvl, "from", &fromname) == 0); 6668 boolean_t altbook = (nvlist_lookup_string(innvl, "redactbook", 6669 &redactlist_book) == 0); 6670 6671 (void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj); 6672 (void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff); 6673 (void) nvlist_lookup_uint64(innvl, "bytes", &resume_bytes); 6674 6675 if (altbook) { 6676 full_estimate = B_TRUE; 6677 } else if (from) { 6678 if (strchr(fromname, '#')) { 6679 error = dsl_bookmark_lookup(dp, fromname, tosnap, &zbm); 6680 6681 /* 6682 * dsl_bookmark_lookup() will fail with EXDEV if 6683 * the from-bookmark and tosnap are at the same txg. 6684 * However, it's valid to do a send (and therefore, 6685 * a send estimate) from and to the same time point, 6686 * if the bookmark is redacted (the incremental send 6687 * can change what's redacted on the target). In 6688 * this case, dsl_bookmark_lookup() fills in zbm 6689 * but returns EXDEV. Ignore this error. 6690 */ 6691 if (error == EXDEV && zbm.zbm_redaction_obj != 0 && 6692 zbm.zbm_guid == 6693 dsl_dataset_phys(tosnap)->ds_guid) 6694 error = 0; 6695 6696 if (error != 0) { 6697 dsl_dataset_rele(tosnap, FTAG); 6698 dsl_pool_rele(dp, FTAG); 6699 return (error); 6700 } 6701 if (zbm.zbm_redaction_obj != 0 || !(zbm.zbm_flags & 6702 ZBM_FLAG_HAS_FBN)) { 6703 full_estimate = B_TRUE; 6704 } 6705 } else if (strchr(fromname, '@')) { 6706 error = dsl_dataset_hold(dp, fromname, FTAG, &fromsnap); 6707 if (error != 0) { 6708 dsl_dataset_rele(tosnap, FTAG); 6709 dsl_pool_rele(dp, FTAG); 6710 return (error); 6711 } 6712 6713 if (!dsl_dataset_is_before(tosnap, fromsnap, 0)) { 6714 full_estimate = B_TRUE; 6715 dsl_dataset_rele(fromsnap, FTAG); 6716 } 6717 } else { 6718 /* 6719 * from is not properly formatted as a snapshot or 6720 * bookmark 6721 */ 6722 dsl_dataset_rele(tosnap, FTAG); 6723 dsl_pool_rele(dp, FTAG); 6724 return (SET_ERROR(EINVAL)); 6725 } 6726 } 6727 6728 if (full_estimate) { 6729 dmu_send_outparams_t out = {0}; 6730 offset_t off = 0; 6731 out.dso_outfunc = send_space_sum; 6732 out.dso_arg = &space; 6733 out.dso_dryrun = B_TRUE; 6734 /* 6735 * We have to release these holds so dmu_send can take them. It 6736 * will do all the error checking we need. 6737 */ 6738 dsl_dataset_rele(tosnap, FTAG); 6739 dsl_pool_rele(dp, FTAG); 6740 error = dmu_send(snapname, fromname, embedok, largeblockok, 6741 compressok, rawok, savedok, resumeobj, resumeoff, 6742 redactlist_book, fd, &off, &out); 6743 } else { 6744 error = dmu_send_estimate_fast(tosnap, fromsnap, 6745 (from && strchr(fromname, '#') != NULL ? &zbm : NULL), 6746 compressok || rawok, savedok, &space); 6747 space -= resume_bytes; 6748 if (fromsnap != NULL) 6749 dsl_dataset_rele(fromsnap, FTAG); 6750 dsl_dataset_rele(tosnap, FTAG); 6751 dsl_pool_rele(dp, FTAG); 6752 } 6753 6754 fnvlist_add_uint64(outnvl, "space", space); 6755 6756 return (error); 6757 } 6758 6759 /* 6760 * Sync the currently open TXG to disk for the specified pool. 6761 * This is somewhat similar to 'zfs_sync()'. 6762 * For cases that do not result in error this ioctl will wait for 6763 * the currently open TXG to commit before returning back to the caller. 6764 * 6765 * innvl: { 6766 * "force" -> when true, force uberblock update even if there is no dirty data. 6767 * In addition this will cause the vdev configuration to be written 6768 * out including updating the zpool cache file. (boolean_t) 6769 * } 6770 * 6771 * onvl is unused 6772 */ 6773 static const zfs_ioc_key_t zfs_keys_pool_sync[] = { 6774 {"force", DATA_TYPE_BOOLEAN_VALUE, 0}, 6775 }; 6776 6777 static int 6778 zfs_ioc_pool_sync(const char *pool, nvlist_t *innvl, nvlist_t *onvl) 6779 { 6780 (void) onvl; 6781 int err; 6782 boolean_t rc, force = B_FALSE; 6783 spa_t *spa; 6784 6785 if ((err = spa_open(pool, &spa, FTAG)) != 0) 6786 return (err); 6787 6788 if (innvl) { 6789 err = nvlist_lookup_boolean_value(innvl, "force", &rc); 6790 if (err == 0) 6791 force = rc; 6792 } 6793 6794 if (force) { 6795 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_WRITER); 6796 vdev_config_dirty(spa->spa_root_vdev); 6797 spa_config_exit(spa, SCL_CONFIG, FTAG); 6798 } 6799 txg_wait_synced(spa_get_dsl(spa), 0); 6800 6801 spa_close(spa, FTAG); 6802 6803 return (0); 6804 } 6805 6806 /* 6807 * Load a user's wrapping key into the kernel. 6808 * innvl: { 6809 * "hidden_args" -> { "wkeydata" -> value } 6810 * raw uint8_t array of encryption wrapping key data (32 bytes) 6811 * (optional) "noop" -> (value ignored) 6812 * presence indicated key should only be verified, not loaded 6813 * } 6814 */ 6815 static const zfs_ioc_key_t zfs_keys_load_key[] = { 6816 {"hidden_args", DATA_TYPE_NVLIST, 0}, 6817 {"noop", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, 6818 }; 6819 6820 static int 6821 zfs_ioc_load_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) 6822 { 6823 (void) outnvl; 6824 int ret; 6825 dsl_crypto_params_t *dcp = NULL; 6826 nvlist_t *hidden_args; 6827 boolean_t noop = nvlist_exists(innvl, "noop"); 6828 6829 if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { 6830 ret = SET_ERROR(EINVAL); 6831 goto error; 6832 } 6833 6834 hidden_args = fnvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS); 6835 6836 ret = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, 6837 hidden_args, &dcp); 6838 if (ret != 0) 6839 goto error; 6840 6841 ret = spa_keystore_load_wkey(dsname, dcp, noop); 6842 if (ret != 0) 6843 goto error; 6844 6845 dsl_crypto_params_free(dcp, noop); 6846 6847 return (0); 6848 6849 error: 6850 dsl_crypto_params_free(dcp, B_TRUE); 6851 return (ret); 6852 } 6853 6854 /* 6855 * Unload a user's wrapping key from the kernel. 6856 * Both innvl and outnvl are unused. 6857 */ 6858 static const zfs_ioc_key_t zfs_keys_unload_key[] = { 6859 /* no nvl keys */ 6860 }; 6861 6862 static int 6863 zfs_ioc_unload_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) 6864 { 6865 (void) innvl, (void) outnvl; 6866 int ret = 0; 6867 6868 if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { 6869 ret = (SET_ERROR(EINVAL)); 6870 goto out; 6871 } 6872 6873 ret = spa_keystore_unload_wkey(dsname); 6874 if (ret != 0) 6875 goto out; 6876 6877 out: 6878 return (ret); 6879 } 6880 6881 /* 6882 * Changes a user's wrapping key used to decrypt a dataset. The keyformat, 6883 * keylocation, pbkdf2salt, and pbkdf2iters properties can also be specified 6884 * here to change how the key is derived in userspace. 6885 * 6886 * innvl: { 6887 * "hidden_args" (optional) -> { "wkeydata" -> value } 6888 * raw uint8_t array of new encryption wrapping key data (32 bytes) 6889 * "props" (optional) -> { prop -> value } 6890 * } 6891 * 6892 * outnvl is unused 6893 */ 6894 static const zfs_ioc_key_t zfs_keys_change_key[] = { 6895 {"crypt_cmd", DATA_TYPE_UINT64, ZK_OPTIONAL}, 6896 {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 6897 {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, 6898 }; 6899 6900 static int 6901 zfs_ioc_change_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) 6902 { 6903 (void) outnvl; 6904 int ret; 6905 uint64_t cmd = DCP_CMD_NONE; 6906 dsl_crypto_params_t *dcp = NULL; 6907 nvlist_t *args = NULL, *hidden_args = NULL; 6908 6909 if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { 6910 ret = (SET_ERROR(EINVAL)); 6911 goto error; 6912 } 6913 6914 (void) nvlist_lookup_uint64(innvl, "crypt_cmd", &cmd); 6915 (void) nvlist_lookup_nvlist(innvl, "props", &args); 6916 (void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); 6917 6918 ret = dsl_crypto_params_create_nvlist(cmd, args, hidden_args, &dcp); 6919 if (ret != 0) 6920 goto error; 6921 6922 ret = spa_keystore_change_key(dsname, dcp); 6923 if (ret != 0) 6924 goto error; 6925 6926 dsl_crypto_params_free(dcp, B_FALSE); 6927 6928 return (0); 6929 6930 error: 6931 dsl_crypto_params_free(dcp, B_TRUE); 6932 return (ret); 6933 } 6934 6935 static zfs_ioc_vec_t zfs_ioc_vec[ZFS_IOC_LAST - ZFS_IOC_FIRST]; 6936 6937 static void 6938 zfs_ioctl_register_legacy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, 6939 zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, 6940 boolean_t log_history, zfs_ioc_poolcheck_t pool_check) 6941 { 6942 zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; 6943 6944 ASSERT3U(ioc, >=, ZFS_IOC_FIRST); 6945 ASSERT3U(ioc, <, ZFS_IOC_LAST); 6946 ASSERT3P(vec->zvec_legacy_func, ==, NULL); 6947 ASSERT3P(vec->zvec_func, ==, NULL); 6948 6949 vec->zvec_legacy_func = func; 6950 vec->zvec_secpolicy = secpolicy; 6951 vec->zvec_namecheck = namecheck; 6952 vec->zvec_allow_log = log_history; 6953 vec->zvec_pool_check = pool_check; 6954 } 6955 6956 /* 6957 * See the block comment at the beginning of this file for details on 6958 * each argument to this function. 6959 */ 6960 void 6961 zfs_ioctl_register(const char *name, zfs_ioc_t ioc, zfs_ioc_func_t *func, 6962 zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, 6963 zfs_ioc_poolcheck_t pool_check, boolean_t smush_outnvlist, 6964 boolean_t allow_log, const zfs_ioc_key_t *nvl_keys, size_t num_keys) 6965 { 6966 zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; 6967 6968 ASSERT3U(ioc, >=, ZFS_IOC_FIRST); 6969 ASSERT3U(ioc, <, ZFS_IOC_LAST); 6970 ASSERT3P(vec->zvec_legacy_func, ==, NULL); 6971 ASSERT3P(vec->zvec_func, ==, NULL); 6972 6973 /* if we are logging, the name must be valid */ 6974 ASSERT(!allow_log || namecheck != NO_NAME); 6975 6976 vec->zvec_name = name; 6977 vec->zvec_func = func; 6978 vec->zvec_secpolicy = secpolicy; 6979 vec->zvec_namecheck = namecheck; 6980 vec->zvec_pool_check = pool_check; 6981 vec->zvec_smush_outnvlist = smush_outnvlist; 6982 vec->zvec_allow_log = allow_log; 6983 vec->zvec_nvl_keys = nvl_keys; 6984 vec->zvec_nvl_key_count = num_keys; 6985 } 6986 6987 static void 6988 zfs_ioctl_register_pool(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, 6989 zfs_secpolicy_func_t *secpolicy, boolean_t log_history, 6990 zfs_ioc_poolcheck_t pool_check) 6991 { 6992 zfs_ioctl_register_legacy(ioc, func, secpolicy, 6993 POOL_NAME, log_history, pool_check); 6994 } 6995 6996 void 6997 zfs_ioctl_register_dataset_nolog(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, 6998 zfs_secpolicy_func_t *secpolicy, zfs_ioc_poolcheck_t pool_check) 6999 { 7000 zfs_ioctl_register_legacy(ioc, func, secpolicy, 7001 DATASET_NAME, B_FALSE, pool_check); 7002 } 7003 7004 static void 7005 zfs_ioctl_register_pool_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) 7006 { 7007 zfs_ioctl_register_legacy(ioc, func, zfs_secpolicy_config, 7008 POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); 7009 } 7010 7011 static void 7012 zfs_ioctl_register_pool_meta(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, 7013 zfs_secpolicy_func_t *secpolicy) 7014 { 7015 zfs_ioctl_register_legacy(ioc, func, secpolicy, 7016 NO_NAME, B_FALSE, POOL_CHECK_NONE); 7017 } 7018 7019 static void 7020 zfs_ioctl_register_dataset_read_secpolicy(zfs_ioc_t ioc, 7021 zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) 7022 { 7023 zfs_ioctl_register_legacy(ioc, func, secpolicy, 7024 DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED); 7025 } 7026 7027 static void 7028 zfs_ioctl_register_dataset_read(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) 7029 { 7030 zfs_ioctl_register_dataset_read_secpolicy(ioc, func, 7031 zfs_secpolicy_read); 7032 } 7033 7034 static void 7035 zfs_ioctl_register_dataset_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, 7036 zfs_secpolicy_func_t *secpolicy) 7037 { 7038 zfs_ioctl_register_legacy(ioc, func, secpolicy, 7039 DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); 7040 } 7041 7042 static void 7043 zfs_ioctl_init(void) 7044 { 7045 zfs_ioctl_register("snapshot", ZFS_IOC_SNAPSHOT, 7046 zfs_ioc_snapshot, zfs_secpolicy_snapshot, POOL_NAME, 7047 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7048 zfs_keys_snapshot, ARRAY_SIZE(zfs_keys_snapshot)); 7049 7050 zfs_ioctl_register("log_history", ZFS_IOC_LOG_HISTORY, 7051 zfs_ioc_log_history, zfs_secpolicy_log_history, NO_NAME, 7052 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, 7053 zfs_keys_log_history, ARRAY_SIZE(zfs_keys_log_history)); 7054 7055 zfs_ioctl_register("space_snaps", ZFS_IOC_SPACE_SNAPS, 7056 zfs_ioc_space_snaps, zfs_secpolicy_read, DATASET_NAME, 7057 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, 7058 zfs_keys_space_snaps, ARRAY_SIZE(zfs_keys_space_snaps)); 7059 7060 zfs_ioctl_register("send", ZFS_IOC_SEND_NEW, 7061 zfs_ioc_send_new, zfs_secpolicy_send_new, DATASET_NAME, 7062 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, 7063 zfs_keys_send_new, ARRAY_SIZE(zfs_keys_send_new)); 7064 7065 zfs_ioctl_register("send_space", ZFS_IOC_SEND_SPACE, 7066 zfs_ioc_send_space, zfs_secpolicy_read, DATASET_NAME, 7067 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, 7068 zfs_keys_send_space, ARRAY_SIZE(zfs_keys_send_space)); 7069 7070 zfs_ioctl_register("create", ZFS_IOC_CREATE, 7071 zfs_ioc_create, zfs_secpolicy_create_clone, DATASET_NAME, 7072 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7073 zfs_keys_create, ARRAY_SIZE(zfs_keys_create)); 7074 7075 zfs_ioctl_register("clone", ZFS_IOC_CLONE, 7076 zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME, 7077 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7078 zfs_keys_clone, ARRAY_SIZE(zfs_keys_clone)); 7079 7080 zfs_ioctl_register("remap", ZFS_IOC_REMAP, 7081 zfs_ioc_remap, zfs_secpolicy_none, DATASET_NAME, 7082 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, 7083 zfs_keys_remap, ARRAY_SIZE(zfs_keys_remap)); 7084 7085 zfs_ioctl_register("destroy_snaps", ZFS_IOC_DESTROY_SNAPS, 7086 zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME, 7087 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7088 zfs_keys_destroy_snaps, ARRAY_SIZE(zfs_keys_destroy_snaps)); 7089 7090 zfs_ioctl_register("hold", ZFS_IOC_HOLD, 7091 zfs_ioc_hold, zfs_secpolicy_hold, POOL_NAME, 7092 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7093 zfs_keys_hold, ARRAY_SIZE(zfs_keys_hold)); 7094 zfs_ioctl_register("release", ZFS_IOC_RELEASE, 7095 zfs_ioc_release, zfs_secpolicy_release, POOL_NAME, 7096 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7097 zfs_keys_release, ARRAY_SIZE(zfs_keys_release)); 7098 7099 zfs_ioctl_register("get_holds", ZFS_IOC_GET_HOLDS, 7100 zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME, 7101 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, 7102 zfs_keys_get_holds, ARRAY_SIZE(zfs_keys_get_holds)); 7103 7104 zfs_ioctl_register("rollback", ZFS_IOC_ROLLBACK, 7105 zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, 7106 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, 7107 zfs_keys_rollback, ARRAY_SIZE(zfs_keys_rollback)); 7108 7109 zfs_ioctl_register("bookmark", ZFS_IOC_BOOKMARK, 7110 zfs_ioc_bookmark, zfs_secpolicy_bookmark, POOL_NAME, 7111 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7112 zfs_keys_bookmark, ARRAY_SIZE(zfs_keys_bookmark)); 7113 7114 zfs_ioctl_register("get_bookmarks", ZFS_IOC_GET_BOOKMARKS, 7115 zfs_ioc_get_bookmarks, zfs_secpolicy_read, DATASET_NAME, 7116 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, 7117 zfs_keys_get_bookmarks, ARRAY_SIZE(zfs_keys_get_bookmarks)); 7118 7119 zfs_ioctl_register("get_bookmark_props", ZFS_IOC_GET_BOOKMARK_PROPS, 7120 zfs_ioc_get_bookmark_props, zfs_secpolicy_read, ENTITY_NAME, 7121 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_get_bookmark_props, 7122 ARRAY_SIZE(zfs_keys_get_bookmark_props)); 7123 7124 zfs_ioctl_register("destroy_bookmarks", ZFS_IOC_DESTROY_BOOKMARKS, 7125 zfs_ioc_destroy_bookmarks, zfs_secpolicy_destroy_bookmarks, 7126 POOL_NAME, 7127 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7128 zfs_keys_destroy_bookmarks, 7129 ARRAY_SIZE(zfs_keys_destroy_bookmarks)); 7130 7131 zfs_ioctl_register("receive", ZFS_IOC_RECV_NEW, 7132 zfs_ioc_recv_new, zfs_secpolicy_recv, DATASET_NAME, 7133 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7134 zfs_keys_recv_new, ARRAY_SIZE(zfs_keys_recv_new)); 7135 zfs_ioctl_register("load-key", ZFS_IOC_LOAD_KEY, 7136 zfs_ioc_load_key, zfs_secpolicy_load_key, 7137 DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, 7138 zfs_keys_load_key, ARRAY_SIZE(zfs_keys_load_key)); 7139 zfs_ioctl_register("unload-key", ZFS_IOC_UNLOAD_KEY, 7140 zfs_ioc_unload_key, zfs_secpolicy_load_key, 7141 DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, 7142 zfs_keys_unload_key, ARRAY_SIZE(zfs_keys_unload_key)); 7143 zfs_ioctl_register("change-key", ZFS_IOC_CHANGE_KEY, 7144 zfs_ioc_change_key, zfs_secpolicy_change_key, 7145 DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, 7146 B_TRUE, B_TRUE, zfs_keys_change_key, 7147 ARRAY_SIZE(zfs_keys_change_key)); 7148 7149 zfs_ioctl_register("sync", ZFS_IOC_POOL_SYNC, 7150 zfs_ioc_pool_sync, zfs_secpolicy_none, POOL_NAME, 7151 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, 7152 zfs_keys_pool_sync, ARRAY_SIZE(zfs_keys_pool_sync)); 7153 zfs_ioctl_register("reopen", ZFS_IOC_POOL_REOPEN, zfs_ioc_pool_reopen, 7154 zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED, B_TRUE, 7155 B_TRUE, zfs_keys_pool_reopen, ARRAY_SIZE(zfs_keys_pool_reopen)); 7156 7157 zfs_ioctl_register("channel_program", ZFS_IOC_CHANNEL_PROGRAM, 7158 zfs_ioc_channel_program, zfs_secpolicy_config, 7159 POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, 7160 B_TRUE, zfs_keys_channel_program, 7161 ARRAY_SIZE(zfs_keys_channel_program)); 7162 7163 zfs_ioctl_register("redact", ZFS_IOC_REDACT, 7164 zfs_ioc_redact, zfs_secpolicy_config, DATASET_NAME, 7165 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7166 zfs_keys_redact, ARRAY_SIZE(zfs_keys_redact)); 7167 7168 zfs_ioctl_register("zpool_checkpoint", ZFS_IOC_POOL_CHECKPOINT, 7169 zfs_ioc_pool_checkpoint, zfs_secpolicy_config, POOL_NAME, 7170 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7171 zfs_keys_pool_checkpoint, ARRAY_SIZE(zfs_keys_pool_checkpoint)); 7172 7173 zfs_ioctl_register("zpool_discard_checkpoint", 7174 ZFS_IOC_POOL_DISCARD_CHECKPOINT, zfs_ioc_pool_discard_checkpoint, 7175 zfs_secpolicy_config, POOL_NAME, 7176 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7177 zfs_keys_pool_discard_checkpoint, 7178 ARRAY_SIZE(zfs_keys_pool_discard_checkpoint)); 7179 7180 zfs_ioctl_register("initialize", ZFS_IOC_POOL_INITIALIZE, 7181 zfs_ioc_pool_initialize, zfs_secpolicy_config, POOL_NAME, 7182 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7183 zfs_keys_pool_initialize, ARRAY_SIZE(zfs_keys_pool_initialize)); 7184 7185 zfs_ioctl_register("trim", ZFS_IOC_POOL_TRIM, 7186 zfs_ioc_pool_trim, zfs_secpolicy_config, POOL_NAME, 7187 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, 7188 zfs_keys_pool_trim, ARRAY_SIZE(zfs_keys_pool_trim)); 7189 7190 zfs_ioctl_register("wait", ZFS_IOC_WAIT, 7191 zfs_ioc_wait, zfs_secpolicy_none, POOL_NAME, 7192 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, 7193 zfs_keys_pool_wait, ARRAY_SIZE(zfs_keys_pool_wait)); 7194 7195 zfs_ioctl_register("wait_fs", ZFS_IOC_WAIT_FS, 7196 zfs_ioc_wait_fs, zfs_secpolicy_none, DATASET_NAME, 7197 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, 7198 zfs_keys_fs_wait, ARRAY_SIZE(zfs_keys_fs_wait)); 7199 7200 zfs_ioctl_register("set_bootenv", ZFS_IOC_SET_BOOTENV, 7201 zfs_ioc_set_bootenv, zfs_secpolicy_config, POOL_NAME, 7202 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, 7203 zfs_keys_set_bootenv, ARRAY_SIZE(zfs_keys_set_bootenv)); 7204 7205 zfs_ioctl_register("get_bootenv", ZFS_IOC_GET_BOOTENV, 7206 zfs_ioc_get_bootenv, zfs_secpolicy_none, POOL_NAME, 7207 POOL_CHECK_SUSPENDED, B_FALSE, B_TRUE, 7208 zfs_keys_get_bootenv, ARRAY_SIZE(zfs_keys_get_bootenv)); 7209 7210 zfs_ioctl_register("zpool_vdev_get_props", ZFS_IOC_VDEV_GET_PROPS, 7211 zfs_ioc_vdev_get_props, zfs_secpolicy_read, POOL_NAME, 7212 POOL_CHECK_NONE, B_FALSE, B_FALSE, zfs_keys_vdev_get_props, 7213 ARRAY_SIZE(zfs_keys_vdev_get_props)); 7214 7215 zfs_ioctl_register("zpool_vdev_set_props", ZFS_IOC_VDEV_SET_PROPS, 7216 zfs_ioc_vdev_set_props, zfs_secpolicy_config, POOL_NAME, 7217 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, 7218 zfs_keys_vdev_set_props, ARRAY_SIZE(zfs_keys_vdev_set_props)); 7219 7220 /* IOCTLS that use the legacy function signature */ 7221 7222 zfs_ioctl_register_legacy(ZFS_IOC_POOL_FREEZE, zfs_ioc_pool_freeze, 7223 zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_READONLY); 7224 7225 zfs_ioctl_register_pool(ZFS_IOC_POOL_CREATE, zfs_ioc_pool_create, 7226 zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); 7227 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SCAN, 7228 zfs_ioc_pool_scan); 7229 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_UPGRADE, 7230 zfs_ioc_pool_upgrade); 7231 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ADD, 7232 zfs_ioc_vdev_add); 7233 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_REMOVE, 7234 zfs_ioc_vdev_remove); 7235 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SET_STATE, 7236 zfs_ioc_vdev_set_state); 7237 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ATTACH, 7238 zfs_ioc_vdev_attach); 7239 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_DETACH, 7240 zfs_ioc_vdev_detach); 7241 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETPATH, 7242 zfs_ioc_vdev_setpath); 7243 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETFRU, 7244 zfs_ioc_vdev_setfru); 7245 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SET_PROPS, 7246 zfs_ioc_pool_set_props); 7247 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SPLIT, 7248 zfs_ioc_vdev_split); 7249 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_REGUID, 7250 zfs_ioc_pool_reguid); 7251 7252 zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_CONFIGS, 7253 zfs_ioc_pool_configs, zfs_secpolicy_none); 7254 zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_TRYIMPORT, 7255 zfs_ioc_pool_tryimport, zfs_secpolicy_config); 7256 zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_FAULT, 7257 zfs_ioc_inject_fault, zfs_secpolicy_inject); 7258 zfs_ioctl_register_pool_meta(ZFS_IOC_CLEAR_FAULT, 7259 zfs_ioc_clear_fault, zfs_secpolicy_inject); 7260 zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_LIST_NEXT, 7261 zfs_ioc_inject_list_next, zfs_secpolicy_inject); 7262 7263 /* 7264 * pool destroy, and export don't log the history as part of 7265 * zfsdev_ioctl, but rather zfs_ioc_pool_export 7266 * does the logging of those commands. 7267 */ 7268 zfs_ioctl_register_pool(ZFS_IOC_POOL_DESTROY, zfs_ioc_pool_destroy, 7269 zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); 7270 zfs_ioctl_register_pool(ZFS_IOC_POOL_EXPORT, zfs_ioc_pool_export, 7271 zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); 7272 7273 zfs_ioctl_register_pool(ZFS_IOC_POOL_STATS, zfs_ioc_pool_stats, 7274 zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); 7275 zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_PROPS, zfs_ioc_pool_get_props, 7276 zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); 7277 7278 zfs_ioctl_register_pool(ZFS_IOC_ERROR_LOG, zfs_ioc_error_log, 7279 zfs_secpolicy_inject, B_FALSE, POOL_CHECK_SUSPENDED); 7280 zfs_ioctl_register_pool(ZFS_IOC_DSOBJ_TO_DSNAME, 7281 zfs_ioc_dsobj_to_dsname, 7282 zfs_secpolicy_diff, B_FALSE, POOL_CHECK_SUSPENDED); 7283 zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_HISTORY, 7284 zfs_ioc_pool_get_history, 7285 zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); 7286 7287 zfs_ioctl_register_pool(ZFS_IOC_POOL_IMPORT, zfs_ioc_pool_import, 7288 zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); 7289 7290 zfs_ioctl_register_pool(ZFS_IOC_CLEAR, zfs_ioc_clear, 7291 zfs_secpolicy_config, B_TRUE, POOL_CHECK_READONLY); 7292 7293 zfs_ioctl_register_dataset_read(ZFS_IOC_SPACE_WRITTEN, 7294 zfs_ioc_space_written); 7295 zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_RECVD_PROPS, 7296 zfs_ioc_objset_recvd_props); 7297 zfs_ioctl_register_dataset_read(ZFS_IOC_NEXT_OBJ, 7298 zfs_ioc_next_obj); 7299 zfs_ioctl_register_dataset_read(ZFS_IOC_GET_FSACL, 7300 zfs_ioc_get_fsacl); 7301 zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_STATS, 7302 zfs_ioc_objset_stats); 7303 zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_ZPLPROPS, 7304 zfs_ioc_objset_zplprops); 7305 zfs_ioctl_register_dataset_read(ZFS_IOC_DATASET_LIST_NEXT, 7306 zfs_ioc_dataset_list_next); 7307 zfs_ioctl_register_dataset_read(ZFS_IOC_SNAPSHOT_LIST_NEXT, 7308 zfs_ioc_snapshot_list_next); 7309 zfs_ioctl_register_dataset_read(ZFS_IOC_SEND_PROGRESS, 7310 zfs_ioc_send_progress); 7311 7312 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_DIFF, 7313 zfs_ioc_diff, zfs_secpolicy_diff); 7314 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_STATS, 7315 zfs_ioc_obj_to_stats, zfs_secpolicy_diff); 7316 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_PATH, 7317 zfs_ioc_obj_to_path, zfs_secpolicy_diff); 7318 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_ONE, 7319 zfs_ioc_userspace_one, zfs_secpolicy_userspace_one); 7320 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_MANY, 7321 zfs_ioc_userspace_many, zfs_secpolicy_userspace_many); 7322 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_SEND, 7323 zfs_ioc_send, zfs_secpolicy_send); 7324 7325 zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_PROP, zfs_ioc_set_prop, 7326 zfs_secpolicy_none); 7327 zfs_ioctl_register_dataset_modify(ZFS_IOC_DESTROY, zfs_ioc_destroy, 7328 zfs_secpolicy_destroy); 7329 zfs_ioctl_register_dataset_modify(ZFS_IOC_RENAME, zfs_ioc_rename, 7330 zfs_secpolicy_rename); 7331 zfs_ioctl_register_dataset_modify(ZFS_IOC_RECV, zfs_ioc_recv, 7332 zfs_secpolicy_recv); 7333 zfs_ioctl_register_dataset_modify(ZFS_IOC_PROMOTE, zfs_ioc_promote, 7334 zfs_secpolicy_promote); 7335 zfs_ioctl_register_dataset_modify(ZFS_IOC_INHERIT_PROP, 7336 zfs_ioc_inherit_prop, zfs_secpolicy_inherit_prop); 7337 zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_FSACL, zfs_ioc_set_fsacl, 7338 zfs_secpolicy_set_fsacl); 7339 7340 zfs_ioctl_register_dataset_nolog(ZFS_IOC_SHARE, zfs_ioc_share, 7341 zfs_secpolicy_share, POOL_CHECK_NONE); 7342 zfs_ioctl_register_dataset_nolog(ZFS_IOC_SMB_ACL, zfs_ioc_smb_acl, 7343 zfs_secpolicy_smb_acl, POOL_CHECK_NONE); 7344 zfs_ioctl_register_dataset_nolog(ZFS_IOC_USERSPACE_UPGRADE, 7345 zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade, 7346 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); 7347 zfs_ioctl_register_dataset_nolog(ZFS_IOC_TMP_SNAPSHOT, 7348 zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot, 7349 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); 7350 7351 zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_NEXT, zfs_ioc_events_next, 7352 zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); 7353 zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_CLEAR, zfs_ioc_events_clear, 7354 zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); 7355 zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_SEEK, zfs_ioc_events_seek, 7356 zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); 7357 7358 zfs_ioctl_init_os(); 7359 } 7360 7361 /* 7362 * Verify that for non-legacy ioctls the input nvlist 7363 * pairs match against the expected input. 7364 * 7365 * Possible errors are: 7366 * ZFS_ERR_IOC_ARG_UNAVAIL An unrecognized nvpair was encountered 7367 * ZFS_ERR_IOC_ARG_REQUIRED A required nvpair is missing 7368 * ZFS_ERR_IOC_ARG_BADTYPE Invalid type for nvpair 7369 */ 7370 static int 7371 zfs_check_input_nvpairs(nvlist_t *innvl, const zfs_ioc_vec_t *vec) 7372 { 7373 const zfs_ioc_key_t *nvl_keys = vec->zvec_nvl_keys; 7374 boolean_t required_keys_found = B_FALSE; 7375 7376 /* 7377 * examine each input pair 7378 */ 7379 for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); 7380 pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { 7381 char *name = nvpair_name(pair); 7382 data_type_t type = nvpair_type(pair); 7383 boolean_t identified = B_FALSE; 7384 7385 /* 7386 * check pair against the documented names and type 7387 */ 7388 for (int k = 0; k < vec->zvec_nvl_key_count; k++) { 7389 /* if not a wild card name, check for an exact match */ 7390 if ((nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) == 0 && 7391 strcmp(nvl_keys[k].zkey_name, name) != 0) 7392 continue; 7393 7394 identified = B_TRUE; 7395 7396 if (nvl_keys[k].zkey_type != DATA_TYPE_ANY && 7397 nvl_keys[k].zkey_type != type) { 7398 return (SET_ERROR(ZFS_ERR_IOC_ARG_BADTYPE)); 7399 } 7400 7401 if (nvl_keys[k].zkey_flags & ZK_OPTIONAL) 7402 continue; 7403 7404 required_keys_found = B_TRUE; 7405 break; 7406 } 7407 7408 /* allow an 'optional' key, everything else is invalid */ 7409 if (!identified && 7410 (strcmp(name, "optional") != 0 || 7411 type != DATA_TYPE_NVLIST)) { 7412 return (SET_ERROR(ZFS_ERR_IOC_ARG_UNAVAIL)); 7413 } 7414 } 7415 7416 /* verify that all required keys were found */ 7417 for (int k = 0; k < vec->zvec_nvl_key_count; k++) { 7418 if (nvl_keys[k].zkey_flags & ZK_OPTIONAL) 7419 continue; 7420 7421 if (nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) { 7422 /* at least one non-optional key is expected here */ 7423 if (!required_keys_found) 7424 return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED)); 7425 continue; 7426 } 7427 7428 if (!nvlist_exists(innvl, nvl_keys[k].zkey_name)) 7429 return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED)); 7430 } 7431 7432 return (0); 7433 } 7434 7435 static int 7436 pool_status_check(const char *name, zfs_ioc_namecheck_t type, 7437 zfs_ioc_poolcheck_t check) 7438 { 7439 spa_t *spa; 7440 int error; 7441 7442 ASSERT(type == POOL_NAME || type == DATASET_NAME || 7443 type == ENTITY_NAME); 7444 7445 if (check & POOL_CHECK_NONE) 7446 return (0); 7447 7448 error = spa_open(name, &spa, FTAG); 7449 if (error == 0) { 7450 if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa)) 7451 error = SET_ERROR(EAGAIN); 7452 else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa)) 7453 error = SET_ERROR(EROFS); 7454 spa_close(spa, FTAG); 7455 } 7456 return (error); 7457 } 7458 7459 int 7460 zfsdev_getminor(zfs_file_t *fp, minor_t *minorp) 7461 { 7462 zfsdev_state_t *zs, *fpd; 7463 7464 ASSERT(!MUTEX_HELD(&zfsdev_state_lock)); 7465 7466 fpd = zfs_file_private(fp); 7467 if (fpd == NULL) 7468 return (SET_ERROR(EBADF)); 7469 7470 mutex_enter(&zfsdev_state_lock); 7471 7472 for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) { 7473 7474 if (zs->zs_minor == -1) 7475 continue; 7476 7477 if (fpd == zs) { 7478 *minorp = fpd->zs_minor; 7479 mutex_exit(&zfsdev_state_lock); 7480 return (0); 7481 } 7482 } 7483 7484 mutex_exit(&zfsdev_state_lock); 7485 7486 return (SET_ERROR(EBADF)); 7487 } 7488 7489 void * 7490 zfsdev_get_state(minor_t minor, enum zfsdev_state_type which) 7491 { 7492 zfsdev_state_t *zs; 7493 7494 for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) { 7495 if (zs->zs_minor == minor) { 7496 membar_consumer(); 7497 switch (which) { 7498 case ZST_ONEXIT: 7499 return (zs->zs_onexit); 7500 case ZST_ZEVENT: 7501 return (zs->zs_zevent); 7502 case ZST_ALL: 7503 return (zs); 7504 } 7505 } 7506 } 7507 7508 return (NULL); 7509 } 7510 7511 /* 7512 * Find a free minor number. The zfsdev_state_list is expected to 7513 * be short since it is only a list of currently open file handles. 7514 */ 7515 static minor_t 7516 zfsdev_minor_alloc(void) 7517 { 7518 static minor_t last_minor = 0; 7519 minor_t m; 7520 7521 ASSERT(MUTEX_HELD(&zfsdev_state_lock)); 7522 7523 for (m = last_minor + 1; m != last_minor; m++) { 7524 if (m > ZFSDEV_MAX_MINOR) 7525 m = 1; 7526 if (zfsdev_get_state(m, ZST_ALL) == NULL) { 7527 last_minor = m; 7528 return (m); 7529 } 7530 } 7531 7532 return (0); 7533 } 7534 7535 int 7536 zfsdev_state_init(void *priv) 7537 { 7538 zfsdev_state_t *zs, *zsprev = NULL; 7539 minor_t minor; 7540 boolean_t newzs = B_FALSE; 7541 7542 ASSERT(MUTEX_HELD(&zfsdev_state_lock)); 7543 7544 minor = zfsdev_minor_alloc(); 7545 if (minor == 0) 7546 return (SET_ERROR(ENXIO)); 7547 7548 for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) { 7549 if (zs->zs_minor == -1) 7550 break; 7551 zsprev = zs; 7552 } 7553 7554 if (!zs) { 7555 zs = kmem_zalloc(sizeof (zfsdev_state_t), KM_SLEEP); 7556 newzs = B_TRUE; 7557 } 7558 7559 zfsdev_private_set_state(priv, zs); 7560 7561 zfs_onexit_init((zfs_onexit_t **)&zs->zs_onexit); 7562 zfs_zevent_init((zfs_zevent_t **)&zs->zs_zevent); 7563 7564 /* 7565 * In order to provide for lock-free concurrent read access 7566 * to the minor list in zfsdev_get_state(), new entries 7567 * must be completely written before linking them into the 7568 * list whereas existing entries are already linked; the last 7569 * operation must be updating zs_minor (from -1 to the new 7570 * value). 7571 */ 7572 if (newzs) { 7573 zs->zs_minor = minor; 7574 membar_producer(); 7575 zsprev->zs_next = zs; 7576 } else { 7577 membar_producer(); 7578 zs->zs_minor = minor; 7579 } 7580 7581 return (0); 7582 } 7583 7584 void 7585 zfsdev_state_destroy(void *priv) 7586 { 7587 zfsdev_state_t *zs = zfsdev_private_get_state(priv); 7588 7589 ASSERT(zs != NULL); 7590 ASSERT3S(zs->zs_minor, >, 0); 7591 7592 /* 7593 * The last reference to this zfsdev file descriptor is being dropped. 7594 * We don't have to worry about lookup grabbing this state object, and 7595 * zfsdev_state_init() will not try to reuse this object until it is 7596 * invalidated by setting zs_minor to -1. Invalidation must be done 7597 * last, with a memory barrier to ensure ordering. This lets us avoid 7598 * taking the global zfsdev state lock around destruction. 7599 */ 7600 zfs_onexit_destroy(zs->zs_onexit); 7601 zfs_zevent_destroy(zs->zs_zevent); 7602 zs->zs_onexit = NULL; 7603 zs->zs_zevent = NULL; 7604 membar_producer(); 7605 zs->zs_minor = -1; 7606 } 7607 7608 long 7609 zfsdev_ioctl_common(uint_t vecnum, zfs_cmd_t *zc, int flag) 7610 { 7611 int error, cmd; 7612 const zfs_ioc_vec_t *vec; 7613 char *saved_poolname = NULL; 7614 uint64_t max_nvlist_src_size; 7615 size_t saved_poolname_len = 0; 7616 nvlist_t *innvl = NULL; 7617 fstrans_cookie_t cookie; 7618 hrtime_t start_time = gethrtime(); 7619 7620 cmd = vecnum; 7621 error = 0; 7622 if (vecnum >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0])) 7623 return (SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL)); 7624 7625 vec = &zfs_ioc_vec[vecnum]; 7626 7627 /* 7628 * The registered ioctl list may be sparse, verify that either 7629 * a normal or legacy handler are registered. 7630 */ 7631 if (vec->zvec_func == NULL && vec->zvec_legacy_func == NULL) 7632 return (SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL)); 7633 7634 zc->zc_iflags = flag & FKIOCTL; 7635 max_nvlist_src_size = zfs_max_nvlist_src_size_os(); 7636 if (zc->zc_nvlist_src_size > max_nvlist_src_size) { 7637 /* 7638 * Make sure the user doesn't pass in an insane value for 7639 * zc_nvlist_src_size. We have to check, since we will end 7640 * up allocating that much memory inside of get_nvlist(). This 7641 * prevents a nefarious user from allocating tons of kernel 7642 * memory. 7643 * 7644 * Also, we return EINVAL instead of ENOMEM here. The reason 7645 * being that returning ENOMEM from an ioctl() has a special 7646 * connotation; that the user's size value is too small and 7647 * needs to be expanded to hold the nvlist. See 7648 * zcmd_expand_dst_nvlist() for details. 7649 */ 7650 error = SET_ERROR(EINVAL); /* User's size too big */ 7651 7652 } else if (zc->zc_nvlist_src_size != 0) { 7653 error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 7654 zc->zc_iflags, &innvl); 7655 if (error != 0) 7656 goto out; 7657 } 7658 7659 /* 7660 * Ensure that all pool/dataset names are valid before we pass down to 7661 * the lower layers. 7662 */ 7663 zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; 7664 switch (vec->zvec_namecheck) { 7665 case POOL_NAME: 7666 if (pool_namecheck(zc->zc_name, NULL, NULL) != 0) 7667 error = SET_ERROR(EINVAL); 7668 else 7669 error = pool_status_check(zc->zc_name, 7670 vec->zvec_namecheck, vec->zvec_pool_check); 7671 break; 7672 7673 case DATASET_NAME: 7674 if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0) 7675 error = SET_ERROR(EINVAL); 7676 else 7677 error = pool_status_check(zc->zc_name, 7678 vec->zvec_namecheck, vec->zvec_pool_check); 7679 break; 7680 7681 case ENTITY_NAME: 7682 if (entity_namecheck(zc->zc_name, NULL, NULL) != 0) { 7683 error = SET_ERROR(EINVAL); 7684 } else { 7685 error = pool_status_check(zc->zc_name, 7686 vec->zvec_namecheck, vec->zvec_pool_check); 7687 } 7688 break; 7689 7690 case NO_NAME: 7691 break; 7692 } 7693 /* 7694 * Ensure that all input pairs are valid before we pass them down 7695 * to the lower layers. 7696 * 7697 * The vectored functions can use fnvlist_lookup_{type} for any 7698 * required pairs since zfs_check_input_nvpairs() confirmed that 7699 * they exist and are of the correct type. 7700 */ 7701 if (error == 0 && vec->zvec_func != NULL) { 7702 error = zfs_check_input_nvpairs(innvl, vec); 7703 if (error != 0) 7704 goto out; 7705 } 7706 7707 if (error == 0) { 7708 cookie = spl_fstrans_mark(); 7709 error = vec->zvec_secpolicy(zc, innvl, CRED()); 7710 spl_fstrans_unmark(cookie); 7711 } 7712 7713 if (error != 0) 7714 goto out; 7715 7716 /* legacy ioctls can modify zc_name */ 7717 /* 7718 * Can't use kmem_strdup() as we might truncate the string and 7719 * kmem_strfree() would then free with incorrect size. 7720 */ 7721 saved_poolname_len = strlen(zc->zc_name) + 1; 7722 saved_poolname = kmem_alloc(saved_poolname_len, KM_SLEEP); 7723 7724 strlcpy(saved_poolname, zc->zc_name, saved_poolname_len); 7725 saved_poolname[strcspn(saved_poolname, "/@#")] = '\0'; 7726 7727 if (vec->zvec_func != NULL) { 7728 nvlist_t *outnvl; 7729 int puterror = 0; 7730 spa_t *spa; 7731 nvlist_t *lognv = NULL; 7732 7733 ASSERT(vec->zvec_legacy_func == NULL); 7734 7735 /* 7736 * Add the innvl to the lognv before calling the func, 7737 * in case the func changes the innvl. 7738 */ 7739 if (vec->zvec_allow_log) { 7740 lognv = fnvlist_alloc(); 7741 fnvlist_add_string(lognv, ZPOOL_HIST_IOCTL, 7742 vec->zvec_name); 7743 if (!nvlist_empty(innvl)) { 7744 fnvlist_add_nvlist(lognv, ZPOOL_HIST_INPUT_NVL, 7745 innvl); 7746 } 7747 } 7748 7749 outnvl = fnvlist_alloc(); 7750 cookie = spl_fstrans_mark(); 7751 error = vec->zvec_func(zc->zc_name, innvl, outnvl); 7752 spl_fstrans_unmark(cookie); 7753 7754 /* 7755 * Some commands can partially execute, modify state, and still 7756 * return an error. In these cases, attempt to record what 7757 * was modified. 7758 */ 7759 if ((error == 0 || 7760 (cmd == ZFS_IOC_CHANNEL_PROGRAM && error != EINVAL)) && 7761 vec->zvec_allow_log && 7762 spa_open(zc->zc_name, &spa, FTAG) == 0) { 7763 if (!nvlist_empty(outnvl)) { 7764 size_t out_size = fnvlist_size(outnvl); 7765 if (out_size > zfs_history_output_max) { 7766 fnvlist_add_int64(lognv, 7767 ZPOOL_HIST_OUTPUT_SIZE, out_size); 7768 } else { 7769 fnvlist_add_nvlist(lognv, 7770 ZPOOL_HIST_OUTPUT_NVL, outnvl); 7771 } 7772 } 7773 if (error != 0) { 7774 fnvlist_add_int64(lognv, ZPOOL_HIST_ERRNO, 7775 error); 7776 } 7777 fnvlist_add_int64(lognv, ZPOOL_HIST_ELAPSED_NS, 7778 gethrtime() - start_time); 7779 (void) spa_history_log_nvl(spa, lognv); 7780 spa_close(spa, FTAG); 7781 } 7782 fnvlist_free(lognv); 7783 7784 if (!nvlist_empty(outnvl) || zc->zc_nvlist_dst_size != 0) { 7785 int smusherror = 0; 7786 if (vec->zvec_smush_outnvlist) { 7787 smusherror = nvlist_smush(outnvl, 7788 zc->zc_nvlist_dst_size); 7789 } 7790 if (smusherror == 0) 7791 puterror = put_nvlist(zc, outnvl); 7792 } 7793 7794 if (puterror != 0) 7795 error = puterror; 7796 7797 nvlist_free(outnvl); 7798 } else { 7799 cookie = spl_fstrans_mark(); 7800 error = vec->zvec_legacy_func(zc); 7801 spl_fstrans_unmark(cookie); 7802 } 7803 7804 out: 7805 nvlist_free(innvl); 7806 if (error == 0 && vec->zvec_allow_log) { 7807 char *s = tsd_get(zfs_allow_log_key); 7808 if (s != NULL) 7809 kmem_strfree(s); 7810 (void) tsd_set(zfs_allow_log_key, kmem_strdup(saved_poolname)); 7811 } 7812 if (saved_poolname != NULL) 7813 kmem_free(saved_poolname, saved_poolname_len); 7814 7815 return (error); 7816 } 7817 7818 int 7819 zfs_kmod_init(void) 7820 { 7821 int error; 7822 7823 if ((error = zvol_init()) != 0) 7824 return (error); 7825 7826 spa_init(SPA_MODE_READ | SPA_MODE_WRITE); 7827 zfs_init(); 7828 7829 zfs_ioctl_init(); 7830 7831 mutex_init(&zfsdev_state_lock, NULL, MUTEX_DEFAULT, NULL); 7832 zfsdev_state_list = kmem_zalloc(sizeof (zfsdev_state_t), KM_SLEEP); 7833 zfsdev_state_list->zs_minor = -1; 7834 7835 if ((error = zfsdev_attach()) != 0) 7836 goto out; 7837 7838 tsd_create(&zfs_fsyncer_key, NULL); 7839 tsd_create(&rrw_tsd_key, rrw_tsd_destroy); 7840 tsd_create(&zfs_allow_log_key, zfs_allow_log_destroy); 7841 7842 return (0); 7843 out: 7844 zfs_fini(); 7845 spa_fini(); 7846 zvol_fini(); 7847 7848 return (error); 7849 } 7850 7851 void 7852 zfs_kmod_fini(void) 7853 { 7854 zfsdev_state_t *zs, *zsnext = NULL; 7855 7856 zfsdev_detach(); 7857 7858 mutex_destroy(&zfsdev_state_lock); 7859 7860 for (zs = zfsdev_state_list; zs != NULL; zs = zsnext) { 7861 zsnext = zs->zs_next; 7862 if (zs->zs_onexit) 7863 zfs_onexit_destroy(zs->zs_onexit); 7864 if (zs->zs_zevent) 7865 zfs_zevent_destroy(zs->zs_zevent); 7866 kmem_free(zs, sizeof (zfsdev_state_t)); 7867 } 7868 7869 zfs_ereport_taskq_fini(); /* run before zfs_fini() on Linux */ 7870 zfs_fini(); 7871 spa_fini(); 7872 zvol_fini(); 7873 7874 tsd_destroy(&zfs_fsyncer_key); 7875 tsd_destroy(&rrw_tsd_key); 7876 tsd_destroy(&zfs_allow_log_key); 7877 } 7878 7879 ZFS_MODULE_PARAM(zfs, zfs_, max_nvlist_src_size, U64, ZMOD_RW, 7880 "Maximum size in bytes allowed for src nvlist passed with ZFS ioctls"); 7881 7882 ZFS_MODULE_PARAM(zfs, zfs_, history_output_max, U64, ZMOD_RW, 7883 "Maximum size in bytes of ZFS ioctl output that will be logged"); 7884