1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/dmu.h> 28 #include <sys/avl.h> 29 #include <sys/zap.h> 30 #include <sys/nvpair.h> 31 #ifdef _KERNEL 32 #include <sys/sid.h> 33 #include <sys/zfs_vfsops.h> 34 #include <sys/zfs_znode.h> 35 #endif 36 #include <sys/zfs_fuid.h> 37 38 /* 39 * FUID Domain table(s). 40 * 41 * The FUID table is stored as a packed nvlist of an array 42 * of nvlists which contain an index, domain string and offset 43 * 44 * During file system initialization the nvlist(s) are read and 45 * two AVL trees are created. One tree is keyed by the index number 46 * and the other by the domain string. Nodes are never removed from 47 * trees, but new entries may be added. If a new entry is added then 48 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then 49 * be responsible for calling zfs_fuid_sync() to sync the changes to disk. 50 * 51 */ 52 53 #define FUID_IDX "fuid_idx" 54 #define FUID_DOMAIN "fuid_domain" 55 #define FUID_OFFSET "fuid_offset" 56 #define FUID_NVP_ARRAY "fuid_nvlist" 57 58 typedef struct fuid_domain { 59 avl_node_t f_domnode; 60 avl_node_t f_idxnode; 61 ksiddomain_t *f_ksid; 62 uint64_t f_idx; 63 } fuid_domain_t; 64 65 static const char *const nulldomain = ""; 66 67 /* 68 * Compare two indexes. 69 */ 70 static int 71 idx_compare(const void *arg1, const void *arg2) 72 { 73 const fuid_domain_t *node1 = (const fuid_domain_t *)arg1; 74 const fuid_domain_t *node2 = (const fuid_domain_t *)arg2; 75 76 return (TREE_CMP(node1->f_idx, node2->f_idx)); 77 } 78 79 /* 80 * Compare two domain strings. 81 */ 82 static int 83 domain_compare(const void *arg1, const void *arg2) 84 { 85 const fuid_domain_t *node1 = (const fuid_domain_t *)arg1; 86 const fuid_domain_t *node2 = (const fuid_domain_t *)arg2; 87 int val; 88 89 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name); 90 91 return (TREE_ISIGN(val)); 92 } 93 94 void 95 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 96 { 97 avl_create(idx_tree, idx_compare, 98 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode)); 99 avl_create(domain_tree, domain_compare, 100 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode)); 101 } 102 103 /* 104 * load initial fuid domain and idx trees. This function is used by 105 * both the kernel and zdb. 106 */ 107 uint64_t 108 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree, 109 avl_tree_t *domain_tree) 110 { 111 dmu_buf_t *db; 112 uint64_t fuid_size; 113 114 ASSERT(fuid_obj != 0); 115 VERIFY0(dmu_bonus_hold(os, fuid_obj, FTAG, &db)); 116 fuid_size = *(uint64_t *)db->db_data; 117 dmu_buf_rele(db, FTAG); 118 119 if (fuid_size) { 120 nvlist_t **fuidnvp; 121 nvlist_t *nvp = NULL; 122 uint_t count; 123 char *packed; 124 int i; 125 126 packed = kmem_alloc(fuid_size, KM_SLEEP); 127 VERIFY0(dmu_read(os, fuid_obj, 0, 128 fuid_size, packed, DMU_READ_PREFETCH)); 129 VERIFY0(nvlist_unpack(packed, fuid_size, &nvp, 0)); 130 VERIFY0(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY, 131 &fuidnvp, &count)); 132 133 for (i = 0; i != count; i++) { 134 fuid_domain_t *domnode; 135 const char *domain; 136 uint64_t idx; 137 138 VERIFY0(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN, 139 &domain)); 140 VERIFY0(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX, 141 &idx)); 142 143 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 144 145 domnode->f_idx = idx; 146 domnode->f_ksid = ksid_lookupdomain(domain); 147 avl_add(idx_tree, domnode); 148 avl_add(domain_tree, domnode); 149 } 150 nvlist_free(nvp); 151 kmem_free(packed, fuid_size); 152 } 153 return (fuid_size); 154 } 155 156 void 157 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree) 158 { 159 fuid_domain_t *domnode; 160 void *cookie; 161 162 cookie = NULL; 163 while ((domnode = avl_destroy_nodes(domain_tree, &cookie))) 164 ksiddomain_rele(domnode->f_ksid); 165 166 avl_destroy(domain_tree); 167 cookie = NULL; 168 while ((domnode = avl_destroy_nodes(idx_tree, &cookie))) 169 kmem_free(domnode, sizeof (fuid_domain_t)); 170 avl_destroy(idx_tree); 171 } 172 173 const char * 174 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx) 175 { 176 fuid_domain_t searchnode, *findnode; 177 avl_index_t loc; 178 179 searchnode.f_idx = idx; 180 181 findnode = avl_find(idx_tree, &searchnode, &loc); 182 183 return (findnode ? findnode->f_ksid->kd_name : nulldomain); 184 } 185 186 #ifdef _KERNEL 187 /* 188 * Load the fuid table(s) into memory. 189 */ 190 static void 191 zfs_fuid_init(zfsvfs_t *zfsvfs) 192 { 193 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 194 195 if (zfsvfs->z_fuid_loaded) { 196 rw_exit(&zfsvfs->z_fuid_lock); 197 return; 198 } 199 200 zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 201 202 (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 203 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); 204 if (zfsvfs->z_fuid_obj != 0) { 205 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os, 206 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, 207 &zfsvfs->z_fuid_domain); 208 } 209 210 zfsvfs->z_fuid_loaded = B_TRUE; 211 rw_exit(&zfsvfs->z_fuid_lock); 212 } 213 214 /* 215 * sync out AVL trees to persistent storage. 216 */ 217 void 218 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 219 { 220 nvlist_t *nvp; 221 nvlist_t **fuids; 222 size_t nvsize = 0; 223 char *packed; 224 dmu_buf_t *db; 225 fuid_domain_t *domnode; 226 int numnodes; 227 int i; 228 229 if (!zfsvfs->z_fuid_dirty) { 230 return; 231 } 232 233 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 234 235 /* 236 * First see if table needs to be created? 237 */ 238 if (zfsvfs->z_fuid_obj == 0) { 239 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os, 240 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE, 241 sizeof (uint64_t), tx); 242 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 243 ZFS_FUID_TABLES, sizeof (uint64_t), 1, 244 &zfsvfs->z_fuid_obj, tx) == 0); 245 } 246 247 VERIFY0(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP)); 248 249 numnodes = avl_numnodes(&zfsvfs->z_fuid_idx); 250 fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP); 251 for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++, 252 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) { 253 VERIFY0(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP)); 254 VERIFY0(nvlist_add_uint64(fuids[i], FUID_IDX, 255 domnode->f_idx)); 256 VERIFY0(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0)); 257 VERIFY0(nvlist_add_string(fuids[i], FUID_DOMAIN, 258 domnode->f_ksid->kd_name)); 259 } 260 fnvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY, 261 (const nvlist_t * const *)fuids, numnodes); 262 for (i = 0; i != numnodes; i++) 263 nvlist_free(fuids[i]); 264 kmem_free(fuids, numnodes * sizeof (void *)); 265 VERIFY0(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR)); 266 packed = kmem_alloc(nvsize, KM_SLEEP); 267 VERIFY0(nvlist_pack(nvp, &packed, &nvsize, NV_ENCODE_XDR, KM_SLEEP)); 268 nvlist_free(nvp); 269 zfsvfs->z_fuid_size = nvsize; 270 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, 271 zfsvfs->z_fuid_size, packed, tx); 272 kmem_free(packed, zfsvfs->z_fuid_size); 273 VERIFY0(dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, FTAG, &db)); 274 dmu_buf_will_dirty(db, tx); 275 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size; 276 dmu_buf_rele(db, FTAG); 277 278 zfsvfs->z_fuid_dirty = B_FALSE; 279 rw_exit(&zfsvfs->z_fuid_lock); 280 } 281 282 /* 283 * Query domain table for a given domain. 284 * 285 * If domain isn't found and addok is set, it is added to AVL trees and 286 * the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be 287 * necessary for the caller or another thread to detect the dirty table 288 * and sync out the changes. 289 */ 290 static int 291 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, 292 const char **retdomain, boolean_t addok) 293 { 294 fuid_domain_t searchnode, *findnode; 295 avl_index_t loc; 296 krw_t rw = RW_READER; 297 298 /* 299 * If the dummy "nobody" domain then return an index of 0 300 * to cause the created FUID to be a standard POSIX id 301 * for the user nobody. 302 */ 303 if (domain[0] == '\0') { 304 if (retdomain) 305 *retdomain = nulldomain; 306 return (0); 307 } 308 309 searchnode.f_ksid = ksid_lookupdomain(domain); 310 if (retdomain) 311 *retdomain = searchnode.f_ksid->kd_name; 312 if (!zfsvfs->z_fuid_loaded) 313 zfs_fuid_init(zfsvfs); 314 315 retry: 316 rw_enter(&zfsvfs->z_fuid_lock, rw); 317 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc); 318 319 if (findnode) { 320 rw_exit(&zfsvfs->z_fuid_lock); 321 ksiddomain_rele(searchnode.f_ksid); 322 return (findnode->f_idx); 323 } else if (addok) { 324 fuid_domain_t *domnode; 325 uint64_t retidx; 326 327 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) { 328 rw_exit(&zfsvfs->z_fuid_lock); 329 rw = RW_WRITER; 330 goto retry; 331 } 332 333 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); 334 domnode->f_ksid = searchnode.f_ksid; 335 336 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1; 337 338 avl_add(&zfsvfs->z_fuid_domain, domnode); 339 avl_add(&zfsvfs->z_fuid_idx, domnode); 340 zfsvfs->z_fuid_dirty = B_TRUE; 341 rw_exit(&zfsvfs->z_fuid_lock); 342 return (retidx); 343 } else { 344 rw_exit(&zfsvfs->z_fuid_lock); 345 return (-1); 346 } 347 } 348 349 /* 350 * Query domain table by index, returning domain string 351 * 352 * Returns a pointer from an avl node of the domain string. 353 * 354 */ 355 const char * 356 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx) 357 { 358 const char *domain; 359 360 if (idx == 0 || !zfsvfs->z_use_fuids) 361 return (NULL); 362 363 if (!zfsvfs->z_fuid_loaded) 364 zfs_fuid_init(zfsvfs); 365 366 rw_enter(&zfsvfs->z_fuid_lock, RW_READER); 367 368 if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty) 369 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx); 370 else 371 domain = nulldomain; 372 rw_exit(&zfsvfs->z_fuid_lock); 373 374 ASSERT(domain); 375 return (domain); 376 } 377 378 void 379 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp) 380 { 381 *uidp = zfs_fuid_map_id(ZTOZSB(zp), KUID_TO_SUID(ZTOUID(zp)), 382 cr, ZFS_OWNER); 383 *gidp = zfs_fuid_map_id(ZTOZSB(zp), KGID_TO_SGID(ZTOGID(zp)), 384 cr, ZFS_GROUP); 385 } 386 387 #ifdef __FreeBSD__ 388 uid_t 389 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 390 cred_t *cr, zfs_fuid_type_t type) 391 { 392 uint32_t index = FUID_INDEX(fuid); 393 394 if (index == 0) 395 return (fuid); 396 397 return (UID_NOBODY); 398 } 399 #elif defined(__linux__) 400 uid_t 401 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 402 cred_t *cr, zfs_fuid_type_t type) 403 { 404 /* 405 * The Linux port only supports POSIX IDs, use the passed id. 406 */ 407 return (fuid); 408 } 409 410 #else 411 uid_t 412 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, 413 cred_t *cr, zfs_fuid_type_t type) 414 { 415 uint32_t index = FUID_INDEX(fuid); 416 const char *domain; 417 uid_t id; 418 419 if (index == 0) 420 return (fuid); 421 422 domain = zfs_fuid_find_by_idx(zfsvfs, index); 423 ASSERT(domain != NULL); 424 425 if (type == ZFS_OWNER || type == ZFS_ACE_USER) { 426 (void) kidmap_getuidbysid(crgetzone(cr), domain, 427 FUID_RID(fuid), &id); 428 } else { 429 (void) kidmap_getgidbysid(crgetzone(cr), domain, 430 FUID_RID(fuid), &id); 431 } 432 return (id); 433 } 434 #endif 435 436 /* 437 * Add a FUID node to the list of fuid's being created for this 438 * ACL 439 * 440 * If ACL has multiple domains, then keep only one copy of each unique 441 * domain. 442 */ 443 void 444 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid, 445 uint64_t idx, uint64_t id, zfs_fuid_type_t type) 446 { 447 zfs_fuid_t *fuid; 448 zfs_fuid_domain_t *fuid_domain; 449 zfs_fuid_info_t *fuidp; 450 uint64_t fuididx; 451 boolean_t found = B_FALSE; 452 453 if (*fuidpp == NULL) 454 *fuidpp = zfs_fuid_info_alloc(); 455 456 fuidp = *fuidpp; 457 /* 458 * First find fuid domain index in linked list 459 * 460 * If one isn't found then create an entry. 461 */ 462 463 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains); 464 fuid_domain; fuid_domain = list_next(&fuidp->z_domains, 465 fuid_domain), fuididx++) { 466 if (idx == fuid_domain->z_domidx) { 467 found = B_TRUE; 468 break; 469 } 470 } 471 472 if (!found) { 473 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP); 474 fuid_domain->z_domain = domain; 475 fuid_domain->z_domidx = idx; 476 list_insert_tail(&fuidp->z_domains, fuid_domain); 477 fuidp->z_domain_str_sz += strlen(domain) + 1; 478 fuidp->z_domain_cnt++; 479 } 480 481 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) { 482 483 /* 484 * Now allocate fuid entry and add it on the end of the list 485 */ 486 487 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); 488 fuid->z_id = id; 489 fuid->z_domidx = idx; 490 fuid->z_logfuid = FUID_ENCODE(fuididx, rid); 491 492 list_insert_tail(&fuidp->z_fuids, fuid); 493 fuidp->z_fuid_cnt++; 494 } else { 495 if (type == ZFS_OWNER) 496 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid); 497 else 498 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid); 499 } 500 } 501 502 #ifdef HAVE_KSID 503 /* 504 * Create a file system FUID, based on information in the users cred 505 * 506 * If cred contains KSID_OWNER then it should be used to determine 507 * the uid otherwise cred's uid will be used. By default cred's gid 508 * is used unless it's an ephemeral ID in which case KSID_GROUP will 509 * be used if it exists. 510 */ 511 uint64_t 512 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type, 513 cred_t *cr, zfs_fuid_info_t **fuidp) 514 { 515 uint64_t idx; 516 ksid_t *ksid; 517 uint32_t rid; 518 const char *kdomain, *domain; 519 uid_t id; 520 521 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP); 522 523 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP); 524 525 if (!zfsvfs->z_use_fuids || (ksid == NULL)) { 526 id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr); 527 528 if (IS_EPHEMERAL(id)) 529 return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY); 530 531 return ((uint64_t)id); 532 } 533 534 /* 535 * ksid is present and FUID is supported 536 */ 537 id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr); 538 539 if (!IS_EPHEMERAL(id)) 540 return ((uint64_t)id); 541 542 if (type == ZFS_GROUP) 543 id = ksid_getid(ksid); 544 545 rid = ksid_getrid(ksid); 546 domain = ksid_getdomain(ksid); 547 548 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 549 550 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type); 551 552 return (FUID_ENCODE(idx, rid)); 553 } 554 #endif /* HAVE_KSID */ 555 556 /* 557 * Create a file system FUID for an ACL ace 558 * or a chown/chgrp of the file. 559 * This is similar to zfs_fuid_create_cred, except that 560 * we can't find the domain + rid information in the 561 * cred. Instead we have to query Winchester for the 562 * domain and rid. 563 * 564 * During replay operations the domain+rid information is 565 * found in the zfs_fuid_info_t that the replay code has 566 * attached to the zfsvfs of the file system. 567 */ 568 uint64_t 569 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr, 570 zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp) 571 { 572 #ifdef HAVE_KSID 573 const char *domain, *kdomain; 574 uint32_t fuid_idx = FUID_INDEX(id); 575 uint32_t rid = 0; 576 idmap_stat status; 577 uint64_t idx = UID_NOBODY; 578 zfs_fuid_t *zfuid = NULL; 579 zfs_fuid_info_t *fuidp = NULL; 580 581 /* 582 * If POSIX ID, or entry is already a FUID then 583 * just return the id 584 * 585 * We may also be handed an already FUID'ized id via 586 * chmod. 587 */ 588 589 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0) 590 return (id); 591 592 if (zfsvfs->z_replay) { 593 fuidp = zfsvfs->z_fuid_replay; 594 595 /* 596 * If we are passed an ephemeral id, but no 597 * fuid_info was logged then return NOBODY. 598 * This is most likely a result of idmap service 599 * not being available. 600 */ 601 if (fuidp == NULL) 602 return (UID_NOBODY); 603 604 VERIFY3U(type, >=, ZFS_OWNER); 605 VERIFY3U(type, <=, ZFS_ACE_GROUP); 606 607 switch (type) { 608 case ZFS_ACE_USER: 609 case ZFS_ACE_GROUP: 610 zfuid = list_head(&fuidp->z_fuids); 611 rid = FUID_RID(zfuid->z_logfuid); 612 idx = FUID_INDEX(zfuid->z_logfuid); 613 break; 614 case ZFS_OWNER: 615 rid = FUID_RID(fuidp->z_fuid_owner); 616 idx = FUID_INDEX(fuidp->z_fuid_owner); 617 break; 618 case ZFS_GROUP: 619 rid = FUID_RID(fuidp->z_fuid_group); 620 idx = FUID_INDEX(fuidp->z_fuid_group); 621 break; 622 } 623 domain = fuidp->z_domain_table[idx - 1]; 624 } else { 625 if (type == ZFS_OWNER || type == ZFS_ACE_USER) 626 status = kidmap_getsidbyuid(crgetzone(cr), id, 627 &domain, &rid); 628 else 629 status = kidmap_getsidbygid(crgetzone(cr), id, 630 &domain, &rid); 631 632 if (status != 0) { 633 /* 634 * When returning nobody we will need to 635 * make a dummy fuid table entry for logging 636 * purposes. 637 */ 638 rid = UID_NOBODY; 639 domain = nulldomain; 640 } 641 } 642 643 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE); 644 645 if (!zfsvfs->z_replay) 646 zfs_fuid_node_add(fuidpp, kdomain, 647 rid, idx, id, type); 648 else if (zfuid != NULL) { 649 list_remove(&fuidp->z_fuids, zfuid); 650 kmem_free(zfuid, sizeof (zfs_fuid_t)); 651 } 652 return (FUID_ENCODE(idx, rid)); 653 #else 654 /* 655 * The Linux port only supports POSIX IDs, use the passed id. 656 */ 657 return (id); 658 #endif 659 } 660 661 void 662 zfs_fuid_destroy(zfsvfs_t *zfsvfs) 663 { 664 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); 665 if (!zfsvfs->z_fuid_loaded) { 666 rw_exit(&zfsvfs->z_fuid_lock); 667 return; 668 } 669 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); 670 rw_exit(&zfsvfs->z_fuid_lock); 671 } 672 673 /* 674 * Allocate zfs_fuid_info for tracking FUIDs created during 675 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR() 676 */ 677 zfs_fuid_info_t * 678 zfs_fuid_info_alloc(void) 679 { 680 zfs_fuid_info_t *fuidp; 681 682 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP); 683 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t), 684 offsetof(zfs_fuid_domain_t, z_next)); 685 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t), 686 offsetof(zfs_fuid_t, z_next)); 687 return (fuidp); 688 } 689 690 /* 691 * Release all memory associated with zfs_fuid_info_t 692 */ 693 void 694 zfs_fuid_info_free(zfs_fuid_info_t *fuidp) 695 { 696 zfs_fuid_t *zfuid; 697 zfs_fuid_domain_t *zdomain; 698 699 while ((zfuid = list_remove_head(&fuidp->z_fuids)) != NULL) 700 kmem_free(zfuid, sizeof (zfs_fuid_t)); 701 702 if (fuidp->z_domain_table != NULL) 703 kmem_free(fuidp->z_domain_table, 704 (sizeof (char *)) * fuidp->z_domain_cnt); 705 706 while ((zdomain = list_remove_head(&fuidp->z_domains)) != NULL) 707 kmem_free(zdomain, sizeof (zfs_fuid_domain_t)); 708 709 kmem_free(fuidp, sizeof (zfs_fuid_info_t)); 710 } 711 712 /* 713 * Check to see if id is a groupmember. If cred 714 * has ksid info then sidlist is checked first 715 * and if still not found then POSIX groups are checked 716 * 717 * Will use a straight FUID compare when possible. 718 */ 719 boolean_t 720 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) 721 { 722 uid_t gid; 723 724 #ifdef illumos 725 ksid_t *ksid = crgetsid(cr, KSID_GROUP); 726 ksidlist_t *ksidlist = crgetsidlist(cr); 727 728 if (ksid && ksidlist) { 729 int i; 730 ksid_t *ksid_groups; 731 uint32_t idx = FUID_INDEX(id); 732 uint32_t rid = FUID_RID(id); 733 734 ksid_groups = ksidlist->ksl_sids; 735 736 for (i = 0; i != ksidlist->ksl_nsid; i++) { 737 if (idx == 0) { 738 if (id != IDMAP_WK_CREATOR_GROUP_GID && 739 id == ksid_groups[i].ks_id) { 740 return (B_TRUE); 741 } 742 } else { 743 const char *domain; 744 745 domain = zfs_fuid_find_by_idx(zfsvfs, idx); 746 ASSERT(domain != NULL); 747 748 if (strcmp(domain, 749 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) 750 return (B_FALSE); 751 752 if ((strcmp(domain, 753 ksid_groups[i].ks_domain->kd_name) == 0) && 754 rid == ksid_groups[i].ks_rid) 755 return (B_TRUE); 756 } 757 } 758 } 759 #endif /* illumos */ 760 761 /* 762 * Not found in ksidlist, check posix groups 763 */ 764 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP); 765 return (groupmember(gid, cr)); 766 } 767 768 void 769 zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 770 { 771 if (zfsvfs->z_fuid_obj == 0) { 772 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 773 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 774 FUID_SIZE_ESTIMATE(zfsvfs)); 775 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 776 } else { 777 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 778 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 779 FUID_SIZE_ESTIMATE(zfsvfs)); 780 } 781 } 782 783 /* 784 * buf must be big enough (eg, 32 bytes) 785 */ 786 int 787 zfs_id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 788 char *buf, size_t len, boolean_t addok) 789 { 790 uint64_t fuid; 791 int domainid = 0; 792 793 if (domain && domain[0]) { 794 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 795 if (domainid == -1) 796 return (SET_ERROR(ENOENT)); 797 } 798 fuid = FUID_ENCODE(domainid, rid); 799 (void) snprintf(buf, len, "%llx", (longlong_t)fuid); 800 return (0); 801 } 802 #endif 803