xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_fm.c (revision c0a4a7bb942fd3302f0093e4353820916d3661d1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012,2021 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41 
42 /*
43  * This general routine is responsible for generating all the different ZFS
44  * ereports.  The payload is dependent on the class, and which arguments are
45  * supplied to the function:
46  *
47  * 	EREPORT			POOL	VDEV	IO
48  * 	block			X	X	X
49  * 	data			X		X
50  * 	device			X	X
51  * 	pool			X
52  *
53  * If we are in a loading state, all errors are chained together by the same
54  * SPA-wide ENA (Error Numeric Association).
55  *
56  * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57  * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
58  * to chain together all ereports associated with a logical piece of data.  For
59  * read I/Os, there  are basically three 'types' of I/O, which form a roughly
60  * layered diagram:
61  *
62  * 	+---------------+
63  * 	| Aggregate I/O |	No associated logical data or device
64  * 	+---------------+
65  *              |
66  *              V
67  * 	+---------------+	Reads associated with a piece of logical data.
68  * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
69  * 	+---------------+       mirrors, gang blocks, retries, etc.
70  *              |
71  *              V
72  * 	+---------------+	Reads associated with a particular device, but
73  * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
74  * 	+---------------+	and I/O aggregation.
75  *
76  * Note that 'physical I/O' here is not the same terminology as used in the rest
77  * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
78  * blockpointer.  But I/O with no associated block pointer can still be related
79  * to a logical piece of data (i.e. RAID-Z requests).
80  *
81  * Purely physical I/O always have unique ENAs.  They are not related to a
82  * particular piece of logical data, and therefore cannot be chained together.
83  * We still generate an ereport, but the DE doesn't correlate it with any
84  * logical piece of data.  When such an I/O fails, the delegated I/O requests
85  * will issue a retry, which will trigger the 'real' ereport with the correct
86  * ENA.
87  *
88  * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89  * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
90  * then inherit this pointer, so that when it is first set subsequent failures
91  * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
92  * this pointer is set to NULL, and no ereport will be generated (since it
93  * doesn't actually correspond to any particular device or piece of data,
94  * and the caller will always retry without caching or queueing anyway).
95  *
96  * For checksum errors, we want to include more information about the actual
97  * error which occurs.  Accordingly, we build an ereport when the error is
98  * noticed, but instead of sending it in immediately, we hang it off of the
99  * io_cksum_report field of the logical IO.  When the logical IO completes
100  * (successfully or not), zfs_ereport_finish_checksum() is called with the
101  * good and bad versions of the buffer (if available), and we annotate the
102  * ereport with information about the differences.
103  */
104 
105 #ifdef _KERNEL
106 /*
107  * Duplicate ereport Detection
108  *
109  * Some ereports are retained momentarily for detecting duplicates.  These
110  * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111  * tree of recent unique ereports.
112  *
113  * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114  * task is used to purge stale entries.
115  */
116 static list_t recent_events_list;
117 static avl_tree_t recent_events_tree;
118 static kmutex_t recent_events_lock;
119 static taskqid_t recent_events_cleaner_tqid;
120 
121 /*
122  * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
123  *
124  * This setting can be changed dynamically and setting it to zero
125  * disables duplicate detection.
126  */
127 static unsigned int zfs_zevent_retain_max = 2000;
128 
129 /*
130  * The lifespan for a recent ereport entry. The default of 15 minutes is
131  * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132  * over a period of 10 minutes.
133  */
134 static unsigned int zfs_zevent_retain_expire_secs = 900;
135 
136 typedef enum zfs_subclass {
137 	ZSC_IO,
138 	ZSC_DATA,
139 	ZSC_CHECKSUM
140 } zfs_subclass_t;
141 
142 typedef struct {
143 	/* common criteria */
144 	uint64_t	re_pool_guid;
145 	uint64_t	re_vdev_guid;
146 	int		re_io_error;
147 	uint64_t	re_io_size;
148 	uint64_t	re_io_offset;
149 	zfs_subclass_t	re_subclass;
150 	zio_priority_t	re_io_priority;
151 
152 	/* logical zio criteria (optional) */
153 	zbookmark_phys_t re_io_bookmark;
154 
155 	/* internal state */
156 	avl_node_t	re_tree_link;
157 	list_node_t	re_list_link;
158 	uint64_t	re_timestamp;
159 } recent_events_node_t;
160 
161 static int
162 recent_events_compare(const void *a, const void *b)
163 {
164 	const recent_events_node_t *node1 = a;
165 	const recent_events_node_t *node2 = b;
166 	int cmp;
167 
168 	/*
169 	 * The comparison order here is somewhat arbitrary.
170 	 * What's important is that if every criteria matches, then it
171 	 * is a duplicate (i.e. compare returns 0)
172 	 */
173 	if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0)
174 		return (cmp);
175 	if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0)
176 		return (cmp);
177 	if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0)
178 		return (cmp);
179 	if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0)
180 		return (cmp);
181 	if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0)
182 		return (cmp);
183 	if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0)
184 		return (cmp);
185 	if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0)
186 		return (cmp);
187 
188 	const zbookmark_phys_t *zb1 = &node1->re_io_bookmark;
189 	const zbookmark_phys_t *zb2 = &node2->re_io_bookmark;
190 
191 	if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0)
192 		return (cmp);
193 	if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0)
194 		return (cmp);
195 	if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0)
196 		return (cmp);
197 	if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0)
198 		return (cmp);
199 
200 	return (0);
201 }
202 
203 /*
204  * workaround: vdev properties don't have inheritance
205  */
206 static uint64_t
207 vdev_prop_get_inherited(vdev_t *vd, vdev_prop_t prop)
208 {
209 	uint64_t propdef, propval;
210 
211 	propdef = vdev_prop_default_numeric(prop);
212 	switch (prop) {
213 		case VDEV_PROP_CHECKSUM_N:
214 			propval = vd->vdev_checksum_n;
215 			break;
216 		case VDEV_PROP_CHECKSUM_T:
217 			propval = vd->vdev_checksum_t;
218 			break;
219 		case VDEV_PROP_IO_N:
220 			propval = vd->vdev_io_n;
221 			break;
222 		case VDEV_PROP_IO_T:
223 			propval = vd->vdev_io_t;
224 			break;
225 		default:
226 			propval = propdef;
227 			break;
228 	}
229 
230 	if (propval != propdef)
231 		return (propval);
232 
233 	if (vd->vdev_parent == NULL)
234 		return (propdef);
235 
236 	return (vdev_prop_get_inherited(vd->vdev_parent, prop));
237 }
238 
239 static void zfs_ereport_schedule_cleaner(void);
240 
241 /*
242  * background task to clean stale recent event nodes.
243  */
244 static void
245 zfs_ereport_cleaner(void *arg)
246 {
247 	recent_events_node_t *entry;
248 	uint64_t now = gethrtime();
249 
250 	/*
251 	 * purge expired entries
252 	 */
253 	mutex_enter(&recent_events_lock);
254 	while ((entry = list_tail(&recent_events_list)) != NULL) {
255 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
256 		if (age <= zfs_zevent_retain_expire_secs)
257 			break;
258 
259 		/* remove expired node */
260 		avl_remove(&recent_events_tree, entry);
261 		list_remove(&recent_events_list, entry);
262 		kmem_free(entry, sizeof (*entry));
263 	}
264 
265 	/* Restart the cleaner if more entries remain */
266 	recent_events_cleaner_tqid = 0;
267 	if (!list_is_empty(&recent_events_list))
268 		zfs_ereport_schedule_cleaner();
269 
270 	mutex_exit(&recent_events_lock);
271 }
272 
273 static void
274 zfs_ereport_schedule_cleaner(void)
275 {
276 	ASSERT(MUTEX_HELD(&recent_events_lock));
277 
278 	uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1);
279 
280 	recent_events_cleaner_tqid = taskq_dispatch_delay(
281 	    system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP,
282 	    ddi_get_lbolt() + NSEC_TO_TICK(timeout));
283 }
284 
285 /*
286  * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
287  */
288 void
289 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
290 {
291 	uint64_t vdev_guid, pool_guid;
292 
293 	ASSERT(vd != NULL || spa != NULL);
294 	if (vd == NULL) {
295 		vdev_guid = 0;
296 		pool_guid = spa_guid(spa);
297 	} else {
298 		vdev_guid = vd->vdev_guid;
299 		pool_guid = 0;
300 	}
301 
302 	mutex_enter(&recent_events_lock);
303 
304 	recent_events_node_t *next = list_head(&recent_events_list);
305 	while (next != NULL) {
306 		recent_events_node_t *entry = next;
307 
308 		next = list_next(&recent_events_list, next);
309 
310 		if (entry->re_vdev_guid == vdev_guid ||
311 		    entry->re_pool_guid == pool_guid) {
312 			avl_remove(&recent_events_tree, entry);
313 			list_remove(&recent_events_list, entry);
314 			kmem_free(entry, sizeof (*entry));
315 		}
316 	}
317 
318 	mutex_exit(&recent_events_lock);
319 }
320 
321 /*
322  * Check if an ereport would be a duplicate of one recently posted.
323  *
324  * An ereport is considered a duplicate if the set of criteria in
325  * recent_events_node_t all match.
326  *
327  * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
328  * are candidates for duplicate checking.
329  */
330 static boolean_t
331 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd,
332     const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size)
333 {
334 	recent_events_node_t search = {0}, *entry;
335 
336 	if (vd == NULL || zio == NULL)
337 		return (B_FALSE);
338 
339 	if (zfs_zevent_retain_max == 0)
340 		return (B_FALSE);
341 
342 	if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0)
343 		search.re_subclass = ZSC_IO;
344 	else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0)
345 		search.re_subclass = ZSC_DATA;
346 	else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0)
347 		search.re_subclass = ZSC_CHECKSUM;
348 	else
349 		return (B_FALSE);
350 
351 	search.re_pool_guid = spa_guid(spa);
352 	search.re_vdev_guid = vd->vdev_guid;
353 	search.re_io_error = zio->io_error;
354 	search.re_io_priority = zio->io_priority;
355 	/* if size is supplied use it over what's in zio */
356 	if (size) {
357 		search.re_io_size = size;
358 		search.re_io_offset = offset;
359 	} else {
360 		search.re_io_size = zio->io_size;
361 		search.re_io_offset = zio->io_offset;
362 	}
363 
364 	/* grab optional logical zio criteria */
365 	if (zb != NULL) {
366 		search.re_io_bookmark.zb_objset = zb->zb_objset;
367 		search.re_io_bookmark.zb_object = zb->zb_object;
368 		search.re_io_bookmark.zb_level = zb->zb_level;
369 		search.re_io_bookmark.zb_blkid = zb->zb_blkid;
370 	}
371 
372 	uint64_t now = gethrtime();
373 
374 	mutex_enter(&recent_events_lock);
375 
376 	/* check if we have seen this one recently */
377 	entry = avl_find(&recent_events_tree, &search, NULL);
378 	if (entry != NULL) {
379 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
380 
381 		/*
382 		 * There is still an active cleaner (since we're here).
383 		 * Reset the last seen time for this duplicate entry
384 		 * so that its lifespand gets extended.
385 		 */
386 		list_remove(&recent_events_list, entry);
387 		list_insert_head(&recent_events_list, entry);
388 		entry->re_timestamp = now;
389 
390 		zfs_zevent_track_duplicate();
391 		mutex_exit(&recent_events_lock);
392 
393 		return (age <= zfs_zevent_retain_expire_secs);
394 	}
395 
396 	if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) {
397 		/* recycle oldest node */
398 		entry = list_tail(&recent_events_list);
399 		ASSERT(entry != NULL);
400 		list_remove(&recent_events_list, entry);
401 		avl_remove(&recent_events_tree, entry);
402 	} else {
403 		entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP);
404 	}
405 
406 	/* record this as a recent ereport */
407 	*entry = search;
408 	avl_add(&recent_events_tree, entry);
409 	list_insert_head(&recent_events_list, entry);
410 	entry->re_timestamp = now;
411 
412 	/* Start a cleaner if not already scheduled */
413 	if (recent_events_cleaner_tqid == 0)
414 		zfs_ereport_schedule_cleaner();
415 
416 	mutex_exit(&recent_events_lock);
417 	return (B_FALSE);
418 }
419 
420 void
421 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
422 {
423 	if (nvl)
424 		fm_nvlist_destroy(nvl, FM_NVA_FREE);
425 
426 	if (detector)
427 		fm_nvlist_destroy(detector, FM_NVA_FREE);
428 }
429 
430 /*
431  * We want to rate limit ZIO delay, deadman, and checksum events so as to not
432  * flood zevent consumers when a disk is acting up.
433  *
434  * Returns 1 if we're ratelimiting, 0 if not.
435  */
436 static int
437 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
438 {
439 	int rc = 0;
440 	/*
441 	 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
442 	 * are.  Invert it to get our return value.
443 	 */
444 	if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
445 		rc = !zfs_ratelimit(&vd->vdev_delay_rl);
446 	} else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) {
447 		rc = !zfs_ratelimit(&vd->vdev_deadman_rl);
448 	} else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
449 		rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
450 	}
451 
452 	if (rc)	{
453 		/* We're rate limiting */
454 		fm_erpt_dropped_increment();
455 	}
456 
457 	return (rc);
458 }
459 
460 /*
461  * Return B_TRUE if the event actually posted, B_FALSE if not.
462  */
463 static boolean_t
464 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
465     const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
466     zio_t *zio, uint64_t stateoroffset, uint64_t size)
467 {
468 	nvlist_t *ereport, *detector;
469 
470 	uint64_t ena;
471 	char class[64];
472 
473 	if ((ereport = fm_nvlist_create(NULL)) == NULL)
474 		return (B_FALSE);
475 
476 	if ((detector = fm_nvlist_create(NULL)) == NULL) {
477 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
478 		return (B_FALSE);
479 	}
480 
481 	/*
482 	 * Serialize ereport generation
483 	 */
484 	mutex_enter(&spa->spa_errlist_lock);
485 
486 	/*
487 	 * Determine the ENA to use for this event.  If we are in a loading
488 	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
489 	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
490 	 */
491 	if (spa_load_state(spa) != SPA_LOAD_NONE) {
492 		if (spa->spa_ena == 0)
493 			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
494 		ena = spa->spa_ena;
495 	} else if (zio != NULL && zio->io_logical != NULL) {
496 		if (zio->io_logical->io_ena == 0)
497 			zio->io_logical->io_ena =
498 			    fm_ena_generate(0, FM_ENA_FMT1);
499 		ena = zio->io_logical->io_ena;
500 	} else {
501 		ena = fm_ena_generate(0, FM_ENA_FMT1);
502 	}
503 
504 	/*
505 	 * Construct the full class, detector, and other standard FMA fields.
506 	 */
507 	(void) snprintf(class, sizeof (class), "%s.%s",
508 	    ZFS_ERROR_CLASS, subclass);
509 
510 	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
511 	    vd != NULL ? vd->vdev_guid : 0);
512 
513 	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
514 
515 	/*
516 	 * Construct the per-ereport payload, depending on which parameters are
517 	 * passed in.
518 	 */
519 
520 	/*
521 	 * Generic payload members common to all ereports.
522 	 */
523 	fm_payload_set(ereport,
524 	    FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
525 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
526 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
527 	    (uint64_t)spa_state(spa),
528 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
529 	    (int32_t)spa_load_state(spa), NULL);
530 
531 	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
532 	    DATA_TYPE_STRING,
533 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
534 	    FM_EREPORT_FAILMODE_WAIT :
535 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
536 	    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
537 	    NULL);
538 
539 	if (vd != NULL) {
540 		vdev_t *pvd = vd->vdev_parent;
541 		vdev_queue_t *vq = &vd->vdev_queue;
542 		vdev_stat_t *vs = &vd->vdev_stat;
543 		vdev_t *spare_vd;
544 		uint64_t *spare_guids;
545 		char **spare_paths;
546 		int i, spare_count;
547 
548 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
549 		    DATA_TYPE_UINT64, vd->vdev_guid,
550 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
551 		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
552 		if (vd->vdev_path != NULL)
553 			fm_payload_set(ereport,
554 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
555 			    DATA_TYPE_STRING, vd->vdev_path, NULL);
556 		if (vd->vdev_devid != NULL)
557 			fm_payload_set(ereport,
558 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
559 			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
560 		if (vd->vdev_fru != NULL)
561 			fm_payload_set(ereport,
562 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
563 			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
564 		if (vd->vdev_enc_sysfs_path != NULL)
565 			fm_payload_set(ereport,
566 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
567 			    DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
568 		if (vd->vdev_ashift)
569 			fm_payload_set(ereport,
570 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
571 			    DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
572 
573 		if (vq != NULL) {
574 			fm_payload_set(ereport,
575 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
576 			    DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
577 			fm_payload_set(ereport,
578 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
579 			    DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
580 		}
581 
582 		if (vs != NULL) {
583 			fm_payload_set(ereport,
584 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
585 			    DATA_TYPE_UINT64, vs->vs_read_errors,
586 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
587 			    DATA_TYPE_UINT64, vs->vs_write_errors,
588 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
589 			    DATA_TYPE_UINT64, vs->vs_checksum_errors,
590 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
591 			    DATA_TYPE_UINT64, vs->vs_slow_ios,
592 			    NULL);
593 		}
594 
595 		if (pvd != NULL) {
596 			fm_payload_set(ereport,
597 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
598 			    DATA_TYPE_UINT64, pvd->vdev_guid,
599 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
600 			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
601 			    NULL);
602 			if (pvd->vdev_path)
603 				fm_payload_set(ereport,
604 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
605 				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
606 			if (pvd->vdev_devid)
607 				fm_payload_set(ereport,
608 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
609 				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
610 		}
611 
612 		spare_count = spa->spa_spares.sav_count;
613 		spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
614 		    KM_SLEEP);
615 		spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
616 		    KM_SLEEP);
617 
618 		for (i = 0; i < spare_count; i++) {
619 			spare_vd = spa->spa_spares.sav_vdevs[i];
620 			if (spare_vd) {
621 				spare_paths[i] = spare_vd->vdev_path;
622 				spare_guids[i] = spare_vd->vdev_guid;
623 			}
624 		}
625 
626 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
627 		    DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
628 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
629 		    DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
630 
631 		kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
632 		kmem_free(spare_paths, sizeof (char *) * spare_count);
633 	}
634 
635 	if (zio != NULL) {
636 		/*
637 		 * Payload common to all I/Os.
638 		 */
639 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
640 		    DATA_TYPE_INT32, zio->io_error, NULL);
641 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
642 		    DATA_TYPE_INT32, zio->io_flags, NULL);
643 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
644 		    DATA_TYPE_UINT32, zio->io_stage, NULL);
645 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
646 		    DATA_TYPE_UINT32, zio->io_pipeline, NULL);
647 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
648 		    DATA_TYPE_UINT64, zio->io_delay, NULL);
649 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
650 		    DATA_TYPE_UINT64, zio->io_timestamp, NULL);
651 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
652 		    DATA_TYPE_UINT64, zio->io_delta, NULL);
653 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY,
654 		    DATA_TYPE_UINT32, zio->io_priority, NULL);
655 
656 		/*
657 		 * If the 'size' parameter is non-zero, it indicates this is a
658 		 * RAID-Z or other I/O where the physical offset and length are
659 		 * provided for us, instead of within the zio_t.
660 		 */
661 		if (vd != NULL) {
662 			if (size)
663 				fm_payload_set(ereport,
664 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
665 				    DATA_TYPE_UINT64, stateoroffset,
666 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
667 				    DATA_TYPE_UINT64, size, NULL);
668 			else
669 				fm_payload_set(ereport,
670 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
671 				    DATA_TYPE_UINT64, zio->io_offset,
672 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
673 				    DATA_TYPE_UINT64, zio->io_size, NULL);
674 		}
675 	} else if (vd != NULL) {
676 		/*
677 		 * If we have a vdev but no zio, this is a device fault, and the
678 		 * 'stateoroffset' parameter indicates the previous state of the
679 		 * vdev.
680 		 */
681 		fm_payload_set(ereport,
682 		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
683 		    DATA_TYPE_UINT64, stateoroffset, NULL);
684 	}
685 
686 	/*
687 	 * Payload for I/Os with corresponding logical information.
688 	 */
689 	if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
690 		fm_payload_set(ereport,
691 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
692 		    DATA_TYPE_UINT64, zb->zb_objset,
693 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
694 		    DATA_TYPE_UINT64, zb->zb_object,
695 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
696 		    DATA_TYPE_INT64, zb->zb_level,
697 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
698 		    DATA_TYPE_UINT64, zb->zb_blkid, NULL);
699 	}
700 
701 	/*
702 	 * Payload for tuning the zed
703 	 */
704 	if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
705 		uint64_t cksum_n, cksum_t;
706 
707 		cksum_n = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_N);
708 		if (cksum_n != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N))
709 			fm_payload_set(ereport,
710 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N,
711 			    DATA_TYPE_UINT64,
712 			    cksum_n,
713 			    NULL);
714 
715 		cksum_t = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_T);
716 		if (cksum_t != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T))
717 			fm_payload_set(ereport,
718 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T,
719 			    DATA_TYPE_UINT64,
720 			    cksum_t,
721 			    NULL);
722 	}
723 
724 	if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_IO) == 0) {
725 		uint64_t io_n, io_t;
726 
727 		io_n = vdev_prop_get_inherited(vd, VDEV_PROP_IO_N);
728 		if (io_n != vdev_prop_default_numeric(VDEV_PROP_IO_N))
729 			fm_payload_set(ereport,
730 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N,
731 			    DATA_TYPE_UINT64,
732 			    io_n,
733 			    NULL);
734 
735 		io_t = vdev_prop_get_inherited(vd, VDEV_PROP_IO_T);
736 		if (io_t != vdev_prop_default_numeric(VDEV_PROP_IO_T))
737 			fm_payload_set(ereport,
738 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T,
739 			    DATA_TYPE_UINT64,
740 			    io_t,
741 			    NULL);
742 	}
743 
744 	mutex_exit(&spa->spa_errlist_lock);
745 
746 	*ereport_out = ereport;
747 	*detector_out = detector;
748 	return (B_TRUE);
749 }
750 
751 /* if it's <= 128 bytes, save the corruption directly */
752 #define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
753 
754 #define	MAX_RANGES		16
755 
756 typedef struct zfs_ecksum_info {
757 	/* histograms of set and cleared bits by bit number in a 64-bit word */
758 	uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY];
759 	uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
760 
761 	/* inline arrays of bits set and cleared. */
762 	uint64_t zei_bits_set[ZFM_MAX_INLINE];
763 	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
764 
765 	/*
766 	 * for each range, the number of bits set and cleared.  The Hamming
767 	 * distance between the good and bad buffers is the sum of them all.
768 	 */
769 	uint32_t zei_range_sets[MAX_RANGES];
770 	uint32_t zei_range_clears[MAX_RANGES];
771 
772 	struct zei_ranges {
773 		uint32_t	zr_start;
774 		uint32_t	zr_end;
775 	} zei_ranges[MAX_RANGES];
776 
777 	size_t	zei_range_count;
778 	uint32_t zei_mingap;
779 	uint32_t zei_allowed_mingap;
780 
781 } zfs_ecksum_info_t;
782 
783 static void
784 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count)
785 {
786 	size_t i;
787 	size_t bits = 0;
788 	uint64_t value = BE_64(value_arg);
789 
790 	/* We store the bits in big-endian (largest-first) order */
791 	for (i = 0; i < 64; i++) {
792 		if (value & (1ull << i)) {
793 			hist[63 - i]++;
794 			++bits;
795 		}
796 	}
797 	/* update the count of bits changed */
798 	*count += bits;
799 }
800 
801 /*
802  * We've now filled up the range array, and need to increase "mingap" and
803  * shrink the range list accordingly.  zei_mingap is always the smallest
804  * distance between array entries, so we set the new_allowed_gap to be
805  * one greater than that.  We then go through the list, joining together
806  * any ranges which are closer than the new_allowed_gap.
807  *
808  * By construction, there will be at least one.  We also update zei_mingap
809  * to the new smallest gap, to prepare for our next invocation.
810  */
811 static void
812 zei_shrink_ranges(zfs_ecksum_info_t *eip)
813 {
814 	uint32_t mingap = UINT32_MAX;
815 	uint32_t new_allowed_gap = eip->zei_mingap + 1;
816 
817 	size_t idx, output;
818 	size_t max = eip->zei_range_count;
819 
820 	struct zei_ranges *r = eip->zei_ranges;
821 
822 	ASSERT3U(eip->zei_range_count, >, 0);
823 	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
824 
825 	output = idx = 0;
826 	while (idx < max - 1) {
827 		uint32_t start = r[idx].zr_start;
828 		uint32_t end = r[idx].zr_end;
829 
830 		while (idx < max - 1) {
831 			idx++;
832 
833 			uint32_t nstart = r[idx].zr_start;
834 			uint32_t nend = r[idx].zr_end;
835 
836 			uint32_t gap = nstart - end;
837 			if (gap < new_allowed_gap) {
838 				end = nend;
839 				continue;
840 			}
841 			if (gap < mingap)
842 				mingap = gap;
843 			break;
844 		}
845 		r[output].zr_start = start;
846 		r[output].zr_end = end;
847 		output++;
848 	}
849 	ASSERT3U(output, <, eip->zei_range_count);
850 	eip->zei_range_count = output;
851 	eip->zei_mingap = mingap;
852 	eip->zei_allowed_mingap = new_allowed_gap;
853 }
854 
855 static void
856 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
857 {
858 	struct zei_ranges *r = eip->zei_ranges;
859 	size_t count = eip->zei_range_count;
860 
861 	if (count >= MAX_RANGES) {
862 		zei_shrink_ranges(eip);
863 		count = eip->zei_range_count;
864 	}
865 	if (count == 0) {
866 		eip->zei_mingap = UINT32_MAX;
867 		eip->zei_allowed_mingap = 1;
868 	} else {
869 		int gap = start - r[count - 1].zr_end;
870 
871 		if (gap < eip->zei_allowed_mingap) {
872 			r[count - 1].zr_end = end;
873 			return;
874 		}
875 		if (gap < eip->zei_mingap)
876 			eip->zei_mingap = gap;
877 	}
878 	r[count].zr_start = start;
879 	r[count].zr_end = end;
880 	eip->zei_range_count++;
881 }
882 
883 static size_t
884 zei_range_total_size(zfs_ecksum_info_t *eip)
885 {
886 	struct zei_ranges *r = eip->zei_ranges;
887 	size_t count = eip->zei_range_count;
888 	size_t result = 0;
889 	size_t idx;
890 
891 	for (idx = 0; idx < count; idx++)
892 		result += (r[idx].zr_end - r[idx].zr_start);
893 
894 	return (result);
895 }
896 
897 static zfs_ecksum_info_t *
898 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
899     const abd_t *goodabd, const abd_t *badabd, size_t size,
900     boolean_t drop_if_identical)
901 {
902 	const uint64_t *good;
903 	const uint64_t *bad;
904 
905 	size_t nui64s = size / sizeof (uint64_t);
906 
907 	size_t inline_size;
908 	int no_inline = 0;
909 	size_t idx;
910 	size_t range;
911 
912 	size_t offset = 0;
913 	ssize_t start = -1;
914 
915 	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
916 
917 	/* don't do any annotation for injected checksum errors */
918 	if (info != NULL && info->zbc_injected)
919 		return (eip);
920 
921 	if (info != NULL && info->zbc_has_cksum) {
922 		fm_payload_set(ereport,
923 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
924 		    DATA_TYPE_UINT64_ARRAY,
925 		    sizeof (info->zbc_expected) / sizeof (uint64_t),
926 		    (uint64_t *)&info->zbc_expected,
927 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
928 		    DATA_TYPE_UINT64_ARRAY,
929 		    sizeof (info->zbc_actual) / sizeof (uint64_t),
930 		    (uint64_t *)&info->zbc_actual,
931 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
932 		    DATA_TYPE_STRING,
933 		    info->zbc_checksum_name,
934 		    NULL);
935 
936 		if (info->zbc_byteswapped) {
937 			fm_payload_set(ereport,
938 			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
939 			    DATA_TYPE_BOOLEAN, 1,
940 			    NULL);
941 		}
942 	}
943 
944 	if (badabd == NULL || goodabd == NULL)
945 		return (eip);
946 
947 	ASSERT3U(nui64s, <=, UINT32_MAX);
948 	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
949 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
950 	ASSERT3U(size, <=, UINT32_MAX);
951 
952 	good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
953 	bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
954 
955 	/* build up the range list by comparing the two buffers. */
956 	for (idx = 0; idx < nui64s; idx++) {
957 		if (good[idx] == bad[idx]) {
958 			if (start == -1)
959 				continue;
960 
961 			zei_add_range(eip, start, idx);
962 			start = -1;
963 		} else {
964 			if (start != -1)
965 				continue;
966 
967 			start = idx;
968 		}
969 	}
970 	if (start != -1)
971 		zei_add_range(eip, start, idx);
972 
973 	/* See if it will fit in our inline buffers */
974 	inline_size = zei_range_total_size(eip);
975 	if (inline_size > ZFM_MAX_INLINE)
976 		no_inline = 1;
977 
978 	/*
979 	 * If there is no change and we want to drop if the buffers are
980 	 * identical, do so.
981 	 */
982 	if (inline_size == 0 && drop_if_identical) {
983 		kmem_free(eip, sizeof (*eip));
984 		abd_return_buf((abd_t *)goodabd, (void *)good, size);
985 		abd_return_buf((abd_t *)badabd, (void *)bad, size);
986 		return (NULL);
987 	}
988 
989 	/*
990 	 * Now walk through the ranges, filling in the details of the
991 	 * differences.  Also convert our uint64_t-array offsets to byte
992 	 * offsets.
993 	 */
994 	for (range = 0; range < eip->zei_range_count; range++) {
995 		size_t start = eip->zei_ranges[range].zr_start;
996 		size_t end = eip->zei_ranges[range].zr_end;
997 
998 		for (idx = start; idx < end; idx++) {
999 			uint64_t set, cleared;
1000 
1001 			// bits set in bad, but not in good
1002 			set = ((~good[idx]) & bad[idx]);
1003 			// bits set in good, but not in bad
1004 			cleared = (good[idx] & (~bad[idx]));
1005 
1006 			if (!no_inline) {
1007 				ASSERT3U(offset, <, inline_size);
1008 				eip->zei_bits_set[offset] = set;
1009 				eip->zei_bits_cleared[offset] = cleared;
1010 				offset++;
1011 			}
1012 
1013 			update_histogram(set, eip->zei_histogram_set,
1014 			    &eip->zei_range_sets[range]);
1015 			update_histogram(cleared, eip->zei_histogram_cleared,
1016 			    &eip->zei_range_clears[range]);
1017 		}
1018 
1019 		/* convert to byte offsets */
1020 		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
1021 		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
1022 	}
1023 
1024 	abd_return_buf((abd_t *)goodabd, (void *)good, size);
1025 	abd_return_buf((abd_t *)badabd, (void *)bad, size);
1026 
1027 	eip->zei_allowed_mingap	*= sizeof (uint64_t);
1028 	inline_size		*= sizeof (uint64_t);
1029 
1030 	/* fill in ereport */
1031 	fm_payload_set(ereport,
1032 	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
1033 	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
1034 	    (uint32_t *)eip->zei_ranges,
1035 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
1036 	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
1037 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
1038 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
1039 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
1040 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
1041 	    NULL);
1042 
1043 	if (!no_inline) {
1044 		fm_payload_set(ereport,
1045 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
1046 		    DATA_TYPE_UINT8_ARRAY,
1047 		    inline_size, (uint8_t *)eip->zei_bits_set,
1048 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
1049 		    DATA_TYPE_UINT8_ARRAY,
1050 		    inline_size, (uint8_t *)eip->zei_bits_cleared,
1051 		    NULL);
1052 	} else {
1053 		fm_payload_set(ereport,
1054 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
1055 		    DATA_TYPE_UINT32_ARRAY,
1056 		    NBBY * sizeof (uint64_t), eip->zei_histogram_set,
1057 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
1058 		    DATA_TYPE_UINT32_ARRAY,
1059 		    NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
1060 		    NULL);
1061 	}
1062 	return (eip);
1063 }
1064 #else
1065 void
1066 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
1067 {
1068 	(void) spa, (void) vd;
1069 }
1070 #endif
1071 
1072 /*
1073  * Make sure our event is still valid for the given zio/vdev/pool.  For example,
1074  * we don't want to keep logging events for a faulted or missing vdev.
1075  */
1076 boolean_t
1077 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
1078 {
1079 #ifdef _KERNEL
1080 	/*
1081 	 * If we are doing a spa_tryimport() or in recovery mode,
1082 	 * ignore errors.
1083 	 */
1084 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
1085 	    spa_load_state(spa) == SPA_LOAD_RECOVER)
1086 		return (B_FALSE);
1087 
1088 	/*
1089 	 * If we are in the middle of opening a pool, and the previous attempt
1090 	 * failed, don't bother logging any new ereports - we're just going to
1091 	 * get the same diagnosis anyway.
1092 	 */
1093 	if (spa_load_state(spa) != SPA_LOAD_NONE &&
1094 	    spa->spa_last_open_failed)
1095 		return (B_FALSE);
1096 
1097 	if (zio != NULL) {
1098 		/*
1099 		 * If this is not a read or write zio, ignore the error.  This
1100 		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
1101 		 */
1102 		if (zio->io_type != ZIO_TYPE_READ &&
1103 		    zio->io_type != ZIO_TYPE_WRITE)
1104 			return (B_FALSE);
1105 
1106 		if (vd != NULL) {
1107 			/*
1108 			 * If the vdev has already been marked as failing due
1109 			 * to a failed probe, then ignore any subsequent I/O
1110 			 * errors, as the DE will automatically fault the vdev
1111 			 * on the first such failure.  This also catches cases
1112 			 * where vdev_remove_wanted is set and the device has
1113 			 * not yet been asynchronously placed into the REMOVED
1114 			 * state.
1115 			 */
1116 			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
1117 				return (B_FALSE);
1118 
1119 			/*
1120 			 * Ignore checksum errors for reads from DTL regions of
1121 			 * leaf vdevs.
1122 			 */
1123 			if (zio->io_type == ZIO_TYPE_READ &&
1124 			    zio->io_error == ECKSUM &&
1125 			    vd->vdev_ops->vdev_op_leaf &&
1126 			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
1127 				return (B_FALSE);
1128 		}
1129 	}
1130 
1131 	/*
1132 	 * For probe failure, we want to avoid posting ereports if we've
1133 	 * already removed the device in the meantime.
1134 	 */
1135 	if (vd != NULL &&
1136 	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
1137 	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
1138 		return (B_FALSE);
1139 
1140 	/* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1141 	if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
1142 	    (zio != NULL) && (!zio->io_timestamp)) {
1143 		return (B_FALSE);
1144 	}
1145 #else
1146 	(void) subclass, (void) spa, (void) vd, (void) zio;
1147 #endif
1148 	return (B_TRUE);
1149 }
1150 
1151 /*
1152  * Post an ereport for the given subclass
1153  *
1154  * Returns
1155  * - 0 if an event was posted
1156  * - EINVAL if there was a problem posting event
1157  * - EBUSY if the event was rate limited
1158  * - EALREADY if the event was already posted (duplicate)
1159  */
1160 int
1161 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
1162     const zbookmark_phys_t *zb, zio_t *zio, uint64_t state)
1163 {
1164 	int rc = 0;
1165 #ifdef _KERNEL
1166 	nvlist_t *ereport = NULL;
1167 	nvlist_t *detector = NULL;
1168 
1169 	if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
1170 		return (EINVAL);
1171 
1172 	if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0))
1173 		return (SET_ERROR(EALREADY));
1174 
1175 	if (zfs_is_ratelimiting_event(subclass, vd))
1176 		return (SET_ERROR(EBUSY));
1177 
1178 	if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
1179 	    zb, zio, state, 0))
1180 		return (SET_ERROR(EINVAL));	/* couldn't post event */
1181 
1182 	if (ereport == NULL)
1183 		return (SET_ERROR(EINVAL));
1184 
1185 	/* Cleanup is handled by the callback function */
1186 	rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1187 #else
1188 	(void) subclass, (void) spa, (void) vd, (void) zb, (void) zio,
1189 	    (void) state;
1190 #endif
1191 	return (rc);
1192 }
1193 
1194 /*
1195  * Prepare a checksum ereport
1196  *
1197  * Returns
1198  * - 0 if an event was posted
1199  * - EINVAL if there was a problem posting event
1200  * - EBUSY if the event was rate limited
1201  * - EALREADY if the event was already posted (duplicate)
1202  */
1203 int
1204 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1205     struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info)
1206 {
1207 	zio_cksum_report_t *report;
1208 
1209 #ifdef _KERNEL
1210 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1211 		return (SET_ERROR(EINVAL));
1212 
1213 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1214 	    offset, length))
1215 		return (SET_ERROR(EALREADY));
1216 
1217 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1218 		return (SET_ERROR(EBUSY));
1219 #else
1220 	(void) zb, (void) offset;
1221 #endif
1222 
1223 	report = kmem_zalloc(sizeof (*report), KM_SLEEP);
1224 
1225 	zio_vsd_default_cksum_report(zio, report);
1226 
1227 	/* copy the checksum failure information if it was provided */
1228 	if (info != NULL) {
1229 		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
1230 		memcpy(report->zcr_ckinfo, info, sizeof (*info));
1231 	}
1232 
1233 	report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
1234 	report->zcr_align =
1235 	    vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
1236 	report->zcr_length = length;
1237 
1238 #ifdef _KERNEL
1239 	(void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
1240 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
1241 
1242 	if (report->zcr_ereport == NULL) {
1243 		zfs_ereport_free_checksum(report);
1244 		return (0);
1245 	}
1246 #endif
1247 
1248 	mutex_enter(&spa->spa_errlist_lock);
1249 	report->zcr_next = zio->io_logical->io_cksum_report;
1250 	zio->io_logical->io_cksum_report = report;
1251 	mutex_exit(&spa->spa_errlist_lock);
1252 	return (0);
1253 }
1254 
1255 void
1256 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
1257     const abd_t *bad_data, boolean_t drop_if_identical)
1258 {
1259 #ifdef _KERNEL
1260 	zfs_ecksum_info_t *info;
1261 
1262 	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
1263 	    good_data, bad_data, report->zcr_length, drop_if_identical);
1264 	if (info != NULL)
1265 		zfs_zevent_post(report->zcr_ereport,
1266 		    report->zcr_detector, zfs_zevent_post_cb);
1267 	else
1268 		zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
1269 
1270 	report->zcr_ereport = report->zcr_detector = NULL;
1271 	if (info != NULL)
1272 		kmem_free(info, sizeof (*info));
1273 #else
1274 	(void) report, (void) good_data, (void) bad_data,
1275 	    (void) drop_if_identical;
1276 #endif
1277 }
1278 
1279 void
1280 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
1281 {
1282 #ifdef _KERNEL
1283 	if (rpt->zcr_ereport != NULL) {
1284 		fm_nvlist_destroy(rpt->zcr_ereport,
1285 		    FM_NVA_FREE);
1286 		fm_nvlist_destroy(rpt->zcr_detector,
1287 		    FM_NVA_FREE);
1288 	}
1289 #endif
1290 	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
1291 
1292 	if (rpt->zcr_ckinfo != NULL)
1293 		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
1294 
1295 	kmem_free(rpt, sizeof (*rpt));
1296 }
1297 
1298 /*
1299  * Post a checksum ereport
1300  *
1301  * Returns
1302  * - 0 if an event was posted
1303  * - EINVAL if there was a problem posting event
1304  * - EBUSY if the event was rate limited
1305  * - EALREADY if the event was already posted (duplicate)
1306  */
1307 int
1308 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1309     struct zio *zio, uint64_t offset, uint64_t length,
1310     const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
1311 {
1312 	int rc = 0;
1313 #ifdef _KERNEL
1314 	nvlist_t *ereport = NULL;
1315 	nvlist_t *detector = NULL;
1316 	zfs_ecksum_info_t *info;
1317 
1318 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1319 		return (SET_ERROR(EINVAL));
1320 
1321 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1322 	    offset, length))
1323 		return (SET_ERROR(EALREADY));
1324 
1325 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1326 		return (SET_ERROR(EBUSY));
1327 
1328 	if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
1329 	    spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
1330 		return (SET_ERROR(EINVAL));
1331 	}
1332 
1333 	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
1334 	    B_FALSE);
1335 
1336 	if (info != NULL) {
1337 		rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1338 		kmem_free(info, sizeof (*info));
1339 	}
1340 #else
1341 	(void) spa, (void) vd, (void) zb, (void) zio, (void) offset,
1342 	    (void) length, (void) good_data, (void) bad_data, (void) zbc;
1343 #endif
1344 	return (rc);
1345 }
1346 
1347 /*
1348  * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1349  * change in the pool.  All sysevents are listed in sys/sysevent/eventdefs.h
1350  * and are designed to be consumed by the ZFS Event Daemon (ZED).  For
1351  * additional details refer to the zed(8) man page.
1352  */
1353 nvlist_t *
1354 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1355     nvlist_t *aux)
1356 {
1357 	nvlist_t *resource = NULL;
1358 #ifdef _KERNEL
1359 	char class[64];
1360 
1361 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
1362 		return (NULL);
1363 
1364 	if ((resource = fm_nvlist_create(NULL)) == NULL)
1365 		return (NULL);
1366 
1367 	(void) snprintf(class, sizeof (class), "%s.%s.%s", type,
1368 	    ZFS_ERROR_CLASS, name);
1369 	VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
1370 	VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
1371 	VERIFY0(nvlist_add_string(resource,
1372 	    FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
1373 	VERIFY0(nvlist_add_uint64(resource,
1374 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
1375 	VERIFY0(nvlist_add_uint64(resource,
1376 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
1377 	VERIFY0(nvlist_add_int32(resource,
1378 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
1379 
1380 	if (vd) {
1381 		VERIFY0(nvlist_add_uint64(resource,
1382 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
1383 		VERIFY0(nvlist_add_uint64(resource,
1384 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
1385 		if (vd->vdev_path != NULL)
1386 			VERIFY0(nvlist_add_string(resource,
1387 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
1388 		if (vd->vdev_devid != NULL)
1389 			VERIFY0(nvlist_add_string(resource,
1390 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
1391 		if (vd->vdev_fru != NULL)
1392 			VERIFY0(nvlist_add_string(resource,
1393 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
1394 		if (vd->vdev_enc_sysfs_path != NULL)
1395 			VERIFY0(nvlist_add_string(resource,
1396 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1397 			    vd->vdev_enc_sysfs_path));
1398 	}
1399 
1400 	/* also copy any optional payload data */
1401 	if (aux) {
1402 		nvpair_t *elem = NULL;
1403 
1404 		while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
1405 			(void) nvlist_add_nvpair(resource, elem);
1406 	}
1407 #else
1408 	(void) spa, (void) vd, (void) type, (void) name, (void) aux;
1409 #endif
1410 	return (resource);
1411 }
1412 
1413 static void
1414 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1415     nvlist_t *aux)
1416 {
1417 #ifdef _KERNEL
1418 	nvlist_t *resource;
1419 
1420 	resource = zfs_event_create(spa, vd, type, name, aux);
1421 	if (resource)
1422 		zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
1423 #else
1424 	(void) spa, (void) vd, (void) type, (void) name, (void) aux;
1425 #endif
1426 }
1427 
1428 /*
1429  * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1430  * has been removed from the system.  This will cause the DE to ignore any
1431  * recent I/O errors, inferring that they are due to the asynchronous device
1432  * removal.
1433  */
1434 void
1435 zfs_post_remove(spa_t *spa, vdev_t *vd)
1436 {
1437 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
1438 }
1439 
1440 /*
1441  * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1442  * has the 'autoreplace' property set, and therefore any broken vdevs will be
1443  * handled by higher level logic, and no vdev fault should be generated.
1444  */
1445 void
1446 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
1447 {
1448 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
1449 }
1450 
1451 /*
1452  * The 'resource.fs.zfs.statechange' event is an internal signal that the
1453  * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
1454  * cause the retire agent to repair any outstanding fault management cases
1455  * open because the device was not found (fault.fs.zfs.device).
1456  */
1457 void
1458 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
1459 {
1460 #ifdef _KERNEL
1461 	nvlist_t *aux;
1462 
1463 	/*
1464 	 * Add optional supplemental keys to payload
1465 	 */
1466 	aux = fm_nvlist_create(NULL);
1467 	if (vd && aux) {
1468 		if (vd->vdev_physpath) {
1469 			fnvlist_add_string(aux,
1470 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
1471 			    vd->vdev_physpath);
1472 		}
1473 		if (vd->vdev_enc_sysfs_path) {
1474 			fnvlist_add_string(aux,
1475 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1476 			    vd->vdev_enc_sysfs_path);
1477 		}
1478 
1479 		fnvlist_add_uint64(aux,
1480 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
1481 	}
1482 
1483 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1484 	    aux);
1485 
1486 	if (aux)
1487 		fm_nvlist_destroy(aux, FM_NVA_FREE);
1488 #else
1489 	(void) spa, (void) vd, (void) laststate;
1490 #endif
1491 }
1492 
1493 #ifdef _KERNEL
1494 void
1495 zfs_ereport_init(void)
1496 {
1497 	mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL);
1498 	list_create(&recent_events_list, sizeof (recent_events_node_t),
1499 	    offsetof(recent_events_node_t, re_list_link));
1500 	avl_create(&recent_events_tree,  recent_events_compare,
1501 	    sizeof (recent_events_node_t), offsetof(recent_events_node_t,
1502 	    re_tree_link));
1503 }
1504 
1505 /*
1506  * This 'early' fini needs to run before zfs_fini() which on Linux waits
1507  * for the system_delay_taskq to drain.
1508  */
1509 void
1510 zfs_ereport_taskq_fini(void)
1511 {
1512 	mutex_enter(&recent_events_lock);
1513 	if (recent_events_cleaner_tqid != 0) {
1514 		taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid);
1515 		recent_events_cleaner_tqid = 0;
1516 	}
1517 	mutex_exit(&recent_events_lock);
1518 }
1519 
1520 void
1521 zfs_ereport_fini(void)
1522 {
1523 	recent_events_node_t *entry;
1524 
1525 	while ((entry = list_head(&recent_events_list)) != NULL) {
1526 		avl_remove(&recent_events_tree, entry);
1527 		list_remove(&recent_events_list, entry);
1528 		kmem_free(entry, sizeof (*entry));
1529 	}
1530 	avl_destroy(&recent_events_tree);
1531 	list_destroy(&recent_events_list);
1532 	mutex_destroy(&recent_events_lock);
1533 }
1534 
1535 void
1536 zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name)
1537 {
1538 	nvlist_t *aux;
1539 
1540 	aux = fm_nvlist_create(NULL);
1541 	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name);
1542 
1543 	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1544 	fm_nvlist_destroy(aux, FM_NVA_FREE);
1545 }
1546 
1547 /*
1548  * Post when a event when a zvol is created or removed
1549  *
1550  * This is currently only used by macOS, since it uses the event to create
1551  * symlinks between the volume name (mypool/myvol) and the actual /dev
1552  * device (/dev/disk3).  For example:
1553  *
1554  * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3
1555  *
1556  * name: The full name of the zvol ("mypool/myvol")
1557  * dev_name: The full /dev name for the zvol ("/dev/disk3")
1558  * raw_name: The raw  /dev name for the zvol ("/dev/rdisk3")
1559  */
1560 void
1561 zfs_ereport_zvol_post(const char *subclass, const char *name,
1562     const char *dev_name, const char *raw_name)
1563 {
1564 	nvlist_t *aux;
1565 	char *r;
1566 
1567 	boolean_t locked = mutex_owned(&spa_namespace_lock);
1568 	if (!locked) mutex_enter(&spa_namespace_lock);
1569 	spa_t *spa = spa_lookup(name);
1570 	if (!locked) mutex_exit(&spa_namespace_lock);
1571 
1572 	if (spa == NULL)
1573 		return;
1574 
1575 	aux = fm_nvlist_create(NULL);
1576 	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name);
1577 	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME,
1578 	    raw_name);
1579 	r = strchr(name, '/');
1580 	if (r && r[1])
1581 		fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]);
1582 
1583 	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1584 	fm_nvlist_destroy(aux, FM_NVA_FREE);
1585 }
1586 
1587 EXPORT_SYMBOL(zfs_ereport_post);
1588 EXPORT_SYMBOL(zfs_ereport_is_valid);
1589 EXPORT_SYMBOL(zfs_ereport_post_checksum);
1590 EXPORT_SYMBOL(zfs_post_remove);
1591 EXPORT_SYMBOL(zfs_post_autoreplace);
1592 EXPORT_SYMBOL(zfs_post_state_change);
1593 
1594 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW,
1595 	"Maximum recent zevents records to retain for duplicate checking");
1596 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW,
1597 	"Expiration time for recent zevents records");
1598 #endif /* _KERNEL */
1599