xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_fm.c (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012,2021 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41 
42 /*
43  * This general routine is responsible for generating all the different ZFS
44  * ereports.  The payload is dependent on the class, and which arguments are
45  * supplied to the function:
46  *
47  * 	EREPORT			POOL	VDEV	IO
48  * 	block			X	X	X
49  * 	data			X		X
50  * 	device			X	X
51  * 	pool			X
52  *
53  * If we are in a loading state, all errors are chained together by the same
54  * SPA-wide ENA (Error Numeric Association).
55  *
56  * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57  * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
58  * to chain together all ereports associated with a logical piece of data.  For
59  * read I/Os, there  are basically three 'types' of I/O, which form a roughly
60  * layered diagram:
61  *
62  * 	+---------------+
63  * 	| Aggregate I/O |	No associated logical data or device
64  * 	+---------------+
65  *              |
66  *              V
67  * 	+---------------+	Reads associated with a piece of logical data.
68  * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
69  * 	+---------------+       mirrors, gang blocks, retries, etc.
70  *              |
71  *              V
72  * 	+---------------+	Reads associated with a particular device, but
73  * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
74  * 	+---------------+	and I/O aggregation.
75  *
76  * Note that 'physical I/O' here is not the same terminology as used in the rest
77  * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
78  * blockpointer.  But I/O with no associated block pointer can still be related
79  * to a logical piece of data (i.e. RAID-Z requests).
80  *
81  * Purely physical I/O always have unique ENAs.  They are not related to a
82  * particular piece of logical data, and therefore cannot be chained together.
83  * We still generate an ereport, but the DE doesn't correlate it with any
84  * logical piece of data.  When such an I/O fails, the delegated I/O requests
85  * will issue a retry, which will trigger the 'real' ereport with the correct
86  * ENA.
87  *
88  * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89  * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
90  * then inherit this pointer, so that when it is first set subsequent failures
91  * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
92  * this pointer is set to NULL, and no ereport will be generated (since it
93  * doesn't actually correspond to any particular device or piece of data,
94  * and the caller will always retry without caching or queueing anyway).
95  *
96  * For checksum errors, we want to include more information about the actual
97  * error which occurs.  Accordingly, we build an ereport when the error is
98  * noticed, but instead of sending it in immediately, we hang it off of the
99  * io_cksum_report field of the logical IO.  When the logical IO completes
100  * (successfully or not), zfs_ereport_finish_checksum() is called with the
101  * good and bad versions of the buffer (if available), and we annotate the
102  * ereport with information about the differences.
103  */
104 
105 #ifdef _KERNEL
106 /*
107  * Duplicate ereport Detection
108  *
109  * Some ereports are retained momentarily for detecting duplicates.  These
110  * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111  * tree of recent unique ereports.
112  *
113  * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114  * task is used to purge stale entries.
115  */
116 static list_t recent_events_list;
117 static avl_tree_t recent_events_tree;
118 static kmutex_t recent_events_lock;
119 static taskqid_t recent_events_cleaner_tqid;
120 
121 /*
122  * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
123  *
124  * This setting can be changed dynamically and setting it to zero
125  * disables duplicate detection.
126  */
127 static unsigned int zfs_zevent_retain_max = 2000;
128 
129 /*
130  * The lifespan for a recent ereport entry. The default of 15 minutes is
131  * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132  * over a period of 10 minutes.
133  */
134 static unsigned int zfs_zevent_retain_expire_secs = 900;
135 
136 typedef enum zfs_subclass {
137 	ZSC_IO,
138 	ZSC_DATA,
139 	ZSC_CHECKSUM
140 } zfs_subclass_t;
141 
142 typedef struct {
143 	/* common criteria */
144 	uint64_t	re_pool_guid;
145 	uint64_t	re_vdev_guid;
146 	int		re_io_error;
147 	uint64_t	re_io_size;
148 	uint64_t	re_io_offset;
149 	zfs_subclass_t	re_subclass;
150 	zio_priority_t	re_io_priority;
151 
152 	/* logical zio criteria (optional) */
153 	zbookmark_phys_t re_io_bookmark;
154 
155 	/* internal state */
156 	avl_node_t	re_tree_link;
157 	list_node_t	re_list_link;
158 	uint64_t	re_timestamp;
159 } recent_events_node_t;
160 
161 static int
162 recent_events_compare(const void *a, const void *b)
163 {
164 	const recent_events_node_t *node1 = a;
165 	const recent_events_node_t *node2 = b;
166 	int cmp;
167 
168 	/*
169 	 * The comparison order here is somewhat arbitrary.
170 	 * What's important is that if every criteria matches, then it
171 	 * is a duplicate (i.e. compare returns 0)
172 	 */
173 	if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0)
174 		return (cmp);
175 	if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0)
176 		return (cmp);
177 	if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0)
178 		return (cmp);
179 	if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0)
180 		return (cmp);
181 	if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0)
182 		return (cmp);
183 	if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0)
184 		return (cmp);
185 	if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0)
186 		return (cmp);
187 
188 	const zbookmark_phys_t *zb1 = &node1->re_io_bookmark;
189 	const zbookmark_phys_t *zb2 = &node2->re_io_bookmark;
190 
191 	if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0)
192 		return (cmp);
193 	if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0)
194 		return (cmp);
195 	if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0)
196 		return (cmp);
197 	if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0)
198 		return (cmp);
199 
200 	return (0);
201 }
202 
203 static void zfs_ereport_schedule_cleaner(void);
204 
205 /*
206  * background task to clean stale recent event nodes.
207  */
208 static void
209 zfs_ereport_cleaner(void *arg)
210 {
211 	recent_events_node_t *entry;
212 	uint64_t now = gethrtime();
213 
214 	/*
215 	 * purge expired entries
216 	 */
217 	mutex_enter(&recent_events_lock);
218 	while ((entry = list_tail(&recent_events_list)) != NULL) {
219 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
220 		if (age <= zfs_zevent_retain_expire_secs)
221 			break;
222 
223 		/* remove expired node */
224 		avl_remove(&recent_events_tree, entry);
225 		list_remove(&recent_events_list, entry);
226 		kmem_free(entry, sizeof (*entry));
227 	}
228 
229 	/* Restart the cleaner if more entries remain */
230 	recent_events_cleaner_tqid = 0;
231 	if (!list_is_empty(&recent_events_list))
232 		zfs_ereport_schedule_cleaner();
233 
234 	mutex_exit(&recent_events_lock);
235 }
236 
237 static void
238 zfs_ereport_schedule_cleaner(void)
239 {
240 	ASSERT(MUTEX_HELD(&recent_events_lock));
241 
242 	uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1);
243 
244 	recent_events_cleaner_tqid = taskq_dispatch_delay(
245 	    system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP,
246 	    ddi_get_lbolt() + NSEC_TO_TICK(timeout));
247 }
248 
249 /*
250  * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
251  */
252 void
253 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
254 {
255 	uint64_t vdev_guid, pool_guid;
256 	int cnt = 0;
257 
258 	ASSERT(vd != NULL || spa != NULL);
259 	if (vd == NULL) {
260 		vdev_guid = 0;
261 		pool_guid = spa_guid(spa);
262 	} else {
263 		vdev_guid = vd->vdev_guid;
264 		pool_guid = 0;
265 	}
266 
267 	mutex_enter(&recent_events_lock);
268 
269 	recent_events_node_t *next = list_head(&recent_events_list);
270 	while (next != NULL) {
271 		recent_events_node_t *entry = next;
272 
273 		next = list_next(&recent_events_list, next);
274 
275 		if (entry->re_vdev_guid == vdev_guid ||
276 		    entry->re_pool_guid == pool_guid) {
277 			avl_remove(&recent_events_tree, entry);
278 			list_remove(&recent_events_list, entry);
279 			kmem_free(entry, sizeof (*entry));
280 			cnt++;
281 		}
282 	}
283 
284 	mutex_exit(&recent_events_lock);
285 }
286 
287 /*
288  * Check if an ereport would be a duplicate of one recently posted.
289  *
290  * An ereport is considered a duplicate if the set of criteria in
291  * recent_events_node_t all match.
292  *
293  * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
294  * are candidates for duplicate checking.
295  */
296 static boolean_t
297 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd,
298     const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size)
299 {
300 	recent_events_node_t search = {0}, *entry;
301 
302 	if (vd == NULL || zio == NULL)
303 		return (B_FALSE);
304 
305 	if (zfs_zevent_retain_max == 0)
306 		return (B_FALSE);
307 
308 	if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0)
309 		search.re_subclass = ZSC_IO;
310 	else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0)
311 		search.re_subclass = ZSC_DATA;
312 	else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0)
313 		search.re_subclass = ZSC_CHECKSUM;
314 	else
315 		return (B_FALSE);
316 
317 	search.re_pool_guid = spa_guid(spa);
318 	search.re_vdev_guid = vd->vdev_guid;
319 	search.re_io_error = zio->io_error;
320 	search.re_io_priority = zio->io_priority;
321 	/* if size is supplied use it over what's in zio */
322 	if (size) {
323 		search.re_io_size = size;
324 		search.re_io_offset = offset;
325 	} else {
326 		search.re_io_size = zio->io_size;
327 		search.re_io_offset = zio->io_offset;
328 	}
329 
330 	/* grab optional logical zio criteria */
331 	if (zb != NULL) {
332 		search.re_io_bookmark.zb_objset = zb->zb_objset;
333 		search.re_io_bookmark.zb_object = zb->zb_object;
334 		search.re_io_bookmark.zb_level = zb->zb_level;
335 		search.re_io_bookmark.zb_blkid = zb->zb_blkid;
336 	}
337 
338 	uint64_t now = gethrtime();
339 
340 	mutex_enter(&recent_events_lock);
341 
342 	/* check if we have seen this one recently */
343 	entry = avl_find(&recent_events_tree, &search, NULL);
344 	if (entry != NULL) {
345 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
346 
347 		/*
348 		 * There is still an active cleaner (since we're here).
349 		 * Reset the last seen time for this duplicate entry
350 		 * so that its lifespand gets extended.
351 		 */
352 		list_remove(&recent_events_list, entry);
353 		list_insert_head(&recent_events_list, entry);
354 		entry->re_timestamp = now;
355 
356 		zfs_zevent_track_duplicate();
357 		mutex_exit(&recent_events_lock);
358 
359 		return (age <= zfs_zevent_retain_expire_secs);
360 	}
361 
362 	if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) {
363 		/* recycle oldest node */
364 		entry = list_tail(&recent_events_list);
365 		ASSERT(entry != NULL);
366 		list_remove(&recent_events_list, entry);
367 		avl_remove(&recent_events_tree, entry);
368 	} else {
369 		entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP);
370 	}
371 
372 	/* record this as a recent ereport */
373 	*entry = search;
374 	avl_add(&recent_events_tree, entry);
375 	list_insert_head(&recent_events_list, entry);
376 	entry->re_timestamp = now;
377 
378 	/* Start a cleaner if not already scheduled */
379 	if (recent_events_cleaner_tqid == 0)
380 		zfs_ereport_schedule_cleaner();
381 
382 	mutex_exit(&recent_events_lock);
383 	return (B_FALSE);
384 }
385 
386 void
387 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
388 {
389 	if (nvl)
390 		fm_nvlist_destroy(nvl, FM_NVA_FREE);
391 
392 	if (detector)
393 		fm_nvlist_destroy(detector, FM_NVA_FREE);
394 }
395 
396 /*
397  * We want to rate limit ZIO delay, deadman, and checksum events so as to not
398  * flood zevent consumers when a disk is acting up.
399  *
400  * Returns 1 if we're ratelimiting, 0 if not.
401  */
402 static int
403 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
404 {
405 	int rc = 0;
406 	/*
407 	 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
408 	 * are.  Invert it to get our return value.
409 	 */
410 	if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
411 		rc = !zfs_ratelimit(&vd->vdev_delay_rl);
412 	} else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) {
413 		rc = !zfs_ratelimit(&vd->vdev_deadman_rl);
414 	} else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
415 		rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
416 	}
417 
418 	if (rc)	{
419 		/* We're rate limiting */
420 		fm_erpt_dropped_increment();
421 	}
422 
423 	return (rc);
424 }
425 
426 /*
427  * Return B_TRUE if the event actually posted, B_FALSE if not.
428  */
429 static boolean_t
430 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
431     const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
432     zio_t *zio, uint64_t stateoroffset, uint64_t size)
433 {
434 	nvlist_t *ereport, *detector;
435 
436 	uint64_t ena;
437 	char class[64];
438 
439 	if ((ereport = fm_nvlist_create(NULL)) == NULL)
440 		return (B_FALSE);
441 
442 	if ((detector = fm_nvlist_create(NULL)) == NULL) {
443 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
444 		return (B_FALSE);
445 	}
446 
447 	/*
448 	 * Serialize ereport generation
449 	 */
450 	mutex_enter(&spa->spa_errlist_lock);
451 
452 	/*
453 	 * Determine the ENA to use for this event.  If we are in a loading
454 	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
455 	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
456 	 */
457 	if (spa_load_state(spa) != SPA_LOAD_NONE) {
458 		if (spa->spa_ena == 0)
459 			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
460 		ena = spa->spa_ena;
461 	} else if (zio != NULL && zio->io_logical != NULL) {
462 		if (zio->io_logical->io_ena == 0)
463 			zio->io_logical->io_ena =
464 			    fm_ena_generate(0, FM_ENA_FMT1);
465 		ena = zio->io_logical->io_ena;
466 	} else {
467 		ena = fm_ena_generate(0, FM_ENA_FMT1);
468 	}
469 
470 	/*
471 	 * Construct the full class, detector, and other standard FMA fields.
472 	 */
473 	(void) snprintf(class, sizeof (class), "%s.%s",
474 	    ZFS_ERROR_CLASS, subclass);
475 
476 	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
477 	    vd != NULL ? vd->vdev_guid : 0);
478 
479 	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
480 
481 	/*
482 	 * Construct the per-ereport payload, depending on which parameters are
483 	 * passed in.
484 	 */
485 
486 	/*
487 	 * Generic payload members common to all ereports.
488 	 */
489 	fm_payload_set(ereport,
490 	    FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
491 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
492 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
493 	    (uint64_t)spa_state(spa),
494 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
495 	    (int32_t)spa_load_state(spa), NULL);
496 
497 	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
498 	    DATA_TYPE_STRING,
499 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
500 	    FM_EREPORT_FAILMODE_WAIT :
501 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
502 	    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
503 	    NULL);
504 
505 	if (vd != NULL) {
506 		vdev_t *pvd = vd->vdev_parent;
507 		vdev_queue_t *vq = &vd->vdev_queue;
508 		vdev_stat_t *vs = &vd->vdev_stat;
509 		vdev_t *spare_vd;
510 		uint64_t *spare_guids;
511 		char **spare_paths;
512 		int i, spare_count;
513 
514 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
515 		    DATA_TYPE_UINT64, vd->vdev_guid,
516 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
517 		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
518 		if (vd->vdev_path != NULL)
519 			fm_payload_set(ereport,
520 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
521 			    DATA_TYPE_STRING, vd->vdev_path, NULL);
522 		if (vd->vdev_devid != NULL)
523 			fm_payload_set(ereport,
524 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
525 			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
526 		if (vd->vdev_fru != NULL)
527 			fm_payload_set(ereport,
528 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
529 			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
530 		if (vd->vdev_enc_sysfs_path != NULL)
531 			fm_payload_set(ereport,
532 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
533 			    DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
534 		if (vd->vdev_ashift)
535 			fm_payload_set(ereport,
536 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
537 			    DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
538 
539 		if (vq != NULL) {
540 			fm_payload_set(ereport,
541 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
542 			    DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
543 			fm_payload_set(ereport,
544 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
545 			    DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
546 		}
547 
548 		if (vs != NULL) {
549 			fm_payload_set(ereport,
550 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
551 			    DATA_TYPE_UINT64, vs->vs_read_errors,
552 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
553 			    DATA_TYPE_UINT64, vs->vs_write_errors,
554 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
555 			    DATA_TYPE_UINT64, vs->vs_checksum_errors,
556 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
557 			    DATA_TYPE_UINT64, vs->vs_slow_ios,
558 			    NULL);
559 		}
560 
561 		if (pvd != NULL) {
562 			fm_payload_set(ereport,
563 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
564 			    DATA_TYPE_UINT64, pvd->vdev_guid,
565 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
566 			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
567 			    NULL);
568 			if (pvd->vdev_path)
569 				fm_payload_set(ereport,
570 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
571 				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
572 			if (pvd->vdev_devid)
573 				fm_payload_set(ereport,
574 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
575 				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
576 		}
577 
578 		spare_count = spa->spa_spares.sav_count;
579 		spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
580 		    KM_SLEEP);
581 		spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
582 		    KM_SLEEP);
583 
584 		for (i = 0; i < spare_count; i++) {
585 			spare_vd = spa->spa_spares.sav_vdevs[i];
586 			if (spare_vd) {
587 				spare_paths[i] = spare_vd->vdev_path;
588 				spare_guids[i] = spare_vd->vdev_guid;
589 			}
590 		}
591 
592 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
593 		    DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
594 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
595 		    DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
596 
597 		kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
598 		kmem_free(spare_paths, sizeof (char *) * spare_count);
599 	}
600 
601 	if (zio != NULL) {
602 		/*
603 		 * Payload common to all I/Os.
604 		 */
605 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
606 		    DATA_TYPE_INT32, zio->io_error, NULL);
607 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
608 		    DATA_TYPE_INT32, zio->io_flags, NULL);
609 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
610 		    DATA_TYPE_UINT32, zio->io_stage, NULL);
611 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
612 		    DATA_TYPE_UINT32, zio->io_pipeline, NULL);
613 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
614 		    DATA_TYPE_UINT64, zio->io_delay, NULL);
615 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
616 		    DATA_TYPE_UINT64, zio->io_timestamp, NULL);
617 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
618 		    DATA_TYPE_UINT64, zio->io_delta, NULL);
619 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY,
620 		    DATA_TYPE_UINT32, zio->io_priority, NULL);
621 
622 		/*
623 		 * If the 'size' parameter is non-zero, it indicates this is a
624 		 * RAID-Z or other I/O where the physical offset and length are
625 		 * provided for us, instead of within the zio_t.
626 		 */
627 		if (vd != NULL) {
628 			if (size)
629 				fm_payload_set(ereport,
630 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
631 				    DATA_TYPE_UINT64, stateoroffset,
632 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
633 				    DATA_TYPE_UINT64, size, NULL);
634 			else
635 				fm_payload_set(ereport,
636 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
637 				    DATA_TYPE_UINT64, zio->io_offset,
638 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
639 				    DATA_TYPE_UINT64, zio->io_size, NULL);
640 		}
641 	} else if (vd != NULL) {
642 		/*
643 		 * If we have a vdev but no zio, this is a device fault, and the
644 		 * 'stateoroffset' parameter indicates the previous state of the
645 		 * vdev.
646 		 */
647 		fm_payload_set(ereport,
648 		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
649 		    DATA_TYPE_UINT64, stateoroffset, NULL);
650 	}
651 
652 	/*
653 	 * Payload for I/Os with corresponding logical information.
654 	 */
655 	if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
656 		fm_payload_set(ereport,
657 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
658 		    DATA_TYPE_UINT64, zb->zb_objset,
659 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
660 		    DATA_TYPE_UINT64, zb->zb_object,
661 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
662 		    DATA_TYPE_INT64, zb->zb_level,
663 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
664 		    DATA_TYPE_UINT64, zb->zb_blkid, NULL);
665 	}
666 
667 	mutex_exit(&spa->spa_errlist_lock);
668 
669 	*ereport_out = ereport;
670 	*detector_out = detector;
671 	return (B_TRUE);
672 }
673 
674 /* if it's <= 128 bytes, save the corruption directly */
675 #define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
676 
677 #define	MAX_RANGES		16
678 
679 typedef struct zfs_ecksum_info {
680 	/* histograms of set and cleared bits by bit number in a 64-bit word */
681 	uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY];
682 	uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
683 
684 	/* inline arrays of bits set and cleared. */
685 	uint64_t zei_bits_set[ZFM_MAX_INLINE];
686 	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
687 
688 	/*
689 	 * for each range, the number of bits set and cleared.  The Hamming
690 	 * distance between the good and bad buffers is the sum of them all.
691 	 */
692 	uint32_t zei_range_sets[MAX_RANGES];
693 	uint32_t zei_range_clears[MAX_RANGES];
694 
695 	struct zei_ranges {
696 		uint32_t	zr_start;
697 		uint32_t	zr_end;
698 	} zei_ranges[MAX_RANGES];
699 
700 	size_t	zei_range_count;
701 	uint32_t zei_mingap;
702 	uint32_t zei_allowed_mingap;
703 
704 } zfs_ecksum_info_t;
705 
706 static void
707 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count)
708 {
709 	size_t i;
710 	size_t bits = 0;
711 	uint64_t value = BE_64(value_arg);
712 
713 	/* We store the bits in big-endian (largest-first) order */
714 	for (i = 0; i < 64; i++) {
715 		if (value & (1ull << i)) {
716 			hist[63 - i]++;
717 			++bits;
718 		}
719 	}
720 	/* update the count of bits changed */
721 	*count += bits;
722 }
723 
724 /*
725  * We've now filled up the range array, and need to increase "mingap" and
726  * shrink the range list accordingly.  zei_mingap is always the smallest
727  * distance between array entries, so we set the new_allowed_gap to be
728  * one greater than that.  We then go through the list, joining together
729  * any ranges which are closer than the new_allowed_gap.
730  *
731  * By construction, there will be at least one.  We also update zei_mingap
732  * to the new smallest gap, to prepare for our next invocation.
733  */
734 static void
735 zei_shrink_ranges(zfs_ecksum_info_t *eip)
736 {
737 	uint32_t mingap = UINT32_MAX;
738 	uint32_t new_allowed_gap = eip->zei_mingap + 1;
739 
740 	size_t idx, output;
741 	size_t max = eip->zei_range_count;
742 
743 	struct zei_ranges *r = eip->zei_ranges;
744 
745 	ASSERT3U(eip->zei_range_count, >, 0);
746 	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
747 
748 	output = idx = 0;
749 	while (idx < max - 1) {
750 		uint32_t start = r[idx].zr_start;
751 		uint32_t end = r[idx].zr_end;
752 
753 		while (idx < max - 1) {
754 			idx++;
755 
756 			uint32_t nstart = r[idx].zr_start;
757 			uint32_t nend = r[idx].zr_end;
758 
759 			uint32_t gap = nstart - end;
760 			if (gap < new_allowed_gap) {
761 				end = nend;
762 				continue;
763 			}
764 			if (gap < mingap)
765 				mingap = gap;
766 			break;
767 		}
768 		r[output].zr_start = start;
769 		r[output].zr_end = end;
770 		output++;
771 	}
772 	ASSERT3U(output, <, eip->zei_range_count);
773 	eip->zei_range_count = output;
774 	eip->zei_mingap = mingap;
775 	eip->zei_allowed_mingap = new_allowed_gap;
776 }
777 
778 static void
779 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
780 {
781 	struct zei_ranges *r = eip->zei_ranges;
782 	size_t count = eip->zei_range_count;
783 
784 	if (count >= MAX_RANGES) {
785 		zei_shrink_ranges(eip);
786 		count = eip->zei_range_count;
787 	}
788 	if (count == 0) {
789 		eip->zei_mingap = UINT32_MAX;
790 		eip->zei_allowed_mingap = 1;
791 	} else {
792 		int gap = start - r[count - 1].zr_end;
793 
794 		if (gap < eip->zei_allowed_mingap) {
795 			r[count - 1].zr_end = end;
796 			return;
797 		}
798 		if (gap < eip->zei_mingap)
799 			eip->zei_mingap = gap;
800 	}
801 	r[count].zr_start = start;
802 	r[count].zr_end = end;
803 	eip->zei_range_count++;
804 }
805 
806 static size_t
807 zei_range_total_size(zfs_ecksum_info_t *eip)
808 {
809 	struct zei_ranges *r = eip->zei_ranges;
810 	size_t count = eip->zei_range_count;
811 	size_t result = 0;
812 	size_t idx;
813 
814 	for (idx = 0; idx < count; idx++)
815 		result += (r[idx].zr_end - r[idx].zr_start);
816 
817 	return (result);
818 }
819 
820 static zfs_ecksum_info_t *
821 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
822     const abd_t *goodabd, const abd_t *badabd, size_t size,
823     boolean_t drop_if_identical)
824 {
825 	const uint64_t *good;
826 	const uint64_t *bad;
827 
828 	size_t nui64s = size / sizeof (uint64_t);
829 
830 	size_t inline_size;
831 	int no_inline = 0;
832 	size_t idx;
833 	size_t range;
834 
835 	size_t offset = 0;
836 	ssize_t start = -1;
837 
838 	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
839 
840 	/* don't do any annotation for injected checksum errors */
841 	if (info != NULL && info->zbc_injected)
842 		return (eip);
843 
844 	if (info != NULL && info->zbc_has_cksum) {
845 		fm_payload_set(ereport,
846 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
847 		    DATA_TYPE_UINT64_ARRAY,
848 		    sizeof (info->zbc_expected) / sizeof (uint64_t),
849 		    (uint64_t *)&info->zbc_expected,
850 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
851 		    DATA_TYPE_UINT64_ARRAY,
852 		    sizeof (info->zbc_actual) / sizeof (uint64_t),
853 		    (uint64_t *)&info->zbc_actual,
854 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
855 		    DATA_TYPE_STRING,
856 		    info->zbc_checksum_name,
857 		    NULL);
858 
859 		if (info->zbc_byteswapped) {
860 			fm_payload_set(ereport,
861 			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
862 			    DATA_TYPE_BOOLEAN, 1,
863 			    NULL);
864 		}
865 	}
866 
867 	if (badabd == NULL || goodabd == NULL)
868 		return (eip);
869 
870 	ASSERT3U(nui64s, <=, UINT32_MAX);
871 	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
872 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
873 	ASSERT3U(size, <=, UINT32_MAX);
874 
875 	good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
876 	bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
877 
878 	/* build up the range list by comparing the two buffers. */
879 	for (idx = 0; idx < nui64s; idx++) {
880 		if (good[idx] == bad[idx]) {
881 			if (start == -1)
882 				continue;
883 
884 			zei_add_range(eip, start, idx);
885 			start = -1;
886 		} else {
887 			if (start != -1)
888 				continue;
889 
890 			start = idx;
891 		}
892 	}
893 	if (start != -1)
894 		zei_add_range(eip, start, idx);
895 
896 	/* See if it will fit in our inline buffers */
897 	inline_size = zei_range_total_size(eip);
898 	if (inline_size > ZFM_MAX_INLINE)
899 		no_inline = 1;
900 
901 	/*
902 	 * If there is no change and we want to drop if the buffers are
903 	 * identical, do so.
904 	 */
905 	if (inline_size == 0 && drop_if_identical) {
906 		kmem_free(eip, sizeof (*eip));
907 		abd_return_buf((abd_t *)goodabd, (void *)good, size);
908 		abd_return_buf((abd_t *)badabd, (void *)bad, size);
909 		return (NULL);
910 	}
911 
912 	/*
913 	 * Now walk through the ranges, filling in the details of the
914 	 * differences.  Also convert our uint64_t-array offsets to byte
915 	 * offsets.
916 	 */
917 	for (range = 0; range < eip->zei_range_count; range++) {
918 		size_t start = eip->zei_ranges[range].zr_start;
919 		size_t end = eip->zei_ranges[range].zr_end;
920 
921 		for (idx = start; idx < end; idx++) {
922 			uint64_t set, cleared;
923 
924 			// bits set in bad, but not in good
925 			set = ((~good[idx]) & bad[idx]);
926 			// bits set in good, but not in bad
927 			cleared = (good[idx] & (~bad[idx]));
928 
929 			if (!no_inline) {
930 				ASSERT3U(offset, <, inline_size);
931 				eip->zei_bits_set[offset] = set;
932 				eip->zei_bits_cleared[offset] = cleared;
933 				offset++;
934 			}
935 
936 			update_histogram(set, eip->zei_histogram_set,
937 			    &eip->zei_range_sets[range]);
938 			update_histogram(cleared, eip->zei_histogram_cleared,
939 			    &eip->zei_range_clears[range]);
940 		}
941 
942 		/* convert to byte offsets */
943 		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
944 		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
945 	}
946 
947 	abd_return_buf((abd_t *)goodabd, (void *)good, size);
948 	abd_return_buf((abd_t *)badabd, (void *)bad, size);
949 
950 	eip->zei_allowed_mingap	*= sizeof (uint64_t);
951 	inline_size		*= sizeof (uint64_t);
952 
953 	/* fill in ereport */
954 	fm_payload_set(ereport,
955 	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
956 	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
957 	    (uint32_t *)eip->zei_ranges,
958 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
959 	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
960 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
961 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
962 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
963 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
964 	    NULL);
965 
966 	if (!no_inline) {
967 		fm_payload_set(ereport,
968 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
969 		    DATA_TYPE_UINT8_ARRAY,
970 		    inline_size, (uint8_t *)eip->zei_bits_set,
971 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
972 		    DATA_TYPE_UINT8_ARRAY,
973 		    inline_size, (uint8_t *)eip->zei_bits_cleared,
974 		    NULL);
975 	} else {
976 		fm_payload_set(ereport,
977 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
978 		    DATA_TYPE_UINT32_ARRAY,
979 		    NBBY * sizeof (uint64_t), eip->zei_histogram_set,
980 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
981 		    DATA_TYPE_UINT32_ARRAY,
982 		    NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
983 		    NULL);
984 	}
985 	return (eip);
986 }
987 #else
988 void
989 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
990 {
991 	(void) spa, (void) vd;
992 }
993 #endif
994 
995 /*
996  * Make sure our event is still valid for the given zio/vdev/pool.  For example,
997  * we don't want to keep logging events for a faulted or missing vdev.
998  */
999 boolean_t
1000 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
1001 {
1002 #ifdef _KERNEL
1003 	/*
1004 	 * If we are doing a spa_tryimport() or in recovery mode,
1005 	 * ignore errors.
1006 	 */
1007 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
1008 	    spa_load_state(spa) == SPA_LOAD_RECOVER)
1009 		return (B_FALSE);
1010 
1011 	/*
1012 	 * If we are in the middle of opening a pool, and the previous attempt
1013 	 * failed, don't bother logging any new ereports - we're just going to
1014 	 * get the same diagnosis anyway.
1015 	 */
1016 	if (spa_load_state(spa) != SPA_LOAD_NONE &&
1017 	    spa->spa_last_open_failed)
1018 		return (B_FALSE);
1019 
1020 	if (zio != NULL) {
1021 		/*
1022 		 * If this is not a read or write zio, ignore the error.  This
1023 		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
1024 		 */
1025 		if (zio->io_type != ZIO_TYPE_READ &&
1026 		    zio->io_type != ZIO_TYPE_WRITE)
1027 			return (B_FALSE);
1028 
1029 		if (vd != NULL) {
1030 			/*
1031 			 * If the vdev has already been marked as failing due
1032 			 * to a failed probe, then ignore any subsequent I/O
1033 			 * errors, as the DE will automatically fault the vdev
1034 			 * on the first such failure.  This also catches cases
1035 			 * where vdev_remove_wanted is set and the device has
1036 			 * not yet been asynchronously placed into the REMOVED
1037 			 * state.
1038 			 */
1039 			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
1040 				return (B_FALSE);
1041 
1042 			/*
1043 			 * Ignore checksum errors for reads from DTL regions of
1044 			 * leaf vdevs.
1045 			 */
1046 			if (zio->io_type == ZIO_TYPE_READ &&
1047 			    zio->io_error == ECKSUM &&
1048 			    vd->vdev_ops->vdev_op_leaf &&
1049 			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
1050 				return (B_FALSE);
1051 		}
1052 	}
1053 
1054 	/*
1055 	 * For probe failure, we want to avoid posting ereports if we've
1056 	 * already removed the device in the meantime.
1057 	 */
1058 	if (vd != NULL &&
1059 	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
1060 	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
1061 		return (B_FALSE);
1062 
1063 	/* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1064 	if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
1065 	    (zio != NULL) && (!zio->io_timestamp)) {
1066 		return (B_FALSE);
1067 	}
1068 #else
1069 	(void) subclass, (void) spa, (void) vd, (void) zio;
1070 #endif
1071 	return (B_TRUE);
1072 }
1073 
1074 /*
1075  * Post an ereport for the given subclass
1076  *
1077  * Returns
1078  * - 0 if an event was posted
1079  * - EINVAL if there was a problem posting event
1080  * - EBUSY if the event was rate limited
1081  * - EALREADY if the event was already posted (duplicate)
1082  */
1083 int
1084 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
1085     const zbookmark_phys_t *zb, zio_t *zio, uint64_t state)
1086 {
1087 	int rc = 0;
1088 #ifdef _KERNEL
1089 	nvlist_t *ereport = NULL;
1090 	nvlist_t *detector = NULL;
1091 
1092 	if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
1093 		return (EINVAL);
1094 
1095 	if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0))
1096 		return (SET_ERROR(EALREADY));
1097 
1098 	if (zfs_is_ratelimiting_event(subclass, vd))
1099 		return (SET_ERROR(EBUSY));
1100 
1101 	if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
1102 	    zb, zio, state, 0))
1103 		return (SET_ERROR(EINVAL));	/* couldn't post event */
1104 
1105 	if (ereport == NULL)
1106 		return (SET_ERROR(EINVAL));
1107 
1108 	/* Cleanup is handled by the callback function */
1109 	rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1110 #else
1111 	(void) subclass, (void) spa, (void) vd, (void) zb, (void) zio,
1112 	    (void) state;
1113 #endif
1114 	return (rc);
1115 }
1116 
1117 /*
1118  * Prepare a checksum ereport
1119  *
1120  * Returns
1121  * - 0 if an event was posted
1122  * - EINVAL if there was a problem posting event
1123  * - EBUSY if the event was rate limited
1124  * - EALREADY if the event was already posted (duplicate)
1125  */
1126 int
1127 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1128     struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info)
1129 {
1130 	zio_cksum_report_t *report;
1131 
1132 #ifdef _KERNEL
1133 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1134 		return (SET_ERROR(EINVAL));
1135 
1136 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1137 	    offset, length))
1138 		return (SET_ERROR(EALREADY));
1139 
1140 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1141 		return (SET_ERROR(EBUSY));
1142 #else
1143 	(void) zb, (void) offset;
1144 #endif
1145 
1146 	report = kmem_zalloc(sizeof (*report), KM_SLEEP);
1147 
1148 	zio_vsd_default_cksum_report(zio, report);
1149 
1150 	/* copy the checksum failure information if it was provided */
1151 	if (info != NULL) {
1152 		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
1153 		memcpy(report->zcr_ckinfo, info, sizeof (*info));
1154 	}
1155 
1156 	report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
1157 	report->zcr_align =
1158 	    vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
1159 	report->zcr_length = length;
1160 
1161 #ifdef _KERNEL
1162 	(void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
1163 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
1164 
1165 	if (report->zcr_ereport == NULL) {
1166 		zfs_ereport_free_checksum(report);
1167 		return (0);
1168 	}
1169 #endif
1170 
1171 	mutex_enter(&spa->spa_errlist_lock);
1172 	report->zcr_next = zio->io_logical->io_cksum_report;
1173 	zio->io_logical->io_cksum_report = report;
1174 	mutex_exit(&spa->spa_errlist_lock);
1175 	return (0);
1176 }
1177 
1178 void
1179 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
1180     const abd_t *bad_data, boolean_t drop_if_identical)
1181 {
1182 #ifdef _KERNEL
1183 	zfs_ecksum_info_t *info;
1184 
1185 	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
1186 	    good_data, bad_data, report->zcr_length, drop_if_identical);
1187 	if (info != NULL)
1188 		zfs_zevent_post(report->zcr_ereport,
1189 		    report->zcr_detector, zfs_zevent_post_cb);
1190 	else
1191 		zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
1192 
1193 	report->zcr_ereport = report->zcr_detector = NULL;
1194 	if (info != NULL)
1195 		kmem_free(info, sizeof (*info));
1196 #else
1197 	(void) report, (void) good_data, (void) bad_data,
1198 	    (void) drop_if_identical;
1199 #endif
1200 }
1201 
1202 void
1203 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
1204 {
1205 #ifdef _KERNEL
1206 	if (rpt->zcr_ereport != NULL) {
1207 		fm_nvlist_destroy(rpt->zcr_ereport,
1208 		    FM_NVA_FREE);
1209 		fm_nvlist_destroy(rpt->zcr_detector,
1210 		    FM_NVA_FREE);
1211 	}
1212 #endif
1213 	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
1214 
1215 	if (rpt->zcr_ckinfo != NULL)
1216 		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
1217 
1218 	kmem_free(rpt, sizeof (*rpt));
1219 }
1220 
1221 /*
1222  * Post a checksum ereport
1223  *
1224  * Returns
1225  * - 0 if an event was posted
1226  * - EINVAL if there was a problem posting event
1227  * - EBUSY if the event was rate limited
1228  * - EALREADY if the event was already posted (duplicate)
1229  */
1230 int
1231 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1232     struct zio *zio, uint64_t offset, uint64_t length,
1233     const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
1234 {
1235 	int rc = 0;
1236 #ifdef _KERNEL
1237 	nvlist_t *ereport = NULL;
1238 	nvlist_t *detector = NULL;
1239 	zfs_ecksum_info_t *info;
1240 
1241 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1242 		return (SET_ERROR(EINVAL));
1243 
1244 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1245 	    offset, length))
1246 		return (SET_ERROR(EALREADY));
1247 
1248 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1249 		return (SET_ERROR(EBUSY));
1250 
1251 	if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
1252 	    spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
1253 		return (SET_ERROR(EINVAL));
1254 	}
1255 
1256 	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
1257 	    B_FALSE);
1258 
1259 	if (info != NULL) {
1260 		rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1261 		kmem_free(info, sizeof (*info));
1262 	}
1263 #else
1264 	(void) spa, (void) vd, (void) zb, (void) zio, (void) offset,
1265 	    (void) length, (void) good_data, (void) bad_data, (void) zbc;
1266 #endif
1267 	return (rc);
1268 }
1269 
1270 /*
1271  * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1272  * change in the pool.  All sysevents are listed in sys/sysevent/eventdefs.h
1273  * and are designed to be consumed by the ZFS Event Daemon (ZED).  For
1274  * additional details refer to the zed(8) man page.
1275  */
1276 nvlist_t *
1277 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1278     nvlist_t *aux)
1279 {
1280 	nvlist_t *resource = NULL;
1281 #ifdef _KERNEL
1282 	char class[64];
1283 
1284 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
1285 		return (NULL);
1286 
1287 	if ((resource = fm_nvlist_create(NULL)) == NULL)
1288 		return (NULL);
1289 
1290 	(void) snprintf(class, sizeof (class), "%s.%s.%s", type,
1291 	    ZFS_ERROR_CLASS, name);
1292 	VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
1293 	VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
1294 	VERIFY0(nvlist_add_string(resource,
1295 	    FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
1296 	VERIFY0(nvlist_add_uint64(resource,
1297 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
1298 	VERIFY0(nvlist_add_uint64(resource,
1299 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
1300 	VERIFY0(nvlist_add_int32(resource,
1301 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
1302 
1303 	if (vd) {
1304 		VERIFY0(nvlist_add_uint64(resource,
1305 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
1306 		VERIFY0(nvlist_add_uint64(resource,
1307 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
1308 		if (vd->vdev_path != NULL)
1309 			VERIFY0(nvlist_add_string(resource,
1310 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
1311 		if (vd->vdev_devid != NULL)
1312 			VERIFY0(nvlist_add_string(resource,
1313 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
1314 		if (vd->vdev_fru != NULL)
1315 			VERIFY0(nvlist_add_string(resource,
1316 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
1317 		if (vd->vdev_enc_sysfs_path != NULL)
1318 			VERIFY0(nvlist_add_string(resource,
1319 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1320 			    vd->vdev_enc_sysfs_path));
1321 	}
1322 
1323 	/* also copy any optional payload data */
1324 	if (aux) {
1325 		nvpair_t *elem = NULL;
1326 
1327 		while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
1328 			(void) nvlist_add_nvpair(resource, elem);
1329 	}
1330 #else
1331 	(void) spa, (void) vd, (void) type, (void) name, (void) aux;
1332 #endif
1333 	return (resource);
1334 }
1335 
1336 static void
1337 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1338     nvlist_t *aux)
1339 {
1340 #ifdef _KERNEL
1341 	nvlist_t *resource;
1342 
1343 	resource = zfs_event_create(spa, vd, type, name, aux);
1344 	if (resource)
1345 		zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
1346 #else
1347 	(void) spa, (void) vd, (void) type, (void) name, (void) aux;
1348 #endif
1349 }
1350 
1351 /*
1352  * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1353  * has been removed from the system.  This will cause the DE to ignore any
1354  * recent I/O errors, inferring that they are due to the asynchronous device
1355  * removal.
1356  */
1357 void
1358 zfs_post_remove(spa_t *spa, vdev_t *vd)
1359 {
1360 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
1361 }
1362 
1363 /*
1364  * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1365  * has the 'autoreplace' property set, and therefore any broken vdevs will be
1366  * handled by higher level logic, and no vdev fault should be generated.
1367  */
1368 void
1369 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
1370 {
1371 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
1372 }
1373 
1374 /*
1375  * The 'resource.fs.zfs.statechange' event is an internal signal that the
1376  * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
1377  * cause the retire agent to repair any outstanding fault management cases
1378  * open because the device was not found (fault.fs.zfs.device).
1379  */
1380 void
1381 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
1382 {
1383 #ifdef _KERNEL
1384 	nvlist_t *aux;
1385 
1386 	/*
1387 	 * Add optional supplemental keys to payload
1388 	 */
1389 	aux = fm_nvlist_create(NULL);
1390 	if (vd && aux) {
1391 		if (vd->vdev_physpath) {
1392 			(void) nvlist_add_string(aux,
1393 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
1394 			    vd->vdev_physpath);
1395 		}
1396 		if (vd->vdev_enc_sysfs_path) {
1397 			(void) nvlist_add_string(aux,
1398 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1399 			    vd->vdev_enc_sysfs_path);
1400 		}
1401 
1402 		(void) nvlist_add_uint64(aux,
1403 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
1404 	}
1405 
1406 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1407 	    aux);
1408 
1409 	if (aux)
1410 		fm_nvlist_destroy(aux, FM_NVA_FREE);
1411 #else
1412 	(void) spa, (void) vd, (void) laststate;
1413 #endif
1414 }
1415 
1416 #ifdef _KERNEL
1417 void
1418 zfs_ereport_init(void)
1419 {
1420 	mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL);
1421 	list_create(&recent_events_list, sizeof (recent_events_node_t),
1422 	    offsetof(recent_events_node_t, re_list_link));
1423 	avl_create(&recent_events_tree,  recent_events_compare,
1424 	    sizeof (recent_events_node_t), offsetof(recent_events_node_t,
1425 	    re_tree_link));
1426 }
1427 
1428 /*
1429  * This 'early' fini needs to run before zfs_fini() which on Linux waits
1430  * for the system_delay_taskq to drain.
1431  */
1432 void
1433 zfs_ereport_taskq_fini(void)
1434 {
1435 	mutex_enter(&recent_events_lock);
1436 	if (recent_events_cleaner_tqid != 0) {
1437 		taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid);
1438 		recent_events_cleaner_tqid = 0;
1439 	}
1440 	mutex_exit(&recent_events_lock);
1441 }
1442 
1443 void
1444 zfs_ereport_fini(void)
1445 {
1446 	recent_events_node_t *entry;
1447 
1448 	while ((entry = list_head(&recent_events_list)) != NULL) {
1449 		avl_remove(&recent_events_tree, entry);
1450 		list_remove(&recent_events_list, entry);
1451 		kmem_free(entry, sizeof (*entry));
1452 	}
1453 	avl_destroy(&recent_events_tree);
1454 	list_destroy(&recent_events_list);
1455 	mutex_destroy(&recent_events_lock);
1456 }
1457 
1458 void
1459 zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name)
1460 {
1461 	nvlist_t *aux;
1462 
1463 	aux = fm_nvlist_create(NULL);
1464 	nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name);
1465 
1466 	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1467 	fm_nvlist_destroy(aux, FM_NVA_FREE);
1468 }
1469 
1470 /*
1471  * Post when a event when a zvol is created or removed
1472  *
1473  * This is currently only used by macOS, since it uses the event to create
1474  * symlinks between the volume name (mypool/myvol) and the actual /dev
1475  * device (/dev/disk3).  For example:
1476  *
1477  * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3
1478  *
1479  * name: The full name of the zvol ("mypool/myvol")
1480  * dev_name: The full /dev name for the zvol ("/dev/disk3")
1481  * raw_name: The raw  /dev name for the zvol ("/dev/rdisk3")
1482  */
1483 void
1484 zfs_ereport_zvol_post(const char *subclass, const char *name,
1485     const char *dev_name, const char *raw_name)
1486 {
1487 	nvlist_t *aux;
1488 	char *r;
1489 
1490 	boolean_t locked = mutex_owned(&spa_namespace_lock);
1491 	if (!locked) mutex_enter(&spa_namespace_lock);
1492 	spa_t *spa = spa_lookup(name);
1493 	if (!locked) mutex_exit(&spa_namespace_lock);
1494 
1495 	if (spa == NULL)
1496 		return;
1497 
1498 	aux = fm_nvlist_create(NULL);
1499 	nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name);
1500 	nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME,
1501 	    raw_name);
1502 	r = strchr(name, '/');
1503 	if (r && r[1])
1504 		nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]);
1505 
1506 	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1507 	fm_nvlist_destroy(aux, FM_NVA_FREE);
1508 }
1509 
1510 EXPORT_SYMBOL(zfs_ereport_post);
1511 EXPORT_SYMBOL(zfs_ereport_is_valid);
1512 EXPORT_SYMBOL(zfs_ereport_post_checksum);
1513 EXPORT_SYMBOL(zfs_post_remove);
1514 EXPORT_SYMBOL(zfs_post_autoreplace);
1515 EXPORT_SYMBOL(zfs_post_state_change);
1516 
1517 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW,
1518 	"Maximum recent zevents records to retain for duplicate checking");
1519 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW,
1520 	"Expiration time for recent zevents records");
1521 #endif /* _KERNEL */
1522