1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/zfs_context.h> 26 #include <sys/dmu.h> 27 #include <sys/avl.h> 28 #include <sys/zap.h> 29 #include <sys/nvpair.h> 30 #ifdef _KERNEL 31 #include <sys/sid.h> 32 #include <sys/zfs_vfsops.h> 33 #include <sys/zfs_znode.h> 34 #endif 35 #include <sys/zfs_fuid.h> 36 37 /* 38 * FUID Domain table(s). 39 * 40 * The FUID table is stored as a packed nvlist of an array 41 * of nvlists which contain an index, domain string and offset 42 * 43 * During file system initialization the nvlist(s) are read and 44 * two AVL trees are created. One tree is keyed by the index number 45 * and the other by the domain string. Nodes are never removed from 46 * trees, but new entries may be added. If a new entry is added then 47 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then 48 * be responsible for calling zfs_fuid_sync() to sync the changes to disk. 49 * 50 */ 51 52 #define FUID_IDX "fuid_idx" 53 #define FUID_DOMAIN "fuid_domain" 54 #define FUID_OFFSET "fuid_offset" 55 #define FUID_NVP_ARRAY "fuid_nvlist" 56 57 typedef struct fuid_domain { 58 avl_node_t f_domnode; 59 avl_node_t f_idxnode; 60 ksiddomain_t *f_ksid; 61 uint64_t f_idx; 62 } fuid_domain_t; 63 64 static char *nulldomain = ""; 65 66 /* 67 * Compare two indexes. 68 */ 69 static int 70 idx_compare(const void *arg1, const void *arg2) 71 { 72 const fuid_domain_t *node1 = (const fuid_domain_t *)arg1; 73 const fuid_domain_t *node2 = (const fuid_domain_t *)arg2; 74 75 return (TREE_CMP(node1->f_idx, node2->f_idx)); 76 } 77 78 /* 79 * Compare two domain strings. 80 */ 81 static int 82 domain_compare(const void *arg1, const void *arg2) 83 { 84 const fuid_domain_t *node1 = (const fuid_domain_t *)arg1; 85 const fuid_domain_t *node2 = (const fuid_domain_t *)arg2; 86 int val; 87 88 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name); 89 90 return (TREE_ISIGN(val)); 91 } 92 93 void 94 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 95 { 96 avl_create(idx_tree, idx_compare, 97 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode)); 98 avl_create(domain_tree, domain_compare, 99 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode)); 100 } 101 102 /* 103 * load initial fuid domain and idx trees. This function is used by 104 * both the kernel and zdb. 105 */ 106 uint64_t 107 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree, 108 avl_tree_t *domain_tree) 109 { 110 dmu_buf_t *db; 111 uint64_t fuid_size; 112 113 ASSERT(fuid_obj != 0); 114 VERIFY(0 == dmu_bonus_hold(os, fuid_obj, 115 FTAG, &db)); 116 fuid_size = *(uint64_t *)db->db_data; 117 dmu_buf_rele(db, FTAG); 118 119 if (fuid_size) { 120 nvlist_t **fuidnvp; 121 nvlist_t *nvp = NULL; 122 uint_t count; 123 char *packed; 124 int i; 125 126 packed = kmem_alloc(fuid_size, KM_SLEEP); 127 VERIFY(dmu_read(os, fuid_obj, 0, 128 fuid_size, packed, DMU_READ_PREFETCH) == 0); 129 VERIFY(nvlist_unpack(packed, fuid_size, 130 &nvp, 0) == 0); 131 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY, 132 &fuidnvp, &count) == 0); 133 134 for (i = 0; i != count; i++) { 135 fuid_domain_t *domnode; 136 char *domain; 137 uint64_t idx; 138 139 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN, 140 &domain) == 0); 141 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX, 142 &idx) == 0); 143 144 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 145 146 domnode->f_idx = idx; 147 domnode->f_ksid = ksid_lookupdomain(domain); 148 avl_add(idx_tree, domnode); 149 avl_add(domain_tree, domnode); 150 } 151 nvlist_free(nvp); 152 kmem_free(packed, fuid_size); 153 } 154 return (fuid_size); 155 } 156 157 void 158 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 159 { 160 fuid_domain_t *domnode; 161 void *cookie; 162 163 cookie = NULL; 164 while ((domnode = avl_destroy_nodes(domain_tree, &cookie))) 165 ksiddomain_rele(domnode->f_ksid); 166 167 avl_destroy(domain_tree); 168 cookie = NULL; 169 while ((domnode = avl_destroy_nodes(idx_tree, &cookie))) 170 kmem_free(domnode, sizeof (fuid_domain_t)); 171 avl_destroy(idx_tree); 172 } 173 174 char * 175 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx) 176 { 177 fuid_domain_t searchnode, *findnode; 178 avl_index_t loc; 179 180 searchnode.f_idx = idx; 181 182 findnode = avl_find(idx_tree, &searchnode, &loc); 183 184 return (findnode ? findnode->f_ksid->kd_name : nulldomain); 185 } 186 187 #ifdef _KERNEL 188 /* 189 * Load the fuid table(s) into memory. 190 */ 191 static void 192 zfs_fuid_init(zfsvfs_t *zfsvfs) 193 { 194 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 195 196 if (zfsvfs->z_fuid_loaded) { 197 rw_exit(&zfsvfs->z_fuid_lock); 198 return; 199 } 200 201 zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 202 203 (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 204 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); 205 if (zfsvfs->z_fuid_obj != 0) { 206 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os, 207 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, 208 &zfsvfs->z_fuid_domain); 209 } 210 211 zfsvfs->z_fuid_loaded = B_TRUE; 212 rw_exit(&zfsvfs->z_fuid_lock); 213 } 214 215 /* 216 * sync out AVL trees to persistent storage. 217 */ 218 void 219 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 220 { 221 nvlist_t *nvp; 222 nvlist_t **fuids; 223 size_t nvsize = 0; 224 char *packed; 225 dmu_buf_t *db; 226 fuid_domain_t *domnode; 227 int numnodes; 228 int i; 229 230 if (!zfsvfs->z_fuid_dirty) { 231 return; 232 } 233 234 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 235 236 /* 237 * First see if table needs to be created? 238 */ 239 if (zfsvfs->z_fuid_obj == 0) { 240 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os, 241 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE, 242 sizeof (uint64_t), tx); 243 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 244 ZFS_FUID_TABLES, sizeof (uint64_t), 1, 245 &zfsvfs->z_fuid_obj, tx) == 0); 246 } 247 248 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 249 250 numnodes = avl_numnodes(&zfsvfs->z_fuid_idx); 251 fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP); 252 for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++, 253 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) { 254 VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0); 255 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX, 256 domnode->f_idx) == 0); 257 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0); 258 VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN, 259 domnode->f_ksid->kd_name) == 0); 260 } 261 fnvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY, 262 (const nvlist_t * const *)fuids, numnodes); 263 for (i = 0; i != numnodes; i++) 264 nvlist_free(fuids[i]); 265 kmem_free(fuids, numnodes * sizeof (void *)); 266 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0); 267 packed = kmem_alloc(nvsize, KM_SLEEP); 268 VERIFY(nvlist_pack(nvp, &packed, &nvsize, 269 NV_ENCODE_XDR, KM_SLEEP) == 0); 270 nvlist_free(nvp); 271 zfsvfs->z_fuid_size = nvsize; 272 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, 273 zfsvfs->z_fuid_size, packed, tx); 274 kmem_free(packed, zfsvfs->z_fuid_size); 275 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, 276 FTAG, &db)); 277 dmu_buf_will_dirty(db, tx); 278 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size; 279 dmu_buf_rele(db, FTAG); 280 281 zfsvfs->z_fuid_dirty = B_FALSE; 282 rw_exit(&zfsvfs->z_fuid_lock); 283 } 284 285 /* 286 * Query domain table for a given domain. 287 * 288 * If domain isn't found and addok is set, it is added to AVL trees and 289 * the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be 290 * necessary for the caller or another thread to detect the dirty table 291 * and sync out the changes. 292 */ 293 int 294 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, 295 char **retdomain, boolean_t addok) 296 { 297 fuid_domain_t searchnode, *findnode; 298 avl_index_t loc; 299 krw_t rw = RW_READER; 300 301 /* 302 * If the dummy "nobody" domain then return an index of 0 303 * to cause the created FUID to be a standard POSIX id 304 * for the user nobody. 305 */ 306 if (domain[0] == '\0') { 307 if (retdomain) 308 *retdomain = nulldomain; 309 return (0); 310 } 311 312 searchnode.f_ksid = ksid_lookupdomain(domain); 313 if (retdomain) 314 *retdomain = searchnode.f_ksid->kd_name; 315 if (!zfsvfs->z_fuid_loaded) 316 zfs_fuid_init(zfsvfs); 317 318 retry: 319 rw_enter(&zfsvfs->z_fuid_lock, rw); 320 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc); 321 322 if (findnode) { 323 rw_exit(&zfsvfs->z_fuid_lock); 324 ksiddomain_rele(searchnode.f_ksid); 325 return (findnode->f_idx); 326 } else if (addok) { 327 fuid_domain_t *domnode; 328 uint64_t retidx; 329 330 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) { 331 rw_exit(&zfsvfs->z_fuid_lock); 332 rw = RW_WRITER; 333 goto retry; 334 } 335 336 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 337 domnode->f_ksid = searchnode.f_ksid; 338 339 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1; 340 341 avl_add(&zfsvfs->z_fuid_domain, domnode); 342 avl_add(&zfsvfs->z_fuid_idx, domnode); 343 zfsvfs->z_fuid_dirty = B_TRUE; 344 rw_exit(&zfsvfs->z_fuid_lock); 345 return (retidx); 346 } else { 347 rw_exit(&zfsvfs->z_fuid_lock); 348 return (-1); 349 } 350 } 351 352 /* 353 * Query domain table by index, returning domain string 354 * 355 * Returns a pointer from an avl node of the domain string. 356 * 357 */ 358 const char * 359 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx) 360 { 361 char *domain; 362 363 if (idx == 0 || !zfsvfs->z_use_fuids) 364 return (NULL); 365 366 if (!zfsvfs->z_fuid_loaded) 367 zfs_fuid_init(zfsvfs); 368 369 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 370 371 if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty) 372 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx); 373 else 374 domain = nulldomain; 375 rw_exit(&zfsvfs->z_fuid_lock); 376 377 ASSERT(domain); 378 return (domain); 379 } 380 381 void 382 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp) 383 { 384 *uidp = zfs_fuid_map_id(ZTOZSB(zp), KUID_TO_SUID(ZTOUID(zp)), 385 cr, ZFS_OWNER); 386 *gidp = zfs_fuid_map_id(ZTOZSB(zp), KGID_TO_SGID(ZTOGID(zp)), 387 cr, ZFS_GROUP); 388 } 389 390 #ifdef __FreeBSD__ 391 uid_t 392 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 393 cred_t *cr, zfs_fuid_type_t type) 394 { 395 uint32_t index = FUID_INDEX(fuid); 396 397 if (index == 0) 398 return (fuid); 399 400 return (UID_NOBODY); 401 } 402 #elif defined(__linux__) 403 uid_t 404 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 405 cred_t *cr, zfs_fuid_type_t type) 406 { 407 /* 408 * The Linux port only supports POSIX IDs, use the passed id. 409 */ 410 return (fuid); 411 } 412 413 #else 414 uid_t 415 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 416 cred_t *cr, zfs_fuid_type_t type) 417 { 418 uint32_t index = FUID_INDEX(fuid); 419 const char *domain; 420 uid_t id; 421 422 if (index == 0) 423 return (fuid); 424 425 domain = zfs_fuid_find_by_idx(zfsvfs, index); 426 ASSERT(domain != NULL); 427 428 if (type == ZFS_OWNER || type == ZFS_ACE_USER) { 429 (void) kidmap_getuidbysid(crgetzone(cr), domain, 430 FUID_RID(fuid), &id); 431 } else { 432 (void) kidmap_getgidbysid(crgetzone(cr), domain, 433 FUID_RID(fuid), &id); 434 } 435 return (id); 436 } 437 #endif 438 439 /* 440 * Add a FUID node to the list of fuid's being created for this 441 * ACL 442 * 443 * If ACL has multiple domains, then keep only one copy of each unique 444 * domain. 445 */ 446 void 447 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid, 448 uint64_t idx, uint64_t id, zfs_fuid_type_t type) 449 { 450 zfs_fuid_t *fuid; 451 zfs_fuid_domain_t *fuid_domain; 452 zfs_fuid_info_t *fuidp; 453 uint64_t fuididx; 454 boolean_t found = B_FALSE; 455 456 if (*fuidpp == NULL) 457 *fuidpp = zfs_fuid_info_alloc(); 458 459 fuidp = *fuidpp; 460 /* 461 * First find fuid domain index in linked list 462 * 463 * If one isn't found then create an entry. 464 */ 465 466 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains); 467 fuid_domain; fuid_domain = list_next(&fuidp->z_domains, 468 fuid_domain), fuididx++) { 469 if (idx == fuid_domain->z_domidx) { 470 found = B_TRUE; 471 break; 472 } 473 } 474 475 if (!found) { 476 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP); 477 fuid_domain->z_domain = domain; 478 fuid_domain->z_domidx = idx; 479 list_insert_tail(&fuidp->z_domains, fuid_domain); 480 fuidp->z_domain_str_sz += strlen(domain) + 1; 481 fuidp->z_domain_cnt++; 482 } 483 484 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) { 485 486 /* 487 * Now allocate fuid entry and add it on the end of the list 488 */ 489 490 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); 491 fuid->z_id = id; 492 fuid->z_domidx = idx; 493 fuid->z_logfuid = FUID_ENCODE(fuididx, rid); 494 495 list_insert_tail(&fuidp->z_fuids, fuid); 496 fuidp->z_fuid_cnt++; 497 } else { 498 if (type == ZFS_OWNER) 499 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid); 500 else 501 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid); 502 } 503 } 504 505 #ifdef HAVE_KSID 506 /* 507 * Create a file system FUID, based on information in the users cred 508 * 509 * If cred contains KSID_OWNER then it should be used to determine 510 * the uid otherwise cred's uid will be used. By default cred's gid 511 * is used unless it's an ephemeral ID in which case KSID_GROUP will 512 * be used if it exists. 513 */ 514 uint64_t 515 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type, 516 cred_t *cr, zfs_fuid_info_t **fuidp) 517 { 518 uint64_t idx; 519 ksid_t *ksid; 520 uint32_t rid; 521 char *kdomain; 522 const char *domain; 523 uid_t id; 524 525 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP); 526 527 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP); 528 529 if (!zfsvfs->z_use_fuids || (ksid == NULL)) { 530 id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr); 531 532 if (IS_EPHEMERAL(id)) 533 return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY); 534 535 return ((uint64_t)id); 536 } 537 538 /* 539 * ksid is present and FUID is supported 540 */ 541 id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr); 542 543 if (!IS_EPHEMERAL(id)) 544 return ((uint64_t)id); 545 546 if (type == ZFS_GROUP) 547 id = ksid_getid(ksid); 548 549 rid = ksid_getrid(ksid); 550 domain = ksid_getdomain(ksid); 551 552 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 553 554 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type); 555 556 return (FUID_ENCODE(idx, rid)); 557 } 558 #endif /* HAVE_KSID */ 559 560 /* 561 * Create a file system FUID for an ACL ace 562 * or a chown/chgrp of the file. 563 * This is similar to zfs_fuid_create_cred, except that 564 * we can't find the domain + rid information in the 565 * cred. Instead we have to query Winchester for the 566 * domain and rid. 567 * 568 * During replay operations the domain+rid information is 569 * found in the zfs_fuid_info_t that the replay code has 570 * attached to the zfsvfs of the file system. 571 */ 572 uint64_t 573 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr, 574 zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp) 575 { 576 #ifdef HAVE_KSID 577 const char *domain; 578 char *kdomain; 579 uint32_t fuid_idx = FUID_INDEX(id); 580 uint32_t rid = 0; 581 idmap_stat status; 582 uint64_t idx = UID_NOBODY; 583 zfs_fuid_t *zfuid = NULL; 584 zfs_fuid_info_t *fuidp = NULL; 585 586 /* 587 * If POSIX ID, or entry is already a FUID then 588 * just return the id 589 * 590 * We may also be handed an already FUID'ized id via 591 * chmod. 592 */ 593 594 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0) 595 return (id); 596 597 if (zfsvfs->z_replay) { 598 fuidp = zfsvfs->z_fuid_replay; 599 600 /* 601 * If we are passed an ephemeral id, but no 602 * fuid_info was logged then return NOBODY. 603 * This is most likely a result of idmap service 604 * not being available. 605 */ 606 if (fuidp == NULL) 607 return (UID_NOBODY); 608 609 VERIFY3U(type, >=, ZFS_OWNER); 610 VERIFY3U(type, <=, ZFS_ACE_GROUP); 611 612 switch (type) { 613 case ZFS_ACE_USER: 614 case ZFS_ACE_GROUP: 615 zfuid = list_head(&fuidp->z_fuids); 616 rid = FUID_RID(zfuid->z_logfuid); 617 idx = FUID_INDEX(zfuid->z_logfuid); 618 break; 619 case ZFS_OWNER: 620 rid = FUID_RID(fuidp->z_fuid_owner); 621 idx = FUID_INDEX(fuidp->z_fuid_owner); 622 break; 623 case ZFS_GROUP: 624 rid = FUID_RID(fuidp->z_fuid_group); 625 idx = FUID_INDEX(fuidp->z_fuid_group); 626 break; 627 }; 628 domain = fuidp->z_domain_table[idx - 1]; 629 } else { 630 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 631 status = kidmap_getsidbyuid(crgetzone(cr), id, 632 &domain, &rid); 633 else 634 status = kidmap_getsidbygid(crgetzone(cr), id, 635 &domain, &rid); 636 637 if (status != 0) { 638 /* 639 * When returning nobody we will need to 640 * make a dummy fuid table entry for logging 641 * purposes. 642 */ 643 rid = UID_NOBODY; 644 domain = nulldomain; 645 } 646 } 647 648 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 649 650 if (!zfsvfs->z_replay) 651 zfs_fuid_node_add(fuidpp, kdomain, 652 rid, idx, id, type); 653 else if (zfuid != NULL) { 654 list_remove(&fuidp->z_fuids, zfuid); 655 kmem_free(zfuid, sizeof (zfs_fuid_t)); 656 } 657 return (FUID_ENCODE(idx, rid)); 658 #else 659 /* 660 * The Linux port only supports POSIX IDs, use the passed id. 661 */ 662 return (id); 663 #endif 664 } 665 666 void 667 zfs_fuid_destroy(zfsvfs_t *zfsvfs) 668 { 669 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 670 if (!zfsvfs->z_fuid_loaded) { 671 rw_exit(&zfsvfs->z_fuid_lock); 672 return; 673 } 674 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 675 rw_exit(&zfsvfs->z_fuid_lock); 676 } 677 678 /* 679 * Allocate zfs_fuid_info for tracking FUIDs created during 680 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR() 681 */ 682 zfs_fuid_info_t * 683 zfs_fuid_info_alloc(void) 684 { 685 zfs_fuid_info_t *fuidp; 686 687 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP); 688 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t), 689 offsetof(zfs_fuid_domain_t, z_next)); 690 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t), 691 offsetof(zfs_fuid_t, z_next)); 692 return (fuidp); 693 } 694 695 /* 696 * Release all memory associated with zfs_fuid_info_t 697 */ 698 void 699 zfs_fuid_info_free(zfs_fuid_info_t *fuidp) 700 { 701 zfs_fuid_t *zfuid; 702 zfs_fuid_domain_t *zdomain; 703 704 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) { 705 list_remove(&fuidp->z_fuids, zfuid); 706 kmem_free(zfuid, sizeof (zfs_fuid_t)); 707 } 708 709 if (fuidp->z_domain_table != NULL) 710 kmem_free(fuidp->z_domain_table, 711 (sizeof (char *)) * fuidp->z_domain_cnt); 712 713 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) { 714 list_remove(&fuidp->z_domains, zdomain); 715 kmem_free(zdomain, sizeof (zfs_fuid_domain_t)); 716 } 717 718 kmem_free(fuidp, sizeof (zfs_fuid_info_t)); 719 } 720 721 /* 722 * Check to see if id is a groupmember. If cred 723 * has ksid info then sidlist is checked first 724 * and if still not found then POSIX groups are checked 725 * 726 * Will use a straight FUID compare when possible. 727 */ 728 boolean_t 729 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) 730 { 731 uid_t gid; 732 733 #ifdef illumos 734 ksid_t *ksid = crgetsid(cr, KSID_GROUP); 735 ksidlist_t *ksidlist = crgetsidlist(cr); 736 737 if (ksid && ksidlist) { 738 int i; 739 ksid_t *ksid_groups; 740 uint32_t idx = FUID_INDEX(id); 741 uint32_t rid = FUID_RID(id); 742 743 ksid_groups = ksidlist->ksl_sids; 744 745 for (i = 0; i != ksidlist->ksl_nsid; i++) { 746 if (idx == 0) { 747 if (id != IDMAP_WK_CREATOR_GROUP_GID && 748 id == ksid_groups[i].ks_id) { 749 return (B_TRUE); 750 } 751 } else { 752 const char *domain; 753 754 domain = zfs_fuid_find_by_idx(zfsvfs, idx); 755 ASSERT(domain != NULL); 756 757 if (strcmp(domain, 758 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) 759 return (B_FALSE); 760 761 if ((strcmp(domain, 762 ksid_groups[i].ks_domain->kd_name) == 0) && 763 rid == ksid_groups[i].ks_rid) 764 return (B_TRUE); 765 } 766 } 767 } 768 #endif /* illumos */ 769 770 /* 771 * Not found in ksidlist, check posix groups 772 */ 773 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP); 774 return (groupmember(gid, cr)); 775 } 776 777 void 778 zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 779 { 780 if (zfsvfs->z_fuid_obj == 0) { 781 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 782 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 783 FUID_SIZE_ESTIMATE(zfsvfs)); 784 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 785 } else { 786 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 787 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 788 FUID_SIZE_ESTIMATE(zfsvfs)); 789 } 790 } 791 792 /* 793 * buf must be big enough (eg, 32 bytes) 794 */ 795 int 796 zfs_id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 797 char *buf, size_t len, boolean_t addok) 798 { 799 uint64_t fuid; 800 int domainid = 0; 801 802 if (domain && domain[0]) { 803 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 804 if (domainid == -1) 805 return (SET_ERROR(ENOENT)); 806 } 807 fuid = FUID_ENCODE(domainid, rid); 808 (void) snprintf(buf, len, "%llx", (longlong_t)fuid); 809 return (0); 810 } 811 #endif 812