xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_fm.c (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012,2020 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41 
42 /*
43  * This general routine is responsible for generating all the different ZFS
44  * ereports.  The payload is dependent on the class, and which arguments are
45  * supplied to the function:
46  *
47  * 	EREPORT			POOL	VDEV	IO
48  * 	block			X	X	X
49  * 	data			X		X
50  * 	device			X	X
51  * 	pool			X
52  *
53  * If we are in a loading state, all errors are chained together by the same
54  * SPA-wide ENA (Error Numeric Association).
55  *
56  * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57  * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
58  * to chain together all ereports associated with a logical piece of data.  For
59  * read I/Os, there  are basically three 'types' of I/O, which form a roughly
60  * layered diagram:
61  *
62  *      +---------------+
63  * 	| Aggregate I/O |	No associated logical data or device
64  * 	+---------------+
65  *              |
66  *              V
67  * 	+---------------+	Reads associated with a piece of logical data.
68  * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
69  * 	+---------------+       mirrors, gang blocks, retries, etc.
70  *              |
71  *              V
72  * 	+---------------+	Reads associated with a particular device, but
73  * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
74  * 	+---------------+	and I/O aggregation.
75  *
76  * Note that 'physical I/O' here is not the same terminology as used in the rest
77  * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
78  * blockpointer.  But I/O with no associated block pointer can still be related
79  * to a logical piece of data (i.e. RAID-Z requests).
80  *
81  * Purely physical I/O always have unique ENAs.  They are not related to a
82  * particular piece of logical data, and therefore cannot be chained together.
83  * We still generate an ereport, but the DE doesn't correlate it with any
84  * logical piece of data.  When such an I/O fails, the delegated I/O requests
85  * will issue a retry, which will trigger the 'real' ereport with the correct
86  * ENA.
87  *
88  * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89  * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
90  * then inherit this pointer, so that when it is first set subsequent failures
91  * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
92  * this pointer is set to NULL, and no ereport will be generated (since it
93  * doesn't actually correspond to any particular device or piece of data,
94  * and the caller will always retry without caching or queueing anyway).
95  *
96  * For checksum errors, we want to include more information about the actual
97  * error which occurs.  Accordingly, we build an ereport when the error is
98  * noticed, but instead of sending it in immediately, we hang it off of the
99  * io_cksum_report field of the logical IO.  When the logical IO completes
100  * (successfully or not), zfs_ereport_finish_checksum() is called with the
101  * good and bad versions of the buffer (if available), and we annotate the
102  * ereport with information about the differences.
103  */
104 
105 #ifdef _KERNEL
106 /*
107  * Duplicate ereport Detection
108  *
109  * Some ereports are retained momentarily for detecting duplicates.  These
110  * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111  * tree of recent unique ereports.
112  *
113  * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114  * task is used to purge stale entries.
115  */
116 static list_t recent_events_list;
117 static avl_tree_t recent_events_tree;
118 static kmutex_t recent_events_lock;
119 static taskqid_t recent_events_cleaner_tqid;
120 
121 /*
122  * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
123  *
124  * This setting can be changed dynamically and setting it to zero
125  * disables duplicate detection.
126  */
127 unsigned int zfs_zevent_retain_max = 2000;
128 
129 /*
130  * The lifespan for a recent ereport entry. The default of 15 minutes is
131  * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132  * over a period of 10 minutes.
133  */
134 unsigned int zfs_zevent_retain_expire_secs = 900;
135 
136 typedef enum zfs_subclass {
137 	ZSC_IO,
138 	ZSC_DATA,
139 	ZSC_CHECKSUM
140 } zfs_subclass_t;
141 
142 typedef struct {
143 	/* common criteria */
144 	uint64_t	re_pool_guid;
145 	uint64_t	re_vdev_guid;
146 	int		re_io_error;
147 	uint64_t	re_io_size;
148 	uint64_t	re_io_offset;
149 	zfs_subclass_t	re_subclass;
150 	zio_priority_t	re_io_priority;
151 
152 	/* logical zio criteria (optional) */
153 	zbookmark_phys_t re_io_bookmark;
154 
155 	/* internal state */
156 	avl_node_t	re_tree_link;
157 	list_node_t	re_list_link;
158 	uint64_t	re_timestamp;
159 } recent_events_node_t;
160 
161 static int
162 recent_events_compare(const void *a, const void *b)
163 {
164 	const recent_events_node_t *node1 = a;
165 	const recent_events_node_t *node2 = b;
166 	int cmp;
167 
168 	/*
169 	 * The comparison order here is somewhat arbitrary.
170 	 * What's important is that if every criteria matches, then it
171 	 * is a duplicate (i.e. compare returns 0)
172 	 */
173 	if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0)
174 		return (cmp);
175 	if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0)
176 		return (cmp);
177 	if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0)
178 		return (cmp);
179 	if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0)
180 		return (cmp);
181 	if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0)
182 		return (cmp);
183 	if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0)
184 		return (cmp);
185 	if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0)
186 		return (cmp);
187 
188 	const zbookmark_phys_t *zb1 = &node1->re_io_bookmark;
189 	const zbookmark_phys_t *zb2 = &node2->re_io_bookmark;
190 
191 	if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0)
192 		return (cmp);
193 	if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0)
194 		return (cmp);
195 	if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0)
196 		return (cmp);
197 	if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0)
198 		return (cmp);
199 
200 	return (0);
201 }
202 
203 static void zfs_ereport_schedule_cleaner(void);
204 
205 /*
206  * background task to clean stale recent event nodes.
207  */
208 /*ARGSUSED*/
209 static void
210 zfs_ereport_cleaner(void *arg)
211 {
212 	recent_events_node_t *entry;
213 	uint64_t now = gethrtime();
214 
215 	/*
216 	 * purge expired entries
217 	 */
218 	mutex_enter(&recent_events_lock);
219 	while ((entry = list_tail(&recent_events_list)) != NULL) {
220 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
221 		if (age <= zfs_zevent_retain_expire_secs)
222 			break;
223 
224 		/* remove expired node */
225 		avl_remove(&recent_events_tree, entry);
226 		list_remove(&recent_events_list, entry);
227 		kmem_free(entry, sizeof (*entry));
228 	}
229 
230 	/* Restart the cleaner if more entries remain */
231 	recent_events_cleaner_tqid = 0;
232 	if (!list_is_empty(&recent_events_list))
233 		zfs_ereport_schedule_cleaner();
234 
235 	mutex_exit(&recent_events_lock);
236 }
237 
238 static void
239 zfs_ereport_schedule_cleaner(void)
240 {
241 	ASSERT(MUTEX_HELD(&recent_events_lock));
242 
243 	uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1);
244 
245 	recent_events_cleaner_tqid = taskq_dispatch_delay(
246 	    system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP,
247 	    ddi_get_lbolt() + NSEC_TO_TICK(timeout));
248 }
249 
250 /*
251  * Check if an ereport would be a duplicate of one recently posted.
252  *
253  * An ereport is considered a duplicate if the set of criteria in
254  * recent_events_node_t all match.
255  *
256  * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
257  * are candidates for duplicate checking.
258  */
259 static boolean_t
260 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd,
261     const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size)
262 {
263 	recent_events_node_t search = {0}, *entry;
264 
265 	if (vd == NULL || zio == NULL)
266 		return (B_FALSE);
267 
268 	if (zfs_zevent_retain_max == 0)
269 		return (B_FALSE);
270 
271 	if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0)
272 		search.re_subclass = ZSC_IO;
273 	else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0)
274 		search.re_subclass = ZSC_DATA;
275 	else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0)
276 		search.re_subclass = ZSC_CHECKSUM;
277 	else
278 		return (B_FALSE);
279 
280 	search.re_pool_guid = spa_guid(spa);
281 	search.re_vdev_guid = vd->vdev_guid;
282 	search.re_io_error = zio->io_error;
283 	search.re_io_priority = zio->io_priority;
284 	/* if size is supplied use it over what's in zio */
285 	if (size) {
286 		search.re_io_size = size;
287 		search.re_io_offset = offset;
288 	} else {
289 		search.re_io_size = zio->io_size;
290 		search.re_io_offset = zio->io_offset;
291 	}
292 
293 	/* grab optional logical zio criteria */
294 	if (zb != NULL) {
295 		search.re_io_bookmark.zb_objset = zb->zb_objset;
296 		search.re_io_bookmark.zb_object = zb->zb_object;
297 		search.re_io_bookmark.zb_level = zb->zb_level;
298 		search.re_io_bookmark.zb_blkid = zb->zb_blkid;
299 	}
300 
301 	uint64_t now = gethrtime();
302 
303 	mutex_enter(&recent_events_lock);
304 
305 	/* check if we have seen this one recently */
306 	entry = avl_find(&recent_events_tree, &search, NULL);
307 	if (entry != NULL) {
308 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
309 
310 		/*
311 		 * There is still an active cleaner (since we're here).
312 		 * Reset the last seen time for this duplicate entry
313 		 * so that its lifespand gets extended.
314 		 */
315 		list_remove(&recent_events_list, entry);
316 		list_insert_head(&recent_events_list, entry);
317 		entry->re_timestamp = now;
318 
319 		zfs_zevent_track_duplicate();
320 		mutex_exit(&recent_events_lock);
321 
322 		return (age <= zfs_zevent_retain_expire_secs);
323 	}
324 
325 	if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) {
326 		/* recycle oldest node */
327 		entry = list_tail(&recent_events_list);
328 		ASSERT(entry != NULL);
329 		list_remove(&recent_events_list, entry);
330 		avl_remove(&recent_events_tree, entry);
331 	} else {
332 		entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP);
333 	}
334 
335 	/* record this as a recent ereport */
336 	*entry = search;
337 	avl_add(&recent_events_tree, entry);
338 	list_insert_head(&recent_events_list, entry);
339 	entry->re_timestamp = now;
340 
341 	/* Start a cleaner if not already scheduled */
342 	if (recent_events_cleaner_tqid == 0)
343 		zfs_ereport_schedule_cleaner();
344 
345 	mutex_exit(&recent_events_lock);
346 	return (B_FALSE);
347 }
348 
349 void
350 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
351 {
352 	if (nvl)
353 		fm_nvlist_destroy(nvl, FM_NVA_FREE);
354 
355 	if (detector)
356 		fm_nvlist_destroy(detector, FM_NVA_FREE);
357 }
358 
359 /*
360  * We want to rate limit ZIO delay and checksum events so as to not
361  * flood ZED when a disk is acting up.
362  *
363  * Returns 1 if we're ratelimiting, 0 if not.
364  */
365 static int
366 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
367 {
368 	int rc = 0;
369 	/*
370 	 * __ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
371 	 * are.  Invert it to get our return value.
372 	 */
373 	if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
374 		rc = !zfs_ratelimit(&vd->vdev_delay_rl);
375 	} else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
376 		rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
377 	}
378 
379 	if (rc)	{
380 		/* We're rate limiting */
381 		fm_erpt_dropped_increment();
382 	}
383 
384 	return (rc);
385 }
386 
387 /*
388  * Return B_TRUE if the event actually posted, B_FALSE if not.
389  */
390 static boolean_t
391 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
392     const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
393     zio_t *zio, uint64_t stateoroffset, uint64_t size)
394 {
395 	nvlist_t *ereport, *detector;
396 
397 	uint64_t ena;
398 	char class[64];
399 
400 	if ((ereport = fm_nvlist_create(NULL)) == NULL)
401 		return (B_FALSE);
402 
403 	if ((detector = fm_nvlist_create(NULL)) == NULL) {
404 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
405 		return (B_FALSE);
406 	}
407 
408 	/*
409 	 * Serialize ereport generation
410 	 */
411 	mutex_enter(&spa->spa_errlist_lock);
412 
413 	/*
414 	 * Determine the ENA to use for this event.  If we are in a loading
415 	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
416 	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
417 	 */
418 	if (spa_load_state(spa) != SPA_LOAD_NONE) {
419 		if (spa->spa_ena == 0)
420 			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
421 		ena = spa->spa_ena;
422 	} else if (zio != NULL && zio->io_logical != NULL) {
423 		if (zio->io_logical->io_ena == 0)
424 			zio->io_logical->io_ena =
425 			    fm_ena_generate(0, FM_ENA_FMT1);
426 		ena = zio->io_logical->io_ena;
427 	} else {
428 		ena = fm_ena_generate(0, FM_ENA_FMT1);
429 	}
430 
431 	/*
432 	 * Construct the full class, detector, and other standard FMA fields.
433 	 */
434 	(void) snprintf(class, sizeof (class), "%s.%s",
435 	    ZFS_ERROR_CLASS, subclass);
436 
437 	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
438 	    vd != NULL ? vd->vdev_guid : 0);
439 
440 	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
441 
442 	/*
443 	 * Construct the per-ereport payload, depending on which parameters are
444 	 * passed in.
445 	 */
446 
447 	/*
448 	 * Generic payload members common to all ereports.
449 	 */
450 	fm_payload_set(ereport,
451 	    FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
452 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
453 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
454 	    (uint64_t)spa_state(spa),
455 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
456 	    (int32_t)spa_load_state(spa), NULL);
457 
458 	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
459 	    DATA_TYPE_STRING,
460 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
461 	    FM_EREPORT_FAILMODE_WAIT :
462 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
463 	    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
464 	    NULL);
465 
466 	if (vd != NULL) {
467 		vdev_t *pvd = vd->vdev_parent;
468 		vdev_queue_t *vq = &vd->vdev_queue;
469 		vdev_stat_t *vs = &vd->vdev_stat;
470 		vdev_t *spare_vd;
471 		uint64_t *spare_guids;
472 		char **spare_paths;
473 		int i, spare_count;
474 
475 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
476 		    DATA_TYPE_UINT64, vd->vdev_guid,
477 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
478 		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
479 		if (vd->vdev_path != NULL)
480 			fm_payload_set(ereport,
481 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
482 			    DATA_TYPE_STRING, vd->vdev_path, NULL);
483 		if (vd->vdev_devid != NULL)
484 			fm_payload_set(ereport,
485 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
486 			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
487 		if (vd->vdev_fru != NULL)
488 			fm_payload_set(ereport,
489 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
490 			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
491 		if (vd->vdev_enc_sysfs_path != NULL)
492 			fm_payload_set(ereport,
493 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
494 			    DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
495 		if (vd->vdev_ashift)
496 			fm_payload_set(ereport,
497 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
498 			    DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
499 
500 		if (vq != NULL) {
501 			fm_payload_set(ereport,
502 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
503 			    DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
504 			fm_payload_set(ereport,
505 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
506 			    DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
507 		}
508 
509 		if (vs != NULL) {
510 			fm_payload_set(ereport,
511 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
512 			    DATA_TYPE_UINT64, vs->vs_read_errors,
513 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
514 			    DATA_TYPE_UINT64, vs->vs_write_errors,
515 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
516 			    DATA_TYPE_UINT64, vs->vs_checksum_errors,
517 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
518 			    DATA_TYPE_UINT64, vs->vs_slow_ios,
519 			    NULL);
520 		}
521 
522 		if (pvd != NULL) {
523 			fm_payload_set(ereport,
524 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
525 			    DATA_TYPE_UINT64, pvd->vdev_guid,
526 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
527 			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
528 			    NULL);
529 			if (pvd->vdev_path)
530 				fm_payload_set(ereport,
531 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
532 				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
533 			if (pvd->vdev_devid)
534 				fm_payload_set(ereport,
535 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
536 				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
537 		}
538 
539 		spare_count = spa->spa_spares.sav_count;
540 		spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
541 		    KM_SLEEP);
542 		spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
543 		    KM_SLEEP);
544 
545 		for (i = 0; i < spare_count; i++) {
546 			spare_vd = spa->spa_spares.sav_vdevs[i];
547 			if (spare_vd) {
548 				spare_paths[i] = spare_vd->vdev_path;
549 				spare_guids[i] = spare_vd->vdev_guid;
550 			}
551 		}
552 
553 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
554 		    DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
555 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
556 		    DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
557 
558 		kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
559 		kmem_free(spare_paths, sizeof (char *) * spare_count);
560 	}
561 
562 	if (zio != NULL) {
563 		/*
564 		 * Payload common to all I/Os.
565 		 */
566 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
567 		    DATA_TYPE_INT32, zio->io_error, NULL);
568 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
569 		    DATA_TYPE_INT32, zio->io_flags, NULL);
570 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
571 		    DATA_TYPE_UINT32, zio->io_stage, NULL);
572 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
573 		    DATA_TYPE_UINT32, zio->io_pipeline, NULL);
574 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
575 		    DATA_TYPE_UINT64, zio->io_delay, NULL);
576 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
577 		    DATA_TYPE_UINT64, zio->io_timestamp, NULL);
578 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
579 		    DATA_TYPE_UINT64, zio->io_delta, NULL);
580 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY,
581 		    DATA_TYPE_UINT32, zio->io_priority, NULL);
582 
583 		/*
584 		 * If the 'size' parameter is non-zero, it indicates this is a
585 		 * RAID-Z or other I/O where the physical offset and length are
586 		 * provided for us, instead of within the zio_t.
587 		 */
588 		if (vd != NULL) {
589 			if (size)
590 				fm_payload_set(ereport,
591 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
592 				    DATA_TYPE_UINT64, stateoroffset,
593 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
594 				    DATA_TYPE_UINT64, size, NULL);
595 			else
596 				fm_payload_set(ereport,
597 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
598 				    DATA_TYPE_UINT64, zio->io_offset,
599 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
600 				    DATA_TYPE_UINT64, zio->io_size, NULL);
601 		}
602 	} else if (vd != NULL) {
603 		/*
604 		 * If we have a vdev but no zio, this is a device fault, and the
605 		 * 'stateoroffset' parameter indicates the previous state of the
606 		 * vdev.
607 		 */
608 		fm_payload_set(ereport,
609 		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
610 		    DATA_TYPE_UINT64, stateoroffset, NULL);
611 	}
612 
613 	/*
614 	 * Payload for I/Os with corresponding logical information.
615 	 */
616 	if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
617 		fm_payload_set(ereport,
618 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
619 		    DATA_TYPE_UINT64, zb->zb_objset,
620 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
621 		    DATA_TYPE_UINT64, zb->zb_object,
622 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
623 		    DATA_TYPE_INT64, zb->zb_level,
624 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
625 		    DATA_TYPE_UINT64, zb->zb_blkid, NULL);
626 	}
627 
628 	mutex_exit(&spa->spa_errlist_lock);
629 
630 	*ereport_out = ereport;
631 	*detector_out = detector;
632 	return (B_TRUE);
633 }
634 
635 /* if it's <= 128 bytes, save the corruption directly */
636 #define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
637 
638 #define	MAX_RANGES		16
639 
640 typedef struct zfs_ecksum_info {
641 	/* histograms of set and cleared bits by bit number in a 64-bit word */
642 	uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY];
643 	uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
644 
645 	/* inline arrays of bits set and cleared. */
646 	uint64_t zei_bits_set[ZFM_MAX_INLINE];
647 	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
648 
649 	/*
650 	 * for each range, the number of bits set and cleared.  The Hamming
651 	 * distance between the good and bad buffers is the sum of them all.
652 	 */
653 	uint32_t zei_range_sets[MAX_RANGES];
654 	uint32_t zei_range_clears[MAX_RANGES];
655 
656 	struct zei_ranges {
657 		uint32_t	zr_start;
658 		uint32_t	zr_end;
659 	} zei_ranges[MAX_RANGES];
660 
661 	size_t	zei_range_count;
662 	uint32_t zei_mingap;
663 	uint32_t zei_allowed_mingap;
664 
665 } zfs_ecksum_info_t;
666 
667 static void
668 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count)
669 {
670 	size_t i;
671 	size_t bits = 0;
672 	uint64_t value = BE_64(value_arg);
673 
674 	/* We store the bits in big-endian (largest-first) order */
675 	for (i = 0; i < 64; i++) {
676 		if (value & (1ull << i)) {
677 			hist[63 - i]++;
678 			++bits;
679 		}
680 	}
681 	/* update the count of bits changed */
682 	*count += bits;
683 }
684 
685 /*
686  * We've now filled up the range array, and need to increase "mingap" and
687  * shrink the range list accordingly.  zei_mingap is always the smallest
688  * distance between array entries, so we set the new_allowed_gap to be
689  * one greater than that.  We then go through the list, joining together
690  * any ranges which are closer than the new_allowed_gap.
691  *
692  * By construction, there will be at least one.  We also update zei_mingap
693  * to the new smallest gap, to prepare for our next invocation.
694  */
695 static void
696 zei_shrink_ranges(zfs_ecksum_info_t *eip)
697 {
698 	uint32_t mingap = UINT32_MAX;
699 	uint32_t new_allowed_gap = eip->zei_mingap + 1;
700 
701 	size_t idx, output;
702 	size_t max = eip->zei_range_count;
703 
704 	struct zei_ranges *r = eip->zei_ranges;
705 
706 	ASSERT3U(eip->zei_range_count, >, 0);
707 	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
708 
709 	output = idx = 0;
710 	while (idx < max - 1) {
711 		uint32_t start = r[idx].zr_start;
712 		uint32_t end = r[idx].zr_end;
713 
714 		while (idx < max - 1) {
715 			idx++;
716 
717 			uint32_t nstart = r[idx].zr_start;
718 			uint32_t nend = r[idx].zr_end;
719 
720 			uint32_t gap = nstart - end;
721 			if (gap < new_allowed_gap) {
722 				end = nend;
723 				continue;
724 			}
725 			if (gap < mingap)
726 				mingap = gap;
727 			break;
728 		}
729 		r[output].zr_start = start;
730 		r[output].zr_end = end;
731 		output++;
732 	}
733 	ASSERT3U(output, <, eip->zei_range_count);
734 	eip->zei_range_count = output;
735 	eip->zei_mingap = mingap;
736 	eip->zei_allowed_mingap = new_allowed_gap;
737 }
738 
739 static void
740 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
741 {
742 	struct zei_ranges *r = eip->zei_ranges;
743 	size_t count = eip->zei_range_count;
744 
745 	if (count >= MAX_RANGES) {
746 		zei_shrink_ranges(eip);
747 		count = eip->zei_range_count;
748 	}
749 	if (count == 0) {
750 		eip->zei_mingap = UINT32_MAX;
751 		eip->zei_allowed_mingap = 1;
752 	} else {
753 		int gap = start - r[count - 1].zr_end;
754 
755 		if (gap < eip->zei_allowed_mingap) {
756 			r[count - 1].zr_end = end;
757 			return;
758 		}
759 		if (gap < eip->zei_mingap)
760 			eip->zei_mingap = gap;
761 	}
762 	r[count].zr_start = start;
763 	r[count].zr_end = end;
764 	eip->zei_range_count++;
765 }
766 
767 static size_t
768 zei_range_total_size(zfs_ecksum_info_t *eip)
769 {
770 	struct zei_ranges *r = eip->zei_ranges;
771 	size_t count = eip->zei_range_count;
772 	size_t result = 0;
773 	size_t idx;
774 
775 	for (idx = 0; idx < count; idx++)
776 		result += (r[idx].zr_end - r[idx].zr_start);
777 
778 	return (result);
779 }
780 
781 static zfs_ecksum_info_t *
782 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
783     const abd_t *goodabd, const abd_t *badabd, size_t size,
784     boolean_t drop_if_identical)
785 {
786 	const uint64_t *good;
787 	const uint64_t *bad;
788 
789 	uint64_t allset = 0;
790 	uint64_t allcleared = 0;
791 
792 	size_t nui64s = size / sizeof (uint64_t);
793 
794 	size_t inline_size;
795 	int no_inline = 0;
796 	size_t idx;
797 	size_t range;
798 
799 	size_t offset = 0;
800 	ssize_t start = -1;
801 
802 	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
803 
804 	/* don't do any annotation for injected checksum errors */
805 	if (info != NULL && info->zbc_injected)
806 		return (eip);
807 
808 	if (info != NULL && info->zbc_has_cksum) {
809 		fm_payload_set(ereport,
810 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
811 		    DATA_TYPE_UINT64_ARRAY,
812 		    sizeof (info->zbc_expected) / sizeof (uint64_t),
813 		    (uint64_t *)&info->zbc_expected,
814 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
815 		    DATA_TYPE_UINT64_ARRAY,
816 		    sizeof (info->zbc_actual) / sizeof (uint64_t),
817 		    (uint64_t *)&info->zbc_actual,
818 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
819 		    DATA_TYPE_STRING,
820 		    info->zbc_checksum_name,
821 		    NULL);
822 
823 		if (info->zbc_byteswapped) {
824 			fm_payload_set(ereport,
825 			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
826 			    DATA_TYPE_BOOLEAN, 1,
827 			    NULL);
828 		}
829 	}
830 
831 	if (badabd == NULL || goodabd == NULL)
832 		return (eip);
833 
834 	ASSERT3U(nui64s, <=, UINT32_MAX);
835 	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
836 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
837 	ASSERT3U(size, <=, UINT32_MAX);
838 
839 	good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
840 	bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
841 
842 	/* build up the range list by comparing the two buffers. */
843 	for (idx = 0; idx < nui64s; idx++) {
844 		if (good[idx] == bad[idx]) {
845 			if (start == -1)
846 				continue;
847 
848 			zei_add_range(eip, start, idx);
849 			start = -1;
850 		} else {
851 			if (start != -1)
852 				continue;
853 
854 			start = idx;
855 		}
856 	}
857 	if (start != -1)
858 		zei_add_range(eip, start, idx);
859 
860 	/* See if it will fit in our inline buffers */
861 	inline_size = zei_range_total_size(eip);
862 	if (inline_size > ZFM_MAX_INLINE)
863 		no_inline = 1;
864 
865 	/*
866 	 * If there is no change and we want to drop if the buffers are
867 	 * identical, do so.
868 	 */
869 	if (inline_size == 0 && drop_if_identical) {
870 		kmem_free(eip, sizeof (*eip));
871 		abd_return_buf((abd_t *)goodabd, (void *)good, size);
872 		abd_return_buf((abd_t *)badabd, (void *)bad, size);
873 		return (NULL);
874 	}
875 
876 	/*
877 	 * Now walk through the ranges, filling in the details of the
878 	 * differences.  Also convert our uint64_t-array offsets to byte
879 	 * offsets.
880 	 */
881 	for (range = 0; range < eip->zei_range_count; range++) {
882 		size_t start = eip->zei_ranges[range].zr_start;
883 		size_t end = eip->zei_ranges[range].zr_end;
884 
885 		for (idx = start; idx < end; idx++) {
886 			uint64_t set, cleared;
887 
888 			// bits set in bad, but not in good
889 			set = ((~good[idx]) & bad[idx]);
890 			// bits set in good, but not in bad
891 			cleared = (good[idx] & (~bad[idx]));
892 
893 			allset |= set;
894 			allcleared |= cleared;
895 
896 			if (!no_inline) {
897 				ASSERT3U(offset, <, inline_size);
898 				eip->zei_bits_set[offset] = set;
899 				eip->zei_bits_cleared[offset] = cleared;
900 				offset++;
901 			}
902 
903 			update_histogram(set, eip->zei_histogram_set,
904 			    &eip->zei_range_sets[range]);
905 			update_histogram(cleared, eip->zei_histogram_cleared,
906 			    &eip->zei_range_clears[range]);
907 		}
908 
909 		/* convert to byte offsets */
910 		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
911 		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
912 	}
913 
914 	abd_return_buf((abd_t *)goodabd, (void *)good, size);
915 	abd_return_buf((abd_t *)badabd, (void *)bad, size);
916 
917 	eip->zei_allowed_mingap	*= sizeof (uint64_t);
918 	inline_size		*= sizeof (uint64_t);
919 
920 	/* fill in ereport */
921 	fm_payload_set(ereport,
922 	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
923 	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
924 	    (uint32_t *)eip->zei_ranges,
925 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
926 	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
927 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
928 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
929 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
930 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
931 	    NULL);
932 
933 	if (!no_inline) {
934 		fm_payload_set(ereport,
935 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
936 		    DATA_TYPE_UINT8_ARRAY,
937 		    inline_size, (uint8_t *)eip->zei_bits_set,
938 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
939 		    DATA_TYPE_UINT8_ARRAY,
940 		    inline_size, (uint8_t *)eip->zei_bits_cleared,
941 		    NULL);
942 	} else {
943 		fm_payload_set(ereport,
944 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
945 		    DATA_TYPE_UINT32_ARRAY,
946 		    NBBY * sizeof (uint64_t), eip->zei_histogram_set,
947 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
948 		    DATA_TYPE_UINT32_ARRAY,
949 		    NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
950 		    NULL);
951 	}
952 	return (eip);
953 }
954 #endif
955 
956 /*
957  * Make sure our event is still valid for the given zio/vdev/pool.  For example,
958  * we don't want to keep logging events for a faulted or missing vdev.
959  */
960 boolean_t
961 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
962 {
963 #ifdef _KERNEL
964 	/*
965 	 * If we are doing a spa_tryimport() or in recovery mode,
966 	 * ignore errors.
967 	 */
968 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
969 	    spa_load_state(spa) == SPA_LOAD_RECOVER)
970 		return (B_FALSE);
971 
972 	/*
973 	 * If we are in the middle of opening a pool, and the previous attempt
974 	 * failed, don't bother logging any new ereports - we're just going to
975 	 * get the same diagnosis anyway.
976 	 */
977 	if (spa_load_state(spa) != SPA_LOAD_NONE &&
978 	    spa->spa_last_open_failed)
979 		return (B_FALSE);
980 
981 	if (zio != NULL) {
982 		/*
983 		 * If this is not a read or write zio, ignore the error.  This
984 		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
985 		 */
986 		if (zio->io_type != ZIO_TYPE_READ &&
987 		    zio->io_type != ZIO_TYPE_WRITE)
988 			return (B_FALSE);
989 
990 		if (vd != NULL) {
991 			/*
992 			 * If the vdev has already been marked as failing due
993 			 * to a failed probe, then ignore any subsequent I/O
994 			 * errors, as the DE will automatically fault the vdev
995 			 * on the first such failure.  This also catches cases
996 			 * where vdev_remove_wanted is set and the device has
997 			 * not yet been asynchronously placed into the REMOVED
998 			 * state.
999 			 */
1000 			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
1001 				return (B_FALSE);
1002 
1003 			/*
1004 			 * Ignore checksum errors for reads from DTL regions of
1005 			 * leaf vdevs.
1006 			 */
1007 			if (zio->io_type == ZIO_TYPE_READ &&
1008 			    zio->io_error == ECKSUM &&
1009 			    vd->vdev_ops->vdev_op_leaf &&
1010 			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
1011 				return (B_FALSE);
1012 		}
1013 	}
1014 
1015 	/*
1016 	 * For probe failure, we want to avoid posting ereports if we've
1017 	 * already removed the device in the meantime.
1018 	 */
1019 	if (vd != NULL &&
1020 	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
1021 	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
1022 		return (B_FALSE);
1023 
1024 	/* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1025 	if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
1026 	    (zio != NULL) && (!zio->io_timestamp)) {
1027 		return (B_FALSE);
1028 	}
1029 #endif
1030 	return (B_TRUE);
1031 }
1032 
1033 /*
1034  * Post an ereport for the given subclass
1035  *
1036  * Returns
1037  * - 0 if an event was posted
1038  * - EINVAL if there was a problem posting event
1039  * - EBUSY if the event was rate limited
1040  * - EALREADY if the event was already posted (duplicate)
1041  */
1042 int
1043 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
1044     const zbookmark_phys_t *zb, zio_t *zio, uint64_t state)
1045 {
1046 	int rc = 0;
1047 #ifdef _KERNEL
1048 	nvlist_t *ereport = NULL;
1049 	nvlist_t *detector = NULL;
1050 
1051 	if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
1052 		return (EINVAL);
1053 
1054 	if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0))
1055 		return (SET_ERROR(EALREADY));
1056 
1057 	if (zfs_is_ratelimiting_event(subclass, vd))
1058 		return (SET_ERROR(EBUSY));
1059 
1060 	if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
1061 	    zb, zio, state, 0))
1062 		return (SET_ERROR(EINVAL));	/* couldn't post event */
1063 
1064 	if (ereport == NULL)
1065 		return (SET_ERROR(EINVAL));
1066 
1067 	/* Cleanup is handled by the callback function */
1068 	rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1069 #endif
1070 	return (rc);
1071 }
1072 
1073 /*
1074  * Prepare a checksum ereport
1075  *
1076  * Returns
1077  * - 0 if an event was posted
1078  * - EINVAL if there was a problem posting event
1079  * - EBUSY if the event was rate limited
1080  * - EALREADY if the event was already posted (duplicate)
1081  */
1082 int
1083 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1084     struct zio *zio, uint64_t offset, uint64_t length, void *arg,
1085     zio_bad_cksum_t *info)
1086 {
1087 	zio_cksum_report_t *report;
1088 
1089 #ifdef _KERNEL
1090 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1091 		return (SET_ERROR(EINVAL));
1092 
1093 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1094 	    offset, length))
1095 		return (SET_ERROR(EALREADY));
1096 
1097 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1098 		return (SET_ERROR(EBUSY));
1099 #endif
1100 
1101 	report = kmem_zalloc(sizeof (*report), KM_SLEEP);
1102 
1103 	if (zio->io_vsd != NULL)
1104 		zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
1105 	else
1106 		zio_vsd_default_cksum_report(zio, report, arg);
1107 
1108 	/* copy the checksum failure information if it was provided */
1109 	if (info != NULL) {
1110 		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
1111 		bcopy(info, report->zcr_ckinfo, sizeof (*info));
1112 	}
1113 
1114 	report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
1115 	report->zcr_align =
1116 	    vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
1117 	report->zcr_length = length;
1118 
1119 #ifdef _KERNEL
1120 	(void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
1121 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
1122 
1123 	if (report->zcr_ereport == NULL) {
1124 		zfs_ereport_free_checksum(report);
1125 		return (0);
1126 	}
1127 #endif
1128 
1129 	mutex_enter(&spa->spa_errlist_lock);
1130 	report->zcr_next = zio->io_logical->io_cksum_report;
1131 	zio->io_logical->io_cksum_report = report;
1132 	mutex_exit(&spa->spa_errlist_lock);
1133 	return (0);
1134 }
1135 
1136 void
1137 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
1138     const abd_t *bad_data, boolean_t drop_if_identical)
1139 {
1140 #ifdef _KERNEL
1141 	zfs_ecksum_info_t *info;
1142 
1143 	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
1144 	    good_data, bad_data, report->zcr_length, drop_if_identical);
1145 	if (info != NULL)
1146 		zfs_zevent_post(report->zcr_ereport,
1147 		    report->zcr_detector, zfs_zevent_post_cb);
1148 	else
1149 		zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
1150 
1151 	report->zcr_ereport = report->zcr_detector = NULL;
1152 	if (info != NULL)
1153 		kmem_free(info, sizeof (*info));
1154 #endif
1155 }
1156 
1157 void
1158 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
1159 {
1160 #ifdef _KERNEL
1161 	if (rpt->zcr_ereport != NULL) {
1162 		fm_nvlist_destroy(rpt->zcr_ereport,
1163 		    FM_NVA_FREE);
1164 		fm_nvlist_destroy(rpt->zcr_detector,
1165 		    FM_NVA_FREE);
1166 	}
1167 #endif
1168 	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
1169 
1170 	if (rpt->zcr_ckinfo != NULL)
1171 		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
1172 
1173 	kmem_free(rpt, sizeof (*rpt));
1174 }
1175 
1176 /*
1177  * Post a checksum ereport
1178  *
1179  * Returns
1180  * - 0 if an event was posted
1181  * - EINVAL if there was a problem posting event
1182  * - EBUSY if the event was rate limited
1183  * - EALREADY if the event was already posted (duplicate)
1184  */
1185 int
1186 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1187     struct zio *zio, uint64_t offset, uint64_t length,
1188     const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
1189 {
1190 	int rc = 0;
1191 #ifdef _KERNEL
1192 	nvlist_t *ereport = NULL;
1193 	nvlist_t *detector = NULL;
1194 	zfs_ecksum_info_t *info;
1195 
1196 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1197 		return (SET_ERROR(EINVAL));
1198 
1199 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1200 	    offset, length))
1201 		return (SET_ERROR(EALREADY));
1202 
1203 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1204 		return (SET_ERROR(EBUSY));
1205 
1206 	if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
1207 	    spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
1208 		return (SET_ERROR(EINVAL));
1209 	}
1210 
1211 	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
1212 	    B_FALSE);
1213 
1214 	if (info != NULL) {
1215 		rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1216 		kmem_free(info, sizeof (*info));
1217 	}
1218 #endif
1219 	return (rc);
1220 }
1221 
1222 /*
1223  * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1224  * change in the pool.  All sysevents are listed in sys/sysevent/eventdefs.h
1225  * and are designed to be consumed by the ZFS Event Daemon (ZED).  For
1226  * additional details refer to the zed(8) man page.
1227  */
1228 nvlist_t *
1229 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1230     nvlist_t *aux)
1231 {
1232 	nvlist_t *resource = NULL;
1233 #ifdef _KERNEL
1234 	char class[64];
1235 
1236 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
1237 		return (NULL);
1238 
1239 	if ((resource = fm_nvlist_create(NULL)) == NULL)
1240 		return (NULL);
1241 
1242 	(void) snprintf(class, sizeof (class), "%s.%s.%s", type,
1243 	    ZFS_ERROR_CLASS, name);
1244 	VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
1245 	VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
1246 	VERIFY0(nvlist_add_string(resource,
1247 	    FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
1248 	VERIFY0(nvlist_add_uint64(resource,
1249 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
1250 	VERIFY0(nvlist_add_uint64(resource,
1251 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
1252 	VERIFY0(nvlist_add_int32(resource,
1253 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
1254 
1255 	if (vd) {
1256 		VERIFY0(nvlist_add_uint64(resource,
1257 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
1258 		VERIFY0(nvlist_add_uint64(resource,
1259 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
1260 		if (vd->vdev_path != NULL)
1261 			VERIFY0(nvlist_add_string(resource,
1262 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
1263 		if (vd->vdev_devid != NULL)
1264 			VERIFY0(nvlist_add_string(resource,
1265 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
1266 		if (vd->vdev_fru != NULL)
1267 			VERIFY0(nvlist_add_string(resource,
1268 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
1269 		if (vd->vdev_enc_sysfs_path != NULL)
1270 			VERIFY0(nvlist_add_string(resource,
1271 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1272 			    vd->vdev_enc_sysfs_path));
1273 	}
1274 
1275 	/* also copy any optional payload data */
1276 	if (aux) {
1277 		nvpair_t *elem = NULL;
1278 
1279 		while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
1280 			(void) nvlist_add_nvpair(resource, elem);
1281 	}
1282 
1283 #endif
1284 	return (resource);
1285 }
1286 
1287 static void
1288 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1289     nvlist_t *aux)
1290 {
1291 #ifdef _KERNEL
1292 	nvlist_t *resource;
1293 
1294 	resource = zfs_event_create(spa, vd, type, name, aux);
1295 	if (resource)
1296 		zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
1297 #endif
1298 }
1299 
1300 /*
1301  * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1302  * has been removed from the system.  This will cause the DE to ignore any
1303  * recent I/O errors, inferring that they are due to the asynchronous device
1304  * removal.
1305  */
1306 void
1307 zfs_post_remove(spa_t *spa, vdev_t *vd)
1308 {
1309 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
1310 }
1311 
1312 /*
1313  * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1314  * has the 'autoreplace' property set, and therefore any broken vdevs will be
1315  * handled by higher level logic, and no vdev fault should be generated.
1316  */
1317 void
1318 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
1319 {
1320 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
1321 }
1322 
1323 /*
1324  * The 'resource.fs.zfs.statechange' event is an internal signal that the
1325  * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
1326  * cause the retire agent to repair any outstanding fault management cases
1327  * open because the device was not found (fault.fs.zfs.device).
1328  */
1329 void
1330 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
1331 {
1332 #ifdef _KERNEL
1333 	nvlist_t *aux;
1334 
1335 	/*
1336 	 * Add optional supplemental keys to payload
1337 	 */
1338 	aux = fm_nvlist_create(NULL);
1339 	if (vd && aux) {
1340 		if (vd->vdev_physpath) {
1341 			(void) nvlist_add_string(aux,
1342 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
1343 			    vd->vdev_physpath);
1344 		}
1345 		if (vd->vdev_enc_sysfs_path) {
1346 			(void) nvlist_add_string(aux,
1347 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1348 			    vd->vdev_enc_sysfs_path);
1349 		}
1350 
1351 		(void) nvlist_add_uint64(aux,
1352 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
1353 	}
1354 
1355 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1356 	    aux);
1357 
1358 	if (aux)
1359 		fm_nvlist_destroy(aux, FM_NVA_FREE);
1360 #endif
1361 }
1362 
1363 #ifdef _KERNEL
1364 void
1365 zfs_ereport_init(void)
1366 {
1367 	mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL);
1368 	list_create(&recent_events_list, sizeof (recent_events_node_t),
1369 	    offsetof(recent_events_node_t, re_list_link));
1370 	avl_create(&recent_events_tree,  recent_events_compare,
1371 	    sizeof (recent_events_node_t), offsetof(recent_events_node_t,
1372 	    re_tree_link));
1373 }
1374 
1375 /*
1376  * This 'early' fini needs to run before zfs_fini() which on Linux waits
1377  * for the system_delay_taskq to drain.
1378  */
1379 void
1380 zfs_ereport_taskq_fini(void)
1381 {
1382 	mutex_enter(&recent_events_lock);
1383 	if (recent_events_cleaner_tqid != 0) {
1384 		taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid);
1385 		recent_events_cleaner_tqid = 0;
1386 	}
1387 	mutex_exit(&recent_events_lock);
1388 }
1389 
1390 void
1391 zfs_ereport_fini(void)
1392 {
1393 	recent_events_node_t *entry;
1394 
1395 	while ((entry = list_head(&recent_events_list)) != NULL) {
1396 		avl_remove(&recent_events_tree, entry);
1397 		list_remove(&recent_events_list, entry);
1398 		kmem_free(entry, sizeof (*entry));
1399 	}
1400 	avl_destroy(&recent_events_tree);
1401 	list_destroy(&recent_events_list);
1402 	mutex_destroy(&recent_events_lock);
1403 }
1404 
1405 EXPORT_SYMBOL(zfs_ereport_post);
1406 EXPORT_SYMBOL(zfs_ereport_is_valid);
1407 EXPORT_SYMBOL(zfs_ereport_post_checksum);
1408 EXPORT_SYMBOL(zfs_post_remove);
1409 EXPORT_SYMBOL(zfs_post_autoreplace);
1410 EXPORT_SYMBOL(zfs_post_state_change);
1411 
1412 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW,
1413 	"Maximum recent zevents records to retain for duplicate checking");
1414 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW,
1415 	"Expiration time for recent zevents records");
1416 #endif /* _KERNEL */
1417