1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012,2021 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/vdev.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/fm/protocol.h> 39 #include <sys/fm/util.h> 40 #include <sys/sysevent.h> 41 42 /* 43 * This general routine is responsible for generating all the different ZFS 44 * ereports. The payload is dependent on the class, and which arguments are 45 * supplied to the function: 46 * 47 * EREPORT POOL VDEV IO 48 * block X X X 49 * data X X 50 * device X X 51 * pool X 52 * 53 * If we are in a loading state, all errors are chained together by the same 54 * SPA-wide ENA (Error Numeric Association). 55 * 56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 58 * to chain together all ereports associated with a logical piece of data. For 59 * read I/Os, there are basically three 'types' of I/O, which form a roughly 60 * layered diagram: 61 * 62 * +---------------+ 63 * | Aggregate I/O | No associated logical data or device 64 * +---------------+ 65 * | 66 * V 67 * +---------------+ Reads associated with a piece of logical data. 68 * | Read I/O | This includes reads on behalf of RAID-Z, 69 * +---------------+ mirrors, gang blocks, retries, etc. 70 * | 71 * V 72 * +---------------+ Reads associated with a particular device, but 73 * | Physical I/O | no logical data. Issued as part of vdev caching 74 * +---------------+ and I/O aggregation. 75 * 76 * Note that 'physical I/O' here is not the same terminology as used in the rest 77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 78 * blockpointer. But I/O with no associated block pointer can still be related 79 * to a logical piece of data (i.e. RAID-Z requests). 80 * 81 * Purely physical I/O always have unique ENAs. They are not related to a 82 * particular piece of logical data, and therefore cannot be chained together. 83 * We still generate an ereport, but the DE doesn't correlate it with any 84 * logical piece of data. When such an I/O fails, the delegated I/O requests 85 * will issue a retry, which will trigger the 'real' ereport with the correct 86 * ENA. 87 * 88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 90 * then inherit this pointer, so that when it is first set subsequent failures 91 * will use the same ENA. For vdev cache fill and queue aggregation I/O, 92 * this pointer is set to NULL, and no ereport will be generated (since it 93 * doesn't actually correspond to any particular device or piece of data, 94 * and the caller will always retry without caching or queueing anyway). 95 * 96 * For checksum errors, we want to include more information about the actual 97 * error which occurs. Accordingly, we build an ereport when the error is 98 * noticed, but instead of sending it in immediately, we hang it off of the 99 * io_cksum_report field of the logical IO. When the logical IO completes 100 * (successfully or not), zfs_ereport_finish_checksum() is called with the 101 * good and bad versions of the buffer (if available), and we annotate the 102 * ereport with information about the differences. 103 */ 104 105 #ifdef _KERNEL 106 /* 107 * Duplicate ereport Detection 108 * 109 * Some ereports are retained momentarily for detecting duplicates. These 110 * are kept in a recent_events_node_t in both a time-ordered list and an AVL 111 * tree of recent unique ereports. 112 * 113 * The lifespan of these recent ereports is bounded (15 mins) and a cleaner 114 * task is used to purge stale entries. 115 */ 116 static list_t recent_events_list; 117 static avl_tree_t recent_events_tree; 118 static kmutex_t recent_events_lock; 119 static taskqid_t recent_events_cleaner_tqid; 120 121 /* 122 * Each node is about 128 bytes so 2,000 would consume 1/4 MiB. 123 * 124 * This setting can be changed dynamically and setting it to zero 125 * disables duplicate detection. 126 */ 127 static unsigned int zfs_zevent_retain_max = 2000; 128 129 /* 130 * The lifespan for a recent ereport entry. The default of 15 minutes is 131 * intended to outlive the zfs diagnosis engine's threshold of 10 errors 132 * over a period of 10 minutes. 133 */ 134 static unsigned int zfs_zevent_retain_expire_secs = 900; 135 136 typedef enum zfs_subclass { 137 ZSC_IO, 138 ZSC_DATA, 139 ZSC_CHECKSUM 140 } zfs_subclass_t; 141 142 typedef struct { 143 /* common criteria */ 144 uint64_t re_pool_guid; 145 uint64_t re_vdev_guid; 146 int re_io_error; 147 uint64_t re_io_size; 148 uint64_t re_io_offset; 149 zfs_subclass_t re_subclass; 150 zio_priority_t re_io_priority; 151 152 /* logical zio criteria (optional) */ 153 zbookmark_phys_t re_io_bookmark; 154 155 /* internal state */ 156 avl_node_t re_tree_link; 157 list_node_t re_list_link; 158 uint64_t re_timestamp; 159 } recent_events_node_t; 160 161 static int 162 recent_events_compare(const void *a, const void *b) 163 { 164 const recent_events_node_t *node1 = a; 165 const recent_events_node_t *node2 = b; 166 int cmp; 167 168 /* 169 * The comparison order here is somewhat arbitrary. 170 * What's important is that if every criteria matches, then it 171 * is a duplicate (i.e. compare returns 0) 172 */ 173 if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0) 174 return (cmp); 175 if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0) 176 return (cmp); 177 if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0) 178 return (cmp); 179 if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0) 180 return (cmp); 181 if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0) 182 return (cmp); 183 if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0) 184 return (cmp); 185 if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0) 186 return (cmp); 187 188 const zbookmark_phys_t *zb1 = &node1->re_io_bookmark; 189 const zbookmark_phys_t *zb2 = &node2->re_io_bookmark; 190 191 if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0) 192 return (cmp); 193 if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0) 194 return (cmp); 195 if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0) 196 return (cmp); 197 if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0) 198 return (cmp); 199 200 return (0); 201 } 202 203 static void zfs_ereport_schedule_cleaner(void); 204 205 /* 206 * background task to clean stale recent event nodes. 207 */ 208 static void 209 zfs_ereport_cleaner(void *arg) 210 { 211 recent_events_node_t *entry; 212 uint64_t now = gethrtime(); 213 214 /* 215 * purge expired entries 216 */ 217 mutex_enter(&recent_events_lock); 218 while ((entry = list_tail(&recent_events_list)) != NULL) { 219 uint64_t age = NSEC2SEC(now - entry->re_timestamp); 220 if (age <= zfs_zevent_retain_expire_secs) 221 break; 222 223 /* remove expired node */ 224 avl_remove(&recent_events_tree, entry); 225 list_remove(&recent_events_list, entry); 226 kmem_free(entry, sizeof (*entry)); 227 } 228 229 /* Restart the cleaner if more entries remain */ 230 recent_events_cleaner_tqid = 0; 231 if (!list_is_empty(&recent_events_list)) 232 zfs_ereport_schedule_cleaner(); 233 234 mutex_exit(&recent_events_lock); 235 } 236 237 static void 238 zfs_ereport_schedule_cleaner(void) 239 { 240 ASSERT(MUTEX_HELD(&recent_events_lock)); 241 242 uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1); 243 244 recent_events_cleaner_tqid = taskq_dispatch_delay( 245 system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP, 246 ddi_get_lbolt() + NSEC_TO_TICK(timeout)); 247 } 248 249 /* 250 * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL 251 */ 252 void 253 zfs_ereport_clear(spa_t *spa, vdev_t *vd) 254 { 255 uint64_t vdev_guid, pool_guid; 256 int cnt = 0; 257 258 ASSERT(vd != NULL || spa != NULL); 259 if (vd == NULL) { 260 vdev_guid = 0; 261 pool_guid = spa_guid(spa); 262 } else { 263 vdev_guid = vd->vdev_guid; 264 pool_guid = 0; 265 } 266 267 mutex_enter(&recent_events_lock); 268 269 recent_events_node_t *next = list_head(&recent_events_list); 270 while (next != NULL) { 271 recent_events_node_t *entry = next; 272 273 next = list_next(&recent_events_list, next); 274 275 if (entry->re_vdev_guid == vdev_guid || 276 entry->re_pool_guid == pool_guid) { 277 avl_remove(&recent_events_tree, entry); 278 list_remove(&recent_events_list, entry); 279 kmem_free(entry, sizeof (*entry)); 280 cnt++; 281 } 282 } 283 284 mutex_exit(&recent_events_lock); 285 } 286 287 /* 288 * Check if an ereport would be a duplicate of one recently posted. 289 * 290 * An ereport is considered a duplicate if the set of criteria in 291 * recent_events_node_t all match. 292 * 293 * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM 294 * are candidates for duplicate checking. 295 */ 296 static boolean_t 297 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd, 298 const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size) 299 { 300 recent_events_node_t search = {0}, *entry; 301 302 if (vd == NULL || zio == NULL) 303 return (B_FALSE); 304 305 if (zfs_zevent_retain_max == 0) 306 return (B_FALSE); 307 308 if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0) 309 search.re_subclass = ZSC_IO; 310 else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0) 311 search.re_subclass = ZSC_DATA; 312 else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) 313 search.re_subclass = ZSC_CHECKSUM; 314 else 315 return (B_FALSE); 316 317 search.re_pool_guid = spa_guid(spa); 318 search.re_vdev_guid = vd->vdev_guid; 319 search.re_io_error = zio->io_error; 320 search.re_io_priority = zio->io_priority; 321 /* if size is supplied use it over what's in zio */ 322 if (size) { 323 search.re_io_size = size; 324 search.re_io_offset = offset; 325 } else { 326 search.re_io_size = zio->io_size; 327 search.re_io_offset = zio->io_offset; 328 } 329 330 /* grab optional logical zio criteria */ 331 if (zb != NULL) { 332 search.re_io_bookmark.zb_objset = zb->zb_objset; 333 search.re_io_bookmark.zb_object = zb->zb_object; 334 search.re_io_bookmark.zb_level = zb->zb_level; 335 search.re_io_bookmark.zb_blkid = zb->zb_blkid; 336 } 337 338 uint64_t now = gethrtime(); 339 340 mutex_enter(&recent_events_lock); 341 342 /* check if we have seen this one recently */ 343 entry = avl_find(&recent_events_tree, &search, NULL); 344 if (entry != NULL) { 345 uint64_t age = NSEC2SEC(now - entry->re_timestamp); 346 347 /* 348 * There is still an active cleaner (since we're here). 349 * Reset the last seen time for this duplicate entry 350 * so that its lifespand gets extended. 351 */ 352 list_remove(&recent_events_list, entry); 353 list_insert_head(&recent_events_list, entry); 354 entry->re_timestamp = now; 355 356 zfs_zevent_track_duplicate(); 357 mutex_exit(&recent_events_lock); 358 359 return (age <= zfs_zevent_retain_expire_secs); 360 } 361 362 if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) { 363 /* recycle oldest node */ 364 entry = list_tail(&recent_events_list); 365 ASSERT(entry != NULL); 366 list_remove(&recent_events_list, entry); 367 avl_remove(&recent_events_tree, entry); 368 } else { 369 entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP); 370 } 371 372 /* record this as a recent ereport */ 373 *entry = search; 374 avl_add(&recent_events_tree, entry); 375 list_insert_head(&recent_events_list, entry); 376 entry->re_timestamp = now; 377 378 /* Start a cleaner if not already scheduled */ 379 if (recent_events_cleaner_tqid == 0) 380 zfs_ereport_schedule_cleaner(); 381 382 mutex_exit(&recent_events_lock); 383 return (B_FALSE); 384 } 385 386 void 387 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector) 388 { 389 if (nvl) 390 fm_nvlist_destroy(nvl, FM_NVA_FREE); 391 392 if (detector) 393 fm_nvlist_destroy(detector, FM_NVA_FREE); 394 } 395 396 /* 397 * We want to rate limit ZIO delay, deadman, and checksum events so as to not 398 * flood zevent consumers when a disk is acting up. 399 * 400 * Returns 1 if we're ratelimiting, 0 if not. 401 */ 402 static int 403 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd) 404 { 405 int rc = 0; 406 /* 407 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we 408 * are. Invert it to get our return value. 409 */ 410 if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) { 411 rc = !zfs_ratelimit(&vd->vdev_delay_rl); 412 } else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) { 413 rc = !zfs_ratelimit(&vd->vdev_deadman_rl); 414 } else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) { 415 rc = !zfs_ratelimit(&vd->vdev_checksum_rl); 416 } 417 418 if (rc) { 419 /* We're rate limiting */ 420 fm_erpt_dropped_increment(); 421 } 422 423 return (rc); 424 } 425 426 /* 427 * Return B_TRUE if the event actually posted, B_FALSE if not. 428 */ 429 static boolean_t 430 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out, 431 const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 432 zio_t *zio, uint64_t stateoroffset, uint64_t size) 433 { 434 nvlist_t *ereport, *detector; 435 436 uint64_t ena; 437 char class[64]; 438 439 if ((ereport = fm_nvlist_create(NULL)) == NULL) 440 return (B_FALSE); 441 442 if ((detector = fm_nvlist_create(NULL)) == NULL) { 443 fm_nvlist_destroy(ereport, FM_NVA_FREE); 444 return (B_FALSE); 445 } 446 447 /* 448 * Serialize ereport generation 449 */ 450 mutex_enter(&spa->spa_errlist_lock); 451 452 /* 453 * Determine the ENA to use for this event. If we are in a loading 454 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 455 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 456 */ 457 if (spa_load_state(spa) != SPA_LOAD_NONE) { 458 if (spa->spa_ena == 0) 459 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 460 ena = spa->spa_ena; 461 } else if (zio != NULL && zio->io_logical != NULL) { 462 if (zio->io_logical->io_ena == 0) 463 zio->io_logical->io_ena = 464 fm_ena_generate(0, FM_ENA_FMT1); 465 ena = zio->io_logical->io_ena; 466 } else { 467 ena = fm_ena_generate(0, FM_ENA_FMT1); 468 } 469 470 /* 471 * Construct the full class, detector, and other standard FMA fields. 472 */ 473 (void) snprintf(class, sizeof (class), "%s.%s", 474 ZFS_ERROR_CLASS, subclass); 475 476 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 477 vd != NULL ? vd->vdev_guid : 0); 478 479 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 480 481 /* 482 * Construct the per-ereport payload, depending on which parameters are 483 * passed in. 484 */ 485 486 /* 487 * Generic payload members common to all ereports. 488 */ 489 fm_payload_set(ereport, 490 FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa), 491 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa), 492 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64, 493 (uint64_t)spa_state(spa), 494 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 495 (int32_t)spa_load_state(spa), NULL); 496 497 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, 498 DATA_TYPE_STRING, 499 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? 500 FM_EREPORT_FAILMODE_WAIT : 501 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? 502 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, 503 NULL); 504 505 if (vd != NULL) { 506 vdev_t *pvd = vd->vdev_parent; 507 vdev_queue_t *vq = &vd->vdev_queue; 508 vdev_stat_t *vs = &vd->vdev_stat; 509 vdev_t *spare_vd; 510 uint64_t *spare_guids; 511 char **spare_paths; 512 int i, spare_count; 513 514 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 515 DATA_TYPE_UINT64, vd->vdev_guid, 516 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 517 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 518 if (vd->vdev_path != NULL) 519 fm_payload_set(ereport, 520 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 521 DATA_TYPE_STRING, vd->vdev_path, NULL); 522 if (vd->vdev_devid != NULL) 523 fm_payload_set(ereport, 524 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 525 DATA_TYPE_STRING, vd->vdev_devid, NULL); 526 if (vd->vdev_fru != NULL) 527 fm_payload_set(ereport, 528 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, 529 DATA_TYPE_STRING, vd->vdev_fru, NULL); 530 if (vd->vdev_enc_sysfs_path != NULL) 531 fm_payload_set(ereport, 532 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH, 533 DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL); 534 if (vd->vdev_ashift) 535 fm_payload_set(ereport, 536 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT, 537 DATA_TYPE_UINT64, vd->vdev_ashift, NULL); 538 539 if (vq != NULL) { 540 fm_payload_set(ereport, 541 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS, 542 DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL); 543 fm_payload_set(ereport, 544 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS, 545 DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL); 546 } 547 548 if (vs != NULL) { 549 fm_payload_set(ereport, 550 FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS, 551 DATA_TYPE_UINT64, vs->vs_read_errors, 552 FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS, 553 DATA_TYPE_UINT64, vs->vs_write_errors, 554 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS, 555 DATA_TYPE_UINT64, vs->vs_checksum_errors, 556 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS, 557 DATA_TYPE_UINT64, vs->vs_slow_ios, 558 NULL); 559 } 560 561 if (pvd != NULL) { 562 fm_payload_set(ereport, 563 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 564 DATA_TYPE_UINT64, pvd->vdev_guid, 565 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 566 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 567 NULL); 568 if (pvd->vdev_path) 569 fm_payload_set(ereport, 570 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 571 DATA_TYPE_STRING, pvd->vdev_path, NULL); 572 if (pvd->vdev_devid) 573 fm_payload_set(ereport, 574 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 575 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 576 } 577 578 spare_count = spa->spa_spares.sav_count; 579 spare_paths = kmem_zalloc(sizeof (char *) * spare_count, 580 KM_SLEEP); 581 spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count, 582 KM_SLEEP); 583 584 for (i = 0; i < spare_count; i++) { 585 spare_vd = spa->spa_spares.sav_vdevs[i]; 586 if (spare_vd) { 587 spare_paths[i] = spare_vd->vdev_path; 588 spare_guids[i] = spare_vd->vdev_guid; 589 } 590 } 591 592 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS, 593 DATA_TYPE_STRING_ARRAY, spare_count, spare_paths, 594 FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS, 595 DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL); 596 597 kmem_free(spare_guids, sizeof (uint64_t) * spare_count); 598 kmem_free(spare_paths, sizeof (char *) * spare_count); 599 } 600 601 if (zio != NULL) { 602 /* 603 * Payload common to all I/Os. 604 */ 605 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 606 DATA_TYPE_INT32, zio->io_error, NULL); 607 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS, 608 DATA_TYPE_INT32, zio->io_flags, NULL); 609 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE, 610 DATA_TYPE_UINT32, zio->io_stage, NULL); 611 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE, 612 DATA_TYPE_UINT32, zio->io_pipeline, NULL); 613 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY, 614 DATA_TYPE_UINT64, zio->io_delay, NULL); 615 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP, 616 DATA_TYPE_UINT64, zio->io_timestamp, NULL); 617 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA, 618 DATA_TYPE_UINT64, zio->io_delta, NULL); 619 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY, 620 DATA_TYPE_UINT32, zio->io_priority, NULL); 621 622 /* 623 * If the 'size' parameter is non-zero, it indicates this is a 624 * RAID-Z or other I/O where the physical offset and length are 625 * provided for us, instead of within the zio_t. 626 */ 627 if (vd != NULL) { 628 if (size) 629 fm_payload_set(ereport, 630 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 631 DATA_TYPE_UINT64, stateoroffset, 632 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 633 DATA_TYPE_UINT64, size, NULL); 634 else 635 fm_payload_set(ereport, 636 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 637 DATA_TYPE_UINT64, zio->io_offset, 638 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 639 DATA_TYPE_UINT64, zio->io_size, NULL); 640 } 641 } else if (vd != NULL) { 642 /* 643 * If we have a vdev but no zio, this is a device fault, and the 644 * 'stateoroffset' parameter indicates the previous state of the 645 * vdev. 646 */ 647 fm_payload_set(ereport, 648 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 649 DATA_TYPE_UINT64, stateoroffset, NULL); 650 } 651 652 /* 653 * Payload for I/Os with corresponding logical information. 654 */ 655 if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) { 656 fm_payload_set(ereport, 657 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, 658 DATA_TYPE_UINT64, zb->zb_objset, 659 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 660 DATA_TYPE_UINT64, zb->zb_object, 661 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 662 DATA_TYPE_INT64, zb->zb_level, 663 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 664 DATA_TYPE_UINT64, zb->zb_blkid, NULL); 665 } 666 667 mutex_exit(&spa->spa_errlist_lock); 668 669 *ereport_out = ereport; 670 *detector_out = detector; 671 return (B_TRUE); 672 } 673 674 /* if it's <= 128 bytes, save the corruption directly */ 675 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t)) 676 677 #define MAX_RANGES 16 678 679 typedef struct zfs_ecksum_info { 680 /* histograms of set and cleared bits by bit number in a 64-bit word */ 681 uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY]; 682 uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY]; 683 684 /* inline arrays of bits set and cleared. */ 685 uint64_t zei_bits_set[ZFM_MAX_INLINE]; 686 uint64_t zei_bits_cleared[ZFM_MAX_INLINE]; 687 688 /* 689 * for each range, the number of bits set and cleared. The Hamming 690 * distance between the good and bad buffers is the sum of them all. 691 */ 692 uint32_t zei_range_sets[MAX_RANGES]; 693 uint32_t zei_range_clears[MAX_RANGES]; 694 695 struct zei_ranges { 696 uint32_t zr_start; 697 uint32_t zr_end; 698 } zei_ranges[MAX_RANGES]; 699 700 size_t zei_range_count; 701 uint32_t zei_mingap; 702 uint32_t zei_allowed_mingap; 703 704 } zfs_ecksum_info_t; 705 706 static void 707 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count) 708 { 709 size_t i; 710 size_t bits = 0; 711 uint64_t value = BE_64(value_arg); 712 713 /* We store the bits in big-endian (largest-first) order */ 714 for (i = 0; i < 64; i++) { 715 if (value & (1ull << i)) { 716 hist[63 - i]++; 717 ++bits; 718 } 719 } 720 /* update the count of bits changed */ 721 *count += bits; 722 } 723 724 /* 725 * We've now filled up the range array, and need to increase "mingap" and 726 * shrink the range list accordingly. zei_mingap is always the smallest 727 * distance between array entries, so we set the new_allowed_gap to be 728 * one greater than that. We then go through the list, joining together 729 * any ranges which are closer than the new_allowed_gap. 730 * 731 * By construction, there will be at least one. We also update zei_mingap 732 * to the new smallest gap, to prepare for our next invocation. 733 */ 734 static void 735 zei_shrink_ranges(zfs_ecksum_info_t *eip) 736 { 737 uint32_t mingap = UINT32_MAX; 738 uint32_t new_allowed_gap = eip->zei_mingap + 1; 739 740 size_t idx, output; 741 size_t max = eip->zei_range_count; 742 743 struct zei_ranges *r = eip->zei_ranges; 744 745 ASSERT3U(eip->zei_range_count, >, 0); 746 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES); 747 748 output = idx = 0; 749 while (idx < max - 1) { 750 uint32_t start = r[idx].zr_start; 751 uint32_t end = r[idx].zr_end; 752 753 while (idx < max - 1) { 754 idx++; 755 756 uint32_t nstart = r[idx].zr_start; 757 uint32_t nend = r[idx].zr_end; 758 759 uint32_t gap = nstart - end; 760 if (gap < new_allowed_gap) { 761 end = nend; 762 continue; 763 } 764 if (gap < mingap) 765 mingap = gap; 766 break; 767 } 768 r[output].zr_start = start; 769 r[output].zr_end = end; 770 output++; 771 } 772 ASSERT3U(output, <, eip->zei_range_count); 773 eip->zei_range_count = output; 774 eip->zei_mingap = mingap; 775 eip->zei_allowed_mingap = new_allowed_gap; 776 } 777 778 static void 779 zei_add_range(zfs_ecksum_info_t *eip, int start, int end) 780 { 781 struct zei_ranges *r = eip->zei_ranges; 782 size_t count = eip->zei_range_count; 783 784 if (count >= MAX_RANGES) { 785 zei_shrink_ranges(eip); 786 count = eip->zei_range_count; 787 } 788 if (count == 0) { 789 eip->zei_mingap = UINT32_MAX; 790 eip->zei_allowed_mingap = 1; 791 } else { 792 int gap = start - r[count - 1].zr_end; 793 794 if (gap < eip->zei_allowed_mingap) { 795 r[count - 1].zr_end = end; 796 return; 797 } 798 if (gap < eip->zei_mingap) 799 eip->zei_mingap = gap; 800 } 801 r[count].zr_start = start; 802 r[count].zr_end = end; 803 eip->zei_range_count++; 804 } 805 806 static size_t 807 zei_range_total_size(zfs_ecksum_info_t *eip) 808 { 809 struct zei_ranges *r = eip->zei_ranges; 810 size_t count = eip->zei_range_count; 811 size_t result = 0; 812 size_t idx; 813 814 for (idx = 0; idx < count; idx++) 815 result += (r[idx].zr_end - r[idx].zr_start); 816 817 return (result); 818 } 819 820 static zfs_ecksum_info_t * 821 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info, 822 const abd_t *goodabd, const abd_t *badabd, size_t size, 823 boolean_t drop_if_identical) 824 { 825 const uint64_t *good; 826 const uint64_t *bad; 827 828 size_t nui64s = size / sizeof (uint64_t); 829 830 size_t inline_size; 831 int no_inline = 0; 832 size_t idx; 833 size_t range; 834 835 size_t offset = 0; 836 ssize_t start = -1; 837 838 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP); 839 840 /* don't do any annotation for injected checksum errors */ 841 if (info != NULL && info->zbc_injected) 842 return (eip); 843 844 if (info != NULL && info->zbc_has_cksum) { 845 fm_payload_set(ereport, 846 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED, 847 DATA_TYPE_UINT64_ARRAY, 848 sizeof (info->zbc_expected) / sizeof (uint64_t), 849 (uint64_t *)&info->zbc_expected, 850 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL, 851 DATA_TYPE_UINT64_ARRAY, 852 sizeof (info->zbc_actual) / sizeof (uint64_t), 853 (uint64_t *)&info->zbc_actual, 854 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO, 855 DATA_TYPE_STRING, 856 info->zbc_checksum_name, 857 NULL); 858 859 if (info->zbc_byteswapped) { 860 fm_payload_set(ereport, 861 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP, 862 DATA_TYPE_BOOLEAN, 1, 863 NULL); 864 } 865 } 866 867 if (badabd == NULL || goodabd == NULL) 868 return (eip); 869 870 ASSERT3U(nui64s, <=, UINT32_MAX); 871 ASSERT3U(size, ==, nui64s * sizeof (uint64_t)); 872 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 873 ASSERT3U(size, <=, UINT32_MAX); 874 875 good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size); 876 bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size); 877 878 /* build up the range list by comparing the two buffers. */ 879 for (idx = 0; idx < nui64s; idx++) { 880 if (good[idx] == bad[idx]) { 881 if (start == -1) 882 continue; 883 884 zei_add_range(eip, start, idx); 885 start = -1; 886 } else { 887 if (start != -1) 888 continue; 889 890 start = idx; 891 } 892 } 893 if (start != -1) 894 zei_add_range(eip, start, idx); 895 896 /* See if it will fit in our inline buffers */ 897 inline_size = zei_range_total_size(eip); 898 if (inline_size > ZFM_MAX_INLINE) 899 no_inline = 1; 900 901 /* 902 * If there is no change and we want to drop if the buffers are 903 * identical, do so. 904 */ 905 if (inline_size == 0 && drop_if_identical) { 906 kmem_free(eip, sizeof (*eip)); 907 abd_return_buf((abd_t *)goodabd, (void *)good, size); 908 abd_return_buf((abd_t *)badabd, (void *)bad, size); 909 return (NULL); 910 } 911 912 /* 913 * Now walk through the ranges, filling in the details of the 914 * differences. Also convert our uint64_t-array offsets to byte 915 * offsets. 916 */ 917 for (range = 0; range < eip->zei_range_count; range++) { 918 size_t start = eip->zei_ranges[range].zr_start; 919 size_t end = eip->zei_ranges[range].zr_end; 920 921 for (idx = start; idx < end; idx++) { 922 uint64_t set, cleared; 923 924 // bits set in bad, but not in good 925 set = ((~good[idx]) & bad[idx]); 926 // bits set in good, but not in bad 927 cleared = (good[idx] & (~bad[idx])); 928 929 if (!no_inline) { 930 ASSERT3U(offset, <, inline_size); 931 eip->zei_bits_set[offset] = set; 932 eip->zei_bits_cleared[offset] = cleared; 933 offset++; 934 } 935 936 update_histogram(set, eip->zei_histogram_set, 937 &eip->zei_range_sets[range]); 938 update_histogram(cleared, eip->zei_histogram_cleared, 939 &eip->zei_range_clears[range]); 940 } 941 942 /* convert to byte offsets */ 943 eip->zei_ranges[range].zr_start *= sizeof (uint64_t); 944 eip->zei_ranges[range].zr_end *= sizeof (uint64_t); 945 } 946 947 abd_return_buf((abd_t *)goodabd, (void *)good, size); 948 abd_return_buf((abd_t *)badabd, (void *)bad, size); 949 950 eip->zei_allowed_mingap *= sizeof (uint64_t); 951 inline_size *= sizeof (uint64_t); 952 953 /* fill in ereport */ 954 fm_payload_set(ereport, 955 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES, 956 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count, 957 (uint32_t *)eip->zei_ranges, 958 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP, 959 DATA_TYPE_UINT32, eip->zei_allowed_mingap, 960 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS, 961 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets, 962 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS, 963 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears, 964 NULL); 965 966 if (!no_inline) { 967 fm_payload_set(ereport, 968 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS, 969 DATA_TYPE_UINT8_ARRAY, 970 inline_size, (uint8_t *)eip->zei_bits_set, 971 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS, 972 DATA_TYPE_UINT8_ARRAY, 973 inline_size, (uint8_t *)eip->zei_bits_cleared, 974 NULL); 975 } else { 976 fm_payload_set(ereport, 977 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM, 978 DATA_TYPE_UINT32_ARRAY, 979 NBBY * sizeof (uint64_t), eip->zei_histogram_set, 980 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM, 981 DATA_TYPE_UINT32_ARRAY, 982 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared, 983 NULL); 984 } 985 return (eip); 986 } 987 #else 988 void 989 zfs_ereport_clear(spa_t *spa, vdev_t *vd) 990 { 991 (void) spa, (void) vd; 992 } 993 #endif 994 995 /* 996 * Make sure our event is still valid for the given zio/vdev/pool. For example, 997 * we don't want to keep logging events for a faulted or missing vdev. 998 */ 999 boolean_t 1000 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio) 1001 { 1002 #ifdef _KERNEL 1003 /* 1004 * If we are doing a spa_tryimport() or in recovery mode, 1005 * ignore errors. 1006 */ 1007 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT || 1008 spa_load_state(spa) == SPA_LOAD_RECOVER) 1009 return (B_FALSE); 1010 1011 /* 1012 * If we are in the middle of opening a pool, and the previous attempt 1013 * failed, don't bother logging any new ereports - we're just going to 1014 * get the same diagnosis anyway. 1015 */ 1016 if (spa_load_state(spa) != SPA_LOAD_NONE && 1017 spa->spa_last_open_failed) 1018 return (B_FALSE); 1019 1020 if (zio != NULL) { 1021 /* 1022 * If this is not a read or write zio, ignore the error. This 1023 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. 1024 */ 1025 if (zio->io_type != ZIO_TYPE_READ && 1026 zio->io_type != ZIO_TYPE_WRITE) 1027 return (B_FALSE); 1028 1029 if (vd != NULL) { 1030 /* 1031 * If the vdev has already been marked as failing due 1032 * to a failed probe, then ignore any subsequent I/O 1033 * errors, as the DE will automatically fault the vdev 1034 * on the first such failure. This also catches cases 1035 * where vdev_remove_wanted is set and the device has 1036 * not yet been asynchronously placed into the REMOVED 1037 * state. 1038 */ 1039 if (zio->io_vd == vd && !vdev_accessible(vd, zio)) 1040 return (B_FALSE); 1041 1042 /* 1043 * Ignore checksum errors for reads from DTL regions of 1044 * leaf vdevs. 1045 */ 1046 if (zio->io_type == ZIO_TYPE_READ && 1047 zio->io_error == ECKSUM && 1048 vd->vdev_ops->vdev_op_leaf && 1049 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1)) 1050 return (B_FALSE); 1051 } 1052 } 1053 1054 /* 1055 * For probe failure, we want to avoid posting ereports if we've 1056 * already removed the device in the meantime. 1057 */ 1058 if (vd != NULL && 1059 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 && 1060 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED)) 1061 return (B_FALSE); 1062 1063 /* Ignore bogus delay events (like from ioctls or unqueued IOs) */ 1064 if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) && 1065 (zio != NULL) && (!zio->io_timestamp)) { 1066 return (B_FALSE); 1067 } 1068 #else 1069 (void) subclass, (void) spa, (void) vd, (void) zio; 1070 #endif 1071 return (B_TRUE); 1072 } 1073 1074 /* 1075 * Post an ereport for the given subclass 1076 * 1077 * Returns 1078 * - 0 if an event was posted 1079 * - EINVAL if there was a problem posting event 1080 * - EBUSY if the event was rate limited 1081 * - EALREADY if the event was already posted (duplicate) 1082 */ 1083 int 1084 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, 1085 const zbookmark_phys_t *zb, zio_t *zio, uint64_t state) 1086 { 1087 int rc = 0; 1088 #ifdef _KERNEL 1089 nvlist_t *ereport = NULL; 1090 nvlist_t *detector = NULL; 1091 1092 if (!zfs_ereport_is_valid(subclass, spa, vd, zio)) 1093 return (EINVAL); 1094 1095 if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0)) 1096 return (SET_ERROR(EALREADY)); 1097 1098 if (zfs_is_ratelimiting_event(subclass, vd)) 1099 return (SET_ERROR(EBUSY)); 1100 1101 if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd, 1102 zb, zio, state, 0)) 1103 return (SET_ERROR(EINVAL)); /* couldn't post event */ 1104 1105 if (ereport == NULL) 1106 return (SET_ERROR(EINVAL)); 1107 1108 /* Cleanup is handled by the callback function */ 1109 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb); 1110 #else 1111 (void) subclass, (void) spa, (void) vd, (void) zb, (void) zio, 1112 (void) state; 1113 #endif 1114 return (rc); 1115 } 1116 1117 /* 1118 * Prepare a checksum ereport 1119 * 1120 * Returns 1121 * - 0 if an event was posted 1122 * - EINVAL if there was a problem posting event 1123 * - EBUSY if the event was rate limited 1124 * - EALREADY if the event was already posted (duplicate) 1125 */ 1126 int 1127 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 1128 struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info) 1129 { 1130 zio_cksum_report_t *report; 1131 1132 #ifdef _KERNEL 1133 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio)) 1134 return (SET_ERROR(EINVAL)); 1135 1136 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, 1137 offset, length)) 1138 return (SET_ERROR(EALREADY)); 1139 1140 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd)) 1141 return (SET_ERROR(EBUSY)); 1142 #else 1143 (void) zb, (void) offset; 1144 #endif 1145 1146 report = kmem_zalloc(sizeof (*report), KM_SLEEP); 1147 1148 zio_vsd_default_cksum_report(zio, report); 1149 1150 /* copy the checksum failure information if it was provided */ 1151 if (info != NULL) { 1152 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP); 1153 memcpy(report->zcr_ckinfo, info, sizeof (*info)); 1154 } 1155 1156 report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift; 1157 report->zcr_align = 1158 vdev_psize_to_asize(vd->vdev_top, report->zcr_sector); 1159 report->zcr_length = length; 1160 1161 #ifdef _KERNEL 1162 (void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector, 1163 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length); 1164 1165 if (report->zcr_ereport == NULL) { 1166 zfs_ereport_free_checksum(report); 1167 return (0); 1168 } 1169 #endif 1170 1171 mutex_enter(&spa->spa_errlist_lock); 1172 report->zcr_next = zio->io_logical->io_cksum_report; 1173 zio->io_logical->io_cksum_report = report; 1174 mutex_exit(&spa->spa_errlist_lock); 1175 return (0); 1176 } 1177 1178 void 1179 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data, 1180 const abd_t *bad_data, boolean_t drop_if_identical) 1181 { 1182 #ifdef _KERNEL 1183 zfs_ecksum_info_t *info; 1184 1185 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo, 1186 good_data, bad_data, report->zcr_length, drop_if_identical); 1187 if (info != NULL) 1188 zfs_zevent_post(report->zcr_ereport, 1189 report->zcr_detector, zfs_zevent_post_cb); 1190 else 1191 zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector); 1192 1193 report->zcr_ereport = report->zcr_detector = NULL; 1194 if (info != NULL) 1195 kmem_free(info, sizeof (*info)); 1196 #else 1197 (void) report, (void) good_data, (void) bad_data, 1198 (void) drop_if_identical; 1199 #endif 1200 } 1201 1202 void 1203 zfs_ereport_free_checksum(zio_cksum_report_t *rpt) 1204 { 1205 #ifdef _KERNEL 1206 if (rpt->zcr_ereport != NULL) { 1207 fm_nvlist_destroy(rpt->zcr_ereport, 1208 FM_NVA_FREE); 1209 fm_nvlist_destroy(rpt->zcr_detector, 1210 FM_NVA_FREE); 1211 } 1212 #endif 1213 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo); 1214 1215 if (rpt->zcr_ckinfo != NULL) 1216 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo)); 1217 1218 kmem_free(rpt, sizeof (*rpt)); 1219 } 1220 1221 /* 1222 * Post a checksum ereport 1223 * 1224 * Returns 1225 * - 0 if an event was posted 1226 * - EINVAL if there was a problem posting event 1227 * - EBUSY if the event was rate limited 1228 * - EALREADY if the event was already posted (duplicate) 1229 */ 1230 int 1231 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 1232 struct zio *zio, uint64_t offset, uint64_t length, 1233 const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc) 1234 { 1235 int rc = 0; 1236 #ifdef _KERNEL 1237 nvlist_t *ereport = NULL; 1238 nvlist_t *detector = NULL; 1239 zfs_ecksum_info_t *info; 1240 1241 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio)) 1242 return (SET_ERROR(EINVAL)); 1243 1244 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, 1245 offset, length)) 1246 return (SET_ERROR(EALREADY)); 1247 1248 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd)) 1249 return (SET_ERROR(EBUSY)); 1250 1251 if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM, 1252 spa, vd, zb, zio, offset, length) || (ereport == NULL)) { 1253 return (SET_ERROR(EINVAL)); 1254 } 1255 1256 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length, 1257 B_FALSE); 1258 1259 if (info != NULL) { 1260 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb); 1261 kmem_free(info, sizeof (*info)); 1262 } 1263 #else 1264 (void) spa, (void) vd, (void) zb, (void) zio, (void) offset, 1265 (void) length, (void) good_data, (void) bad_data, (void) zbc; 1266 #endif 1267 return (rc); 1268 } 1269 1270 /* 1271 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of 1272 * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h 1273 * and are designed to be consumed by the ZFS Event Daemon (ZED). For 1274 * additional details refer to the zed(8) man page. 1275 */ 1276 nvlist_t * 1277 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name, 1278 nvlist_t *aux) 1279 { 1280 nvlist_t *resource = NULL; 1281 #ifdef _KERNEL 1282 char class[64]; 1283 1284 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT) 1285 return (NULL); 1286 1287 if ((resource = fm_nvlist_create(NULL)) == NULL) 1288 return (NULL); 1289 1290 (void) snprintf(class, sizeof (class), "%s.%s.%s", type, 1291 ZFS_ERROR_CLASS, name); 1292 VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION)); 1293 VERIFY0(nvlist_add_string(resource, FM_CLASS, class)); 1294 VERIFY0(nvlist_add_string(resource, 1295 FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa))); 1296 VERIFY0(nvlist_add_uint64(resource, 1297 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa))); 1298 VERIFY0(nvlist_add_uint64(resource, 1299 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa))); 1300 VERIFY0(nvlist_add_int32(resource, 1301 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa))); 1302 1303 if (vd) { 1304 VERIFY0(nvlist_add_uint64(resource, 1305 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid)); 1306 VERIFY0(nvlist_add_uint64(resource, 1307 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state)); 1308 if (vd->vdev_path != NULL) 1309 VERIFY0(nvlist_add_string(resource, 1310 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path)); 1311 if (vd->vdev_devid != NULL) 1312 VERIFY0(nvlist_add_string(resource, 1313 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid)); 1314 if (vd->vdev_fru != NULL) 1315 VERIFY0(nvlist_add_string(resource, 1316 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru)); 1317 if (vd->vdev_enc_sysfs_path != NULL) 1318 VERIFY0(nvlist_add_string(resource, 1319 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH, 1320 vd->vdev_enc_sysfs_path)); 1321 } 1322 1323 /* also copy any optional payload data */ 1324 if (aux) { 1325 nvpair_t *elem = NULL; 1326 1327 while ((elem = nvlist_next_nvpair(aux, elem)) != NULL) 1328 (void) nvlist_add_nvpair(resource, elem); 1329 } 1330 #else 1331 (void) spa, (void) vd, (void) type, (void) name, (void) aux; 1332 #endif 1333 return (resource); 1334 } 1335 1336 static void 1337 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name, 1338 nvlist_t *aux) 1339 { 1340 #ifdef _KERNEL 1341 nvlist_t *resource; 1342 1343 resource = zfs_event_create(spa, vd, type, name, aux); 1344 if (resource) 1345 zfs_zevent_post(resource, NULL, zfs_zevent_post_cb); 1346 #else 1347 (void) spa, (void) vd, (void) type, (void) name, (void) aux; 1348 #endif 1349 } 1350 1351 /* 1352 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 1353 * has been removed from the system. This will cause the DE to ignore any 1354 * recent I/O errors, inferring that they are due to the asynchronous device 1355 * removal. 1356 */ 1357 void 1358 zfs_post_remove(spa_t *spa, vdev_t *vd) 1359 { 1360 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL); 1361 } 1362 1363 /* 1364 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 1365 * has the 'autoreplace' property set, and therefore any broken vdevs will be 1366 * handled by higher level logic, and no vdev fault should be generated. 1367 */ 1368 void 1369 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 1370 { 1371 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL); 1372 } 1373 1374 /* 1375 * The 'resource.fs.zfs.statechange' event is an internal signal that the 1376 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will 1377 * cause the retire agent to repair any outstanding fault management cases 1378 * open because the device was not found (fault.fs.zfs.device). 1379 */ 1380 void 1381 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate) 1382 { 1383 #ifdef _KERNEL 1384 nvlist_t *aux; 1385 1386 /* 1387 * Add optional supplemental keys to payload 1388 */ 1389 aux = fm_nvlist_create(NULL); 1390 if (vd && aux) { 1391 if (vd->vdev_physpath) { 1392 (void) nvlist_add_string(aux, 1393 FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH, 1394 vd->vdev_physpath); 1395 } 1396 if (vd->vdev_enc_sysfs_path) { 1397 (void) nvlist_add_string(aux, 1398 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH, 1399 vd->vdev_enc_sysfs_path); 1400 } 1401 1402 (void) nvlist_add_uint64(aux, 1403 FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate); 1404 } 1405 1406 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE, 1407 aux); 1408 1409 if (aux) 1410 fm_nvlist_destroy(aux, FM_NVA_FREE); 1411 #else 1412 (void) spa, (void) vd, (void) laststate; 1413 #endif 1414 } 1415 1416 #ifdef _KERNEL 1417 void 1418 zfs_ereport_init(void) 1419 { 1420 mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL); 1421 list_create(&recent_events_list, sizeof (recent_events_node_t), 1422 offsetof(recent_events_node_t, re_list_link)); 1423 avl_create(&recent_events_tree, recent_events_compare, 1424 sizeof (recent_events_node_t), offsetof(recent_events_node_t, 1425 re_tree_link)); 1426 } 1427 1428 /* 1429 * This 'early' fini needs to run before zfs_fini() which on Linux waits 1430 * for the system_delay_taskq to drain. 1431 */ 1432 void 1433 zfs_ereport_taskq_fini(void) 1434 { 1435 mutex_enter(&recent_events_lock); 1436 if (recent_events_cleaner_tqid != 0) { 1437 taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid); 1438 recent_events_cleaner_tqid = 0; 1439 } 1440 mutex_exit(&recent_events_lock); 1441 } 1442 1443 void 1444 zfs_ereport_fini(void) 1445 { 1446 recent_events_node_t *entry; 1447 1448 while ((entry = list_head(&recent_events_list)) != NULL) { 1449 avl_remove(&recent_events_tree, entry); 1450 list_remove(&recent_events_list, entry); 1451 kmem_free(entry, sizeof (*entry)); 1452 } 1453 avl_destroy(&recent_events_tree); 1454 list_destroy(&recent_events_list); 1455 mutex_destroy(&recent_events_lock); 1456 } 1457 1458 void 1459 zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name) 1460 { 1461 nvlist_t *aux; 1462 1463 aux = fm_nvlist_create(NULL); 1464 nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name); 1465 1466 zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux); 1467 fm_nvlist_destroy(aux, FM_NVA_FREE); 1468 } 1469 1470 /* 1471 * Post when a event when a zvol is created or removed 1472 * 1473 * This is currently only used by macOS, since it uses the event to create 1474 * symlinks between the volume name (mypool/myvol) and the actual /dev 1475 * device (/dev/disk3). For example: 1476 * 1477 * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3 1478 * 1479 * name: The full name of the zvol ("mypool/myvol") 1480 * dev_name: The full /dev name for the zvol ("/dev/disk3") 1481 * raw_name: The raw /dev name for the zvol ("/dev/rdisk3") 1482 */ 1483 void 1484 zfs_ereport_zvol_post(const char *subclass, const char *name, 1485 const char *dev_name, const char *raw_name) 1486 { 1487 nvlist_t *aux; 1488 char *r; 1489 1490 boolean_t locked = mutex_owned(&spa_namespace_lock); 1491 if (!locked) mutex_enter(&spa_namespace_lock); 1492 spa_t *spa = spa_lookup(name); 1493 if (!locked) mutex_exit(&spa_namespace_lock); 1494 1495 if (spa == NULL) 1496 return; 1497 1498 aux = fm_nvlist_create(NULL); 1499 nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name); 1500 nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME, 1501 raw_name); 1502 r = strchr(name, '/'); 1503 if (r && r[1]) 1504 nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]); 1505 1506 zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux); 1507 fm_nvlist_destroy(aux, FM_NVA_FREE); 1508 } 1509 1510 EXPORT_SYMBOL(zfs_ereport_post); 1511 EXPORT_SYMBOL(zfs_ereport_is_valid); 1512 EXPORT_SYMBOL(zfs_ereport_post_checksum); 1513 EXPORT_SYMBOL(zfs_post_remove); 1514 EXPORT_SYMBOL(zfs_post_autoreplace); 1515 EXPORT_SYMBOL(zfs_post_state_change); 1516 1517 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW, 1518 "Maximum recent zevents records to retain for duplicate checking"); 1519 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW, 1520 "Expiration time for recent zevents records"); 1521 #endif /* _KERNEL */ 1522