xref: /freebsd/sys/contrib/openzfs/module/zfs/zcp.c (revision 4e579ad047720775ab580b74192c7de8a3386fea)
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 
16 /*
17  * Copyright (c) 2016, 2018 by Delphix. All rights reserved.
18  */
19 
20 /*
21  * ZFS Channel Programs (ZCP)
22  *
23  * The ZCP interface allows various ZFS commands and operations ZFS
24  * administrative operations (e.g. creating and destroying snapshots, typically
25  * performed via an ioctl to /dev/zfs by the zfs(8) command and
26  * libzfs/libzfs_core) to be run * programmatically as a Lua script.  A ZCP
27  * script is run as a dsl_sync_task and fully executed during one transaction
28  * group sync.  This ensures that no other changes can be written concurrently
29  * with a running Lua script.  Combining multiple calls to the exposed ZFS
30  * functions into one script gives a number of benefits:
31  *
32  * 1. Atomicity.  For some compound or iterative operations, it's useful to be
33  * able to guarantee that the state of a pool has not changed between calls to
34  * ZFS.
35  *
36  * 2. Performance.  If a large number of changes need to be made (e.g. deleting
37  * many filesystems), there can be a significant performance penalty as a
38  * result of the need to wait for a transaction group sync to pass for every
39  * single operation.  When expressed as a single ZCP script, all these changes
40  * can be performed at once in one txg sync.
41  *
42  * A modified version of the Lua 5.2 interpreter is used to run channel program
43  * scripts. The Lua 5.2 manual can be found at:
44  *
45  *      http://www.lua.org/manual/5.2/
46  *
47  * If being run by a user (via an ioctl syscall), executing a ZCP script
48  * requires root privileges in the global zone.
49  *
50  * Scripts are passed to zcp_eval() as a string, then run in a synctask by
51  * zcp_eval_sync().  Arguments can be passed into the Lua script as an nvlist,
52  * which will be converted to a Lua table.  Similarly, values returned from
53  * a ZCP script will be converted to an nvlist.  See zcp_lua_to_nvlist_impl()
54  * for details on exact allowed types and conversion.
55  *
56  * ZFS functionality is exposed to a ZCP script as a library of function calls.
57  * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
58  * iterators and synctasks, respectively.  Each of these submodules resides in
59  * its own source file, with a zcp_*_info structure describing each library
60  * call in the submodule.
61  *
62  * Error handling in ZCP scripts is handled by a number of different methods
63  * based on severity:
64  *
65  * 1. Memory and time limits are in place to prevent a channel program from
66  * consuming excessive system or running forever.  If one of these limits is
67  * hit, the channel program will be stopped immediately and return from
68  * zcp_eval() with an error code. No attempt will be made to roll back or undo
69  * any changes made by the channel program before the error occurred.
70  * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
71  * limit of 0, disabling the time limit.
72  *
73  * 2. Internal Lua errors can occur as a result of a syntax error, calling a
74  * library function with incorrect arguments, invoking the error() function,
75  * failing an assert(), or other runtime errors.  In these cases the channel
76  * program will stop executing and return from zcp_eval() with an error code.
77  * In place of a return value, an error message will also be returned in the
78  * 'result' nvlist containing information about the error. No attempt will be
79  * made to roll back or undo any changes made by the channel program before the
80  * error occurred.
81  *
82  * 3. If an error occurs inside a ZFS library call which returns an error code,
83  * the error is returned to the Lua script to be handled as desired.
84  *
85  * In the first two cases, Lua's error-throwing mechanism is used, which
86  * longjumps out of the script execution with luaL_error() and returns with the
87  * error.
88  *
89  * See zfs-program(8) for more information on high level usage.
90  */
91 
92 #include <sys/lua/lua.h>
93 #include <sys/lua/lualib.h>
94 #include <sys/lua/lauxlib.h>
95 
96 #include <sys/dsl_prop.h>
97 #include <sys/dsl_synctask.h>
98 #include <sys/dsl_dataset.h>
99 #include <sys/zcp.h>
100 #include <sys/zcp_iter.h>
101 #include <sys/zcp_prop.h>
102 #include <sys/zcp_global.h>
103 #include <sys/zvol.h>
104 
105 #ifndef KM_NORMALPRI
106 #define	KM_NORMALPRI	0
107 #endif
108 
109 #define	ZCP_NVLIST_MAX_DEPTH 20
110 
111 static const uint64_t zfs_lua_check_instrlimit_interval = 100;
112 uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
113 uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
114 
115 /*
116  * Forward declarations for mutually recursive functions
117  */
118 static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
119 static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
120     int);
121 
122 /*
123  * The outer-most error callback handler for use with lua_pcall(). On
124  * error Lua will call this callback with a single argument that
125  * represents the error value. In most cases this will be a string
126  * containing an error message, but channel programs can use Lua's
127  * error() function to return arbitrary objects as errors. This callback
128  * returns (on the Lua stack) the original error object along with a traceback.
129  *
130  * Fatal Lua errors can occur while resources are held, so we also call any
131  * registered cleanup function here.
132  */
133 static int
134 zcp_error_handler(lua_State *state)
135 {
136 	const char *msg;
137 
138 	zcp_cleanup(state);
139 
140 	VERIFY3U(1, ==, lua_gettop(state));
141 	msg = lua_tostring(state, 1);
142 	luaL_traceback(state, state, msg, 1);
143 	return (1);
144 }
145 
146 int
147 zcp_argerror(lua_State *state, int narg, const char *msg, ...)
148 {
149 	va_list alist;
150 
151 	va_start(alist, msg);
152 	const char *buf = lua_pushvfstring(state, msg, alist);
153 	va_end(alist);
154 
155 	return (luaL_argerror(state, narg, buf));
156 }
157 
158 /*
159  * Install a new cleanup function, which will be invoked with the given
160  * opaque argument if a fatal error causes the Lua interpreter to longjump out
161  * of a function call.
162  *
163  * If an error occurs, the cleanup function will be invoked exactly once and
164  * then unregistered.
165  *
166  * Returns the registered cleanup handler so the caller can deregister it
167  * if no error occurs.
168  */
169 zcp_cleanup_handler_t *
170 zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
171 {
172 	zcp_run_info_t *ri = zcp_run_info(state);
173 
174 	zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
175 	zch->zch_cleanup_func = cleanfunc;
176 	zch->zch_cleanup_arg = cleanarg;
177 	list_insert_head(&ri->zri_cleanup_handlers, zch);
178 
179 	return (zch);
180 }
181 
182 void
183 zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
184 {
185 	zcp_run_info_t *ri = zcp_run_info(state);
186 	list_remove(&ri->zri_cleanup_handlers, zch);
187 	kmem_free(zch, sizeof (*zch));
188 }
189 
190 /*
191  * Execute the currently registered cleanup handlers then free them and
192  * destroy the handler list.
193  */
194 void
195 zcp_cleanup(lua_State *state)
196 {
197 	zcp_run_info_t *ri = zcp_run_info(state);
198 
199 	for (zcp_cleanup_handler_t *zch =
200 	    list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
201 	    zch = list_remove_head(&ri->zri_cleanup_handlers)) {
202 		zch->zch_cleanup_func(zch->zch_cleanup_arg);
203 		kmem_free(zch, sizeof (*zch));
204 	}
205 }
206 
207 /*
208  * Convert the lua table at the given index on the Lua stack to an nvlist
209  * and return it.
210  *
211  * If the table can not be converted for any reason, NULL is returned and
212  * an error message is pushed onto the Lua stack.
213  */
214 static nvlist_t *
215 zcp_table_to_nvlist(lua_State *state, int index, int depth)
216 {
217 	nvlist_t *nvl;
218 	/*
219 	 * Converting a Lua table to an nvlist with key uniqueness checking is
220 	 * O(n^2) in the number of keys in the nvlist, which can take a long
221 	 * time when we return a large table from a channel program.
222 	 * Furthermore, Lua's table interface *almost* guarantees unique keys
223 	 * on its own (details below). Therefore, we don't use fnvlist_alloc()
224 	 * here to avoid the built-in uniqueness checking.
225 	 *
226 	 * The *almost* is because it's possible to have key collisions between
227 	 * e.g. the string "1" and the number 1, or the string "true" and the
228 	 * boolean true, so we explicitly check that when we're looking at a
229 	 * key which is an integer / boolean or a string that can be parsed as
230 	 * one of those types. In the worst case this could still devolve into
231 	 * O(n^2), so we only start doing these checks on boolean/integer keys
232 	 * once we've seen a string key which fits this weird usage pattern.
233 	 *
234 	 * Ultimately, we still want callers to know that the keys in this
235 	 * nvlist are unique, so before we return this we set the nvlist's
236 	 * flags to reflect that.
237 	 */
238 	VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
239 
240 	/*
241 	 * Push an empty stack slot where lua_next() will store each
242 	 * table key.
243 	 */
244 	lua_pushnil(state);
245 	boolean_t saw_str_could_collide = B_FALSE;
246 	while (lua_next(state, index) != 0) {
247 		/*
248 		 * The next key-value pair from the table at index is
249 		 * now on the stack, with the key at stack slot -2 and
250 		 * the value at slot -1.
251 		 */
252 		int err = 0;
253 		char buf[32];
254 		const char *key = NULL;
255 		boolean_t key_could_collide = B_FALSE;
256 
257 		switch (lua_type(state, -2)) {
258 		case LUA_TSTRING:
259 			key = lua_tostring(state, -2);
260 
261 			/* check if this could collide with a number or bool */
262 			long long tmp;
263 			int parselen;
264 			if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
265 			    parselen == strlen(key)) ||
266 			    strcmp(key, "true") == 0 ||
267 			    strcmp(key, "false") == 0) {
268 				key_could_collide = B_TRUE;
269 				saw_str_could_collide = B_TRUE;
270 			}
271 			break;
272 		case LUA_TBOOLEAN:
273 			key = (lua_toboolean(state, -2) == B_TRUE ?
274 			    "true" : "false");
275 			if (saw_str_could_collide) {
276 				key_could_collide = B_TRUE;
277 			}
278 			break;
279 		case LUA_TNUMBER:
280 			(void) snprintf(buf, sizeof (buf), "%lld",
281 			    (longlong_t)lua_tonumber(state, -2));
282 
283 			key = buf;
284 			if (saw_str_could_collide) {
285 				key_could_collide = B_TRUE;
286 			}
287 			break;
288 		default:
289 			fnvlist_free(nvl);
290 			(void) lua_pushfstring(state, "Invalid key "
291 			    "type '%s' in table",
292 			    lua_typename(state, lua_type(state, -2)));
293 			return (NULL);
294 		}
295 		/*
296 		 * Check for type-mismatched key collisions, and throw an error.
297 		 */
298 		if (key_could_collide && nvlist_exists(nvl, key)) {
299 			fnvlist_free(nvl);
300 			(void) lua_pushfstring(state, "Collision of "
301 			    "key '%s' in table", key);
302 			return (NULL);
303 		}
304 		/*
305 		 * Recursively convert the table value and insert into
306 		 * the new nvlist with the parsed key.  To prevent
307 		 * stack overflow on circular or heavily nested tables,
308 		 * we track the current nvlist depth.
309 		 */
310 		if (depth >= ZCP_NVLIST_MAX_DEPTH) {
311 			fnvlist_free(nvl);
312 			(void) lua_pushfstring(state, "Maximum table "
313 			    "depth (%d) exceeded for table",
314 			    ZCP_NVLIST_MAX_DEPTH);
315 			return (NULL);
316 		}
317 		err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
318 		    depth + 1);
319 		if (err != 0) {
320 			fnvlist_free(nvl);
321 			/*
322 			 * Error message has been pushed to the lua
323 			 * stack by the recursive call.
324 			 */
325 			return (NULL);
326 		}
327 		/*
328 		 * Pop the value pushed by lua_next().
329 		 */
330 		lua_pop(state, 1);
331 	}
332 
333 	/*
334 	 * Mark the nvlist as having unique keys. This is a little ugly, but we
335 	 * ensured above that there are no duplicate keys in the nvlist.
336 	 */
337 	nvl->nvl_nvflag |= NV_UNIQUE_NAME;
338 
339 	return (nvl);
340 }
341 
342 /*
343  * Convert a value from the given index into the lua stack to an nvpair, adding
344  * it to an nvlist with the given key.
345  *
346  * Values are converted as follows:
347  *
348  *   string -> string
349  *   number -> int64
350  *   boolean -> boolean
351  *   nil -> boolean (no value)
352  *
353  * Lua tables are converted to nvlists and then inserted. The table's keys
354  * are converted to strings then used as keys in the nvlist to store each table
355  * element.  Keys are converted as follows:
356  *
357  *   string -> no change
358  *   number -> "%lld"
359  *   boolean -> "true" | "false"
360  *   nil -> error
361  *
362  * In the case of a key collision, an error is thrown.
363  *
364  * If an error is encountered, a nonzero error code is returned, and an error
365  * string will be pushed onto the Lua stack.
366  */
367 static int
368 zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
369     const char *key, int depth)
370 {
371 	/*
372 	 * Verify that we have enough remaining space in the lua stack to parse
373 	 * a key-value pair and push an error.
374 	 */
375 	if (!lua_checkstack(state, 3)) {
376 		(void) lua_pushstring(state, "Lua stack overflow");
377 		return (1);
378 	}
379 
380 	index = lua_absindex(state, index);
381 
382 	switch (lua_type(state, index)) {
383 	case LUA_TNIL:
384 		fnvlist_add_boolean(nvl, key);
385 		break;
386 	case LUA_TBOOLEAN:
387 		fnvlist_add_boolean_value(nvl, key,
388 		    lua_toboolean(state, index));
389 		break;
390 	case LUA_TNUMBER:
391 		fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
392 		break;
393 	case LUA_TSTRING:
394 		fnvlist_add_string(nvl, key, lua_tostring(state, index));
395 		break;
396 	case LUA_TTABLE: {
397 		nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
398 		if (value_nvl == NULL)
399 			return (SET_ERROR(EINVAL));
400 
401 		fnvlist_add_nvlist(nvl, key, value_nvl);
402 		fnvlist_free(value_nvl);
403 		break;
404 	}
405 	default:
406 		(void) lua_pushfstring(state,
407 		    "Invalid value type '%s' for key '%s'",
408 		    lua_typename(state, lua_type(state, index)), key);
409 		return (SET_ERROR(EINVAL));
410 	}
411 
412 	return (0);
413 }
414 
415 /*
416  * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
417  */
418 static void
419 zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
420 {
421 	/*
422 	 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
423 	 * stack before returning with a nonzero error code. If an error is
424 	 * returned, throw a fatal lua error with the given string.
425 	 */
426 	if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
427 		(void) lua_error(state);
428 }
429 
430 static int
431 zcp_lua_to_nvlist_helper(lua_State *state)
432 {
433 	nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
434 	const char *key = (const char *)lua_touserdata(state, 1);
435 	zcp_lua_to_nvlist(state, 3, nv, key);
436 	return (0);
437 }
438 
439 static void
440 zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
441     const char *key, int *result)
442 {
443 	int err;
444 	VERIFY3U(1, ==, lua_gettop(state));
445 	lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
446 	lua_pushlightuserdata(state, (char *)key);
447 	lua_pushlightuserdata(state, nvl);
448 	lua_pushvalue(state, 1);
449 	lua_remove(state, 1);
450 	err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
451 	if (err != 0) {
452 		zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
453 		*result = SET_ERROR(ECHRNG);
454 	}
455 }
456 
457 /*
458  * Push a Lua table representing nvl onto the stack.  If it can't be
459  * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
460  * be specified as NULL, in which case no error string will be output.
461  *
462  * Most nvlists are converted as simple key->value Lua tables, but we make
463  * an exception for the case where all nvlist entries are BOOLEANs (a string
464  * key without a value). In Lua, a table key pointing to a value of Nil
465  * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
466  * entry can't be directly converted to a Lua table entry. Nvlists of entirely
467  * BOOLEAN entries are frequently used to pass around lists of datasets, so for
468  * convenience we check for this case, and convert it to a simple Lua array of
469  * strings.
470  */
471 int
472 zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
473     char *errbuf, int errbuf_len)
474 {
475 	nvpair_t *pair;
476 	lua_newtable(state);
477 	boolean_t has_values = B_FALSE;
478 	/*
479 	 * If the list doesn't have any values, just convert it to a string
480 	 * array.
481 	 */
482 	for (pair = nvlist_next_nvpair(nvl, NULL);
483 	    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
484 		if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
485 			has_values = B_TRUE;
486 			break;
487 		}
488 	}
489 	if (!has_values) {
490 		int i = 1;
491 		for (pair = nvlist_next_nvpair(nvl, NULL);
492 		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
493 			(void) lua_pushinteger(state, i);
494 			(void) lua_pushstring(state, nvpair_name(pair));
495 			(void) lua_settable(state, -3);
496 			i++;
497 		}
498 	} else {
499 		for (pair = nvlist_next_nvpair(nvl, NULL);
500 		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
501 			int err = zcp_nvpair_value_to_lua(state, pair,
502 			    errbuf, errbuf_len);
503 			if (err != 0) {
504 				lua_pop(state, 1);
505 				return (err);
506 			}
507 			(void) lua_setfield(state, -2, nvpair_name(pair));
508 		}
509 	}
510 	return (0);
511 }
512 
513 /*
514  * Push a Lua object representing the value of "pair" onto the stack.
515  *
516  * Only understands boolean_value, string, int64, nvlist,
517  * string_array, and int64_array type values.  For other
518  * types, returns EINVAL, fills in errbuf, and pushes nothing.
519  */
520 static int
521 zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
522     char *errbuf, int errbuf_len)
523 {
524 	int err = 0;
525 
526 	if (pair == NULL) {
527 		lua_pushnil(state);
528 		return (0);
529 	}
530 
531 	switch (nvpair_type(pair)) {
532 	case DATA_TYPE_BOOLEAN_VALUE:
533 		(void) lua_pushboolean(state,
534 		    fnvpair_value_boolean_value(pair));
535 		break;
536 	case DATA_TYPE_STRING:
537 		(void) lua_pushstring(state, fnvpair_value_string(pair));
538 		break;
539 	case DATA_TYPE_INT64:
540 		(void) lua_pushinteger(state, fnvpair_value_int64(pair));
541 		break;
542 	case DATA_TYPE_NVLIST:
543 		err = zcp_nvlist_to_lua(state,
544 		    fnvpair_value_nvlist(pair), errbuf, errbuf_len);
545 		break;
546 	case DATA_TYPE_STRING_ARRAY: {
547 		const char **strarr;
548 		uint_t nelem;
549 		(void) nvpair_value_string_array(pair, &strarr, &nelem);
550 		lua_newtable(state);
551 		for (int i = 0; i < nelem; i++) {
552 			(void) lua_pushinteger(state, i + 1);
553 			(void) lua_pushstring(state, strarr[i]);
554 			(void) lua_settable(state, -3);
555 		}
556 		break;
557 	}
558 	case DATA_TYPE_UINT64_ARRAY: {
559 		uint64_t *intarr;
560 		uint_t nelem;
561 		(void) nvpair_value_uint64_array(pair, &intarr, &nelem);
562 		lua_newtable(state);
563 		for (int i = 0; i < nelem; i++) {
564 			(void) lua_pushinteger(state, i + 1);
565 			(void) lua_pushinteger(state, intarr[i]);
566 			(void) lua_settable(state, -3);
567 		}
568 		break;
569 	}
570 	case DATA_TYPE_INT64_ARRAY: {
571 		int64_t *intarr;
572 		uint_t nelem;
573 		(void) nvpair_value_int64_array(pair, &intarr, &nelem);
574 		lua_newtable(state);
575 		for (int i = 0; i < nelem; i++) {
576 			(void) lua_pushinteger(state, i + 1);
577 			(void) lua_pushinteger(state, intarr[i]);
578 			(void) lua_settable(state, -3);
579 		}
580 		break;
581 	}
582 	default: {
583 		if (errbuf != NULL) {
584 			(void) snprintf(errbuf, errbuf_len,
585 			    "Unhandled nvpair type %d for key '%s'",
586 			    nvpair_type(pair), nvpair_name(pair));
587 		}
588 		return (SET_ERROR(EINVAL));
589 	}
590 	}
591 	return (err);
592 }
593 
594 int
595 zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
596     int error)
597 {
598 	if (error == ENOENT) {
599 		(void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
600 		return (0); /* not reached; zcp_argerror will longjmp */
601 	} else if (error == EXDEV) {
602 		(void) zcp_argerror(state, 1,
603 		    "dataset '%s' is not in the target pool '%s'",
604 		    dsname, spa_name(dp->dp_spa));
605 		return (0); /* not reached; zcp_argerror will longjmp */
606 	} else if (error == EIO) {
607 		(void) luaL_error(state,
608 		    "I/O error while accessing dataset '%s'", dsname);
609 		return (0); /* not reached; luaL_error will longjmp */
610 	} else if (error != 0) {
611 		(void) luaL_error(state,
612 		    "unexpected error %d while accessing dataset '%s'",
613 		    error, dsname);
614 		return (0); /* not reached; luaL_error will longjmp */
615 	}
616 	return (0);
617 }
618 
619 /*
620  * Note: will longjmp (via lua_error()) on error.
621  * Assumes that the dsname is argument #1 (for error reporting purposes).
622  */
623 dsl_dataset_t *
624 zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
625     const void *tag)
626 {
627 	dsl_dataset_t *ds;
628 	int error = dsl_dataset_hold(dp, dsname, tag, &ds);
629 	(void) zcp_dataset_hold_error(state, dp, dsname, error);
630 	return (ds);
631 }
632 
633 static int zcp_debug(lua_State *);
634 static const zcp_lib_info_t zcp_debug_info = {
635 	.name = "debug",
636 	.func = zcp_debug,
637 	.pargs = {
638 	    { .za_name = "debug string", .za_lua_type = LUA_TSTRING },
639 	    {NULL, 0}
640 	},
641 	.kwargs = {
642 	    {NULL, 0}
643 	}
644 };
645 
646 static int
647 zcp_debug(lua_State *state)
648 {
649 	const char *dbgstring;
650 	zcp_run_info_t *ri = zcp_run_info(state);
651 	const zcp_lib_info_t *libinfo = &zcp_debug_info;
652 
653 	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
654 
655 	dbgstring = lua_tostring(state, 1);
656 
657 	zfs_dbgmsg("txg %lld ZCP: %s", (longlong_t)ri->zri_tx->tx_txg,
658 	    dbgstring);
659 
660 	return (0);
661 }
662 
663 static int zcp_exists(lua_State *);
664 static const zcp_lib_info_t zcp_exists_info = {
665 	.name = "exists",
666 	.func = zcp_exists,
667 	.pargs = {
668 	    { .za_name = "dataset", .za_lua_type = LUA_TSTRING },
669 	    {NULL, 0}
670 	},
671 	.kwargs = {
672 	    {NULL, 0}
673 	}
674 };
675 
676 static int
677 zcp_exists(lua_State *state)
678 {
679 	zcp_run_info_t *ri = zcp_run_info(state);
680 	dsl_pool_t *dp = ri->zri_pool;
681 	const zcp_lib_info_t *libinfo = &zcp_exists_info;
682 
683 	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
684 
685 	const char *dsname = lua_tostring(state, 1);
686 
687 	dsl_dataset_t *ds;
688 	int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
689 	if (error == 0) {
690 		dsl_dataset_rele(ds, FTAG);
691 		lua_pushboolean(state, B_TRUE);
692 	} else if (error == ENOENT) {
693 		lua_pushboolean(state, B_FALSE);
694 	} else if (error == EXDEV) {
695 		return (luaL_error(state, "dataset '%s' is not in the "
696 		    "target pool", dsname));
697 	} else if (error == EIO) {
698 		return (luaL_error(state, "I/O error opening dataset '%s'",
699 		    dsname));
700 	} else if (error != 0) {
701 		return (luaL_error(state, "unexpected error %d", error));
702 	}
703 
704 	return (1);
705 }
706 
707 /*
708  * Allocate/realloc/free a buffer for the lua interpreter.
709  *
710  * When nsize is 0, behaves as free() and returns NULL.
711  *
712  * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
713  * at least nsize.
714  *
715  * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
716  * Shrinking the buffer size never fails.
717  *
718  * The original allocated buffer size is stored as a uint64 at the beginning of
719  * the buffer to avoid actually reallocating when shrinking a buffer, since lua
720  * requires that this operation never fail.
721  */
722 static void *
723 zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
724 {
725 	zcp_alloc_arg_t *allocargs = ud;
726 
727 	if (nsize == 0) {
728 		if (ptr != NULL) {
729 			int64_t *allocbuf = (int64_t *)ptr - 1;
730 			int64_t allocsize = *allocbuf;
731 			ASSERT3S(allocsize, >, 0);
732 			ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
733 			    allocargs->aa_alloc_limit);
734 			allocargs->aa_alloc_remaining += allocsize;
735 			vmem_free(allocbuf, allocsize);
736 		}
737 		return (NULL);
738 	} else if (ptr == NULL) {
739 		int64_t *allocbuf;
740 		int64_t allocsize = nsize + sizeof (int64_t);
741 
742 		if (!allocargs->aa_must_succeed &&
743 		    (allocsize <= 0 ||
744 		    allocsize > allocargs->aa_alloc_remaining)) {
745 			return (NULL);
746 		}
747 
748 		allocbuf = vmem_alloc(allocsize, KM_SLEEP);
749 		allocargs->aa_alloc_remaining -= allocsize;
750 
751 		*allocbuf = allocsize;
752 		return (allocbuf + 1);
753 	} else if (nsize <= osize) {
754 		/*
755 		 * If shrinking the buffer, lua requires that the reallocation
756 		 * never fail.
757 		 */
758 		return (ptr);
759 	} else {
760 		ASSERT3U(nsize, >, osize);
761 
762 		uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
763 		if (luabuf == NULL) {
764 			return (NULL);
765 		}
766 		(void) memcpy(luabuf, ptr, osize);
767 		VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
768 		return (luabuf);
769 	}
770 }
771 
772 static void
773 zcp_lua_counthook(lua_State *state, lua_Debug *ar)
774 {
775 	(void) ar;
776 	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
777 	zcp_run_info_t *ri = lua_touserdata(state, -1);
778 
779 	/*
780 	 * Check if we were canceled while waiting for the
781 	 * txg to sync or from our open context thread
782 	 */
783 	if (ri->zri_canceled ||
784 	    (!ri->zri_sync && issig(JUSTLOOKING) && issig(FORREAL))) {
785 		ri->zri_canceled = B_TRUE;
786 		(void) lua_pushstring(state, "Channel program was canceled.");
787 		(void) lua_error(state);
788 		/* Unreachable */
789 	}
790 
791 	/*
792 	 * Check how many instructions the channel program has
793 	 * executed so far, and compare against the limit.
794 	 */
795 	ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
796 	if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
797 		ri->zri_timed_out = B_TRUE;
798 		(void) lua_pushstring(state,
799 		    "Channel program timed out.");
800 		(void) lua_error(state);
801 		/* Unreachable */
802 	}
803 }
804 
805 static int
806 zcp_panic_cb(lua_State *state)
807 {
808 	panic("unprotected error in call to Lua API (%s)\n",
809 	    lua_tostring(state, -1));
810 	return (0);
811 }
812 
813 static void
814 zcp_eval_impl(dmu_tx_t *tx, zcp_run_info_t *ri)
815 {
816 	int err;
817 	lua_State *state = ri->zri_state;
818 
819 	VERIFY3U(3, ==, lua_gettop(state));
820 
821 	/* finish initializing our runtime state */
822 	ri->zri_pool = dmu_tx_pool(tx);
823 	ri->zri_tx = tx;
824 	list_create(&ri->zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
825 	    offsetof(zcp_cleanup_handler_t, zch_node));
826 
827 	/*
828 	 * Store the zcp_run_info_t struct for this run in the Lua registry.
829 	 * Registry entries are not directly accessible by the Lua scripts but
830 	 * can be accessed by our callbacks.
831 	 */
832 	lua_pushlightuserdata(state, ri);
833 	lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
834 	VERIFY3U(3, ==, lua_gettop(state));
835 
836 	/*
837 	 * Tell the Lua interpreter to call our handler every count
838 	 * instructions. Channel programs that execute too many instructions
839 	 * should die with ETIME.
840 	 */
841 	(void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
842 	    zfs_lua_check_instrlimit_interval);
843 
844 	/*
845 	 * Tell the Lua memory allocator to stop using KM_SLEEP before handing
846 	 * off control to the channel program. Channel programs that use too
847 	 * much memory should die with ENOSPC.
848 	 */
849 	ri->zri_allocargs->aa_must_succeed = B_FALSE;
850 
851 	/*
852 	 * Call the Lua function that open-context passed us. This pops the
853 	 * function and its input from the stack and pushes any return
854 	 * or error values.
855 	 */
856 	err = lua_pcall(state, 1, LUA_MULTRET, 1);
857 
858 	/*
859 	 * Let Lua use KM_SLEEP while we interpret the return values.
860 	 */
861 	ri->zri_allocargs->aa_must_succeed = B_TRUE;
862 
863 	/*
864 	 * Remove the error handler callback from the stack. At this point,
865 	 * there shouldn't be any cleanup handler registered in the handler
866 	 * list (zri_cleanup_handlers), regardless of whether it ran or not.
867 	 */
868 	list_destroy(&ri->zri_cleanup_handlers);
869 	lua_remove(state, 1);
870 
871 	switch (err) {
872 	case LUA_OK: {
873 		/*
874 		 * Lua supports returning multiple values in a single return
875 		 * statement.  Return values will have been pushed onto the
876 		 * stack:
877 		 * 1: Return value 1
878 		 * 2: Return value 2
879 		 * 3: etc...
880 		 * To simplify the process of retrieving a return value from a
881 		 * channel program, we disallow returning more than one value
882 		 * to ZFS from the Lua script, yielding a singleton return
883 		 * nvlist of the form { "return": Return value 1 }.
884 		 */
885 		int return_count = lua_gettop(state);
886 
887 		if (return_count == 1) {
888 			ri->zri_result = 0;
889 			zcp_convert_return_values(state, ri->zri_outnvl,
890 			    ZCP_RET_RETURN, &ri->zri_result);
891 		} else if (return_count > 1) {
892 			ri->zri_result = SET_ERROR(ECHRNG);
893 			lua_settop(state, 0);
894 			(void) lua_pushfstring(state, "Multiple return "
895 			    "values not supported");
896 			zcp_convert_return_values(state, ri->zri_outnvl,
897 			    ZCP_RET_ERROR, &ri->zri_result);
898 		}
899 		break;
900 	}
901 	case LUA_ERRRUN:
902 	case LUA_ERRGCMM: {
903 		/*
904 		 * The channel program encountered a fatal error within the
905 		 * script, such as failing an assertion, or calling a function
906 		 * with incompatible arguments. The error value and the
907 		 * traceback generated by zcp_error_handler() should be on the
908 		 * stack.
909 		 */
910 		VERIFY3U(1, ==, lua_gettop(state));
911 		if (ri->zri_timed_out) {
912 			ri->zri_result = SET_ERROR(ETIME);
913 		} else if (ri->zri_canceled) {
914 			ri->zri_result = SET_ERROR(EINTR);
915 		} else {
916 			ri->zri_result = SET_ERROR(ECHRNG);
917 		}
918 
919 		zcp_convert_return_values(state, ri->zri_outnvl,
920 		    ZCP_RET_ERROR, &ri->zri_result);
921 
922 		if (ri->zri_result == ETIME && ri->zri_outnvl != NULL) {
923 			(void) nvlist_add_uint64(ri->zri_outnvl,
924 			    ZCP_ARG_INSTRLIMIT, ri->zri_curinstrs);
925 		}
926 		break;
927 	}
928 	case LUA_ERRERR: {
929 		/*
930 		 * The channel program encountered a fatal error within the
931 		 * script, and we encountered another error while trying to
932 		 * compute the traceback in zcp_error_handler(). We can only
933 		 * return the error message.
934 		 */
935 		VERIFY3U(1, ==, lua_gettop(state));
936 		if (ri->zri_timed_out) {
937 			ri->zri_result = SET_ERROR(ETIME);
938 		} else if (ri->zri_canceled) {
939 			ri->zri_result = SET_ERROR(EINTR);
940 		} else {
941 			ri->zri_result = SET_ERROR(ECHRNG);
942 		}
943 
944 		zcp_convert_return_values(state, ri->zri_outnvl,
945 		    ZCP_RET_ERROR, &ri->zri_result);
946 		break;
947 	}
948 	case LUA_ERRMEM:
949 		/*
950 		 * Lua ran out of memory while running the channel program.
951 		 * There's not much we can do.
952 		 */
953 		ri->zri_result = SET_ERROR(ENOSPC);
954 		break;
955 	default:
956 		VERIFY0(err);
957 	}
958 }
959 
960 static void
961 zcp_pool_error(zcp_run_info_t *ri, const char *poolname, int error)
962 {
963 	ri->zri_result = SET_ERROR(ECHRNG);
964 	lua_settop(ri->zri_state, 0);
965 	(void) lua_pushfstring(ri->zri_state, "Could not open pool: %s "
966 	    "errno: %d", poolname, error);
967 	zcp_convert_return_values(ri->zri_state, ri->zri_outnvl,
968 	    ZCP_RET_ERROR, &ri->zri_result);
969 
970 }
971 
972 /*
973  * This callback is called when txg_wait_synced_sig encountered a signal.
974  * The txg_wait_synced_sig will continue to wait for the txg to complete
975  * after calling this callback.
976  */
977 static void
978 zcp_eval_sig(void *arg, dmu_tx_t *tx)
979 {
980 	(void) tx;
981 	zcp_run_info_t *ri = arg;
982 
983 	ri->zri_canceled = B_TRUE;
984 }
985 
986 static void
987 zcp_eval_sync(void *arg, dmu_tx_t *tx)
988 {
989 	zcp_run_info_t *ri = arg;
990 
991 	/*
992 	 * Open context should have setup the stack to contain:
993 	 * 1: Error handler callback
994 	 * 2: Script to run (converted to a Lua function)
995 	 * 3: nvlist input to function (converted to Lua table or nil)
996 	 */
997 	VERIFY3U(3, ==, lua_gettop(ri->zri_state));
998 
999 	zcp_eval_impl(tx, ri);
1000 }
1001 
1002 static void
1003 zcp_eval_open(zcp_run_info_t *ri, const char *poolname)
1004 {
1005 	int error;
1006 	dsl_pool_t *dp;
1007 	dmu_tx_t *tx;
1008 
1009 	/*
1010 	 * See comment from the same assertion in zcp_eval_sync().
1011 	 */
1012 	VERIFY3U(3, ==, lua_gettop(ri->zri_state));
1013 
1014 	error = dsl_pool_hold(poolname, FTAG, &dp);
1015 	if (error != 0) {
1016 		zcp_pool_error(ri, poolname, error);
1017 		return;
1018 	}
1019 
1020 	/*
1021 	 * As we are running in open-context, we have no transaction associated
1022 	 * with the channel program. At the same time, functions from the
1023 	 * zfs.check submodule need to be associated with a transaction as
1024 	 * they are basically dry-runs of their counterparts in the zfs.sync
1025 	 * submodule. These functions should be able to run in open-context.
1026 	 * Therefore we create a new transaction that we later abort once
1027 	 * the channel program has been evaluated.
1028 	 */
1029 	tx = dmu_tx_create_dd(dp->dp_mos_dir);
1030 
1031 	zcp_eval_impl(tx, ri);
1032 
1033 	dmu_tx_abort(tx);
1034 
1035 	dsl_pool_rele(dp, FTAG);
1036 }
1037 
1038 int
1039 zcp_eval(const char *poolname, const char *program, boolean_t sync,
1040     uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
1041 {
1042 	int err;
1043 	lua_State *state;
1044 	zcp_run_info_t runinfo;
1045 
1046 	if (instrlimit > zfs_lua_max_instrlimit)
1047 		return (SET_ERROR(EINVAL));
1048 	if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
1049 		return (SET_ERROR(EINVAL));
1050 
1051 	zcp_alloc_arg_t allocargs = {
1052 		.aa_must_succeed = B_TRUE,
1053 		.aa_alloc_remaining = (int64_t)memlimit,
1054 		.aa_alloc_limit = (int64_t)memlimit,
1055 	};
1056 
1057 	/*
1058 	 * Creates a Lua state with a memory allocator that uses KM_SLEEP.
1059 	 * This should never fail.
1060 	 */
1061 	state = lua_newstate(zcp_lua_alloc, &allocargs);
1062 	VERIFY(state != NULL);
1063 	(void) lua_atpanic(state, zcp_panic_cb);
1064 
1065 	/*
1066 	 * Load core Lua libraries we want access to.
1067 	 */
1068 	VERIFY3U(1, ==, luaopen_base(state));
1069 	lua_pop(state, 1);
1070 	VERIFY3U(1, ==, luaopen_coroutine(state));
1071 	lua_setglobal(state, LUA_COLIBNAME);
1072 	VERIFY0(lua_gettop(state));
1073 	VERIFY3U(1, ==, luaopen_string(state));
1074 	lua_setglobal(state, LUA_STRLIBNAME);
1075 	VERIFY0(lua_gettop(state));
1076 	VERIFY3U(1, ==, luaopen_table(state));
1077 	lua_setglobal(state, LUA_TABLIBNAME);
1078 	VERIFY0(lua_gettop(state));
1079 
1080 	/*
1081 	 * Load globally visible variables such as errno aliases.
1082 	 */
1083 	zcp_load_globals(state);
1084 	VERIFY0(lua_gettop(state));
1085 
1086 	/*
1087 	 * Load ZFS-specific modules.
1088 	 */
1089 	lua_newtable(state);
1090 	VERIFY3U(1, ==, zcp_load_list_lib(state));
1091 	lua_setfield(state, -2, "list");
1092 	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
1093 	lua_setfield(state, -2, "check");
1094 	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
1095 	lua_setfield(state, -2, "sync");
1096 	VERIFY3U(1, ==, zcp_load_get_lib(state));
1097 	lua_pushcclosure(state, zcp_debug_info.func, 0);
1098 	lua_setfield(state, -2, zcp_debug_info.name);
1099 	lua_pushcclosure(state, zcp_exists_info.func, 0);
1100 	lua_setfield(state, -2, zcp_exists_info.name);
1101 	lua_setglobal(state, "zfs");
1102 	VERIFY0(lua_gettop(state));
1103 
1104 	/*
1105 	 * Push the error-callback that calculates Lua stack traces on
1106 	 * unexpected failures.
1107 	 */
1108 	lua_pushcfunction(state, zcp_error_handler);
1109 	VERIFY3U(1, ==, lua_gettop(state));
1110 
1111 	/*
1112 	 * Load the actual script as a function onto the stack as text ("t").
1113 	 * The only valid error condition is a syntax error in the script.
1114 	 * ERRMEM should not be possible because our allocator is using
1115 	 * KM_SLEEP.  ERRGCMM should not be possible because we have not added
1116 	 * any objects with __gc metamethods to the interpreter that could
1117 	 * fail.
1118 	 */
1119 	err = luaL_loadbufferx(state, program, strlen(program),
1120 	    "channel program", "t");
1121 	if (err == LUA_ERRSYNTAX) {
1122 		fnvlist_add_string(outnvl, ZCP_RET_ERROR,
1123 		    lua_tostring(state, -1));
1124 		lua_close(state);
1125 		return (SET_ERROR(EINVAL));
1126 	}
1127 	VERIFY0(err);
1128 	VERIFY3U(2, ==, lua_gettop(state));
1129 
1130 	/*
1131 	 * Convert the input nvlist to a Lua object and put it on top of the
1132 	 * stack.
1133 	 */
1134 	char errmsg[128];
1135 	err = zcp_nvpair_value_to_lua(state, nvarg,
1136 	    errmsg, sizeof (errmsg));
1137 	if (err != 0) {
1138 		fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
1139 		lua_close(state);
1140 		return (SET_ERROR(EINVAL));
1141 	}
1142 	VERIFY3U(3, ==, lua_gettop(state));
1143 
1144 	runinfo.zri_state = state;
1145 	runinfo.zri_allocargs = &allocargs;
1146 	runinfo.zri_outnvl = outnvl;
1147 	runinfo.zri_result = 0;
1148 	runinfo.zri_cred = CRED();
1149 	runinfo.zri_proc = curproc;
1150 	runinfo.zri_timed_out = B_FALSE;
1151 	runinfo.zri_canceled = B_FALSE;
1152 	runinfo.zri_sync = sync;
1153 	runinfo.zri_space_used = 0;
1154 	runinfo.zri_curinstrs = 0;
1155 	runinfo.zri_maxinstrs = instrlimit;
1156 	runinfo.zri_new_zvols = fnvlist_alloc();
1157 
1158 	if (sync) {
1159 		err = dsl_sync_task_sig(poolname, NULL, zcp_eval_sync,
1160 		    zcp_eval_sig, &runinfo, 0, ZFS_SPACE_CHECK_ZCP_EVAL);
1161 		if (err != 0)
1162 			zcp_pool_error(&runinfo, poolname, err);
1163 	} else {
1164 		zcp_eval_open(&runinfo, poolname);
1165 	}
1166 	lua_close(state);
1167 
1168 	/*
1169 	 * Create device minor nodes for any new zvols.
1170 	 */
1171 	for (nvpair_t *pair = nvlist_next_nvpair(runinfo.zri_new_zvols, NULL);
1172 	    pair != NULL;
1173 	    pair = nvlist_next_nvpair(runinfo.zri_new_zvols, pair)) {
1174 		zvol_create_minor(nvpair_name(pair));
1175 	}
1176 	fnvlist_free(runinfo.zri_new_zvols);
1177 
1178 	return (runinfo.zri_result);
1179 }
1180 
1181 /*
1182  * Retrieve metadata about the currently running channel program.
1183  */
1184 zcp_run_info_t *
1185 zcp_run_info(lua_State *state)
1186 {
1187 	zcp_run_info_t *ri;
1188 
1189 	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
1190 	ri = lua_touserdata(state, -1);
1191 	lua_pop(state, 1);
1192 	return (ri);
1193 }
1194 
1195 /*
1196  * Argument Parsing
1197  * ================
1198  *
1199  * The Lua language allows methods to be called with any number
1200  * of arguments of any type. When calling back into ZFS we need to sanitize
1201  * arguments from channel programs to make sure unexpected arguments or
1202  * arguments of the wrong type result in clear error messages. To do this
1203  * in a uniform way all callbacks from channel programs should use the
1204  * zcp_parse_args() function to interpret inputs.
1205  *
1206  * Positional vs Keyword Arguments
1207  * ===============================
1208  *
1209  * Every callback function takes a fixed set of required positional arguments
1210  * and optional keyword arguments. For example, the destroy function takes
1211  * a single positional string argument (the name of the dataset to destroy)
1212  * and an optional "defer" keyword boolean argument. When calling lua functions
1213  * with parentheses, only positional arguments can be used:
1214  *
1215  *     zfs.sync.snapshot("rpool@snap")
1216  *
1217  * To use keyword arguments functions should be called with a single argument
1218  * that is a lua table containing mappings of integer -> positional arguments
1219  * and string -> keyword arguments:
1220  *
1221  *     zfs.sync.snapshot({1="rpool@snap", defer=true})
1222  *
1223  * The lua language allows curly braces to be used in place of parenthesis as
1224  * syntactic sugar for this calling convention:
1225  *
1226  *     zfs.sync.snapshot{"rpool@snap", defer=true}
1227  */
1228 
1229 /*
1230  * Throw an error and print the given arguments.  If there are too many
1231  * arguments to fit in the output buffer, only the error format string is
1232  * output.
1233  */
1234 static void
1235 zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1236     const zcp_arg_t *kwargs, const char *fmt, ...)
1237 {
1238 	int i;
1239 	char errmsg[512];
1240 	size_t len = sizeof (errmsg);
1241 	size_t msglen = 0;
1242 	va_list argp;
1243 
1244 	va_start(argp, fmt);
1245 	VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
1246 	va_end(argp);
1247 
1248 	/*
1249 	 * Calculate the total length of the final string, including extra
1250 	 * formatting characters. If the argument dump would be too large,
1251 	 * only print the error string.
1252 	 */
1253 	msglen = strlen(errmsg);
1254 	msglen += strlen(fname) + 4; /* : + {} + null terminator */
1255 	for (i = 0; pargs[i].za_name != NULL; i++) {
1256 		msglen += strlen(pargs[i].za_name);
1257 		msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
1258 		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
1259 			msglen += 5; /* < + ( + )> + , */
1260 		else
1261 			msglen += 4; /* < + ( + )> */
1262 	}
1263 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1264 		msglen += strlen(kwargs[i].za_name);
1265 		msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
1266 		if (kwargs[i + 1].za_name != NULL)
1267 			msglen += 4; /* =( + ) + , */
1268 		else
1269 			msglen += 3; /* =( + ) */
1270 	}
1271 
1272 	if (msglen >= len)
1273 		(void) luaL_error(state, errmsg);
1274 
1275 	VERIFY3U(len, >, strlcat(errmsg, ": ", len));
1276 	VERIFY3U(len, >, strlcat(errmsg, fname, len));
1277 	VERIFY3U(len, >, strlcat(errmsg, "{", len));
1278 	for (i = 0; pargs[i].za_name != NULL; i++) {
1279 		VERIFY3U(len, >, strlcat(errmsg, "<", len));
1280 		VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
1281 		VERIFY3U(len, >, strlcat(errmsg, "(", len));
1282 		VERIFY3U(len, >, strlcat(errmsg,
1283 		    lua_typename(state, pargs[i].za_lua_type), len));
1284 		VERIFY3U(len, >, strlcat(errmsg, ")>", len));
1285 		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
1286 			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1287 		}
1288 	}
1289 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1290 		VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
1291 		VERIFY3U(len, >, strlcat(errmsg, "=(", len));
1292 		VERIFY3U(len, >, strlcat(errmsg,
1293 		    lua_typename(state, kwargs[i].za_lua_type), len));
1294 		VERIFY3U(len, >, strlcat(errmsg, ")", len));
1295 		if (kwargs[i + 1].za_name != NULL) {
1296 			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1297 		}
1298 	}
1299 	VERIFY3U(len, >, strlcat(errmsg, "}", len));
1300 
1301 	(void) luaL_error(state, errmsg);
1302 	panic("unreachable code");
1303 }
1304 
1305 static void
1306 zcp_parse_table_args(lua_State *state, const char *fname,
1307     const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
1308 {
1309 	int i;
1310 	int type;
1311 
1312 	for (i = 0; pargs[i].za_name != NULL; i++) {
1313 		/*
1314 		 * Check the table for this positional argument, leaving it
1315 		 * on the top of the stack once we finish validating it.
1316 		 */
1317 		lua_pushinteger(state, i + 1);
1318 		lua_gettable(state, 1);
1319 
1320 		type = lua_type(state, -1);
1321 		if (type == LUA_TNIL) {
1322 			zcp_args_error(state, fname, pargs, kwargs,
1323 			    "too few arguments");
1324 			panic("unreachable code");
1325 		} else if (type != pargs[i].za_lua_type) {
1326 			zcp_args_error(state, fname, pargs, kwargs,
1327 			    "arg %d wrong type (is '%s', expected '%s')",
1328 			    i + 1, lua_typename(state, type),
1329 			    lua_typename(state, pargs[i].za_lua_type));
1330 			panic("unreachable code");
1331 		}
1332 
1333 		/*
1334 		 * Remove the positional argument from the table.
1335 		 */
1336 		lua_pushinteger(state, i + 1);
1337 		lua_pushnil(state);
1338 		lua_settable(state, 1);
1339 	}
1340 
1341 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1342 		/*
1343 		 * Check the table for this keyword argument, which may be
1344 		 * nil if it was omitted. Leave the value on the top of
1345 		 * the stack after validating it.
1346 		 */
1347 		lua_getfield(state, 1, kwargs[i].za_name);
1348 
1349 		type = lua_type(state, -1);
1350 		if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
1351 			zcp_args_error(state, fname, pargs, kwargs,
1352 			    "kwarg '%s' wrong type (is '%s', expected '%s')",
1353 			    kwargs[i].za_name, lua_typename(state, type),
1354 			    lua_typename(state, kwargs[i].za_lua_type));
1355 			panic("unreachable code");
1356 		}
1357 
1358 		/*
1359 		 * Remove the keyword argument from the table.
1360 		 */
1361 		lua_pushnil(state);
1362 		lua_setfield(state, 1, kwargs[i].za_name);
1363 	}
1364 
1365 	/*
1366 	 * Any entries remaining in the table are invalid inputs, print
1367 	 * an error message based on what the entry is.
1368 	 */
1369 	lua_pushnil(state);
1370 	if (lua_next(state, 1)) {
1371 		if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
1372 			zcp_args_error(state, fname, pargs, kwargs,
1373 			    "too many positional arguments");
1374 		} else if (lua_isstring(state, -2)) {
1375 			zcp_args_error(state, fname, pargs, kwargs,
1376 			    "invalid kwarg '%s'", lua_tostring(state, -2));
1377 		} else {
1378 			zcp_args_error(state, fname, pargs, kwargs,
1379 			    "kwarg keys must be strings");
1380 		}
1381 		panic("unreachable code");
1382 	}
1383 
1384 	lua_remove(state, 1);
1385 }
1386 
1387 static void
1388 zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1389     const zcp_arg_t *kwargs)
1390 {
1391 	int i;
1392 	int type;
1393 
1394 	for (i = 0; pargs[i].za_name != NULL; i++) {
1395 		type = lua_type(state, i + 1);
1396 		if (type == LUA_TNONE) {
1397 			zcp_args_error(state, fname, pargs, kwargs,
1398 			    "too few arguments");
1399 			panic("unreachable code");
1400 		} else if (type != pargs[i].za_lua_type) {
1401 			zcp_args_error(state, fname, pargs, kwargs,
1402 			    "arg %d wrong type (is '%s', expected '%s')",
1403 			    i + 1, lua_typename(state, type),
1404 			    lua_typename(state, pargs[i].za_lua_type));
1405 			panic("unreachable code");
1406 		}
1407 	}
1408 	if (lua_gettop(state) != i) {
1409 		zcp_args_error(state, fname, pargs, kwargs,
1410 		    "too many positional arguments");
1411 		panic("unreachable code");
1412 	}
1413 
1414 	for (i = 0; kwargs[i].za_name != NULL; i++) {
1415 		lua_pushnil(state);
1416 	}
1417 }
1418 
1419 /*
1420  * Checks the current Lua stack against an expected set of positional and
1421  * keyword arguments. If the stack does not match the expected arguments
1422  * aborts the current channel program with a useful error message, otherwise
1423  * it re-arranges the stack so that it contains the positional arguments
1424  * followed by the keyword argument values in declaration order. Any missing
1425  * keyword argument will be represented by a nil value on the stack.
1426  *
1427  * If the stack contains exactly one argument of type LUA_TTABLE the curly
1428  * braces calling convention is assumed, otherwise the stack is parsed for
1429  * positional arguments only.
1430  *
1431  * This function should be used by every function callback. It should be called
1432  * before the callback manipulates the Lua stack as it assumes the stack
1433  * represents the function arguments.
1434  */
1435 void
1436 zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1437     const zcp_arg_t *kwargs)
1438 {
1439 	if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
1440 		zcp_parse_table_args(state, fname, pargs, kwargs);
1441 	} else {
1442 		zcp_parse_pos_args(state, fname, pargs, kwargs);
1443 	}
1444 }
1445 
1446 ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_instrlimit, U64, ZMOD_RW,
1447 	"Max instruction limit that can be specified for a channel program");
1448 
1449 ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_memlimit, U64, ZMOD_RW,
1450 	"Max memory limit that can be specified for a channel program");
1451