xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_fm.c (revision 093cf790569775b80662926efea6d9d3464bde94)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012,2021 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41 
42 /*
43  * This general routine is responsible for generating all the different ZFS
44  * ereports.  The payload is dependent on the class, and which arguments are
45  * supplied to the function:
46  *
47  * 	EREPORT			POOL	VDEV	IO
48  * 	block			X	X	X
49  * 	data			X		X
50  * 	device			X	X
51  * 	pool			X
52  *
53  * If we are in a loading state, all errors are chained together by the same
54  * SPA-wide ENA (Error Numeric Association).
55  *
56  * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57  * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
58  * to chain together all ereports associated with a logical piece of data.  For
59  * read I/Os, there  are basically three 'types' of I/O, which form a roughly
60  * layered diagram:
61  *
62  *      +---------------+
63  * 	| Aggregate I/O |	No associated logical data or device
64  * 	+---------------+
65  *              |
66  *              V
67  * 	+---------------+	Reads associated with a piece of logical data.
68  * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
69  * 	+---------------+       mirrors, gang blocks, retries, etc.
70  *              |
71  *              V
72  * 	+---------------+	Reads associated with a particular device, but
73  * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
74  * 	+---------------+	and I/O aggregation.
75  *
76  * Note that 'physical I/O' here is not the same terminology as used in the rest
77  * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
78  * blockpointer.  But I/O with no associated block pointer can still be related
79  * to a logical piece of data (i.e. RAID-Z requests).
80  *
81  * Purely physical I/O always have unique ENAs.  They are not related to a
82  * particular piece of logical data, and therefore cannot be chained together.
83  * We still generate an ereport, but the DE doesn't correlate it with any
84  * logical piece of data.  When such an I/O fails, the delegated I/O requests
85  * will issue a retry, which will trigger the 'real' ereport with the correct
86  * ENA.
87  *
88  * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89  * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
90  * then inherit this pointer, so that when it is first set subsequent failures
91  * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
92  * this pointer is set to NULL, and no ereport will be generated (since it
93  * doesn't actually correspond to any particular device or piece of data,
94  * and the caller will always retry without caching or queueing anyway).
95  *
96  * For checksum errors, we want to include more information about the actual
97  * error which occurs.  Accordingly, we build an ereport when the error is
98  * noticed, but instead of sending it in immediately, we hang it off of the
99  * io_cksum_report field of the logical IO.  When the logical IO completes
100  * (successfully or not), zfs_ereport_finish_checksum() is called with the
101  * good and bad versions of the buffer (if available), and we annotate the
102  * ereport with information about the differences.
103  */
104 
105 #ifdef _KERNEL
106 /*
107  * Duplicate ereport Detection
108  *
109  * Some ereports are retained momentarily for detecting duplicates.  These
110  * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111  * tree of recent unique ereports.
112  *
113  * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114  * task is used to purge stale entries.
115  */
116 static list_t recent_events_list;
117 static avl_tree_t recent_events_tree;
118 static kmutex_t recent_events_lock;
119 static taskqid_t recent_events_cleaner_tqid;
120 
121 /*
122  * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
123  *
124  * This setting can be changed dynamically and setting it to zero
125  * disables duplicate detection.
126  */
127 unsigned int zfs_zevent_retain_max = 2000;
128 
129 /*
130  * The lifespan for a recent ereport entry. The default of 15 minutes is
131  * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132  * over a period of 10 minutes.
133  */
134 unsigned int zfs_zevent_retain_expire_secs = 900;
135 
136 typedef enum zfs_subclass {
137 	ZSC_IO,
138 	ZSC_DATA,
139 	ZSC_CHECKSUM
140 } zfs_subclass_t;
141 
142 typedef struct {
143 	/* common criteria */
144 	uint64_t	re_pool_guid;
145 	uint64_t	re_vdev_guid;
146 	int		re_io_error;
147 	uint64_t	re_io_size;
148 	uint64_t	re_io_offset;
149 	zfs_subclass_t	re_subclass;
150 	zio_priority_t	re_io_priority;
151 
152 	/* logical zio criteria (optional) */
153 	zbookmark_phys_t re_io_bookmark;
154 
155 	/* internal state */
156 	avl_node_t	re_tree_link;
157 	list_node_t	re_list_link;
158 	uint64_t	re_timestamp;
159 } recent_events_node_t;
160 
161 static int
162 recent_events_compare(const void *a, const void *b)
163 {
164 	const recent_events_node_t *node1 = a;
165 	const recent_events_node_t *node2 = b;
166 	int cmp;
167 
168 	/*
169 	 * The comparison order here is somewhat arbitrary.
170 	 * What's important is that if every criteria matches, then it
171 	 * is a duplicate (i.e. compare returns 0)
172 	 */
173 	if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0)
174 		return (cmp);
175 	if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0)
176 		return (cmp);
177 	if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0)
178 		return (cmp);
179 	if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0)
180 		return (cmp);
181 	if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0)
182 		return (cmp);
183 	if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0)
184 		return (cmp);
185 	if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0)
186 		return (cmp);
187 
188 	const zbookmark_phys_t *zb1 = &node1->re_io_bookmark;
189 	const zbookmark_phys_t *zb2 = &node2->re_io_bookmark;
190 
191 	if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0)
192 		return (cmp);
193 	if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0)
194 		return (cmp);
195 	if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0)
196 		return (cmp);
197 	if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0)
198 		return (cmp);
199 
200 	return (0);
201 }
202 
203 static void zfs_ereport_schedule_cleaner(void);
204 
205 /*
206  * background task to clean stale recent event nodes.
207  */
208 /*ARGSUSED*/
209 static void
210 zfs_ereport_cleaner(void *arg)
211 {
212 	recent_events_node_t *entry;
213 	uint64_t now = gethrtime();
214 
215 	/*
216 	 * purge expired entries
217 	 */
218 	mutex_enter(&recent_events_lock);
219 	while ((entry = list_tail(&recent_events_list)) != NULL) {
220 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
221 		if (age <= zfs_zevent_retain_expire_secs)
222 			break;
223 
224 		/* remove expired node */
225 		avl_remove(&recent_events_tree, entry);
226 		list_remove(&recent_events_list, entry);
227 		kmem_free(entry, sizeof (*entry));
228 	}
229 
230 	/* Restart the cleaner if more entries remain */
231 	recent_events_cleaner_tqid = 0;
232 	if (!list_is_empty(&recent_events_list))
233 		zfs_ereport_schedule_cleaner();
234 
235 	mutex_exit(&recent_events_lock);
236 }
237 
238 static void
239 zfs_ereport_schedule_cleaner(void)
240 {
241 	ASSERT(MUTEX_HELD(&recent_events_lock));
242 
243 	uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1);
244 
245 	recent_events_cleaner_tqid = taskq_dispatch_delay(
246 	    system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP,
247 	    ddi_get_lbolt() + NSEC_TO_TICK(timeout));
248 }
249 
250 /*
251  * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
252  */
253 void
254 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
255 {
256 	uint64_t vdev_guid, pool_guid;
257 	int cnt = 0;
258 
259 	ASSERT(vd != NULL || spa != NULL);
260 	if (vd == NULL) {
261 		vdev_guid = 0;
262 		pool_guid = spa_guid(spa);
263 	} else {
264 		vdev_guid = vd->vdev_guid;
265 		pool_guid = 0;
266 	}
267 
268 	mutex_enter(&recent_events_lock);
269 
270 	recent_events_node_t *next = list_head(&recent_events_list);
271 	while (next != NULL) {
272 		recent_events_node_t *entry = next;
273 
274 		next = list_next(&recent_events_list, next);
275 
276 		if (entry->re_vdev_guid == vdev_guid ||
277 		    entry->re_pool_guid == pool_guid) {
278 			avl_remove(&recent_events_tree, entry);
279 			list_remove(&recent_events_list, entry);
280 			kmem_free(entry, sizeof (*entry));
281 			cnt++;
282 		}
283 	}
284 
285 	mutex_exit(&recent_events_lock);
286 }
287 
288 /*
289  * Check if an ereport would be a duplicate of one recently posted.
290  *
291  * An ereport is considered a duplicate if the set of criteria in
292  * recent_events_node_t all match.
293  *
294  * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
295  * are candidates for duplicate checking.
296  */
297 static boolean_t
298 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd,
299     const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size)
300 {
301 	recent_events_node_t search = {0}, *entry;
302 
303 	if (vd == NULL || zio == NULL)
304 		return (B_FALSE);
305 
306 	if (zfs_zevent_retain_max == 0)
307 		return (B_FALSE);
308 
309 	if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0)
310 		search.re_subclass = ZSC_IO;
311 	else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0)
312 		search.re_subclass = ZSC_DATA;
313 	else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0)
314 		search.re_subclass = ZSC_CHECKSUM;
315 	else
316 		return (B_FALSE);
317 
318 	search.re_pool_guid = spa_guid(spa);
319 	search.re_vdev_guid = vd->vdev_guid;
320 	search.re_io_error = zio->io_error;
321 	search.re_io_priority = zio->io_priority;
322 	/* if size is supplied use it over what's in zio */
323 	if (size) {
324 		search.re_io_size = size;
325 		search.re_io_offset = offset;
326 	} else {
327 		search.re_io_size = zio->io_size;
328 		search.re_io_offset = zio->io_offset;
329 	}
330 
331 	/* grab optional logical zio criteria */
332 	if (zb != NULL) {
333 		search.re_io_bookmark.zb_objset = zb->zb_objset;
334 		search.re_io_bookmark.zb_object = zb->zb_object;
335 		search.re_io_bookmark.zb_level = zb->zb_level;
336 		search.re_io_bookmark.zb_blkid = zb->zb_blkid;
337 	}
338 
339 	uint64_t now = gethrtime();
340 
341 	mutex_enter(&recent_events_lock);
342 
343 	/* check if we have seen this one recently */
344 	entry = avl_find(&recent_events_tree, &search, NULL);
345 	if (entry != NULL) {
346 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
347 
348 		/*
349 		 * There is still an active cleaner (since we're here).
350 		 * Reset the last seen time for this duplicate entry
351 		 * so that its lifespand gets extended.
352 		 */
353 		list_remove(&recent_events_list, entry);
354 		list_insert_head(&recent_events_list, entry);
355 		entry->re_timestamp = now;
356 
357 		zfs_zevent_track_duplicate();
358 		mutex_exit(&recent_events_lock);
359 
360 		return (age <= zfs_zevent_retain_expire_secs);
361 	}
362 
363 	if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) {
364 		/* recycle oldest node */
365 		entry = list_tail(&recent_events_list);
366 		ASSERT(entry != NULL);
367 		list_remove(&recent_events_list, entry);
368 		avl_remove(&recent_events_tree, entry);
369 	} else {
370 		entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP);
371 	}
372 
373 	/* record this as a recent ereport */
374 	*entry = search;
375 	avl_add(&recent_events_tree, entry);
376 	list_insert_head(&recent_events_list, entry);
377 	entry->re_timestamp = now;
378 
379 	/* Start a cleaner if not already scheduled */
380 	if (recent_events_cleaner_tqid == 0)
381 		zfs_ereport_schedule_cleaner();
382 
383 	mutex_exit(&recent_events_lock);
384 	return (B_FALSE);
385 }
386 
387 void
388 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
389 {
390 	if (nvl)
391 		fm_nvlist_destroy(nvl, FM_NVA_FREE);
392 
393 	if (detector)
394 		fm_nvlist_destroy(detector, FM_NVA_FREE);
395 }
396 
397 /*
398  * We want to rate limit ZIO delay, deadman, and checksum events so as to not
399  * flood zevent consumers when a disk is acting up.
400  *
401  * Returns 1 if we're ratelimiting, 0 if not.
402  */
403 static int
404 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
405 {
406 	int rc = 0;
407 	/*
408 	 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
409 	 * are.  Invert it to get our return value.
410 	 */
411 	if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
412 		rc = !zfs_ratelimit(&vd->vdev_delay_rl);
413 	} else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) {
414 		rc = !zfs_ratelimit(&vd->vdev_deadman_rl);
415 	} else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
416 		rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
417 	}
418 
419 	if (rc)	{
420 		/* We're rate limiting */
421 		fm_erpt_dropped_increment();
422 	}
423 
424 	return (rc);
425 }
426 
427 /*
428  * Return B_TRUE if the event actually posted, B_FALSE if not.
429  */
430 static boolean_t
431 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
432     const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
433     zio_t *zio, uint64_t stateoroffset, uint64_t size)
434 {
435 	nvlist_t *ereport, *detector;
436 
437 	uint64_t ena;
438 	char class[64];
439 
440 	if ((ereport = fm_nvlist_create(NULL)) == NULL)
441 		return (B_FALSE);
442 
443 	if ((detector = fm_nvlist_create(NULL)) == NULL) {
444 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
445 		return (B_FALSE);
446 	}
447 
448 	/*
449 	 * Serialize ereport generation
450 	 */
451 	mutex_enter(&spa->spa_errlist_lock);
452 
453 	/*
454 	 * Determine the ENA to use for this event.  If we are in a loading
455 	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
456 	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
457 	 */
458 	if (spa_load_state(spa) != SPA_LOAD_NONE) {
459 		if (spa->spa_ena == 0)
460 			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
461 		ena = spa->spa_ena;
462 	} else if (zio != NULL && zio->io_logical != NULL) {
463 		if (zio->io_logical->io_ena == 0)
464 			zio->io_logical->io_ena =
465 			    fm_ena_generate(0, FM_ENA_FMT1);
466 		ena = zio->io_logical->io_ena;
467 	} else {
468 		ena = fm_ena_generate(0, FM_ENA_FMT1);
469 	}
470 
471 	/*
472 	 * Construct the full class, detector, and other standard FMA fields.
473 	 */
474 	(void) snprintf(class, sizeof (class), "%s.%s",
475 	    ZFS_ERROR_CLASS, subclass);
476 
477 	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
478 	    vd != NULL ? vd->vdev_guid : 0);
479 
480 	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
481 
482 	/*
483 	 * Construct the per-ereport payload, depending on which parameters are
484 	 * passed in.
485 	 */
486 
487 	/*
488 	 * Generic payload members common to all ereports.
489 	 */
490 	fm_payload_set(ereport,
491 	    FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
492 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
493 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
494 	    (uint64_t)spa_state(spa),
495 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
496 	    (int32_t)spa_load_state(spa), NULL);
497 
498 	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
499 	    DATA_TYPE_STRING,
500 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
501 	    FM_EREPORT_FAILMODE_WAIT :
502 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
503 	    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
504 	    NULL);
505 
506 	if (vd != NULL) {
507 		vdev_t *pvd = vd->vdev_parent;
508 		vdev_queue_t *vq = &vd->vdev_queue;
509 		vdev_stat_t *vs = &vd->vdev_stat;
510 		vdev_t *spare_vd;
511 		uint64_t *spare_guids;
512 		char **spare_paths;
513 		int i, spare_count;
514 
515 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
516 		    DATA_TYPE_UINT64, vd->vdev_guid,
517 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
518 		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
519 		if (vd->vdev_path != NULL)
520 			fm_payload_set(ereport,
521 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
522 			    DATA_TYPE_STRING, vd->vdev_path, NULL);
523 		if (vd->vdev_devid != NULL)
524 			fm_payload_set(ereport,
525 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
526 			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
527 		if (vd->vdev_fru != NULL)
528 			fm_payload_set(ereport,
529 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
530 			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
531 		if (vd->vdev_enc_sysfs_path != NULL)
532 			fm_payload_set(ereport,
533 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
534 			    DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
535 		if (vd->vdev_ashift)
536 			fm_payload_set(ereport,
537 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
538 			    DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
539 
540 		if (vq != NULL) {
541 			fm_payload_set(ereport,
542 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
543 			    DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
544 			fm_payload_set(ereport,
545 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
546 			    DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
547 		}
548 
549 		if (vs != NULL) {
550 			fm_payload_set(ereport,
551 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
552 			    DATA_TYPE_UINT64, vs->vs_read_errors,
553 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
554 			    DATA_TYPE_UINT64, vs->vs_write_errors,
555 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
556 			    DATA_TYPE_UINT64, vs->vs_checksum_errors,
557 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
558 			    DATA_TYPE_UINT64, vs->vs_slow_ios,
559 			    NULL);
560 		}
561 
562 		if (pvd != NULL) {
563 			fm_payload_set(ereport,
564 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
565 			    DATA_TYPE_UINT64, pvd->vdev_guid,
566 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
567 			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
568 			    NULL);
569 			if (pvd->vdev_path)
570 				fm_payload_set(ereport,
571 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
572 				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
573 			if (pvd->vdev_devid)
574 				fm_payload_set(ereport,
575 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
576 				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
577 		}
578 
579 		spare_count = spa->spa_spares.sav_count;
580 		spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
581 		    KM_SLEEP);
582 		spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
583 		    KM_SLEEP);
584 
585 		for (i = 0; i < spare_count; i++) {
586 			spare_vd = spa->spa_spares.sav_vdevs[i];
587 			if (spare_vd) {
588 				spare_paths[i] = spare_vd->vdev_path;
589 				spare_guids[i] = spare_vd->vdev_guid;
590 			}
591 		}
592 
593 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
594 		    DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
595 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
596 		    DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
597 
598 		kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
599 		kmem_free(spare_paths, sizeof (char *) * spare_count);
600 	}
601 
602 	if (zio != NULL) {
603 		/*
604 		 * Payload common to all I/Os.
605 		 */
606 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
607 		    DATA_TYPE_INT32, zio->io_error, NULL);
608 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
609 		    DATA_TYPE_INT32, zio->io_flags, NULL);
610 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
611 		    DATA_TYPE_UINT32, zio->io_stage, NULL);
612 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
613 		    DATA_TYPE_UINT32, zio->io_pipeline, NULL);
614 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
615 		    DATA_TYPE_UINT64, zio->io_delay, NULL);
616 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
617 		    DATA_TYPE_UINT64, zio->io_timestamp, NULL);
618 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
619 		    DATA_TYPE_UINT64, zio->io_delta, NULL);
620 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY,
621 		    DATA_TYPE_UINT32, zio->io_priority, NULL);
622 
623 		/*
624 		 * If the 'size' parameter is non-zero, it indicates this is a
625 		 * RAID-Z or other I/O where the physical offset and length are
626 		 * provided for us, instead of within the zio_t.
627 		 */
628 		if (vd != NULL) {
629 			if (size)
630 				fm_payload_set(ereport,
631 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
632 				    DATA_TYPE_UINT64, stateoroffset,
633 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
634 				    DATA_TYPE_UINT64, size, NULL);
635 			else
636 				fm_payload_set(ereport,
637 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
638 				    DATA_TYPE_UINT64, zio->io_offset,
639 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
640 				    DATA_TYPE_UINT64, zio->io_size, NULL);
641 		}
642 	} else if (vd != NULL) {
643 		/*
644 		 * If we have a vdev but no zio, this is a device fault, and the
645 		 * 'stateoroffset' parameter indicates the previous state of the
646 		 * vdev.
647 		 */
648 		fm_payload_set(ereport,
649 		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
650 		    DATA_TYPE_UINT64, stateoroffset, NULL);
651 	}
652 
653 	/*
654 	 * Payload for I/Os with corresponding logical information.
655 	 */
656 	if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
657 		fm_payload_set(ereport,
658 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
659 		    DATA_TYPE_UINT64, zb->zb_objset,
660 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
661 		    DATA_TYPE_UINT64, zb->zb_object,
662 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
663 		    DATA_TYPE_INT64, zb->zb_level,
664 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
665 		    DATA_TYPE_UINT64, zb->zb_blkid, NULL);
666 	}
667 
668 	mutex_exit(&spa->spa_errlist_lock);
669 
670 	*ereport_out = ereport;
671 	*detector_out = detector;
672 	return (B_TRUE);
673 }
674 
675 /* if it's <= 128 bytes, save the corruption directly */
676 #define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
677 
678 #define	MAX_RANGES		16
679 
680 typedef struct zfs_ecksum_info {
681 	/* histograms of set and cleared bits by bit number in a 64-bit word */
682 	uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY];
683 	uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
684 
685 	/* inline arrays of bits set and cleared. */
686 	uint64_t zei_bits_set[ZFM_MAX_INLINE];
687 	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
688 
689 	/*
690 	 * for each range, the number of bits set and cleared.  The Hamming
691 	 * distance between the good and bad buffers is the sum of them all.
692 	 */
693 	uint32_t zei_range_sets[MAX_RANGES];
694 	uint32_t zei_range_clears[MAX_RANGES];
695 
696 	struct zei_ranges {
697 		uint32_t	zr_start;
698 		uint32_t	zr_end;
699 	} zei_ranges[MAX_RANGES];
700 
701 	size_t	zei_range_count;
702 	uint32_t zei_mingap;
703 	uint32_t zei_allowed_mingap;
704 
705 } zfs_ecksum_info_t;
706 
707 static void
708 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count)
709 {
710 	size_t i;
711 	size_t bits = 0;
712 	uint64_t value = BE_64(value_arg);
713 
714 	/* We store the bits in big-endian (largest-first) order */
715 	for (i = 0; i < 64; i++) {
716 		if (value & (1ull << i)) {
717 			hist[63 - i]++;
718 			++bits;
719 		}
720 	}
721 	/* update the count of bits changed */
722 	*count += bits;
723 }
724 
725 /*
726  * We've now filled up the range array, and need to increase "mingap" and
727  * shrink the range list accordingly.  zei_mingap is always the smallest
728  * distance between array entries, so we set the new_allowed_gap to be
729  * one greater than that.  We then go through the list, joining together
730  * any ranges which are closer than the new_allowed_gap.
731  *
732  * By construction, there will be at least one.  We also update zei_mingap
733  * to the new smallest gap, to prepare for our next invocation.
734  */
735 static void
736 zei_shrink_ranges(zfs_ecksum_info_t *eip)
737 {
738 	uint32_t mingap = UINT32_MAX;
739 	uint32_t new_allowed_gap = eip->zei_mingap + 1;
740 
741 	size_t idx, output;
742 	size_t max = eip->zei_range_count;
743 
744 	struct zei_ranges *r = eip->zei_ranges;
745 
746 	ASSERT3U(eip->zei_range_count, >, 0);
747 	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
748 
749 	output = idx = 0;
750 	while (idx < max - 1) {
751 		uint32_t start = r[idx].zr_start;
752 		uint32_t end = r[idx].zr_end;
753 
754 		while (idx < max - 1) {
755 			idx++;
756 
757 			uint32_t nstart = r[idx].zr_start;
758 			uint32_t nend = r[idx].zr_end;
759 
760 			uint32_t gap = nstart - end;
761 			if (gap < new_allowed_gap) {
762 				end = nend;
763 				continue;
764 			}
765 			if (gap < mingap)
766 				mingap = gap;
767 			break;
768 		}
769 		r[output].zr_start = start;
770 		r[output].zr_end = end;
771 		output++;
772 	}
773 	ASSERT3U(output, <, eip->zei_range_count);
774 	eip->zei_range_count = output;
775 	eip->zei_mingap = mingap;
776 	eip->zei_allowed_mingap = new_allowed_gap;
777 }
778 
779 static void
780 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
781 {
782 	struct zei_ranges *r = eip->zei_ranges;
783 	size_t count = eip->zei_range_count;
784 
785 	if (count >= MAX_RANGES) {
786 		zei_shrink_ranges(eip);
787 		count = eip->zei_range_count;
788 	}
789 	if (count == 0) {
790 		eip->zei_mingap = UINT32_MAX;
791 		eip->zei_allowed_mingap = 1;
792 	} else {
793 		int gap = start - r[count - 1].zr_end;
794 
795 		if (gap < eip->zei_allowed_mingap) {
796 			r[count - 1].zr_end = end;
797 			return;
798 		}
799 		if (gap < eip->zei_mingap)
800 			eip->zei_mingap = gap;
801 	}
802 	r[count].zr_start = start;
803 	r[count].zr_end = end;
804 	eip->zei_range_count++;
805 }
806 
807 static size_t
808 zei_range_total_size(zfs_ecksum_info_t *eip)
809 {
810 	struct zei_ranges *r = eip->zei_ranges;
811 	size_t count = eip->zei_range_count;
812 	size_t result = 0;
813 	size_t idx;
814 
815 	for (idx = 0; idx < count; idx++)
816 		result += (r[idx].zr_end - r[idx].zr_start);
817 
818 	return (result);
819 }
820 
821 static zfs_ecksum_info_t *
822 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
823     const abd_t *goodabd, const abd_t *badabd, size_t size,
824     boolean_t drop_if_identical)
825 {
826 	const uint64_t *good;
827 	const uint64_t *bad;
828 
829 	uint64_t allset = 0;
830 	uint64_t allcleared = 0;
831 
832 	size_t nui64s = size / sizeof (uint64_t);
833 
834 	size_t inline_size;
835 	int no_inline = 0;
836 	size_t idx;
837 	size_t range;
838 
839 	size_t offset = 0;
840 	ssize_t start = -1;
841 
842 	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
843 
844 	/* don't do any annotation for injected checksum errors */
845 	if (info != NULL && info->zbc_injected)
846 		return (eip);
847 
848 	if (info != NULL && info->zbc_has_cksum) {
849 		fm_payload_set(ereport,
850 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
851 		    DATA_TYPE_UINT64_ARRAY,
852 		    sizeof (info->zbc_expected) / sizeof (uint64_t),
853 		    (uint64_t *)&info->zbc_expected,
854 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
855 		    DATA_TYPE_UINT64_ARRAY,
856 		    sizeof (info->zbc_actual) / sizeof (uint64_t),
857 		    (uint64_t *)&info->zbc_actual,
858 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
859 		    DATA_TYPE_STRING,
860 		    info->zbc_checksum_name,
861 		    NULL);
862 
863 		if (info->zbc_byteswapped) {
864 			fm_payload_set(ereport,
865 			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
866 			    DATA_TYPE_BOOLEAN, 1,
867 			    NULL);
868 		}
869 	}
870 
871 	if (badabd == NULL || goodabd == NULL)
872 		return (eip);
873 
874 	ASSERT3U(nui64s, <=, UINT32_MAX);
875 	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
876 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
877 	ASSERT3U(size, <=, UINT32_MAX);
878 
879 	good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
880 	bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
881 
882 	/* build up the range list by comparing the two buffers. */
883 	for (idx = 0; idx < nui64s; idx++) {
884 		if (good[idx] == bad[idx]) {
885 			if (start == -1)
886 				continue;
887 
888 			zei_add_range(eip, start, idx);
889 			start = -1;
890 		} else {
891 			if (start != -1)
892 				continue;
893 
894 			start = idx;
895 		}
896 	}
897 	if (start != -1)
898 		zei_add_range(eip, start, idx);
899 
900 	/* See if it will fit in our inline buffers */
901 	inline_size = zei_range_total_size(eip);
902 	if (inline_size > ZFM_MAX_INLINE)
903 		no_inline = 1;
904 
905 	/*
906 	 * If there is no change and we want to drop if the buffers are
907 	 * identical, do so.
908 	 */
909 	if (inline_size == 0 && drop_if_identical) {
910 		kmem_free(eip, sizeof (*eip));
911 		abd_return_buf((abd_t *)goodabd, (void *)good, size);
912 		abd_return_buf((abd_t *)badabd, (void *)bad, size);
913 		return (NULL);
914 	}
915 
916 	/*
917 	 * Now walk through the ranges, filling in the details of the
918 	 * differences.  Also convert our uint64_t-array offsets to byte
919 	 * offsets.
920 	 */
921 	for (range = 0; range < eip->zei_range_count; range++) {
922 		size_t start = eip->zei_ranges[range].zr_start;
923 		size_t end = eip->zei_ranges[range].zr_end;
924 
925 		for (idx = start; idx < end; idx++) {
926 			uint64_t set, cleared;
927 
928 			// bits set in bad, but not in good
929 			set = ((~good[idx]) & bad[idx]);
930 			// bits set in good, but not in bad
931 			cleared = (good[idx] & (~bad[idx]));
932 
933 			allset |= set;
934 			allcleared |= cleared;
935 
936 			if (!no_inline) {
937 				ASSERT3U(offset, <, inline_size);
938 				eip->zei_bits_set[offset] = set;
939 				eip->zei_bits_cleared[offset] = cleared;
940 				offset++;
941 			}
942 
943 			update_histogram(set, eip->zei_histogram_set,
944 			    &eip->zei_range_sets[range]);
945 			update_histogram(cleared, eip->zei_histogram_cleared,
946 			    &eip->zei_range_clears[range]);
947 		}
948 
949 		/* convert to byte offsets */
950 		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
951 		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
952 	}
953 
954 	abd_return_buf((abd_t *)goodabd, (void *)good, size);
955 	abd_return_buf((abd_t *)badabd, (void *)bad, size);
956 
957 	eip->zei_allowed_mingap	*= sizeof (uint64_t);
958 	inline_size		*= sizeof (uint64_t);
959 
960 	/* fill in ereport */
961 	fm_payload_set(ereport,
962 	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
963 	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
964 	    (uint32_t *)eip->zei_ranges,
965 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
966 	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
967 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
968 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
969 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
970 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
971 	    NULL);
972 
973 	if (!no_inline) {
974 		fm_payload_set(ereport,
975 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
976 		    DATA_TYPE_UINT8_ARRAY,
977 		    inline_size, (uint8_t *)eip->zei_bits_set,
978 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
979 		    DATA_TYPE_UINT8_ARRAY,
980 		    inline_size, (uint8_t *)eip->zei_bits_cleared,
981 		    NULL);
982 	} else {
983 		fm_payload_set(ereport,
984 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
985 		    DATA_TYPE_UINT32_ARRAY,
986 		    NBBY * sizeof (uint64_t), eip->zei_histogram_set,
987 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
988 		    DATA_TYPE_UINT32_ARRAY,
989 		    NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
990 		    NULL);
991 	}
992 	return (eip);
993 }
994 #else
995 /*ARGSUSED*/
996 void
997 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
998 {
999 }
1000 #endif
1001 
1002 /*
1003  * Make sure our event is still valid for the given zio/vdev/pool.  For example,
1004  * we don't want to keep logging events for a faulted or missing vdev.
1005  */
1006 boolean_t
1007 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
1008 {
1009 #ifdef _KERNEL
1010 	/*
1011 	 * If we are doing a spa_tryimport() or in recovery mode,
1012 	 * ignore errors.
1013 	 */
1014 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
1015 	    spa_load_state(spa) == SPA_LOAD_RECOVER)
1016 		return (B_FALSE);
1017 
1018 	/*
1019 	 * If we are in the middle of opening a pool, and the previous attempt
1020 	 * failed, don't bother logging any new ereports - we're just going to
1021 	 * get the same diagnosis anyway.
1022 	 */
1023 	if (spa_load_state(spa) != SPA_LOAD_NONE &&
1024 	    spa->spa_last_open_failed)
1025 		return (B_FALSE);
1026 
1027 	if (zio != NULL) {
1028 		/*
1029 		 * If this is not a read or write zio, ignore the error.  This
1030 		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
1031 		 */
1032 		if (zio->io_type != ZIO_TYPE_READ &&
1033 		    zio->io_type != ZIO_TYPE_WRITE)
1034 			return (B_FALSE);
1035 
1036 		if (vd != NULL) {
1037 			/*
1038 			 * If the vdev has already been marked as failing due
1039 			 * to a failed probe, then ignore any subsequent I/O
1040 			 * errors, as the DE will automatically fault the vdev
1041 			 * on the first such failure.  This also catches cases
1042 			 * where vdev_remove_wanted is set and the device has
1043 			 * not yet been asynchronously placed into the REMOVED
1044 			 * state.
1045 			 */
1046 			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
1047 				return (B_FALSE);
1048 
1049 			/*
1050 			 * Ignore checksum errors for reads from DTL regions of
1051 			 * leaf vdevs.
1052 			 */
1053 			if (zio->io_type == ZIO_TYPE_READ &&
1054 			    zio->io_error == ECKSUM &&
1055 			    vd->vdev_ops->vdev_op_leaf &&
1056 			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
1057 				return (B_FALSE);
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * For probe failure, we want to avoid posting ereports if we've
1063 	 * already removed the device in the meantime.
1064 	 */
1065 	if (vd != NULL &&
1066 	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
1067 	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
1068 		return (B_FALSE);
1069 
1070 	/* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1071 	if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
1072 	    (zio != NULL) && (!zio->io_timestamp)) {
1073 		return (B_FALSE);
1074 	}
1075 #endif
1076 	return (B_TRUE);
1077 }
1078 
1079 /*
1080  * Post an ereport for the given subclass
1081  *
1082  * Returns
1083  * - 0 if an event was posted
1084  * - EINVAL if there was a problem posting event
1085  * - EBUSY if the event was rate limited
1086  * - EALREADY if the event was already posted (duplicate)
1087  */
1088 int
1089 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
1090     const zbookmark_phys_t *zb, zio_t *zio, uint64_t state)
1091 {
1092 	int rc = 0;
1093 #ifdef _KERNEL
1094 	nvlist_t *ereport = NULL;
1095 	nvlist_t *detector = NULL;
1096 
1097 	if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
1098 		return (EINVAL);
1099 
1100 	if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0))
1101 		return (SET_ERROR(EALREADY));
1102 
1103 	if (zfs_is_ratelimiting_event(subclass, vd))
1104 		return (SET_ERROR(EBUSY));
1105 
1106 	if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
1107 	    zb, zio, state, 0))
1108 		return (SET_ERROR(EINVAL));	/* couldn't post event */
1109 
1110 	if (ereport == NULL)
1111 		return (SET_ERROR(EINVAL));
1112 
1113 	/* Cleanup is handled by the callback function */
1114 	rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1115 #endif
1116 	return (rc);
1117 }
1118 
1119 /*
1120  * Prepare a checksum ereport
1121  *
1122  * Returns
1123  * - 0 if an event was posted
1124  * - EINVAL if there was a problem posting event
1125  * - EBUSY if the event was rate limited
1126  * - EALREADY if the event was already posted (duplicate)
1127  */
1128 int
1129 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1130     struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info)
1131 {
1132 	zio_cksum_report_t *report;
1133 
1134 #ifdef _KERNEL
1135 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1136 		return (SET_ERROR(EINVAL));
1137 
1138 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1139 	    offset, length))
1140 		return (SET_ERROR(EALREADY));
1141 
1142 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1143 		return (SET_ERROR(EBUSY));
1144 #endif
1145 
1146 	report = kmem_zalloc(sizeof (*report), KM_SLEEP);
1147 
1148 	zio_vsd_default_cksum_report(zio, report);
1149 
1150 	/* copy the checksum failure information if it was provided */
1151 	if (info != NULL) {
1152 		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
1153 		bcopy(info, report->zcr_ckinfo, sizeof (*info));
1154 	}
1155 
1156 	report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
1157 	report->zcr_align =
1158 	    vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
1159 	report->zcr_length = length;
1160 
1161 #ifdef _KERNEL
1162 	(void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
1163 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
1164 
1165 	if (report->zcr_ereport == NULL) {
1166 		zfs_ereport_free_checksum(report);
1167 		return (0);
1168 	}
1169 #endif
1170 
1171 	mutex_enter(&spa->spa_errlist_lock);
1172 	report->zcr_next = zio->io_logical->io_cksum_report;
1173 	zio->io_logical->io_cksum_report = report;
1174 	mutex_exit(&spa->spa_errlist_lock);
1175 	return (0);
1176 }
1177 
1178 void
1179 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
1180     const abd_t *bad_data, boolean_t drop_if_identical)
1181 {
1182 #ifdef _KERNEL
1183 	zfs_ecksum_info_t *info;
1184 
1185 	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
1186 	    good_data, bad_data, report->zcr_length, drop_if_identical);
1187 	if (info != NULL)
1188 		zfs_zevent_post(report->zcr_ereport,
1189 		    report->zcr_detector, zfs_zevent_post_cb);
1190 	else
1191 		zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
1192 
1193 	report->zcr_ereport = report->zcr_detector = NULL;
1194 	if (info != NULL)
1195 		kmem_free(info, sizeof (*info));
1196 #endif
1197 }
1198 
1199 void
1200 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
1201 {
1202 #ifdef _KERNEL
1203 	if (rpt->zcr_ereport != NULL) {
1204 		fm_nvlist_destroy(rpt->zcr_ereport,
1205 		    FM_NVA_FREE);
1206 		fm_nvlist_destroy(rpt->zcr_detector,
1207 		    FM_NVA_FREE);
1208 	}
1209 #endif
1210 	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
1211 
1212 	if (rpt->zcr_ckinfo != NULL)
1213 		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
1214 
1215 	kmem_free(rpt, sizeof (*rpt));
1216 }
1217 
1218 /*
1219  * Post a checksum ereport
1220  *
1221  * Returns
1222  * - 0 if an event was posted
1223  * - EINVAL if there was a problem posting event
1224  * - EBUSY if the event was rate limited
1225  * - EALREADY if the event was already posted (duplicate)
1226  */
1227 int
1228 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1229     struct zio *zio, uint64_t offset, uint64_t length,
1230     const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
1231 {
1232 	int rc = 0;
1233 #ifdef _KERNEL
1234 	nvlist_t *ereport = NULL;
1235 	nvlist_t *detector = NULL;
1236 	zfs_ecksum_info_t *info;
1237 
1238 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1239 		return (SET_ERROR(EINVAL));
1240 
1241 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1242 	    offset, length))
1243 		return (SET_ERROR(EALREADY));
1244 
1245 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1246 		return (SET_ERROR(EBUSY));
1247 
1248 	if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
1249 	    spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
1250 		return (SET_ERROR(EINVAL));
1251 	}
1252 
1253 	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
1254 	    B_FALSE);
1255 
1256 	if (info != NULL) {
1257 		rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1258 		kmem_free(info, sizeof (*info));
1259 	}
1260 #endif
1261 	return (rc);
1262 }
1263 
1264 /*
1265  * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1266  * change in the pool.  All sysevents are listed in sys/sysevent/eventdefs.h
1267  * and are designed to be consumed by the ZFS Event Daemon (ZED).  For
1268  * additional details refer to the zed(8) man page.
1269  */
1270 nvlist_t *
1271 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1272     nvlist_t *aux)
1273 {
1274 	nvlist_t *resource = NULL;
1275 #ifdef _KERNEL
1276 	char class[64];
1277 
1278 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
1279 		return (NULL);
1280 
1281 	if ((resource = fm_nvlist_create(NULL)) == NULL)
1282 		return (NULL);
1283 
1284 	(void) snprintf(class, sizeof (class), "%s.%s.%s", type,
1285 	    ZFS_ERROR_CLASS, name);
1286 	VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
1287 	VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
1288 	VERIFY0(nvlist_add_string(resource,
1289 	    FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
1290 	VERIFY0(nvlist_add_uint64(resource,
1291 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
1292 	VERIFY0(nvlist_add_uint64(resource,
1293 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
1294 	VERIFY0(nvlist_add_int32(resource,
1295 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
1296 
1297 	if (vd) {
1298 		VERIFY0(nvlist_add_uint64(resource,
1299 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
1300 		VERIFY0(nvlist_add_uint64(resource,
1301 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
1302 		if (vd->vdev_path != NULL)
1303 			VERIFY0(nvlist_add_string(resource,
1304 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
1305 		if (vd->vdev_devid != NULL)
1306 			VERIFY0(nvlist_add_string(resource,
1307 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
1308 		if (vd->vdev_fru != NULL)
1309 			VERIFY0(nvlist_add_string(resource,
1310 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
1311 		if (vd->vdev_enc_sysfs_path != NULL)
1312 			VERIFY0(nvlist_add_string(resource,
1313 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1314 			    vd->vdev_enc_sysfs_path));
1315 	}
1316 
1317 	/* also copy any optional payload data */
1318 	if (aux) {
1319 		nvpair_t *elem = NULL;
1320 
1321 		while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
1322 			(void) nvlist_add_nvpair(resource, elem);
1323 	}
1324 
1325 #endif
1326 	return (resource);
1327 }
1328 
1329 static void
1330 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1331     nvlist_t *aux)
1332 {
1333 #ifdef _KERNEL
1334 	nvlist_t *resource;
1335 
1336 	resource = zfs_event_create(spa, vd, type, name, aux);
1337 	if (resource)
1338 		zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
1339 #endif
1340 }
1341 
1342 /*
1343  * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1344  * has been removed from the system.  This will cause the DE to ignore any
1345  * recent I/O errors, inferring that they are due to the asynchronous device
1346  * removal.
1347  */
1348 void
1349 zfs_post_remove(spa_t *spa, vdev_t *vd)
1350 {
1351 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
1352 }
1353 
1354 /*
1355  * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1356  * has the 'autoreplace' property set, and therefore any broken vdevs will be
1357  * handled by higher level logic, and no vdev fault should be generated.
1358  */
1359 void
1360 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
1361 {
1362 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
1363 }
1364 
1365 /*
1366  * The 'resource.fs.zfs.statechange' event is an internal signal that the
1367  * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
1368  * cause the retire agent to repair any outstanding fault management cases
1369  * open because the device was not found (fault.fs.zfs.device).
1370  */
1371 void
1372 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
1373 {
1374 #ifdef _KERNEL
1375 	nvlist_t *aux;
1376 
1377 	/*
1378 	 * Add optional supplemental keys to payload
1379 	 */
1380 	aux = fm_nvlist_create(NULL);
1381 	if (vd && aux) {
1382 		if (vd->vdev_physpath) {
1383 			(void) nvlist_add_string(aux,
1384 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
1385 			    vd->vdev_physpath);
1386 		}
1387 		if (vd->vdev_enc_sysfs_path) {
1388 			(void) nvlist_add_string(aux,
1389 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1390 			    vd->vdev_enc_sysfs_path);
1391 		}
1392 
1393 		(void) nvlist_add_uint64(aux,
1394 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
1395 	}
1396 
1397 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1398 	    aux);
1399 
1400 	if (aux)
1401 		fm_nvlist_destroy(aux, FM_NVA_FREE);
1402 #endif
1403 }
1404 
1405 #ifdef _KERNEL
1406 void
1407 zfs_ereport_init(void)
1408 {
1409 	mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL);
1410 	list_create(&recent_events_list, sizeof (recent_events_node_t),
1411 	    offsetof(recent_events_node_t, re_list_link));
1412 	avl_create(&recent_events_tree,  recent_events_compare,
1413 	    sizeof (recent_events_node_t), offsetof(recent_events_node_t,
1414 	    re_tree_link));
1415 }
1416 
1417 /*
1418  * This 'early' fini needs to run before zfs_fini() which on Linux waits
1419  * for the system_delay_taskq to drain.
1420  */
1421 void
1422 zfs_ereport_taskq_fini(void)
1423 {
1424 	mutex_enter(&recent_events_lock);
1425 	if (recent_events_cleaner_tqid != 0) {
1426 		taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid);
1427 		recent_events_cleaner_tqid = 0;
1428 	}
1429 	mutex_exit(&recent_events_lock);
1430 }
1431 
1432 void
1433 zfs_ereport_fini(void)
1434 {
1435 	recent_events_node_t *entry;
1436 
1437 	while ((entry = list_head(&recent_events_list)) != NULL) {
1438 		avl_remove(&recent_events_tree, entry);
1439 		list_remove(&recent_events_list, entry);
1440 		kmem_free(entry, sizeof (*entry));
1441 	}
1442 	avl_destroy(&recent_events_tree);
1443 	list_destroy(&recent_events_list);
1444 	mutex_destroy(&recent_events_lock);
1445 }
1446 
1447 void
1448 zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name)
1449 {
1450 	nvlist_t *aux;
1451 
1452 	aux = fm_nvlist_create(NULL);
1453 	nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name);
1454 
1455 	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1456 	fm_nvlist_destroy(aux, FM_NVA_FREE);
1457 }
1458 
1459 /*
1460  * Post when a event when a zvol is created or removed
1461  *
1462  * This is currently only used by macOS, since it uses the event to create
1463  * symlinks between the volume name (mypool/myvol) and the actual /dev
1464  * device (/dev/disk3).  For example:
1465  *
1466  * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3
1467  *
1468  * name: The full name of the zvol ("mypool/myvol")
1469  * dev_name: The full /dev name for the zvol ("/dev/disk3")
1470  * raw_name: The raw  /dev name for the zvol ("/dev/rdisk3")
1471  */
1472 void
1473 zfs_ereport_zvol_post(const char *subclass, const char *name,
1474     const char *dev_name, const char *raw_name)
1475 {
1476 	nvlist_t *aux;
1477 	char *r;
1478 
1479 	boolean_t locked = mutex_owned(&spa_namespace_lock);
1480 	if (!locked) mutex_enter(&spa_namespace_lock);
1481 	spa_t *spa = spa_lookup(name);
1482 	if (!locked) mutex_exit(&spa_namespace_lock);
1483 
1484 	if (spa == NULL)
1485 		return;
1486 
1487 	aux = fm_nvlist_create(NULL);
1488 	nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name);
1489 	nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME,
1490 	    raw_name);
1491 	r = strchr(name, '/');
1492 	if (r && r[1])
1493 		nvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]);
1494 
1495 	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1496 	fm_nvlist_destroy(aux, FM_NVA_FREE);
1497 }
1498 
1499 EXPORT_SYMBOL(zfs_ereport_post);
1500 EXPORT_SYMBOL(zfs_ereport_is_valid);
1501 EXPORT_SYMBOL(zfs_ereport_post_checksum);
1502 EXPORT_SYMBOL(zfs_post_remove);
1503 EXPORT_SYMBOL(zfs_post_autoreplace);
1504 EXPORT_SYMBOL(zfs_post_state_change);
1505 
1506 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW,
1507 	"Maximum recent zevents records to retain for duplicate checking");
1508 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW,
1509 	"Expiration time for recent zevents records");
1510 #endif /* _KERNEL */
1511