xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_fm.c (revision c07d6445eb89d9dd3950361b065b7bd110e3a043)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012,2021 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41 
42 /*
43  * This general routine is responsible for generating all the different ZFS
44  * ereports.  The payload is dependent on the class, and which arguments are
45  * supplied to the function:
46  *
47  * 	EREPORT			POOL	VDEV	IO
48  * 	block			X	X	X
49  * 	data			X		X
50  * 	device			X	X
51  * 	pool			X
52  *
53  * If we are in a loading state, all errors are chained together by the same
54  * SPA-wide ENA (Error Numeric Association).
55  *
56  * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57  * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
58  * to chain together all ereports associated with a logical piece of data.  For
59  * read I/Os, there  are basically three 'types' of I/O, which form a roughly
60  * layered diagram:
61  *
62  * 	+---------------+
63  * 	| Aggregate I/O |	No associated logical data or device
64  * 	+---------------+
65  *              |
66  *              V
67  * 	+---------------+	Reads associated with a piece of logical data.
68  * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
69  * 	+---------------+       mirrors, gang blocks, retries, etc.
70  *              |
71  *              V
72  * 	+---------------+	Reads associated with a particular device, but
73  * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
74  * 	+---------------+	and I/O aggregation.
75  *
76  * Note that 'physical I/O' here is not the same terminology as used in the rest
77  * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
78  * blockpointer.  But I/O with no associated block pointer can still be related
79  * to a logical piece of data (i.e. RAID-Z requests).
80  *
81  * Purely physical I/O always have unique ENAs.  They are not related to a
82  * particular piece of logical data, and therefore cannot be chained together.
83  * We still generate an ereport, but the DE doesn't correlate it with any
84  * logical piece of data.  When such an I/O fails, the delegated I/O requests
85  * will issue a retry, which will trigger the 'real' ereport with the correct
86  * ENA.
87  *
88  * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89  * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
90  * then inherit this pointer, so that when it is first set subsequent failures
91  * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
92  * this pointer is set to NULL, and no ereport will be generated (since it
93  * doesn't actually correspond to any particular device or piece of data,
94  * and the caller will always retry without caching or queueing anyway).
95  *
96  * For checksum errors, we want to include more information about the actual
97  * error which occurs.  Accordingly, we build an ereport when the error is
98  * noticed, but instead of sending it in immediately, we hang it off of the
99  * io_cksum_report field of the logical IO.  When the logical IO completes
100  * (successfully or not), zfs_ereport_finish_checksum() is called with the
101  * good and bad versions of the buffer (if available), and we annotate the
102  * ereport with information about the differences.
103  */
104 
105 #ifdef _KERNEL
106 /*
107  * Duplicate ereport Detection
108  *
109  * Some ereports are retained momentarily for detecting duplicates.  These
110  * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111  * tree of recent unique ereports.
112  *
113  * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114  * task is used to purge stale entries.
115  */
116 static list_t recent_events_list;
117 static avl_tree_t recent_events_tree;
118 static kmutex_t recent_events_lock;
119 static taskqid_t recent_events_cleaner_tqid;
120 
121 /*
122  * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
123  *
124  * This setting can be changed dynamically and setting it to zero
125  * disables duplicate detection.
126  */
127 static unsigned int zfs_zevent_retain_max = 2000;
128 
129 /*
130  * The lifespan for a recent ereport entry. The default of 15 minutes is
131  * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132  * over a period of 10 minutes.
133  */
134 static unsigned int zfs_zevent_retain_expire_secs = 900;
135 
136 typedef enum zfs_subclass {
137 	ZSC_IO,
138 	ZSC_DATA,
139 	ZSC_CHECKSUM
140 } zfs_subclass_t;
141 
142 typedef struct {
143 	/* common criteria */
144 	uint64_t	re_pool_guid;
145 	uint64_t	re_vdev_guid;
146 	int		re_io_error;
147 	uint64_t	re_io_size;
148 	uint64_t	re_io_offset;
149 	zfs_subclass_t	re_subclass;
150 	zio_priority_t	re_io_priority;
151 
152 	/* logical zio criteria (optional) */
153 	zbookmark_phys_t re_io_bookmark;
154 
155 	/* internal state */
156 	avl_node_t	re_tree_link;
157 	list_node_t	re_list_link;
158 	uint64_t	re_timestamp;
159 } recent_events_node_t;
160 
161 static int
162 recent_events_compare(const void *a, const void *b)
163 {
164 	const recent_events_node_t *node1 = a;
165 	const recent_events_node_t *node2 = b;
166 	int cmp;
167 
168 	/*
169 	 * The comparison order here is somewhat arbitrary.
170 	 * What's important is that if every criteria matches, then it
171 	 * is a duplicate (i.e. compare returns 0)
172 	 */
173 	if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0)
174 		return (cmp);
175 	if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0)
176 		return (cmp);
177 	if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0)
178 		return (cmp);
179 	if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0)
180 		return (cmp);
181 	if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0)
182 		return (cmp);
183 	if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0)
184 		return (cmp);
185 	if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0)
186 		return (cmp);
187 
188 	const zbookmark_phys_t *zb1 = &node1->re_io_bookmark;
189 	const zbookmark_phys_t *zb2 = &node2->re_io_bookmark;
190 
191 	if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0)
192 		return (cmp);
193 	if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0)
194 		return (cmp);
195 	if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0)
196 		return (cmp);
197 	if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0)
198 		return (cmp);
199 
200 	return (0);
201 }
202 
203 static void zfs_ereport_schedule_cleaner(void);
204 
205 /*
206  * background task to clean stale recent event nodes.
207  */
208 static void
209 zfs_ereport_cleaner(void *arg)
210 {
211 	recent_events_node_t *entry;
212 	uint64_t now = gethrtime();
213 
214 	/*
215 	 * purge expired entries
216 	 */
217 	mutex_enter(&recent_events_lock);
218 	while ((entry = list_tail(&recent_events_list)) != NULL) {
219 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
220 		if (age <= zfs_zevent_retain_expire_secs)
221 			break;
222 
223 		/* remove expired node */
224 		avl_remove(&recent_events_tree, entry);
225 		list_remove(&recent_events_list, entry);
226 		kmem_free(entry, sizeof (*entry));
227 	}
228 
229 	/* Restart the cleaner if more entries remain */
230 	recent_events_cleaner_tqid = 0;
231 	if (!list_is_empty(&recent_events_list))
232 		zfs_ereport_schedule_cleaner();
233 
234 	mutex_exit(&recent_events_lock);
235 }
236 
237 static void
238 zfs_ereport_schedule_cleaner(void)
239 {
240 	ASSERT(MUTEX_HELD(&recent_events_lock));
241 
242 	uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1);
243 
244 	recent_events_cleaner_tqid = taskq_dispatch_delay(
245 	    system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP,
246 	    ddi_get_lbolt() + NSEC_TO_TICK(timeout));
247 }
248 
249 /*
250  * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
251  */
252 void
253 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
254 {
255 	uint64_t vdev_guid, pool_guid;
256 
257 	ASSERT(vd != NULL || spa != NULL);
258 	if (vd == NULL) {
259 		vdev_guid = 0;
260 		pool_guid = spa_guid(spa);
261 	} else {
262 		vdev_guid = vd->vdev_guid;
263 		pool_guid = 0;
264 	}
265 
266 	mutex_enter(&recent_events_lock);
267 
268 	recent_events_node_t *next = list_head(&recent_events_list);
269 	while (next != NULL) {
270 		recent_events_node_t *entry = next;
271 
272 		next = list_next(&recent_events_list, next);
273 
274 		if (entry->re_vdev_guid == vdev_guid ||
275 		    entry->re_pool_guid == pool_guid) {
276 			avl_remove(&recent_events_tree, entry);
277 			list_remove(&recent_events_list, entry);
278 			kmem_free(entry, sizeof (*entry));
279 		}
280 	}
281 
282 	mutex_exit(&recent_events_lock);
283 }
284 
285 /*
286  * Check if an ereport would be a duplicate of one recently posted.
287  *
288  * An ereport is considered a duplicate if the set of criteria in
289  * recent_events_node_t all match.
290  *
291  * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
292  * are candidates for duplicate checking.
293  */
294 static boolean_t
295 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd,
296     const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size)
297 {
298 	recent_events_node_t search = {0}, *entry;
299 
300 	if (vd == NULL || zio == NULL)
301 		return (B_FALSE);
302 
303 	if (zfs_zevent_retain_max == 0)
304 		return (B_FALSE);
305 
306 	if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0)
307 		search.re_subclass = ZSC_IO;
308 	else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0)
309 		search.re_subclass = ZSC_DATA;
310 	else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0)
311 		search.re_subclass = ZSC_CHECKSUM;
312 	else
313 		return (B_FALSE);
314 
315 	search.re_pool_guid = spa_guid(spa);
316 	search.re_vdev_guid = vd->vdev_guid;
317 	search.re_io_error = zio->io_error;
318 	search.re_io_priority = zio->io_priority;
319 	/* if size is supplied use it over what's in zio */
320 	if (size) {
321 		search.re_io_size = size;
322 		search.re_io_offset = offset;
323 	} else {
324 		search.re_io_size = zio->io_size;
325 		search.re_io_offset = zio->io_offset;
326 	}
327 
328 	/* grab optional logical zio criteria */
329 	if (zb != NULL) {
330 		search.re_io_bookmark.zb_objset = zb->zb_objset;
331 		search.re_io_bookmark.zb_object = zb->zb_object;
332 		search.re_io_bookmark.zb_level = zb->zb_level;
333 		search.re_io_bookmark.zb_blkid = zb->zb_blkid;
334 	}
335 
336 	uint64_t now = gethrtime();
337 
338 	mutex_enter(&recent_events_lock);
339 
340 	/* check if we have seen this one recently */
341 	entry = avl_find(&recent_events_tree, &search, NULL);
342 	if (entry != NULL) {
343 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
344 
345 		/*
346 		 * There is still an active cleaner (since we're here).
347 		 * Reset the last seen time for this duplicate entry
348 		 * so that its lifespand gets extended.
349 		 */
350 		list_remove(&recent_events_list, entry);
351 		list_insert_head(&recent_events_list, entry);
352 		entry->re_timestamp = now;
353 
354 		zfs_zevent_track_duplicate();
355 		mutex_exit(&recent_events_lock);
356 
357 		return (age <= zfs_zevent_retain_expire_secs);
358 	}
359 
360 	if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) {
361 		/* recycle oldest node */
362 		entry = list_tail(&recent_events_list);
363 		ASSERT(entry != NULL);
364 		list_remove(&recent_events_list, entry);
365 		avl_remove(&recent_events_tree, entry);
366 	} else {
367 		entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP);
368 	}
369 
370 	/* record this as a recent ereport */
371 	*entry = search;
372 	avl_add(&recent_events_tree, entry);
373 	list_insert_head(&recent_events_list, entry);
374 	entry->re_timestamp = now;
375 
376 	/* Start a cleaner if not already scheduled */
377 	if (recent_events_cleaner_tqid == 0)
378 		zfs_ereport_schedule_cleaner();
379 
380 	mutex_exit(&recent_events_lock);
381 	return (B_FALSE);
382 }
383 
384 void
385 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
386 {
387 	if (nvl)
388 		fm_nvlist_destroy(nvl, FM_NVA_FREE);
389 
390 	if (detector)
391 		fm_nvlist_destroy(detector, FM_NVA_FREE);
392 }
393 
394 /*
395  * We want to rate limit ZIO delay, deadman, and checksum events so as to not
396  * flood zevent consumers when a disk is acting up.
397  *
398  * Returns 1 if we're ratelimiting, 0 if not.
399  */
400 static int
401 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
402 {
403 	int rc = 0;
404 	/*
405 	 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
406 	 * are.  Invert it to get our return value.
407 	 */
408 	if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
409 		rc = !zfs_ratelimit(&vd->vdev_delay_rl);
410 	} else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) {
411 		rc = !zfs_ratelimit(&vd->vdev_deadman_rl);
412 	} else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
413 		rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
414 	}
415 
416 	if (rc)	{
417 		/* We're rate limiting */
418 		fm_erpt_dropped_increment();
419 	}
420 
421 	return (rc);
422 }
423 
424 /*
425  * Return B_TRUE if the event actually posted, B_FALSE if not.
426  */
427 static boolean_t
428 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
429     const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
430     zio_t *zio, uint64_t stateoroffset, uint64_t size)
431 {
432 	nvlist_t *ereport, *detector;
433 
434 	uint64_t ena;
435 	char class[64];
436 
437 	if ((ereport = fm_nvlist_create(NULL)) == NULL)
438 		return (B_FALSE);
439 
440 	if ((detector = fm_nvlist_create(NULL)) == NULL) {
441 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
442 		return (B_FALSE);
443 	}
444 
445 	/*
446 	 * Serialize ereport generation
447 	 */
448 	mutex_enter(&spa->spa_errlist_lock);
449 
450 	/*
451 	 * Determine the ENA to use for this event.  If we are in a loading
452 	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
453 	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
454 	 */
455 	if (spa_load_state(spa) != SPA_LOAD_NONE) {
456 		if (spa->spa_ena == 0)
457 			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
458 		ena = spa->spa_ena;
459 	} else if (zio != NULL && zio->io_logical != NULL) {
460 		if (zio->io_logical->io_ena == 0)
461 			zio->io_logical->io_ena =
462 			    fm_ena_generate(0, FM_ENA_FMT1);
463 		ena = zio->io_logical->io_ena;
464 	} else {
465 		ena = fm_ena_generate(0, FM_ENA_FMT1);
466 	}
467 
468 	/*
469 	 * Construct the full class, detector, and other standard FMA fields.
470 	 */
471 	(void) snprintf(class, sizeof (class), "%s.%s",
472 	    ZFS_ERROR_CLASS, subclass);
473 
474 	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
475 	    vd != NULL ? vd->vdev_guid : 0);
476 
477 	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
478 
479 	/*
480 	 * Construct the per-ereport payload, depending on which parameters are
481 	 * passed in.
482 	 */
483 
484 	/*
485 	 * Generic payload members common to all ereports.
486 	 */
487 	fm_payload_set(ereport,
488 	    FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
489 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
490 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
491 	    (uint64_t)spa_state(spa),
492 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
493 	    (int32_t)spa_load_state(spa), NULL);
494 
495 	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
496 	    DATA_TYPE_STRING,
497 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
498 	    FM_EREPORT_FAILMODE_WAIT :
499 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
500 	    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
501 	    NULL);
502 
503 	if (vd != NULL) {
504 		vdev_t *pvd = vd->vdev_parent;
505 		vdev_queue_t *vq = &vd->vdev_queue;
506 		vdev_stat_t *vs = &vd->vdev_stat;
507 		vdev_t *spare_vd;
508 		uint64_t *spare_guids;
509 		char **spare_paths;
510 		int i, spare_count;
511 
512 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
513 		    DATA_TYPE_UINT64, vd->vdev_guid,
514 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
515 		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
516 		if (vd->vdev_path != NULL)
517 			fm_payload_set(ereport,
518 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
519 			    DATA_TYPE_STRING, vd->vdev_path, NULL);
520 		if (vd->vdev_devid != NULL)
521 			fm_payload_set(ereport,
522 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
523 			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
524 		if (vd->vdev_fru != NULL)
525 			fm_payload_set(ereport,
526 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
527 			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
528 		if (vd->vdev_enc_sysfs_path != NULL)
529 			fm_payload_set(ereport,
530 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
531 			    DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
532 		if (vd->vdev_ashift)
533 			fm_payload_set(ereport,
534 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
535 			    DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
536 
537 		if (vq != NULL) {
538 			fm_payload_set(ereport,
539 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
540 			    DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
541 			fm_payload_set(ereport,
542 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
543 			    DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
544 		}
545 
546 		if (vs != NULL) {
547 			fm_payload_set(ereport,
548 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
549 			    DATA_TYPE_UINT64, vs->vs_read_errors,
550 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
551 			    DATA_TYPE_UINT64, vs->vs_write_errors,
552 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
553 			    DATA_TYPE_UINT64, vs->vs_checksum_errors,
554 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
555 			    DATA_TYPE_UINT64, vs->vs_slow_ios,
556 			    NULL);
557 		}
558 
559 		if (pvd != NULL) {
560 			fm_payload_set(ereport,
561 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
562 			    DATA_TYPE_UINT64, pvd->vdev_guid,
563 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
564 			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
565 			    NULL);
566 			if (pvd->vdev_path)
567 				fm_payload_set(ereport,
568 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
569 				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
570 			if (pvd->vdev_devid)
571 				fm_payload_set(ereport,
572 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
573 				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
574 		}
575 
576 		spare_count = spa->spa_spares.sav_count;
577 		spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
578 		    KM_SLEEP);
579 		spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
580 		    KM_SLEEP);
581 
582 		for (i = 0; i < spare_count; i++) {
583 			spare_vd = spa->spa_spares.sav_vdevs[i];
584 			if (spare_vd) {
585 				spare_paths[i] = spare_vd->vdev_path;
586 				spare_guids[i] = spare_vd->vdev_guid;
587 			}
588 		}
589 
590 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
591 		    DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
592 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
593 		    DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
594 
595 		kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
596 		kmem_free(spare_paths, sizeof (char *) * spare_count);
597 	}
598 
599 	if (zio != NULL) {
600 		/*
601 		 * Payload common to all I/Os.
602 		 */
603 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
604 		    DATA_TYPE_INT32, zio->io_error, NULL);
605 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
606 		    DATA_TYPE_INT32, zio->io_flags, NULL);
607 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
608 		    DATA_TYPE_UINT32, zio->io_stage, NULL);
609 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
610 		    DATA_TYPE_UINT32, zio->io_pipeline, NULL);
611 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
612 		    DATA_TYPE_UINT64, zio->io_delay, NULL);
613 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
614 		    DATA_TYPE_UINT64, zio->io_timestamp, NULL);
615 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
616 		    DATA_TYPE_UINT64, zio->io_delta, NULL);
617 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY,
618 		    DATA_TYPE_UINT32, zio->io_priority, NULL);
619 
620 		/*
621 		 * If the 'size' parameter is non-zero, it indicates this is a
622 		 * RAID-Z or other I/O where the physical offset and length are
623 		 * provided for us, instead of within the zio_t.
624 		 */
625 		if (vd != NULL) {
626 			if (size)
627 				fm_payload_set(ereport,
628 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
629 				    DATA_TYPE_UINT64, stateoroffset,
630 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
631 				    DATA_TYPE_UINT64, size, NULL);
632 			else
633 				fm_payload_set(ereport,
634 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
635 				    DATA_TYPE_UINT64, zio->io_offset,
636 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
637 				    DATA_TYPE_UINT64, zio->io_size, NULL);
638 		}
639 	} else if (vd != NULL) {
640 		/*
641 		 * If we have a vdev but no zio, this is a device fault, and the
642 		 * 'stateoroffset' parameter indicates the previous state of the
643 		 * vdev.
644 		 */
645 		fm_payload_set(ereport,
646 		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
647 		    DATA_TYPE_UINT64, stateoroffset, NULL);
648 	}
649 
650 	/*
651 	 * Payload for I/Os with corresponding logical information.
652 	 */
653 	if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
654 		fm_payload_set(ereport,
655 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
656 		    DATA_TYPE_UINT64, zb->zb_objset,
657 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
658 		    DATA_TYPE_UINT64, zb->zb_object,
659 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
660 		    DATA_TYPE_INT64, zb->zb_level,
661 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
662 		    DATA_TYPE_UINT64, zb->zb_blkid, NULL);
663 	}
664 
665 	mutex_exit(&spa->spa_errlist_lock);
666 
667 	*ereport_out = ereport;
668 	*detector_out = detector;
669 	return (B_TRUE);
670 }
671 
672 /* if it's <= 128 bytes, save the corruption directly */
673 #define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
674 
675 #define	MAX_RANGES		16
676 
677 typedef struct zfs_ecksum_info {
678 	/* histograms of set and cleared bits by bit number in a 64-bit word */
679 	uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY];
680 	uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
681 
682 	/* inline arrays of bits set and cleared. */
683 	uint64_t zei_bits_set[ZFM_MAX_INLINE];
684 	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
685 
686 	/*
687 	 * for each range, the number of bits set and cleared.  The Hamming
688 	 * distance between the good and bad buffers is the sum of them all.
689 	 */
690 	uint32_t zei_range_sets[MAX_RANGES];
691 	uint32_t zei_range_clears[MAX_RANGES];
692 
693 	struct zei_ranges {
694 		uint32_t	zr_start;
695 		uint32_t	zr_end;
696 	} zei_ranges[MAX_RANGES];
697 
698 	size_t	zei_range_count;
699 	uint32_t zei_mingap;
700 	uint32_t zei_allowed_mingap;
701 
702 } zfs_ecksum_info_t;
703 
704 static void
705 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count)
706 {
707 	size_t i;
708 	size_t bits = 0;
709 	uint64_t value = BE_64(value_arg);
710 
711 	/* We store the bits in big-endian (largest-first) order */
712 	for (i = 0; i < 64; i++) {
713 		if (value & (1ull << i)) {
714 			hist[63 - i]++;
715 			++bits;
716 		}
717 	}
718 	/* update the count of bits changed */
719 	*count += bits;
720 }
721 
722 /*
723  * We've now filled up the range array, and need to increase "mingap" and
724  * shrink the range list accordingly.  zei_mingap is always the smallest
725  * distance between array entries, so we set the new_allowed_gap to be
726  * one greater than that.  We then go through the list, joining together
727  * any ranges which are closer than the new_allowed_gap.
728  *
729  * By construction, there will be at least one.  We also update zei_mingap
730  * to the new smallest gap, to prepare for our next invocation.
731  */
732 static void
733 zei_shrink_ranges(zfs_ecksum_info_t *eip)
734 {
735 	uint32_t mingap = UINT32_MAX;
736 	uint32_t new_allowed_gap = eip->zei_mingap + 1;
737 
738 	size_t idx, output;
739 	size_t max = eip->zei_range_count;
740 
741 	struct zei_ranges *r = eip->zei_ranges;
742 
743 	ASSERT3U(eip->zei_range_count, >, 0);
744 	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
745 
746 	output = idx = 0;
747 	while (idx < max - 1) {
748 		uint32_t start = r[idx].zr_start;
749 		uint32_t end = r[idx].zr_end;
750 
751 		while (idx < max - 1) {
752 			idx++;
753 
754 			uint32_t nstart = r[idx].zr_start;
755 			uint32_t nend = r[idx].zr_end;
756 
757 			uint32_t gap = nstart - end;
758 			if (gap < new_allowed_gap) {
759 				end = nend;
760 				continue;
761 			}
762 			if (gap < mingap)
763 				mingap = gap;
764 			break;
765 		}
766 		r[output].zr_start = start;
767 		r[output].zr_end = end;
768 		output++;
769 	}
770 	ASSERT3U(output, <, eip->zei_range_count);
771 	eip->zei_range_count = output;
772 	eip->zei_mingap = mingap;
773 	eip->zei_allowed_mingap = new_allowed_gap;
774 }
775 
776 static void
777 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
778 {
779 	struct zei_ranges *r = eip->zei_ranges;
780 	size_t count = eip->zei_range_count;
781 
782 	if (count >= MAX_RANGES) {
783 		zei_shrink_ranges(eip);
784 		count = eip->zei_range_count;
785 	}
786 	if (count == 0) {
787 		eip->zei_mingap = UINT32_MAX;
788 		eip->zei_allowed_mingap = 1;
789 	} else {
790 		int gap = start - r[count - 1].zr_end;
791 
792 		if (gap < eip->zei_allowed_mingap) {
793 			r[count - 1].zr_end = end;
794 			return;
795 		}
796 		if (gap < eip->zei_mingap)
797 			eip->zei_mingap = gap;
798 	}
799 	r[count].zr_start = start;
800 	r[count].zr_end = end;
801 	eip->zei_range_count++;
802 }
803 
804 static size_t
805 zei_range_total_size(zfs_ecksum_info_t *eip)
806 {
807 	struct zei_ranges *r = eip->zei_ranges;
808 	size_t count = eip->zei_range_count;
809 	size_t result = 0;
810 	size_t idx;
811 
812 	for (idx = 0; idx < count; idx++)
813 		result += (r[idx].zr_end - r[idx].zr_start);
814 
815 	return (result);
816 }
817 
818 static zfs_ecksum_info_t *
819 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
820     const abd_t *goodabd, const abd_t *badabd, size_t size,
821     boolean_t drop_if_identical)
822 {
823 	const uint64_t *good;
824 	const uint64_t *bad;
825 
826 	size_t nui64s = size / sizeof (uint64_t);
827 
828 	size_t inline_size;
829 	int no_inline = 0;
830 	size_t idx;
831 	size_t range;
832 
833 	size_t offset = 0;
834 	ssize_t start = -1;
835 
836 	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
837 
838 	/* don't do any annotation for injected checksum errors */
839 	if (info != NULL && info->zbc_injected)
840 		return (eip);
841 
842 	if (info != NULL && info->zbc_has_cksum) {
843 		fm_payload_set(ereport,
844 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
845 		    DATA_TYPE_UINT64_ARRAY,
846 		    sizeof (info->zbc_expected) / sizeof (uint64_t),
847 		    (uint64_t *)&info->zbc_expected,
848 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
849 		    DATA_TYPE_UINT64_ARRAY,
850 		    sizeof (info->zbc_actual) / sizeof (uint64_t),
851 		    (uint64_t *)&info->zbc_actual,
852 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
853 		    DATA_TYPE_STRING,
854 		    info->zbc_checksum_name,
855 		    NULL);
856 
857 		if (info->zbc_byteswapped) {
858 			fm_payload_set(ereport,
859 			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
860 			    DATA_TYPE_BOOLEAN, 1,
861 			    NULL);
862 		}
863 	}
864 
865 	if (badabd == NULL || goodabd == NULL)
866 		return (eip);
867 
868 	ASSERT3U(nui64s, <=, UINT32_MAX);
869 	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
870 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
871 	ASSERT3U(size, <=, UINT32_MAX);
872 
873 	good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
874 	bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
875 
876 	/* build up the range list by comparing the two buffers. */
877 	for (idx = 0; idx < nui64s; idx++) {
878 		if (good[idx] == bad[idx]) {
879 			if (start == -1)
880 				continue;
881 
882 			zei_add_range(eip, start, idx);
883 			start = -1;
884 		} else {
885 			if (start != -1)
886 				continue;
887 
888 			start = idx;
889 		}
890 	}
891 	if (start != -1)
892 		zei_add_range(eip, start, idx);
893 
894 	/* See if it will fit in our inline buffers */
895 	inline_size = zei_range_total_size(eip);
896 	if (inline_size > ZFM_MAX_INLINE)
897 		no_inline = 1;
898 
899 	/*
900 	 * If there is no change and we want to drop if the buffers are
901 	 * identical, do so.
902 	 */
903 	if (inline_size == 0 && drop_if_identical) {
904 		kmem_free(eip, sizeof (*eip));
905 		abd_return_buf((abd_t *)goodabd, (void *)good, size);
906 		abd_return_buf((abd_t *)badabd, (void *)bad, size);
907 		return (NULL);
908 	}
909 
910 	/*
911 	 * Now walk through the ranges, filling in the details of the
912 	 * differences.  Also convert our uint64_t-array offsets to byte
913 	 * offsets.
914 	 */
915 	for (range = 0; range < eip->zei_range_count; range++) {
916 		size_t start = eip->zei_ranges[range].zr_start;
917 		size_t end = eip->zei_ranges[range].zr_end;
918 
919 		for (idx = start; idx < end; idx++) {
920 			uint64_t set, cleared;
921 
922 			// bits set in bad, but not in good
923 			set = ((~good[idx]) & bad[idx]);
924 			// bits set in good, but not in bad
925 			cleared = (good[idx] & (~bad[idx]));
926 
927 			if (!no_inline) {
928 				ASSERT3U(offset, <, inline_size);
929 				eip->zei_bits_set[offset] = set;
930 				eip->zei_bits_cleared[offset] = cleared;
931 				offset++;
932 			}
933 
934 			update_histogram(set, eip->zei_histogram_set,
935 			    &eip->zei_range_sets[range]);
936 			update_histogram(cleared, eip->zei_histogram_cleared,
937 			    &eip->zei_range_clears[range]);
938 		}
939 
940 		/* convert to byte offsets */
941 		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
942 		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
943 	}
944 
945 	abd_return_buf((abd_t *)goodabd, (void *)good, size);
946 	abd_return_buf((abd_t *)badabd, (void *)bad, size);
947 
948 	eip->zei_allowed_mingap	*= sizeof (uint64_t);
949 	inline_size		*= sizeof (uint64_t);
950 
951 	/* fill in ereport */
952 	fm_payload_set(ereport,
953 	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
954 	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
955 	    (uint32_t *)eip->zei_ranges,
956 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
957 	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
958 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
959 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
960 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
961 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
962 	    NULL);
963 
964 	if (!no_inline) {
965 		fm_payload_set(ereport,
966 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
967 		    DATA_TYPE_UINT8_ARRAY,
968 		    inline_size, (uint8_t *)eip->zei_bits_set,
969 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
970 		    DATA_TYPE_UINT8_ARRAY,
971 		    inline_size, (uint8_t *)eip->zei_bits_cleared,
972 		    NULL);
973 	} else {
974 		fm_payload_set(ereport,
975 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
976 		    DATA_TYPE_UINT32_ARRAY,
977 		    NBBY * sizeof (uint64_t), eip->zei_histogram_set,
978 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
979 		    DATA_TYPE_UINT32_ARRAY,
980 		    NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
981 		    NULL);
982 	}
983 	return (eip);
984 }
985 #else
986 void
987 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
988 {
989 	(void) spa, (void) vd;
990 }
991 #endif
992 
993 /*
994  * Make sure our event is still valid for the given zio/vdev/pool.  For example,
995  * we don't want to keep logging events for a faulted or missing vdev.
996  */
997 boolean_t
998 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
999 {
1000 #ifdef _KERNEL
1001 	/*
1002 	 * If we are doing a spa_tryimport() or in recovery mode,
1003 	 * ignore errors.
1004 	 */
1005 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
1006 	    spa_load_state(spa) == SPA_LOAD_RECOVER)
1007 		return (B_FALSE);
1008 
1009 	/*
1010 	 * If we are in the middle of opening a pool, and the previous attempt
1011 	 * failed, don't bother logging any new ereports - we're just going to
1012 	 * get the same diagnosis anyway.
1013 	 */
1014 	if (spa_load_state(spa) != SPA_LOAD_NONE &&
1015 	    spa->spa_last_open_failed)
1016 		return (B_FALSE);
1017 
1018 	if (zio != NULL) {
1019 		/*
1020 		 * If this is not a read or write zio, ignore the error.  This
1021 		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
1022 		 */
1023 		if (zio->io_type != ZIO_TYPE_READ &&
1024 		    zio->io_type != ZIO_TYPE_WRITE)
1025 			return (B_FALSE);
1026 
1027 		if (vd != NULL) {
1028 			/*
1029 			 * If the vdev has already been marked as failing due
1030 			 * to a failed probe, then ignore any subsequent I/O
1031 			 * errors, as the DE will automatically fault the vdev
1032 			 * on the first such failure.  This also catches cases
1033 			 * where vdev_remove_wanted is set and the device has
1034 			 * not yet been asynchronously placed into the REMOVED
1035 			 * state.
1036 			 */
1037 			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
1038 				return (B_FALSE);
1039 
1040 			/*
1041 			 * Ignore checksum errors for reads from DTL regions of
1042 			 * leaf vdevs.
1043 			 */
1044 			if (zio->io_type == ZIO_TYPE_READ &&
1045 			    zio->io_error == ECKSUM &&
1046 			    vd->vdev_ops->vdev_op_leaf &&
1047 			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
1048 				return (B_FALSE);
1049 		}
1050 	}
1051 
1052 	/*
1053 	 * For probe failure, we want to avoid posting ereports if we've
1054 	 * already removed the device in the meantime.
1055 	 */
1056 	if (vd != NULL &&
1057 	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
1058 	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
1059 		return (B_FALSE);
1060 
1061 	/* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1062 	if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
1063 	    (zio != NULL) && (!zio->io_timestamp)) {
1064 		return (B_FALSE);
1065 	}
1066 #else
1067 	(void) subclass, (void) spa, (void) vd, (void) zio;
1068 #endif
1069 	return (B_TRUE);
1070 }
1071 
1072 /*
1073  * Post an ereport for the given subclass
1074  *
1075  * Returns
1076  * - 0 if an event was posted
1077  * - EINVAL if there was a problem posting event
1078  * - EBUSY if the event was rate limited
1079  * - EALREADY if the event was already posted (duplicate)
1080  */
1081 int
1082 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
1083     const zbookmark_phys_t *zb, zio_t *zio, uint64_t state)
1084 {
1085 	int rc = 0;
1086 #ifdef _KERNEL
1087 	nvlist_t *ereport = NULL;
1088 	nvlist_t *detector = NULL;
1089 
1090 	if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
1091 		return (EINVAL);
1092 
1093 	if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0))
1094 		return (SET_ERROR(EALREADY));
1095 
1096 	if (zfs_is_ratelimiting_event(subclass, vd))
1097 		return (SET_ERROR(EBUSY));
1098 
1099 	if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
1100 	    zb, zio, state, 0))
1101 		return (SET_ERROR(EINVAL));	/* couldn't post event */
1102 
1103 	if (ereport == NULL)
1104 		return (SET_ERROR(EINVAL));
1105 
1106 	/* Cleanup is handled by the callback function */
1107 	rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1108 #else
1109 	(void) subclass, (void) spa, (void) vd, (void) zb, (void) zio,
1110 	    (void) state;
1111 #endif
1112 	return (rc);
1113 }
1114 
1115 /*
1116  * Prepare a checksum ereport
1117  *
1118  * Returns
1119  * - 0 if an event was posted
1120  * - EINVAL if there was a problem posting event
1121  * - EBUSY if the event was rate limited
1122  * - EALREADY if the event was already posted (duplicate)
1123  */
1124 int
1125 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1126     struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info)
1127 {
1128 	zio_cksum_report_t *report;
1129 
1130 #ifdef _KERNEL
1131 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1132 		return (SET_ERROR(EINVAL));
1133 
1134 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1135 	    offset, length))
1136 		return (SET_ERROR(EALREADY));
1137 
1138 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1139 		return (SET_ERROR(EBUSY));
1140 #else
1141 	(void) zb, (void) offset;
1142 #endif
1143 
1144 	report = kmem_zalloc(sizeof (*report), KM_SLEEP);
1145 
1146 	zio_vsd_default_cksum_report(zio, report);
1147 
1148 	/* copy the checksum failure information if it was provided */
1149 	if (info != NULL) {
1150 		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
1151 		memcpy(report->zcr_ckinfo, info, sizeof (*info));
1152 	}
1153 
1154 	report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
1155 	report->zcr_align =
1156 	    vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
1157 	report->zcr_length = length;
1158 
1159 #ifdef _KERNEL
1160 	(void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
1161 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
1162 
1163 	if (report->zcr_ereport == NULL) {
1164 		zfs_ereport_free_checksum(report);
1165 		return (0);
1166 	}
1167 #endif
1168 
1169 	mutex_enter(&spa->spa_errlist_lock);
1170 	report->zcr_next = zio->io_logical->io_cksum_report;
1171 	zio->io_logical->io_cksum_report = report;
1172 	mutex_exit(&spa->spa_errlist_lock);
1173 	return (0);
1174 }
1175 
1176 void
1177 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
1178     const abd_t *bad_data, boolean_t drop_if_identical)
1179 {
1180 #ifdef _KERNEL
1181 	zfs_ecksum_info_t *info;
1182 
1183 	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
1184 	    good_data, bad_data, report->zcr_length, drop_if_identical);
1185 	if (info != NULL)
1186 		zfs_zevent_post(report->zcr_ereport,
1187 		    report->zcr_detector, zfs_zevent_post_cb);
1188 	else
1189 		zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
1190 
1191 	report->zcr_ereport = report->zcr_detector = NULL;
1192 	if (info != NULL)
1193 		kmem_free(info, sizeof (*info));
1194 #else
1195 	(void) report, (void) good_data, (void) bad_data,
1196 	    (void) drop_if_identical;
1197 #endif
1198 }
1199 
1200 void
1201 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
1202 {
1203 #ifdef _KERNEL
1204 	if (rpt->zcr_ereport != NULL) {
1205 		fm_nvlist_destroy(rpt->zcr_ereport,
1206 		    FM_NVA_FREE);
1207 		fm_nvlist_destroy(rpt->zcr_detector,
1208 		    FM_NVA_FREE);
1209 	}
1210 #endif
1211 	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
1212 
1213 	if (rpt->zcr_ckinfo != NULL)
1214 		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
1215 
1216 	kmem_free(rpt, sizeof (*rpt));
1217 }
1218 
1219 /*
1220  * Post a checksum ereport
1221  *
1222  * Returns
1223  * - 0 if an event was posted
1224  * - EINVAL if there was a problem posting event
1225  * - EBUSY if the event was rate limited
1226  * - EALREADY if the event was already posted (duplicate)
1227  */
1228 int
1229 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1230     struct zio *zio, uint64_t offset, uint64_t length,
1231     const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
1232 {
1233 	int rc = 0;
1234 #ifdef _KERNEL
1235 	nvlist_t *ereport = NULL;
1236 	nvlist_t *detector = NULL;
1237 	zfs_ecksum_info_t *info;
1238 
1239 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1240 		return (SET_ERROR(EINVAL));
1241 
1242 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1243 	    offset, length))
1244 		return (SET_ERROR(EALREADY));
1245 
1246 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1247 		return (SET_ERROR(EBUSY));
1248 
1249 	if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
1250 	    spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
1251 		return (SET_ERROR(EINVAL));
1252 	}
1253 
1254 	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
1255 	    B_FALSE);
1256 
1257 	if (info != NULL) {
1258 		rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1259 		kmem_free(info, sizeof (*info));
1260 	}
1261 #else
1262 	(void) spa, (void) vd, (void) zb, (void) zio, (void) offset,
1263 	    (void) length, (void) good_data, (void) bad_data, (void) zbc;
1264 #endif
1265 	return (rc);
1266 }
1267 
1268 /*
1269  * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1270  * change in the pool.  All sysevents are listed in sys/sysevent/eventdefs.h
1271  * and are designed to be consumed by the ZFS Event Daemon (ZED).  For
1272  * additional details refer to the zed(8) man page.
1273  */
1274 nvlist_t *
1275 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1276     nvlist_t *aux)
1277 {
1278 	nvlist_t *resource = NULL;
1279 #ifdef _KERNEL
1280 	char class[64];
1281 
1282 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
1283 		return (NULL);
1284 
1285 	if ((resource = fm_nvlist_create(NULL)) == NULL)
1286 		return (NULL);
1287 
1288 	(void) snprintf(class, sizeof (class), "%s.%s.%s", type,
1289 	    ZFS_ERROR_CLASS, name);
1290 	VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
1291 	VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
1292 	VERIFY0(nvlist_add_string(resource,
1293 	    FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
1294 	VERIFY0(nvlist_add_uint64(resource,
1295 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
1296 	VERIFY0(nvlist_add_uint64(resource,
1297 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
1298 	VERIFY0(nvlist_add_int32(resource,
1299 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
1300 
1301 	if (vd) {
1302 		VERIFY0(nvlist_add_uint64(resource,
1303 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
1304 		VERIFY0(nvlist_add_uint64(resource,
1305 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
1306 		if (vd->vdev_path != NULL)
1307 			VERIFY0(nvlist_add_string(resource,
1308 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
1309 		if (vd->vdev_devid != NULL)
1310 			VERIFY0(nvlist_add_string(resource,
1311 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
1312 		if (vd->vdev_fru != NULL)
1313 			VERIFY0(nvlist_add_string(resource,
1314 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
1315 		if (vd->vdev_enc_sysfs_path != NULL)
1316 			VERIFY0(nvlist_add_string(resource,
1317 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1318 			    vd->vdev_enc_sysfs_path));
1319 	}
1320 
1321 	/* also copy any optional payload data */
1322 	if (aux) {
1323 		nvpair_t *elem = NULL;
1324 
1325 		while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
1326 			(void) nvlist_add_nvpair(resource, elem);
1327 	}
1328 #else
1329 	(void) spa, (void) vd, (void) type, (void) name, (void) aux;
1330 #endif
1331 	return (resource);
1332 }
1333 
1334 static void
1335 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1336     nvlist_t *aux)
1337 {
1338 #ifdef _KERNEL
1339 	nvlist_t *resource;
1340 
1341 	resource = zfs_event_create(spa, vd, type, name, aux);
1342 	if (resource)
1343 		zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
1344 #else
1345 	(void) spa, (void) vd, (void) type, (void) name, (void) aux;
1346 #endif
1347 }
1348 
1349 /*
1350  * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1351  * has been removed from the system.  This will cause the DE to ignore any
1352  * recent I/O errors, inferring that they are due to the asynchronous device
1353  * removal.
1354  */
1355 void
1356 zfs_post_remove(spa_t *spa, vdev_t *vd)
1357 {
1358 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
1359 }
1360 
1361 /*
1362  * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1363  * has the 'autoreplace' property set, and therefore any broken vdevs will be
1364  * handled by higher level logic, and no vdev fault should be generated.
1365  */
1366 void
1367 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
1368 {
1369 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
1370 }
1371 
1372 /*
1373  * The 'resource.fs.zfs.statechange' event is an internal signal that the
1374  * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
1375  * cause the retire agent to repair any outstanding fault management cases
1376  * open because the device was not found (fault.fs.zfs.device).
1377  */
1378 void
1379 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
1380 {
1381 #ifdef _KERNEL
1382 	nvlist_t *aux;
1383 
1384 	/*
1385 	 * Add optional supplemental keys to payload
1386 	 */
1387 	aux = fm_nvlist_create(NULL);
1388 	if (vd && aux) {
1389 		if (vd->vdev_physpath) {
1390 			fnvlist_add_string(aux,
1391 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
1392 			    vd->vdev_physpath);
1393 		}
1394 		if (vd->vdev_enc_sysfs_path) {
1395 			fnvlist_add_string(aux,
1396 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1397 			    vd->vdev_enc_sysfs_path);
1398 		}
1399 
1400 		fnvlist_add_uint64(aux,
1401 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
1402 	}
1403 
1404 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1405 	    aux);
1406 
1407 	if (aux)
1408 		fm_nvlist_destroy(aux, FM_NVA_FREE);
1409 #else
1410 	(void) spa, (void) vd, (void) laststate;
1411 #endif
1412 }
1413 
1414 #ifdef _KERNEL
1415 void
1416 zfs_ereport_init(void)
1417 {
1418 	mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL);
1419 	list_create(&recent_events_list, sizeof (recent_events_node_t),
1420 	    offsetof(recent_events_node_t, re_list_link));
1421 	avl_create(&recent_events_tree,  recent_events_compare,
1422 	    sizeof (recent_events_node_t), offsetof(recent_events_node_t,
1423 	    re_tree_link));
1424 }
1425 
1426 /*
1427  * This 'early' fini needs to run before zfs_fini() which on Linux waits
1428  * for the system_delay_taskq to drain.
1429  */
1430 void
1431 zfs_ereport_taskq_fini(void)
1432 {
1433 	mutex_enter(&recent_events_lock);
1434 	if (recent_events_cleaner_tqid != 0) {
1435 		taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid);
1436 		recent_events_cleaner_tqid = 0;
1437 	}
1438 	mutex_exit(&recent_events_lock);
1439 }
1440 
1441 void
1442 zfs_ereport_fini(void)
1443 {
1444 	recent_events_node_t *entry;
1445 
1446 	while ((entry = list_head(&recent_events_list)) != NULL) {
1447 		avl_remove(&recent_events_tree, entry);
1448 		list_remove(&recent_events_list, entry);
1449 		kmem_free(entry, sizeof (*entry));
1450 	}
1451 	avl_destroy(&recent_events_tree);
1452 	list_destroy(&recent_events_list);
1453 	mutex_destroy(&recent_events_lock);
1454 }
1455 
1456 void
1457 zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name)
1458 {
1459 	nvlist_t *aux;
1460 
1461 	aux = fm_nvlist_create(NULL);
1462 	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name);
1463 
1464 	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1465 	fm_nvlist_destroy(aux, FM_NVA_FREE);
1466 }
1467 
1468 /*
1469  * Post when a event when a zvol is created or removed
1470  *
1471  * This is currently only used by macOS, since it uses the event to create
1472  * symlinks between the volume name (mypool/myvol) and the actual /dev
1473  * device (/dev/disk3).  For example:
1474  *
1475  * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3
1476  *
1477  * name: The full name of the zvol ("mypool/myvol")
1478  * dev_name: The full /dev name for the zvol ("/dev/disk3")
1479  * raw_name: The raw  /dev name for the zvol ("/dev/rdisk3")
1480  */
1481 void
1482 zfs_ereport_zvol_post(const char *subclass, const char *name,
1483     const char *dev_name, const char *raw_name)
1484 {
1485 	nvlist_t *aux;
1486 	char *r;
1487 
1488 	boolean_t locked = mutex_owned(&spa_namespace_lock);
1489 	if (!locked) mutex_enter(&spa_namespace_lock);
1490 	spa_t *spa = spa_lookup(name);
1491 	if (!locked) mutex_exit(&spa_namespace_lock);
1492 
1493 	if (spa == NULL)
1494 		return;
1495 
1496 	aux = fm_nvlist_create(NULL);
1497 	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name);
1498 	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME,
1499 	    raw_name);
1500 	r = strchr(name, '/');
1501 	if (r && r[1])
1502 		fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]);
1503 
1504 	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1505 	fm_nvlist_destroy(aux, FM_NVA_FREE);
1506 }
1507 
1508 EXPORT_SYMBOL(zfs_ereport_post);
1509 EXPORT_SYMBOL(zfs_ereport_is_valid);
1510 EXPORT_SYMBOL(zfs_ereport_post_checksum);
1511 EXPORT_SYMBOL(zfs_post_remove);
1512 EXPORT_SYMBOL(zfs_post_autoreplace);
1513 EXPORT_SYMBOL(zfs_post_state_change);
1514 
1515 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW,
1516 	"Maximum recent zevents records to retain for duplicate checking");
1517 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW,
1518 	"Expiration time for recent zevents records");
1519 #endif /* _KERNEL */
1520