1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012,2021 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/vdev.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/fm/protocol.h> 39 #include <sys/fm/util.h> 40 #include <sys/sysevent.h> 41 42 /* 43 * This general routine is responsible for generating all the different ZFS 44 * ereports. The payload is dependent on the class, and which arguments are 45 * supplied to the function: 46 * 47 * EREPORT POOL VDEV IO 48 * block X X X 49 * data X X 50 * device X X 51 * pool X 52 * 53 * If we are in a loading state, all errors are chained together by the same 54 * SPA-wide ENA (Error Numeric Association). 55 * 56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 58 * to chain together all ereports associated with a logical piece of data. For 59 * read I/Os, there are basically three 'types' of I/O, which form a roughly 60 * layered diagram: 61 * 62 * +---------------+ 63 * | Aggregate I/O | No associated logical data or device 64 * +---------------+ 65 * | 66 * V 67 * +---------------+ Reads associated with a piece of logical data. 68 * | Read I/O | This includes reads on behalf of RAID-Z, 69 * +---------------+ mirrors, gang blocks, retries, etc. 70 * | 71 * V 72 * +---------------+ Reads associated with a particular device, but 73 * | Physical I/O | no logical data. Issued as part of vdev caching 74 * +---------------+ and I/O aggregation. 75 * 76 * Note that 'physical I/O' here is not the same terminology as used in the rest 77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 78 * blockpointer. But I/O with no associated block pointer can still be related 79 * to a logical piece of data (i.e. RAID-Z requests). 80 * 81 * Purely physical I/O always have unique ENAs. They are not related to a 82 * particular piece of logical data, and therefore cannot be chained together. 83 * We still generate an ereport, but the DE doesn't correlate it with any 84 * logical piece of data. When such an I/O fails, the delegated I/O requests 85 * will issue a retry, which will trigger the 'real' ereport with the correct 86 * ENA. 87 * 88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 90 * then inherit this pointer, so that when it is first set subsequent failures 91 * will use the same ENA. For vdev cache fill and queue aggregation I/O, 92 * this pointer is set to NULL, and no ereport will be generated (since it 93 * doesn't actually correspond to any particular device or piece of data, 94 * and the caller will always retry without caching or queueing anyway). 95 * 96 * For checksum errors, we want to include more information about the actual 97 * error which occurs. Accordingly, we build an ereport when the error is 98 * noticed, but instead of sending it in immediately, we hang it off of the 99 * io_cksum_report field of the logical IO. When the logical IO completes 100 * (successfully or not), zfs_ereport_finish_checksum() is called with the 101 * good and bad versions of the buffer (if available), and we annotate the 102 * ereport with information about the differences. 103 */ 104 105 #ifdef _KERNEL 106 /* 107 * Duplicate ereport Detection 108 * 109 * Some ereports are retained momentarily for detecting duplicates. These 110 * are kept in a recent_events_node_t in both a time-ordered list and an AVL 111 * tree of recent unique ereports. 112 * 113 * The lifespan of these recent ereports is bounded (15 mins) and a cleaner 114 * task is used to purge stale entries. 115 */ 116 static list_t recent_events_list; 117 static avl_tree_t recent_events_tree; 118 static kmutex_t recent_events_lock; 119 static taskqid_t recent_events_cleaner_tqid; 120 121 /* 122 * Each node is about 128 bytes so 2,000 would consume 1/4 MiB. 123 * 124 * This setting can be changed dynamically and setting it to zero 125 * disables duplicate detection. 126 */ 127 static unsigned int zfs_zevent_retain_max = 2000; 128 129 /* 130 * The lifespan for a recent ereport entry. The default of 15 minutes is 131 * intended to outlive the zfs diagnosis engine's threshold of 10 errors 132 * over a period of 10 minutes. 133 */ 134 static unsigned int zfs_zevent_retain_expire_secs = 900; 135 136 typedef enum zfs_subclass { 137 ZSC_IO, 138 ZSC_DATA, 139 ZSC_CHECKSUM 140 } zfs_subclass_t; 141 142 typedef struct { 143 /* common criteria */ 144 uint64_t re_pool_guid; 145 uint64_t re_vdev_guid; 146 int re_io_error; 147 uint64_t re_io_size; 148 uint64_t re_io_offset; 149 zfs_subclass_t re_subclass; 150 zio_priority_t re_io_priority; 151 152 /* logical zio criteria (optional) */ 153 zbookmark_phys_t re_io_bookmark; 154 155 /* internal state */ 156 avl_node_t re_tree_link; 157 list_node_t re_list_link; 158 uint64_t re_timestamp; 159 } recent_events_node_t; 160 161 static int 162 recent_events_compare(const void *a, const void *b) 163 { 164 const recent_events_node_t *node1 = a; 165 const recent_events_node_t *node2 = b; 166 int cmp; 167 168 /* 169 * The comparison order here is somewhat arbitrary. 170 * What's important is that if every criteria matches, then it 171 * is a duplicate (i.e. compare returns 0) 172 */ 173 if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0) 174 return (cmp); 175 if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0) 176 return (cmp); 177 if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0) 178 return (cmp); 179 if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0) 180 return (cmp); 181 if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0) 182 return (cmp); 183 if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0) 184 return (cmp); 185 if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0) 186 return (cmp); 187 188 const zbookmark_phys_t *zb1 = &node1->re_io_bookmark; 189 const zbookmark_phys_t *zb2 = &node2->re_io_bookmark; 190 191 if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0) 192 return (cmp); 193 if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0) 194 return (cmp); 195 if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0) 196 return (cmp); 197 if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0) 198 return (cmp); 199 200 return (0); 201 } 202 203 /* 204 * workaround: vdev properties don't have inheritance 205 */ 206 static uint64_t 207 vdev_prop_get_inherited(vdev_t *vd, vdev_prop_t prop) 208 { 209 uint64_t propdef, propval; 210 211 propdef = vdev_prop_default_numeric(prop); 212 switch (prop) { 213 case VDEV_PROP_CHECKSUM_N: 214 propval = vd->vdev_checksum_n; 215 break; 216 case VDEV_PROP_CHECKSUM_T: 217 propval = vd->vdev_checksum_t; 218 break; 219 case VDEV_PROP_IO_N: 220 propval = vd->vdev_io_n; 221 break; 222 case VDEV_PROP_IO_T: 223 propval = vd->vdev_io_t; 224 break; 225 case VDEV_PROP_SLOW_IO_N: 226 propval = vd->vdev_slow_io_n; 227 break; 228 case VDEV_PROP_SLOW_IO_T: 229 propval = vd->vdev_slow_io_t; 230 break; 231 default: 232 propval = propdef; 233 break; 234 } 235 236 if (propval != propdef) 237 return (propval); 238 239 if (vd->vdev_parent == NULL) 240 return (propdef); 241 242 return (vdev_prop_get_inherited(vd->vdev_parent, prop)); 243 } 244 245 static void zfs_ereport_schedule_cleaner(void); 246 247 /* 248 * background task to clean stale recent event nodes. 249 */ 250 static void 251 zfs_ereport_cleaner(void *arg) 252 { 253 recent_events_node_t *entry; 254 uint64_t now = gethrtime(); 255 256 /* 257 * purge expired entries 258 */ 259 mutex_enter(&recent_events_lock); 260 while ((entry = list_tail(&recent_events_list)) != NULL) { 261 uint64_t age = NSEC2SEC(now - entry->re_timestamp); 262 if (age <= zfs_zevent_retain_expire_secs) 263 break; 264 265 /* remove expired node */ 266 avl_remove(&recent_events_tree, entry); 267 list_remove(&recent_events_list, entry); 268 kmem_free(entry, sizeof (*entry)); 269 } 270 271 /* Restart the cleaner if more entries remain */ 272 recent_events_cleaner_tqid = 0; 273 if (!list_is_empty(&recent_events_list)) 274 zfs_ereport_schedule_cleaner(); 275 276 mutex_exit(&recent_events_lock); 277 } 278 279 static void 280 zfs_ereport_schedule_cleaner(void) 281 { 282 ASSERT(MUTEX_HELD(&recent_events_lock)); 283 284 uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1); 285 286 recent_events_cleaner_tqid = taskq_dispatch_delay( 287 system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP, 288 ddi_get_lbolt() + NSEC_TO_TICK(timeout)); 289 } 290 291 /* 292 * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL 293 */ 294 void 295 zfs_ereport_clear(spa_t *spa, vdev_t *vd) 296 { 297 uint64_t vdev_guid, pool_guid; 298 299 ASSERT(vd != NULL || spa != NULL); 300 if (vd == NULL) { 301 vdev_guid = 0; 302 pool_guid = spa_guid(spa); 303 } else { 304 vdev_guid = vd->vdev_guid; 305 pool_guid = 0; 306 } 307 308 mutex_enter(&recent_events_lock); 309 310 recent_events_node_t *next = list_head(&recent_events_list); 311 while (next != NULL) { 312 recent_events_node_t *entry = next; 313 314 next = list_next(&recent_events_list, next); 315 316 if (entry->re_vdev_guid == vdev_guid || 317 entry->re_pool_guid == pool_guid) { 318 avl_remove(&recent_events_tree, entry); 319 list_remove(&recent_events_list, entry); 320 kmem_free(entry, sizeof (*entry)); 321 } 322 } 323 324 mutex_exit(&recent_events_lock); 325 } 326 327 /* 328 * Check if an ereport would be a duplicate of one recently posted. 329 * 330 * An ereport is considered a duplicate if the set of criteria in 331 * recent_events_node_t all match. 332 * 333 * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM 334 * are candidates for duplicate checking. 335 */ 336 static boolean_t 337 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd, 338 const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size) 339 { 340 recent_events_node_t search = {0}, *entry; 341 342 if (vd == NULL || zio == NULL) 343 return (B_FALSE); 344 345 if (zfs_zevent_retain_max == 0) 346 return (B_FALSE); 347 348 if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0) 349 search.re_subclass = ZSC_IO; 350 else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0) 351 search.re_subclass = ZSC_DATA; 352 else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) 353 search.re_subclass = ZSC_CHECKSUM; 354 else 355 return (B_FALSE); 356 357 search.re_pool_guid = spa_guid(spa); 358 search.re_vdev_guid = vd->vdev_guid; 359 search.re_io_error = zio->io_error; 360 search.re_io_priority = zio->io_priority; 361 /* if size is supplied use it over what's in zio */ 362 if (size) { 363 search.re_io_size = size; 364 search.re_io_offset = offset; 365 } else { 366 search.re_io_size = zio->io_size; 367 search.re_io_offset = zio->io_offset; 368 } 369 370 /* grab optional logical zio criteria */ 371 if (zb != NULL) { 372 search.re_io_bookmark.zb_objset = zb->zb_objset; 373 search.re_io_bookmark.zb_object = zb->zb_object; 374 search.re_io_bookmark.zb_level = zb->zb_level; 375 search.re_io_bookmark.zb_blkid = zb->zb_blkid; 376 } 377 378 uint64_t now = gethrtime(); 379 380 mutex_enter(&recent_events_lock); 381 382 /* check if we have seen this one recently */ 383 entry = avl_find(&recent_events_tree, &search, NULL); 384 if (entry != NULL) { 385 uint64_t age = NSEC2SEC(now - entry->re_timestamp); 386 387 /* 388 * There is still an active cleaner (since we're here). 389 * Reset the last seen time for this duplicate entry 390 * so that its lifespand gets extended. 391 */ 392 list_remove(&recent_events_list, entry); 393 list_insert_head(&recent_events_list, entry); 394 entry->re_timestamp = now; 395 396 zfs_zevent_track_duplicate(); 397 mutex_exit(&recent_events_lock); 398 399 return (age <= zfs_zevent_retain_expire_secs); 400 } 401 402 if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) { 403 /* recycle oldest node */ 404 entry = list_tail(&recent_events_list); 405 ASSERT(entry != NULL); 406 list_remove(&recent_events_list, entry); 407 avl_remove(&recent_events_tree, entry); 408 } else { 409 entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP); 410 } 411 412 /* record this as a recent ereport */ 413 *entry = search; 414 avl_add(&recent_events_tree, entry); 415 list_insert_head(&recent_events_list, entry); 416 entry->re_timestamp = now; 417 418 /* Start a cleaner if not already scheduled */ 419 if (recent_events_cleaner_tqid == 0) 420 zfs_ereport_schedule_cleaner(); 421 422 mutex_exit(&recent_events_lock); 423 return (B_FALSE); 424 } 425 426 void 427 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector) 428 { 429 if (nvl) 430 fm_nvlist_destroy(nvl, FM_NVA_FREE); 431 432 if (detector) 433 fm_nvlist_destroy(detector, FM_NVA_FREE); 434 } 435 436 /* 437 * We want to rate limit ZIO delay, deadman, and checksum events so as to not 438 * flood zevent consumers when a disk is acting up. 439 * 440 * Returns 1 if we're ratelimiting, 0 if not. 441 */ 442 static int 443 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd) 444 { 445 int rc = 0; 446 /* 447 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we 448 * are. Invert it to get our return value. 449 */ 450 if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) { 451 rc = !zfs_ratelimit(&vd->vdev_delay_rl); 452 } else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) { 453 rc = !zfs_ratelimit(&vd->vdev_deadman_rl); 454 } else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) { 455 rc = !zfs_ratelimit(&vd->vdev_checksum_rl); 456 } 457 458 if (rc) { 459 /* We're rate limiting */ 460 fm_erpt_dropped_increment(); 461 } 462 463 return (rc); 464 } 465 466 /* 467 * Return B_TRUE if the event actually posted, B_FALSE if not. 468 */ 469 static boolean_t 470 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out, 471 const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 472 zio_t *zio, uint64_t stateoroffset, uint64_t size) 473 { 474 nvlist_t *ereport, *detector; 475 476 uint64_t ena; 477 char class[64]; 478 479 if ((ereport = fm_nvlist_create(NULL)) == NULL) 480 return (B_FALSE); 481 482 if ((detector = fm_nvlist_create(NULL)) == NULL) { 483 fm_nvlist_destroy(ereport, FM_NVA_FREE); 484 return (B_FALSE); 485 } 486 487 /* 488 * Serialize ereport generation 489 */ 490 mutex_enter(&spa->spa_errlist_lock); 491 492 /* 493 * Determine the ENA to use for this event. If we are in a loading 494 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 495 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 496 */ 497 if (spa_load_state(spa) != SPA_LOAD_NONE) { 498 if (spa->spa_ena == 0) 499 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 500 ena = spa->spa_ena; 501 } else if (zio != NULL && zio->io_logical != NULL) { 502 if (zio->io_logical->io_ena == 0) 503 zio->io_logical->io_ena = 504 fm_ena_generate(0, FM_ENA_FMT1); 505 ena = zio->io_logical->io_ena; 506 } else { 507 ena = fm_ena_generate(0, FM_ENA_FMT1); 508 } 509 510 /* 511 * Construct the full class, detector, and other standard FMA fields. 512 */ 513 (void) snprintf(class, sizeof (class), "%s.%s", 514 ZFS_ERROR_CLASS, subclass); 515 516 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 517 vd != NULL ? vd->vdev_guid : 0); 518 519 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 520 521 /* 522 * Construct the per-ereport payload, depending on which parameters are 523 * passed in. 524 */ 525 526 /* 527 * Generic payload members common to all ereports. 528 */ 529 fm_payload_set(ereport, 530 FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa), 531 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa), 532 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64, 533 (uint64_t)spa_state(spa), 534 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 535 (int32_t)spa_load_state(spa), NULL); 536 537 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, 538 DATA_TYPE_STRING, 539 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? 540 FM_EREPORT_FAILMODE_WAIT : 541 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? 542 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, 543 NULL); 544 545 if (vd != NULL) { 546 vdev_t *pvd = vd->vdev_parent; 547 vdev_queue_t *vq = &vd->vdev_queue; 548 vdev_stat_t *vs = &vd->vdev_stat; 549 vdev_t *spare_vd; 550 uint64_t *spare_guids; 551 char **spare_paths; 552 int i, spare_count; 553 554 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 555 DATA_TYPE_UINT64, vd->vdev_guid, 556 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 557 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 558 if (vd->vdev_path != NULL) 559 fm_payload_set(ereport, 560 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 561 DATA_TYPE_STRING, vd->vdev_path, NULL); 562 if (vd->vdev_devid != NULL) 563 fm_payload_set(ereport, 564 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 565 DATA_TYPE_STRING, vd->vdev_devid, NULL); 566 if (vd->vdev_fru != NULL) 567 fm_payload_set(ereport, 568 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, 569 DATA_TYPE_STRING, vd->vdev_fru, NULL); 570 if (vd->vdev_enc_sysfs_path != NULL) 571 fm_payload_set(ereport, 572 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH, 573 DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL); 574 if (vd->vdev_ashift) 575 fm_payload_set(ereport, 576 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT, 577 DATA_TYPE_UINT64, vd->vdev_ashift, NULL); 578 579 if (vq != NULL) { 580 fm_payload_set(ereport, 581 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS, 582 DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL); 583 fm_payload_set(ereport, 584 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS, 585 DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL); 586 } 587 588 if (vs != NULL) { 589 fm_payload_set(ereport, 590 FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS, 591 DATA_TYPE_UINT64, vs->vs_read_errors, 592 FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS, 593 DATA_TYPE_UINT64, vs->vs_write_errors, 594 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS, 595 DATA_TYPE_UINT64, vs->vs_checksum_errors, 596 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS, 597 DATA_TYPE_UINT64, vs->vs_slow_ios, 598 FM_EREPORT_PAYLOAD_ZFS_VDEV_DIO_VERIFY_ERRORS, 599 DATA_TYPE_UINT64, vs->vs_dio_verify_errors, 600 NULL); 601 } 602 603 if (pvd != NULL) { 604 fm_payload_set(ereport, 605 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 606 DATA_TYPE_UINT64, pvd->vdev_guid, 607 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 608 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 609 NULL); 610 if (pvd->vdev_path) 611 fm_payload_set(ereport, 612 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 613 DATA_TYPE_STRING, pvd->vdev_path, NULL); 614 if (pvd->vdev_devid) 615 fm_payload_set(ereport, 616 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 617 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 618 } 619 620 spare_count = spa->spa_spares.sav_count; 621 spare_paths = kmem_zalloc(sizeof (char *) * spare_count, 622 KM_SLEEP); 623 spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count, 624 KM_SLEEP); 625 626 for (i = 0; i < spare_count; i++) { 627 spare_vd = spa->spa_spares.sav_vdevs[i]; 628 if (spare_vd) { 629 spare_paths[i] = spare_vd->vdev_path; 630 spare_guids[i] = spare_vd->vdev_guid; 631 } 632 } 633 634 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS, 635 DATA_TYPE_STRING_ARRAY, spare_count, spare_paths, 636 FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS, 637 DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL); 638 639 kmem_free(spare_guids, sizeof (uint64_t) * spare_count); 640 kmem_free(spare_paths, sizeof (char *) * spare_count); 641 } 642 643 if (zio != NULL) { 644 /* 645 * Payload common to all I/Os. 646 */ 647 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 648 DATA_TYPE_INT32, zio->io_error, NULL); 649 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS, 650 DATA_TYPE_UINT64, zio->io_flags, NULL); 651 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE, 652 DATA_TYPE_UINT32, zio->io_stage, NULL); 653 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE, 654 DATA_TYPE_UINT32, zio->io_pipeline, NULL); 655 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY, 656 DATA_TYPE_UINT64, zio->io_delay, NULL); 657 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP, 658 DATA_TYPE_UINT64, zio->io_timestamp, NULL); 659 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA, 660 DATA_TYPE_UINT64, zio->io_delta, NULL); 661 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY, 662 DATA_TYPE_UINT32, zio->io_priority, NULL); 663 664 /* 665 * If the 'size' parameter is non-zero, it indicates this is a 666 * RAID-Z or other I/O where the physical offset and length are 667 * provided for us, instead of within the zio_t. 668 */ 669 if (vd != NULL) { 670 if (size) 671 fm_payload_set(ereport, 672 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 673 DATA_TYPE_UINT64, stateoroffset, 674 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 675 DATA_TYPE_UINT64, size, NULL); 676 else 677 fm_payload_set(ereport, 678 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 679 DATA_TYPE_UINT64, zio->io_offset, 680 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 681 DATA_TYPE_UINT64, zio->io_size, NULL); 682 } 683 } else if (vd != NULL) { 684 /* 685 * If we have a vdev but no zio, this is a device fault, and the 686 * 'stateoroffset' parameter indicates the previous state of the 687 * vdev. 688 */ 689 fm_payload_set(ereport, 690 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 691 DATA_TYPE_UINT64, stateoroffset, NULL); 692 } 693 694 /* 695 * Payload for I/Os with corresponding logical information. 696 */ 697 if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) { 698 fm_payload_set(ereport, 699 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, 700 DATA_TYPE_UINT64, zb->zb_objset, 701 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 702 DATA_TYPE_UINT64, zb->zb_object, 703 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 704 DATA_TYPE_INT64, zb->zb_level, 705 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 706 DATA_TYPE_UINT64, zb->zb_blkid, NULL); 707 } 708 709 /* 710 * Payload for tuning the zed 711 */ 712 if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) { 713 uint64_t cksum_n, cksum_t; 714 715 cksum_n = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_N); 716 if (cksum_n != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N)) 717 fm_payload_set(ereport, 718 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N, 719 DATA_TYPE_UINT64, 720 cksum_n, 721 NULL); 722 723 cksum_t = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_T); 724 if (cksum_t != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T)) 725 fm_payload_set(ereport, 726 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T, 727 DATA_TYPE_UINT64, 728 cksum_t, 729 NULL); 730 } 731 732 if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_IO) == 0) { 733 uint64_t io_n, io_t; 734 735 io_n = vdev_prop_get_inherited(vd, VDEV_PROP_IO_N); 736 if (io_n != vdev_prop_default_numeric(VDEV_PROP_IO_N)) 737 fm_payload_set(ereport, 738 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N, 739 DATA_TYPE_UINT64, 740 io_n, 741 NULL); 742 743 io_t = vdev_prop_get_inherited(vd, VDEV_PROP_IO_T); 744 if (io_t != vdev_prop_default_numeric(VDEV_PROP_IO_T)) 745 fm_payload_set(ereport, 746 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T, 747 DATA_TYPE_UINT64, 748 io_t, 749 NULL); 750 } 751 752 if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) { 753 uint64_t slow_io_n, slow_io_t; 754 755 slow_io_n = vdev_prop_get_inherited(vd, VDEV_PROP_SLOW_IO_N); 756 if (slow_io_n != vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N)) 757 fm_payload_set(ereport, 758 FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_N, 759 DATA_TYPE_UINT64, 760 slow_io_n, 761 NULL); 762 763 slow_io_t = vdev_prop_get_inherited(vd, VDEV_PROP_SLOW_IO_T); 764 if (slow_io_t != vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T)) 765 fm_payload_set(ereport, 766 FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_T, 767 DATA_TYPE_UINT64, 768 slow_io_t, 769 NULL); 770 } 771 772 mutex_exit(&spa->spa_errlist_lock); 773 774 *ereport_out = ereport; 775 *detector_out = detector; 776 return (B_TRUE); 777 } 778 779 /* if it's <= 128 bytes, save the corruption directly */ 780 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t)) 781 782 #define MAX_RANGES 16 783 784 typedef struct zfs_ecksum_info { 785 /* inline arrays of bits set and cleared. */ 786 uint64_t zei_bits_set[ZFM_MAX_INLINE]; 787 uint64_t zei_bits_cleared[ZFM_MAX_INLINE]; 788 789 /* 790 * for each range, the number of bits set and cleared. The Hamming 791 * distance between the good and bad buffers is the sum of them all. 792 */ 793 uint32_t zei_range_sets[MAX_RANGES]; 794 uint32_t zei_range_clears[MAX_RANGES]; 795 796 struct zei_ranges { 797 uint32_t zr_start; 798 uint32_t zr_end; 799 } zei_ranges[MAX_RANGES]; 800 801 size_t zei_range_count; 802 uint32_t zei_mingap; 803 uint32_t zei_allowed_mingap; 804 805 } zfs_ecksum_info_t; 806 807 static void 808 update_bad_bits(uint64_t value_arg, uint32_t *count) 809 { 810 size_t i; 811 size_t bits = 0; 812 uint64_t value = BE_64(value_arg); 813 814 /* We store the bits in big-endian (largest-first) order */ 815 for (i = 0; i < 64; i++) { 816 if (value & (1ull << i)) 817 ++bits; 818 } 819 /* update the count of bits changed */ 820 *count += bits; 821 } 822 823 /* 824 * We've now filled up the range array, and need to increase "mingap" and 825 * shrink the range list accordingly. zei_mingap is always the smallest 826 * distance between array entries, so we set the new_allowed_gap to be 827 * one greater than that. We then go through the list, joining together 828 * any ranges which are closer than the new_allowed_gap. 829 * 830 * By construction, there will be at least one. We also update zei_mingap 831 * to the new smallest gap, to prepare for our next invocation. 832 */ 833 static void 834 zei_shrink_ranges(zfs_ecksum_info_t *eip) 835 { 836 uint32_t mingap = UINT32_MAX; 837 uint32_t new_allowed_gap = eip->zei_mingap + 1; 838 839 size_t idx, output; 840 size_t max = eip->zei_range_count; 841 842 struct zei_ranges *r = eip->zei_ranges; 843 844 ASSERT3U(eip->zei_range_count, >, 0); 845 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES); 846 847 output = idx = 0; 848 while (idx < max - 1) { 849 uint32_t start = r[idx].zr_start; 850 uint32_t end = r[idx].zr_end; 851 852 while (idx < max - 1) { 853 idx++; 854 855 uint32_t nstart = r[idx].zr_start; 856 uint32_t nend = r[idx].zr_end; 857 858 uint32_t gap = nstart - end; 859 if (gap < new_allowed_gap) { 860 end = nend; 861 continue; 862 } 863 if (gap < mingap) 864 mingap = gap; 865 break; 866 } 867 r[output].zr_start = start; 868 r[output].zr_end = end; 869 output++; 870 } 871 ASSERT3U(output, <, eip->zei_range_count); 872 eip->zei_range_count = output; 873 eip->zei_mingap = mingap; 874 eip->zei_allowed_mingap = new_allowed_gap; 875 } 876 877 static void 878 zei_add_range(zfs_ecksum_info_t *eip, int start, int end) 879 { 880 struct zei_ranges *r = eip->zei_ranges; 881 size_t count = eip->zei_range_count; 882 883 if (count >= MAX_RANGES) { 884 zei_shrink_ranges(eip); 885 count = eip->zei_range_count; 886 } 887 if (count == 0) { 888 eip->zei_mingap = UINT32_MAX; 889 eip->zei_allowed_mingap = 1; 890 } else { 891 int gap = start - r[count - 1].zr_end; 892 893 if (gap < eip->zei_allowed_mingap) { 894 r[count - 1].zr_end = end; 895 return; 896 } 897 if (gap < eip->zei_mingap) 898 eip->zei_mingap = gap; 899 } 900 r[count].zr_start = start; 901 r[count].zr_end = end; 902 eip->zei_range_count++; 903 } 904 905 static size_t 906 zei_range_total_size(zfs_ecksum_info_t *eip) 907 { 908 struct zei_ranges *r = eip->zei_ranges; 909 size_t count = eip->zei_range_count; 910 size_t result = 0; 911 size_t idx; 912 913 for (idx = 0; idx < count; idx++) 914 result += (r[idx].zr_end - r[idx].zr_start); 915 916 return (result); 917 } 918 919 static zfs_ecksum_info_t * 920 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info, 921 const abd_t *goodabd, const abd_t *badabd, size_t size, 922 boolean_t drop_if_identical) 923 { 924 const uint64_t *good; 925 const uint64_t *bad; 926 927 size_t nui64s = size / sizeof (uint64_t); 928 929 size_t inline_size; 930 int no_inline = 0; 931 size_t idx; 932 size_t range; 933 934 size_t offset = 0; 935 ssize_t start = -1; 936 937 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP); 938 939 /* don't do any annotation for injected checksum errors */ 940 if (info != NULL && info->zbc_injected) 941 return (eip); 942 943 if (info != NULL && info->zbc_has_cksum) { 944 fm_payload_set(ereport, 945 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO, 946 DATA_TYPE_STRING, 947 info->zbc_checksum_name, 948 NULL); 949 950 if (info->zbc_byteswapped) { 951 fm_payload_set(ereport, 952 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP, 953 DATA_TYPE_BOOLEAN, 1, 954 NULL); 955 } 956 } 957 958 if (badabd == NULL || goodabd == NULL) 959 return (eip); 960 961 ASSERT3U(nui64s, <=, UINT32_MAX); 962 ASSERT3U(size, ==, nui64s * sizeof (uint64_t)); 963 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 964 ASSERT3U(size, <=, UINT32_MAX); 965 966 good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size); 967 bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size); 968 969 /* build up the range list by comparing the two buffers. */ 970 for (idx = 0; idx < nui64s; idx++) { 971 if (good[idx] == bad[idx]) { 972 if (start == -1) 973 continue; 974 975 zei_add_range(eip, start, idx); 976 start = -1; 977 } else { 978 if (start != -1) 979 continue; 980 981 start = idx; 982 } 983 } 984 if (start != -1) 985 zei_add_range(eip, start, idx); 986 987 /* See if it will fit in our inline buffers */ 988 inline_size = zei_range_total_size(eip); 989 if (inline_size > ZFM_MAX_INLINE) 990 no_inline = 1; 991 992 /* 993 * If there is no change and we want to drop if the buffers are 994 * identical, do so. 995 */ 996 if (inline_size == 0 && drop_if_identical) { 997 kmem_free(eip, sizeof (*eip)); 998 abd_return_buf((abd_t *)goodabd, (void *)good, size); 999 abd_return_buf((abd_t *)badabd, (void *)bad, size); 1000 return (NULL); 1001 } 1002 1003 /* 1004 * Now walk through the ranges, filling in the details of the 1005 * differences. Also convert our uint64_t-array offsets to byte 1006 * offsets. 1007 */ 1008 for (range = 0; range < eip->zei_range_count; range++) { 1009 size_t start = eip->zei_ranges[range].zr_start; 1010 size_t end = eip->zei_ranges[range].zr_end; 1011 1012 for (idx = start; idx < end; idx++) { 1013 uint64_t set, cleared; 1014 1015 // bits set in bad, but not in good 1016 set = ((~good[idx]) & bad[idx]); 1017 // bits set in good, but not in bad 1018 cleared = (good[idx] & (~bad[idx])); 1019 1020 if (!no_inline) { 1021 ASSERT3U(offset, <, inline_size); 1022 eip->zei_bits_set[offset] = set; 1023 eip->zei_bits_cleared[offset] = cleared; 1024 offset++; 1025 } 1026 1027 update_bad_bits(set, &eip->zei_range_sets[range]); 1028 update_bad_bits(cleared, &eip->zei_range_clears[range]); 1029 } 1030 1031 /* convert to byte offsets */ 1032 eip->zei_ranges[range].zr_start *= sizeof (uint64_t); 1033 eip->zei_ranges[range].zr_end *= sizeof (uint64_t); 1034 } 1035 1036 abd_return_buf((abd_t *)goodabd, (void *)good, size); 1037 abd_return_buf((abd_t *)badabd, (void *)bad, size); 1038 1039 eip->zei_allowed_mingap *= sizeof (uint64_t); 1040 inline_size *= sizeof (uint64_t); 1041 1042 /* fill in ereport */ 1043 fm_payload_set(ereport, 1044 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES, 1045 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count, 1046 (uint32_t *)eip->zei_ranges, 1047 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP, 1048 DATA_TYPE_UINT32, eip->zei_allowed_mingap, 1049 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS, 1050 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets, 1051 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS, 1052 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears, 1053 NULL); 1054 1055 if (!no_inline) { 1056 fm_payload_set(ereport, 1057 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS, 1058 DATA_TYPE_UINT8_ARRAY, 1059 inline_size, (uint8_t *)eip->zei_bits_set, 1060 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS, 1061 DATA_TYPE_UINT8_ARRAY, 1062 inline_size, (uint8_t *)eip->zei_bits_cleared, 1063 NULL); 1064 } 1065 return (eip); 1066 } 1067 #else 1068 void 1069 zfs_ereport_clear(spa_t *spa, vdev_t *vd) 1070 { 1071 (void) spa, (void) vd; 1072 } 1073 #endif 1074 1075 /* 1076 * Make sure our event is still valid for the given zio/vdev/pool. For example, 1077 * we don't want to keep logging events for a faulted or missing vdev. 1078 */ 1079 boolean_t 1080 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio) 1081 { 1082 #ifdef _KERNEL 1083 /* 1084 * If we are doing a spa_tryimport() or in recovery mode, 1085 * ignore errors. 1086 */ 1087 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT || 1088 spa_load_state(spa) == SPA_LOAD_RECOVER) 1089 return (B_FALSE); 1090 1091 /* 1092 * If we are in the middle of opening a pool, and the previous attempt 1093 * failed, don't bother logging any new ereports - we're just going to 1094 * get the same diagnosis anyway. 1095 */ 1096 if (spa_load_state(spa) != SPA_LOAD_NONE && 1097 spa->spa_last_open_failed) 1098 return (B_FALSE); 1099 1100 if (zio != NULL) { 1101 /* If this is not a read or write zio, ignore the error */ 1102 if (zio->io_type != ZIO_TYPE_READ && 1103 zio->io_type != ZIO_TYPE_WRITE) 1104 return (B_FALSE); 1105 1106 if (vd != NULL) { 1107 /* 1108 * If the vdev has already been marked as failing due 1109 * to a failed probe, then ignore any subsequent I/O 1110 * errors, as the DE will automatically fault the vdev 1111 * on the first such failure. This also catches cases 1112 * where vdev_remove_wanted is set and the device has 1113 * not yet been asynchronously placed into the REMOVED 1114 * state. 1115 */ 1116 if (zio->io_vd == vd && !vdev_accessible(vd, zio)) 1117 return (B_FALSE); 1118 1119 /* 1120 * Ignore checksum errors for reads from DTL regions of 1121 * leaf vdevs. 1122 */ 1123 if (zio->io_type == ZIO_TYPE_READ && 1124 zio->io_error == ECKSUM && 1125 vd->vdev_ops->vdev_op_leaf && 1126 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1)) 1127 return (B_FALSE); 1128 } 1129 } 1130 1131 /* 1132 * For probe failure, we want to avoid posting ereports if we've 1133 * already removed the device in the meantime. 1134 */ 1135 if (vd != NULL && 1136 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 && 1137 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED)) 1138 return (B_FALSE); 1139 1140 /* Ignore bogus delay events (like from ioctls or unqueued IOs) */ 1141 if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) && 1142 (zio != NULL) && (!zio->io_timestamp)) { 1143 return (B_FALSE); 1144 } 1145 #else 1146 (void) subclass, (void) spa, (void) vd, (void) zio; 1147 #endif 1148 return (B_TRUE); 1149 } 1150 1151 /* 1152 * Post an ereport for the given subclass 1153 * 1154 * Returns 1155 * - 0 if an event was posted 1156 * - EINVAL if there was a problem posting event 1157 * - EBUSY if the event was rate limited 1158 * - EALREADY if the event was already posted (duplicate) 1159 */ 1160 int 1161 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, 1162 const zbookmark_phys_t *zb, zio_t *zio, uint64_t state) 1163 { 1164 int rc = 0; 1165 #ifdef _KERNEL 1166 nvlist_t *ereport = NULL; 1167 nvlist_t *detector = NULL; 1168 1169 if (!zfs_ereport_is_valid(subclass, spa, vd, zio)) 1170 return (EINVAL); 1171 1172 if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0)) 1173 return (SET_ERROR(EALREADY)); 1174 1175 if (zfs_is_ratelimiting_event(subclass, vd)) 1176 return (SET_ERROR(EBUSY)); 1177 1178 if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd, 1179 zb, zio, state, 0)) 1180 return (SET_ERROR(EINVAL)); /* couldn't post event */ 1181 1182 if (ereport == NULL) 1183 return (SET_ERROR(EINVAL)); 1184 1185 /* Cleanup is handled by the callback function */ 1186 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb); 1187 #else 1188 (void) subclass, (void) spa, (void) vd, (void) zb, (void) zio, 1189 (void) state; 1190 #endif 1191 return (rc); 1192 } 1193 1194 /* 1195 * Prepare a checksum ereport 1196 * 1197 * Returns 1198 * - 0 if an event was posted 1199 * - EINVAL if there was a problem posting event 1200 * - EBUSY if the event was rate limited 1201 * - EALREADY if the event was already posted (duplicate) 1202 */ 1203 int 1204 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 1205 struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info) 1206 { 1207 zio_cksum_report_t *report; 1208 1209 #ifdef _KERNEL 1210 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio)) 1211 return (SET_ERROR(EINVAL)); 1212 1213 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, 1214 offset, length)) 1215 return (SET_ERROR(EALREADY)); 1216 1217 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd)) 1218 return (SET_ERROR(EBUSY)); 1219 #else 1220 (void) zb, (void) offset; 1221 #endif 1222 1223 report = kmem_zalloc(sizeof (*report), KM_SLEEP); 1224 1225 zio_vsd_default_cksum_report(zio, report); 1226 1227 /* copy the checksum failure information if it was provided */ 1228 if (info != NULL) { 1229 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP); 1230 memcpy(report->zcr_ckinfo, info, sizeof (*info)); 1231 } 1232 1233 report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift; 1234 report->zcr_align = 1235 vdev_psize_to_asize(vd->vdev_top, report->zcr_sector); 1236 report->zcr_length = length; 1237 1238 #ifdef _KERNEL 1239 (void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector, 1240 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length); 1241 1242 if (report->zcr_ereport == NULL) { 1243 zfs_ereport_free_checksum(report); 1244 return (0); 1245 } 1246 #endif 1247 1248 mutex_enter(&spa->spa_errlist_lock); 1249 report->zcr_next = zio->io_logical->io_cksum_report; 1250 zio->io_logical->io_cksum_report = report; 1251 mutex_exit(&spa->spa_errlist_lock); 1252 return (0); 1253 } 1254 1255 void 1256 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data, 1257 const abd_t *bad_data, boolean_t drop_if_identical) 1258 { 1259 #ifdef _KERNEL 1260 zfs_ecksum_info_t *info; 1261 1262 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo, 1263 good_data, bad_data, report->zcr_length, drop_if_identical); 1264 if (info != NULL) 1265 zfs_zevent_post(report->zcr_ereport, 1266 report->zcr_detector, zfs_zevent_post_cb); 1267 else 1268 zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector); 1269 1270 report->zcr_ereport = report->zcr_detector = NULL; 1271 if (info != NULL) 1272 kmem_free(info, sizeof (*info)); 1273 #else 1274 (void) report, (void) good_data, (void) bad_data, 1275 (void) drop_if_identical; 1276 #endif 1277 } 1278 1279 void 1280 zfs_ereport_free_checksum(zio_cksum_report_t *rpt) 1281 { 1282 #ifdef _KERNEL 1283 if (rpt->zcr_ereport != NULL) { 1284 fm_nvlist_destroy(rpt->zcr_ereport, 1285 FM_NVA_FREE); 1286 fm_nvlist_destroy(rpt->zcr_detector, 1287 FM_NVA_FREE); 1288 } 1289 #endif 1290 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo); 1291 1292 if (rpt->zcr_ckinfo != NULL) 1293 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo)); 1294 1295 kmem_free(rpt, sizeof (*rpt)); 1296 } 1297 1298 /* 1299 * Post a checksum ereport 1300 * 1301 * Returns 1302 * - 0 if an event was posted 1303 * - EINVAL if there was a problem posting event 1304 * - EBUSY if the event was rate limited 1305 * - EALREADY if the event was already posted (duplicate) 1306 */ 1307 int 1308 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 1309 struct zio *zio, uint64_t offset, uint64_t length, 1310 const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc) 1311 { 1312 int rc = 0; 1313 #ifdef _KERNEL 1314 nvlist_t *ereport = NULL; 1315 nvlist_t *detector = NULL; 1316 zfs_ecksum_info_t *info; 1317 1318 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio)) 1319 return (SET_ERROR(EINVAL)); 1320 1321 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, 1322 offset, length)) 1323 return (SET_ERROR(EALREADY)); 1324 1325 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd)) 1326 return (SET_ERROR(EBUSY)); 1327 1328 if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM, 1329 spa, vd, zb, zio, offset, length) || (ereport == NULL)) { 1330 return (SET_ERROR(EINVAL)); 1331 } 1332 1333 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length, 1334 B_FALSE); 1335 1336 if (info != NULL) { 1337 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb); 1338 kmem_free(info, sizeof (*info)); 1339 } 1340 #else 1341 (void) spa, (void) vd, (void) zb, (void) zio, (void) offset, 1342 (void) length, (void) good_data, (void) bad_data, (void) zbc; 1343 #endif 1344 return (rc); 1345 } 1346 1347 /* 1348 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of 1349 * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h 1350 * and are designed to be consumed by the ZFS Event Daemon (ZED). For 1351 * additional details refer to the zed(8) man page. 1352 */ 1353 nvlist_t * 1354 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name, 1355 nvlist_t *aux) 1356 { 1357 nvlist_t *resource = NULL; 1358 #ifdef _KERNEL 1359 char class[64]; 1360 1361 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT) 1362 return (NULL); 1363 1364 if ((resource = fm_nvlist_create(NULL)) == NULL) 1365 return (NULL); 1366 1367 (void) snprintf(class, sizeof (class), "%s.%s.%s", type, 1368 ZFS_ERROR_CLASS, name); 1369 VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION)); 1370 VERIFY0(nvlist_add_string(resource, FM_CLASS, class)); 1371 VERIFY0(nvlist_add_string(resource, 1372 FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa))); 1373 VERIFY0(nvlist_add_uint64(resource, 1374 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa))); 1375 VERIFY0(nvlist_add_uint64(resource, 1376 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa))); 1377 VERIFY0(nvlist_add_int32(resource, 1378 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa))); 1379 1380 if (vd) { 1381 VERIFY0(nvlist_add_uint64(resource, 1382 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid)); 1383 VERIFY0(nvlist_add_uint64(resource, 1384 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state)); 1385 if (vd->vdev_path != NULL) 1386 VERIFY0(nvlist_add_string(resource, 1387 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path)); 1388 if (vd->vdev_devid != NULL) 1389 VERIFY0(nvlist_add_string(resource, 1390 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid)); 1391 if (vd->vdev_fru != NULL) 1392 VERIFY0(nvlist_add_string(resource, 1393 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru)); 1394 if (vd->vdev_enc_sysfs_path != NULL) 1395 VERIFY0(nvlist_add_string(resource, 1396 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH, 1397 vd->vdev_enc_sysfs_path)); 1398 } 1399 1400 /* also copy any optional payload data */ 1401 if (aux) { 1402 nvpair_t *elem = NULL; 1403 1404 while ((elem = nvlist_next_nvpair(aux, elem)) != NULL) 1405 (void) nvlist_add_nvpair(resource, elem); 1406 } 1407 #else 1408 (void) spa, (void) vd, (void) type, (void) name, (void) aux; 1409 #endif 1410 return (resource); 1411 } 1412 1413 static void 1414 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name, 1415 nvlist_t *aux) 1416 { 1417 #ifdef _KERNEL 1418 nvlist_t *resource; 1419 1420 resource = zfs_event_create(spa, vd, type, name, aux); 1421 if (resource) 1422 zfs_zevent_post(resource, NULL, zfs_zevent_post_cb); 1423 #else 1424 (void) spa, (void) vd, (void) type, (void) name, (void) aux; 1425 #endif 1426 } 1427 1428 /* 1429 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 1430 * has been removed from the system. This will cause the DE to ignore any 1431 * recent I/O errors, inferring that they are due to the asynchronous device 1432 * removal. 1433 */ 1434 void 1435 zfs_post_remove(spa_t *spa, vdev_t *vd) 1436 { 1437 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL); 1438 } 1439 1440 /* 1441 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 1442 * has the 'autoreplace' property set, and therefore any broken vdevs will be 1443 * handled by higher level logic, and no vdev fault should be generated. 1444 */ 1445 void 1446 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 1447 { 1448 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL); 1449 } 1450 1451 /* 1452 * The 'resource.fs.zfs.statechange' event is an internal signal that the 1453 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will 1454 * cause the retire agent to repair any outstanding fault management cases 1455 * open because the device was not found (fault.fs.zfs.device). 1456 */ 1457 void 1458 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate) 1459 { 1460 #ifdef _KERNEL 1461 nvlist_t *aux; 1462 1463 /* 1464 * Add optional supplemental keys to payload 1465 */ 1466 aux = fm_nvlist_create(NULL); 1467 if (vd && aux) { 1468 if (vd->vdev_physpath) { 1469 fnvlist_add_string(aux, 1470 FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH, 1471 vd->vdev_physpath); 1472 } 1473 if (vd->vdev_enc_sysfs_path) { 1474 fnvlist_add_string(aux, 1475 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH, 1476 vd->vdev_enc_sysfs_path); 1477 } 1478 1479 fnvlist_add_uint64(aux, 1480 FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate); 1481 } 1482 1483 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE, 1484 aux); 1485 1486 if (aux) 1487 fm_nvlist_destroy(aux, FM_NVA_FREE); 1488 #else 1489 (void) spa, (void) vd, (void) laststate; 1490 #endif 1491 } 1492 1493 #ifdef _KERNEL 1494 void 1495 zfs_ereport_init(void) 1496 { 1497 mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL); 1498 list_create(&recent_events_list, sizeof (recent_events_node_t), 1499 offsetof(recent_events_node_t, re_list_link)); 1500 avl_create(&recent_events_tree, recent_events_compare, 1501 sizeof (recent_events_node_t), offsetof(recent_events_node_t, 1502 re_tree_link)); 1503 } 1504 1505 /* 1506 * This 'early' fini needs to run before zfs_fini() which on Linux waits 1507 * for the system_delay_taskq to drain. 1508 */ 1509 void 1510 zfs_ereport_taskq_fini(void) 1511 { 1512 mutex_enter(&recent_events_lock); 1513 if (recent_events_cleaner_tqid != 0) { 1514 taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid); 1515 recent_events_cleaner_tqid = 0; 1516 } 1517 mutex_exit(&recent_events_lock); 1518 } 1519 1520 void 1521 zfs_ereport_fini(void) 1522 { 1523 recent_events_node_t *entry; 1524 1525 while ((entry = list_remove_head(&recent_events_list)) != NULL) { 1526 avl_remove(&recent_events_tree, entry); 1527 kmem_free(entry, sizeof (*entry)); 1528 } 1529 avl_destroy(&recent_events_tree); 1530 list_destroy(&recent_events_list); 1531 mutex_destroy(&recent_events_lock); 1532 } 1533 1534 void 1535 zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name) 1536 { 1537 nvlist_t *aux; 1538 1539 aux = fm_nvlist_create(NULL); 1540 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name); 1541 1542 zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux); 1543 fm_nvlist_destroy(aux, FM_NVA_FREE); 1544 } 1545 1546 /* 1547 * Post when a event when a zvol is created or removed 1548 * 1549 * This is currently only used by macOS, since it uses the event to create 1550 * symlinks between the volume name (mypool/myvol) and the actual /dev 1551 * device (/dev/disk3). For example: 1552 * 1553 * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3 1554 * 1555 * name: The full name of the zvol ("mypool/myvol") 1556 * dev_name: The full /dev name for the zvol ("/dev/disk3") 1557 * raw_name: The raw /dev name for the zvol ("/dev/rdisk3") 1558 */ 1559 void 1560 zfs_ereport_zvol_post(const char *subclass, const char *name, 1561 const char *dev_name, const char *raw_name) 1562 { 1563 nvlist_t *aux; 1564 char *r; 1565 1566 boolean_t locked = mutex_owned(&spa_namespace_lock); 1567 if (!locked) mutex_enter(&spa_namespace_lock); 1568 spa_t *spa = spa_lookup(name); 1569 if (!locked) mutex_exit(&spa_namespace_lock); 1570 1571 if (spa == NULL) 1572 return; 1573 1574 aux = fm_nvlist_create(NULL); 1575 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name); 1576 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME, 1577 raw_name); 1578 r = strchr(name, '/'); 1579 if (r && r[1]) 1580 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]); 1581 1582 zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux); 1583 fm_nvlist_destroy(aux, FM_NVA_FREE); 1584 } 1585 1586 EXPORT_SYMBOL(zfs_ereport_post); 1587 EXPORT_SYMBOL(zfs_ereport_is_valid); 1588 EXPORT_SYMBOL(zfs_ereport_post_checksum); 1589 EXPORT_SYMBOL(zfs_post_remove); 1590 EXPORT_SYMBOL(zfs_post_autoreplace); 1591 EXPORT_SYMBOL(zfs_post_state_change); 1592 1593 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW, 1594 "Maximum recent zevents records to retain for duplicate checking"); 1595 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW, 1596 "Expiration time for recent zevents records"); 1597 #endif /* _KERNEL */ 1598