1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2024, Klara, Inc.
28 */
29
30 #include <sys/zio.h>
31 #include <sys/spa.h>
32 #include <sys/dmu.h>
33 #include <sys/zfs_context.h>
34 #include <sys/zap.h>
35 #include <sys/zap_impl.h>
36 #include <sys/zap_leaf.h>
37 #include <sys/btree.h>
38 #include <sys/arc.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/spa_impl.h>
41
42 #ifdef _KERNEL
43 #include <sys/sunddi.h>
44 #endif
45
46 /*
47 * The maximum size (in bytes) of a microzap before it is converted to a
48 * fatzap. It will be rounded up to next multiple of 512 (SPA_MINBLOCKSIZE).
49 *
50 * By definition, a microzap must fit into a single block, so this has
51 * traditionally been SPA_OLD_MAXBLOCKSIZE, and is set to that by default.
52 * Setting this higher requires both the large_blocks feature (to even create
53 * blocks that large) and the large_microzap feature (to enable the stream
54 * machinery to understand not to try to split a microzap block).
55 *
56 * If large_microzap is enabled, this value will be clamped to
57 * spa_maxblocksize(), up to 1M. If not, it will be clamped to
58 * SPA_OLD_MAXBLOCKSIZE.
59 */
60 static int zap_micro_max_size = SPA_OLD_MAXBLOCKSIZE;
61
62 /*
63 * The 1M upper limit is necessary because the count of chunks in a microzap
64 * block is stored as a uint16_t (mze_chunkid). Each chunk is 64 bytes, and the
65 * first is used to store a header, so there are 32767 usable chunks, which is
66 * just under 2M. 1M is the largest power-2-rounded block size under 2M, so we
67 * must set the limit there.
68 */
69 #define MZAP_MAX_SIZE (1048576)
70
71 uint64_t
zap_get_micro_max_size(spa_t * spa)72 zap_get_micro_max_size(spa_t *spa)
73 {
74 uint64_t maxsz = MIN(MZAP_MAX_SIZE,
75 P2ROUNDUP(zap_micro_max_size, SPA_MINBLOCKSIZE));
76 if (maxsz <= SPA_OLD_MAXBLOCKSIZE)
77 return (maxsz);
78 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_MICROZAP))
79 return (MIN(maxsz, spa_maxblocksize(spa)));
80 return (SPA_OLD_MAXBLOCKSIZE);
81 }
82
83 static int mzap_upgrade(zap_t **zapp,
84 const void *tag, dmu_tx_t *tx, zap_flags_t flags);
85
86 uint64_t
zap_getflags(zap_t * zap)87 zap_getflags(zap_t *zap)
88 {
89 if (zap->zap_ismicro)
90 return (0);
91 return (zap_f_phys(zap)->zap_flags);
92 }
93
94 int
zap_hashbits(zap_t * zap)95 zap_hashbits(zap_t *zap)
96 {
97 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
98 return (48);
99 else
100 return (28);
101 }
102
103 uint32_t
zap_maxcd(zap_t * zap)104 zap_maxcd(zap_t *zap)
105 {
106 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
107 return ((1<<16)-1);
108 else
109 return (-1U);
110 }
111
112 static uint64_t
zap_hash(zap_name_t * zn)113 zap_hash(zap_name_t *zn)
114 {
115 zap_t *zap = zn->zn_zap;
116 uint64_t h = 0;
117
118 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
119 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
120 h = *(uint64_t *)zn->zn_key_orig;
121 } else {
122 h = zap->zap_salt;
123 ASSERT(h != 0);
124 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
125
126 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
127 const uint64_t *wp = zn->zn_key_norm;
128
129 ASSERT(zn->zn_key_intlen == 8);
130 for (int i = 0; i < zn->zn_key_norm_numints;
131 wp++, i++) {
132 uint64_t word = *wp;
133
134 for (int j = 0; j < 8; j++) {
135 h = (h >> 8) ^
136 zfs_crc64_table[(h ^ word) & 0xFF];
137 word >>= NBBY;
138 }
139 }
140 } else {
141 const uint8_t *cp = zn->zn_key_norm;
142
143 /*
144 * We previously stored the terminating null on
145 * disk, but didn't hash it, so we need to
146 * continue to not hash it. (The
147 * zn_key_*_numints includes the terminating
148 * null for non-binary keys.)
149 */
150 int len = zn->zn_key_norm_numints - 1;
151
152 ASSERT(zn->zn_key_intlen == 1);
153 for (int i = 0; i < len; cp++, i++) {
154 h = (h >> 8) ^
155 zfs_crc64_table[(h ^ *cp) & 0xFF];
156 }
157 }
158 }
159 /*
160 * Don't use all 64 bits, since we need some in the cookie for
161 * the collision differentiator. We MUST use the high bits,
162 * since those are the ones that we first pay attention to when
163 * choosing the bucket.
164 */
165 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
166
167 return (h);
168 }
169
170 static int
zap_normalize(zap_t * zap,const char * name,char * namenorm,int normflags,size_t outlen)171 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags,
172 size_t outlen)
173 {
174 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
175
176 size_t inlen = strlen(name) + 1;
177
178 int err = 0;
179 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
180 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
181 U8_UNICODE_LATEST, &err);
182
183 return (err);
184 }
185
186 boolean_t
zap_match(zap_name_t * zn,const char * matchname)187 zap_match(zap_name_t *zn, const char *matchname)
188 {
189 boolean_t res = B_FALSE;
190 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
191
192 if (zn->zn_matchtype & MT_NORMALIZE) {
193 size_t namelen = zn->zn_normbuf_len;
194 char normbuf[ZAP_MAXNAMELEN];
195 char *norm = normbuf;
196
197 /*
198 * Cannot allocate this on-stack as it exceed the stack-limit of
199 * 1024.
200 */
201 if (namelen > ZAP_MAXNAMELEN)
202 norm = kmem_alloc(namelen, KM_SLEEP);
203
204 if (zap_normalize(zn->zn_zap, matchname, norm,
205 zn->zn_normflags, namelen) != 0) {
206 res = B_FALSE;
207 } else {
208 res = (strcmp(zn->zn_key_norm, norm) == 0);
209 }
210 if (norm != normbuf)
211 kmem_free(norm, namelen);
212 } else {
213 res = (strcmp(zn->zn_key_orig, matchname) == 0);
214 }
215 return (res);
216 }
217
218 static kmem_cache_t *zap_name_cache;
219 static kmem_cache_t *zap_attr_cache;
220 static kmem_cache_t *zap_name_long_cache;
221 static kmem_cache_t *zap_attr_long_cache;
222
223 void
zap_init(void)224 zap_init(void)
225 {
226 zap_name_cache = kmem_cache_create("zap_name",
227 sizeof (zap_name_t) + ZAP_MAXNAMELEN, 0, NULL, NULL,
228 NULL, NULL, NULL, 0);
229
230 zap_attr_cache = kmem_cache_create("zap_attr_cache",
231 sizeof (zap_attribute_t) + ZAP_MAXNAMELEN, 0, NULL,
232 NULL, NULL, NULL, NULL, 0);
233
234 zap_name_long_cache = kmem_cache_create("zap_name_long",
235 sizeof (zap_name_t) + ZAP_MAXNAMELEN_NEW, 0, NULL, NULL,
236 NULL, NULL, NULL, 0);
237
238 zap_attr_long_cache = kmem_cache_create("zap_attr_long_cache",
239 sizeof (zap_attribute_t) + ZAP_MAXNAMELEN_NEW, 0, NULL,
240 NULL, NULL, NULL, NULL, 0);
241 }
242
243 void
zap_fini(void)244 zap_fini(void)
245 {
246 kmem_cache_destroy(zap_name_cache);
247 kmem_cache_destroy(zap_attr_cache);
248 kmem_cache_destroy(zap_name_long_cache);
249 kmem_cache_destroy(zap_attr_long_cache);
250 }
251
252 static zap_name_t *
zap_name_alloc(zap_t * zap,boolean_t longname)253 zap_name_alloc(zap_t *zap, boolean_t longname)
254 {
255 kmem_cache_t *cache = longname ? zap_name_long_cache : zap_name_cache;
256 zap_name_t *zn = kmem_cache_alloc(cache, KM_SLEEP);
257
258 zn->zn_zap = zap;
259 zn->zn_normbuf_len = longname ? ZAP_MAXNAMELEN_NEW : ZAP_MAXNAMELEN;
260 return (zn);
261 }
262
263 void
zap_name_free(zap_name_t * zn)264 zap_name_free(zap_name_t *zn)
265 {
266 if (zn->zn_normbuf_len == ZAP_MAXNAMELEN) {
267 kmem_cache_free(zap_name_cache, zn);
268 } else {
269 ASSERT3U(zn->zn_normbuf_len, ==, ZAP_MAXNAMELEN_NEW);
270 kmem_cache_free(zap_name_long_cache, zn);
271 }
272 }
273
274 static int
zap_name_init_str(zap_name_t * zn,const char * key,matchtype_t mt)275 zap_name_init_str(zap_name_t *zn, const char *key, matchtype_t mt)
276 {
277 zap_t *zap = zn->zn_zap;
278 size_t key_len = strlen(key) + 1;
279
280 /* Make sure zn is allocated for longname if key is long */
281 IMPLY(key_len > ZAP_MAXNAMELEN,
282 zn->zn_normbuf_len == ZAP_MAXNAMELEN_NEW);
283
284 zn->zn_key_intlen = sizeof (*key);
285 zn->zn_key_orig = key;
286 zn->zn_key_orig_numints = key_len;
287 zn->zn_matchtype = mt;
288 zn->zn_normflags = zap->zap_normflags;
289
290 /*
291 * If we're dealing with a case sensitive lookup on a mixed or
292 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
293 * will fold case to all caps overriding the lookup request.
294 */
295 if (mt & MT_MATCH_CASE)
296 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
297
298 if (zap->zap_normflags) {
299 /*
300 * We *must* use zap_normflags because this normalization is
301 * what the hash is computed from.
302 */
303 if (zap_normalize(zap, key, zn->zn_normbuf,
304 zap->zap_normflags, zn->zn_normbuf_len) != 0)
305 return (SET_ERROR(ENOTSUP));
306 zn->zn_key_norm = zn->zn_normbuf;
307 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
308 } else {
309 if (mt != 0)
310 return (SET_ERROR(ENOTSUP));
311 zn->zn_key_norm = zn->zn_key_orig;
312 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
313 }
314
315 zn->zn_hash = zap_hash(zn);
316
317 if (zap->zap_normflags != zn->zn_normflags) {
318 /*
319 * We *must* use zn_normflags because this normalization is
320 * what the matching is based on. (Not the hash!)
321 */
322 if (zap_normalize(zap, key, zn->zn_normbuf,
323 zn->zn_normflags, zn->zn_normbuf_len) != 0)
324 return (SET_ERROR(ENOTSUP));
325 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
326 }
327
328 return (0);
329 }
330
331 zap_name_t *
zap_name_alloc_str(zap_t * zap,const char * key,matchtype_t mt)332 zap_name_alloc_str(zap_t *zap, const char *key, matchtype_t mt)
333 {
334 size_t key_len = strlen(key) + 1;
335 zap_name_t *zn = zap_name_alloc(zap, (key_len > ZAP_MAXNAMELEN));
336 if (zap_name_init_str(zn, key, mt) != 0) {
337 zap_name_free(zn);
338 return (NULL);
339 }
340 return (zn);
341 }
342
343 static zap_name_t *
zap_name_alloc_uint64(zap_t * zap,const uint64_t * key,int numints)344 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
345 {
346 zap_name_t *zn = kmem_cache_alloc(zap_name_cache, KM_SLEEP);
347
348 ASSERT(zap->zap_normflags == 0);
349 zn->zn_zap = zap;
350 zn->zn_key_intlen = sizeof (*key);
351 zn->zn_key_orig = zn->zn_key_norm = key;
352 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
353 zn->zn_matchtype = 0;
354 zn->zn_normbuf_len = ZAP_MAXNAMELEN;
355
356 zn->zn_hash = zap_hash(zn);
357 return (zn);
358 }
359
360 static void
mzap_byteswap(mzap_phys_t * buf,size_t size)361 mzap_byteswap(mzap_phys_t *buf, size_t size)
362 {
363 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
364 buf->mz_salt = BSWAP_64(buf->mz_salt);
365 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
366 int max = (size / MZAP_ENT_LEN) - 1;
367 for (int i = 0; i < max; i++) {
368 buf->mz_chunk[i].mze_value =
369 BSWAP_64(buf->mz_chunk[i].mze_value);
370 buf->mz_chunk[i].mze_cd =
371 BSWAP_32(buf->mz_chunk[i].mze_cd);
372 }
373 }
374
375 void
zap_byteswap(void * buf,size_t size)376 zap_byteswap(void *buf, size_t size)
377 {
378 uint64_t block_type = *(uint64_t *)buf;
379
380 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
381 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
382 mzap_byteswap(buf, size);
383 } else {
384 fzap_byteswap(buf, size);
385 }
386 }
387
388 __attribute__((always_inline)) inline
389 static int
mze_compare(const void * arg1,const void * arg2)390 mze_compare(const void *arg1, const void *arg2)
391 {
392 const mzap_ent_t *mze1 = arg1;
393 const mzap_ent_t *mze2 = arg2;
394
395 return (TREE_CMP((uint64_t)(mze1->mze_hash) << 32 | mze1->mze_cd,
396 (uint64_t)(mze2->mze_hash) << 32 | mze2->mze_cd));
397 }
398
ZFS_BTREE_FIND_IN_BUF_FUNC(mze_find_in_buf,mzap_ent_t,mze_compare)399 ZFS_BTREE_FIND_IN_BUF_FUNC(mze_find_in_buf, mzap_ent_t,
400 mze_compare)
401
402 static void
403 mze_insert(zap_t *zap, uint16_t chunkid, uint64_t hash)
404 {
405 mzap_ent_t mze;
406
407 ASSERT(zap->zap_ismicro);
408 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
409
410 mze.mze_chunkid = chunkid;
411 ASSERT0(hash & 0xffffffff);
412 mze.mze_hash = hash >> 32;
413 ASSERT3U(MZE_PHYS(zap, &mze)->mze_cd, <=, 0xffff);
414 mze.mze_cd = (uint16_t)MZE_PHYS(zap, &mze)->mze_cd;
415 ASSERT(MZE_PHYS(zap, &mze)->mze_name[0] != 0);
416 zfs_btree_add(&zap->zap_m.zap_tree, &mze);
417 }
418
419 static mzap_ent_t *
mze_find(zap_name_t * zn,zfs_btree_index_t * idx)420 mze_find(zap_name_t *zn, zfs_btree_index_t *idx)
421 {
422 mzap_ent_t mze_tofind;
423 mzap_ent_t *mze;
424 zfs_btree_t *tree = &zn->zn_zap->zap_m.zap_tree;
425
426 ASSERT(zn->zn_zap->zap_ismicro);
427 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
428
429 ASSERT0(zn->zn_hash & 0xffffffff);
430 mze_tofind.mze_hash = zn->zn_hash >> 32;
431 mze_tofind.mze_cd = 0;
432
433 mze = zfs_btree_find(tree, &mze_tofind, idx);
434 if (mze == NULL)
435 mze = zfs_btree_next(tree, idx, idx);
436 for (; mze && mze->mze_hash == mze_tofind.mze_hash;
437 mze = zfs_btree_next(tree, idx, idx)) {
438 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
439 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
440 return (mze);
441 }
442
443 return (NULL);
444 }
445
446 static uint32_t
mze_find_unused_cd(zap_t * zap,uint64_t hash)447 mze_find_unused_cd(zap_t *zap, uint64_t hash)
448 {
449 mzap_ent_t mze_tofind;
450 zfs_btree_index_t idx;
451 zfs_btree_t *tree = &zap->zap_m.zap_tree;
452
453 ASSERT(zap->zap_ismicro);
454 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
455
456 ASSERT0(hash & 0xffffffff);
457 hash >>= 32;
458 mze_tofind.mze_hash = hash;
459 mze_tofind.mze_cd = 0;
460
461 uint32_t cd = 0;
462 for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
463 mze && mze->mze_hash == hash;
464 mze = zfs_btree_next(tree, &idx, &idx)) {
465 if (mze->mze_cd != cd)
466 break;
467 cd++;
468 }
469
470 return (cd);
471 }
472
473 /*
474 * Each mzap entry requires at max : 4 chunks
475 * 3 chunks for names + 1 chunk for value.
476 */
477 #define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \
478 ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t)))
479
480 /*
481 * Check if the current entry keeps the colliding entries under the fatzap leaf
482 * size.
483 */
484 static boolean_t
mze_canfit_fzap_leaf(zap_name_t * zn,uint64_t hash)485 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash)
486 {
487 zap_t *zap = zn->zn_zap;
488 mzap_ent_t mze_tofind;
489 zfs_btree_index_t idx;
490 zfs_btree_t *tree = &zap->zap_m.zap_tree;
491 uint32_t mzap_ents = 0;
492
493 ASSERT0(hash & 0xffffffff);
494 hash >>= 32;
495 mze_tofind.mze_hash = hash;
496 mze_tofind.mze_cd = 0;
497
498 for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
499 mze && mze->mze_hash == hash;
500 mze = zfs_btree_next(tree, &idx, &idx)) {
501 mzap_ents++;
502 }
503
504 /* Include the new entry being added */
505 mzap_ents++;
506
507 return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS));
508 }
509
510 static void
mze_destroy(zap_t * zap)511 mze_destroy(zap_t *zap)
512 {
513 zfs_btree_clear(&zap->zap_m.zap_tree);
514 zfs_btree_destroy(&zap->zap_m.zap_tree);
515 }
516
517 static zap_t *
mzap_open(dmu_buf_t * db)518 mzap_open(dmu_buf_t *db)
519 {
520 zap_t *winner;
521 uint64_t *zap_hdr = (uint64_t *)db->db_data;
522 uint64_t zap_block_type = zap_hdr[0];
523 uint64_t zap_magic = zap_hdr[1];
524
525 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
526
527 zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
528 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
529 rw_enter(&zap->zap_rwlock, RW_WRITER);
530 zap->zap_objset = dmu_buf_get_objset(db);
531 zap->zap_object = db->db_object;
532 zap->zap_dbuf = db;
533
534 if (zap_block_type != ZBT_MICRO) {
535 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
536 0);
537 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
538 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
539 winner = NULL; /* No actual winner here... */
540 goto handle_winner;
541 }
542 } else {
543 zap->zap_ismicro = TRUE;
544 }
545
546 /*
547 * Make sure that zap_ismicro is set before we let others see
548 * it, because zap_lockdir() checks zap_ismicro without the lock
549 * held.
550 */
551 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
552 winner = dmu_buf_set_user(db, &zap->zap_dbu);
553
554 if (winner != NULL)
555 goto handle_winner;
556
557 if (zap->zap_ismicro) {
558 zap->zap_salt = zap_m_phys(zap)->mz_salt;
559 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
560 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
561
562 /*
563 * Reduce B-tree leaf from 4KB to 512 bytes to reduce memmove()
564 * overhead on massive inserts below. It still allows to store
565 * 62 entries before we have to add 2KB B-tree core node.
566 */
567 zfs_btree_create_custom(&zap->zap_m.zap_tree, mze_compare,
568 mze_find_in_buf, sizeof (mzap_ent_t), 512);
569
570 zap_name_t *zn = zap_name_alloc(zap, B_FALSE);
571 for (uint16_t i = 0; i < zap->zap_m.zap_num_chunks; i++) {
572 mzap_ent_phys_t *mze =
573 &zap_m_phys(zap)->mz_chunk[i];
574 if (mze->mze_name[0]) {
575 zap->zap_m.zap_num_entries++;
576 zap_name_init_str(zn, mze->mze_name, 0);
577 mze_insert(zap, i, zn->zn_hash);
578 }
579 }
580 zap_name_free(zn);
581 } else {
582 zap->zap_salt = zap_f_phys(zap)->zap_salt;
583 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
584
585 ASSERT3U(sizeof (struct zap_leaf_header), ==,
586 2*ZAP_LEAF_CHUNKSIZE);
587
588 /*
589 * The embedded pointer table should not overlap the
590 * other members.
591 */
592 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
593 &zap_f_phys(zap)->zap_salt);
594
595 /*
596 * The embedded pointer table should end at the end of
597 * the block
598 */
599 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
600 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
601 (uintptr_t)zap_f_phys(zap), ==,
602 zap->zap_dbuf->db_size);
603 }
604 rw_exit(&zap->zap_rwlock);
605 return (zap);
606
607 handle_winner:
608 rw_exit(&zap->zap_rwlock);
609 rw_destroy(&zap->zap_rwlock);
610 if (!zap->zap_ismicro)
611 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
612 kmem_free(zap, sizeof (zap_t));
613 return (winner);
614 }
615
616 /*
617 * This routine "consumes" the caller's hold on the dbuf, which must
618 * have the specified tag.
619 */
620 static int
zap_lockdir_impl(dnode_t * dn,dmu_buf_t * db,const void * tag,dmu_tx_t * tx,krw_t lti,boolean_t fatreader,boolean_t adding,zap_t ** zapp)621 zap_lockdir_impl(dnode_t *dn, dmu_buf_t *db, const void *tag, dmu_tx_t *tx,
622 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
623 {
624 ASSERT0(db->db_offset);
625 objset_t *os = dmu_buf_get_objset(db);
626 uint64_t obj = db->db_object;
627 dmu_object_info_t doi;
628
629 *zapp = NULL;
630
631 dmu_object_info_from_dnode(dn, &doi);
632 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
633 return (SET_ERROR(EINVAL));
634
635 zap_t *zap = dmu_buf_get_user(db);
636 if (zap == NULL) {
637 zap = mzap_open(db);
638 if (zap == NULL) {
639 /*
640 * mzap_open() didn't like what it saw on-disk.
641 * Check for corruption!
642 */
643 return (SET_ERROR(EIO));
644 }
645 }
646
647 /*
648 * We're checking zap_ismicro without the lock held, in order to
649 * tell what type of lock we want. Once we have some sort of
650 * lock, see if it really is the right type. In practice this
651 * can only be different if it was upgraded from micro to fat,
652 * and micro wanted WRITER but fat only needs READER.
653 */
654 krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
655 rw_enter(&zap->zap_rwlock, lt);
656 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
657 /* it was upgraded, now we only need reader */
658 ASSERT(lt == RW_WRITER);
659 ASSERT(RW_READER ==
660 ((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
661 rw_downgrade(&zap->zap_rwlock);
662 lt = RW_READER;
663 }
664
665 zap->zap_objset = os;
666 zap->zap_dnode = dn;
667
668 if (lt == RW_WRITER)
669 dmu_buf_will_dirty(db, tx);
670
671 ASSERT3P(zap->zap_dbuf, ==, db);
672
673 ASSERT(!zap->zap_ismicro ||
674 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
675 if (zap->zap_ismicro && tx && adding &&
676 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
677 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
678 if (newsz > zap_get_micro_max_size(dmu_objset_spa(os))) {
679 dprintf("upgrading obj %llu: num_entries=%u\n",
680 (u_longlong_t)obj, zap->zap_m.zap_num_entries);
681 *zapp = zap;
682 int err = mzap_upgrade(zapp, tag, tx, 0);
683 if (err != 0)
684 rw_exit(&zap->zap_rwlock);
685 return (err);
686 }
687 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
688 zap->zap_m.zap_num_chunks =
689 db->db_size / MZAP_ENT_LEN - 1;
690
691 if (newsz > SPA_OLD_MAXBLOCKSIZE) {
692 dsl_dataset_t *ds = dmu_objset_ds(os);
693 if (!dsl_dataset_feature_is_active(ds,
694 SPA_FEATURE_LARGE_MICROZAP)) {
695 /*
696 * A microzap just grew beyond the old limit
697 * for the first time, so we have to ensure the
698 * feature flag is activated.
699 * zap_get_micro_max_size() won't let us get
700 * here if the feature is not enabled, so we
701 * don't need any other checks beforehand.
702 *
703 * Since we're in open context, we can't
704 * activate the feature directly, so we instead
705 * flag it on the dataset for next sync.
706 */
707 dsl_dataset_dirty(ds, tx);
708 mutex_enter(&ds->ds_lock);
709 ds->ds_feature_activation
710 [SPA_FEATURE_LARGE_MICROZAP] =
711 (void *)B_TRUE;
712 mutex_exit(&ds->ds_lock);
713 }
714 }
715 }
716
717 *zapp = zap;
718 return (0);
719 }
720
721 static int
zap_lockdir_by_dnode(dnode_t * dn,dmu_tx_t * tx,krw_t lti,boolean_t fatreader,boolean_t adding,const void * tag,zap_t ** zapp)722 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
723 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
724 zap_t **zapp)
725 {
726 dmu_buf_t *db;
727 int err;
728
729 err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
730 if (err != 0)
731 return (err);
732 err = zap_lockdir_impl(dn, db, tag, tx, lti, fatreader, adding, zapp);
733 if (err != 0)
734 dmu_buf_rele(db, tag);
735 else
736 VERIFY(dnode_add_ref(dn, tag));
737 return (err);
738 }
739
740 int
zap_lockdir(objset_t * os,uint64_t obj,dmu_tx_t * tx,krw_t lti,boolean_t fatreader,boolean_t adding,const void * tag,zap_t ** zapp)741 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
742 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
743 zap_t **zapp)
744 {
745 dnode_t *dn;
746 dmu_buf_t *db;
747 int err;
748
749 err = dnode_hold(os, obj, tag, &dn);
750 if (err != 0)
751 return (err);
752 err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
753 if (err != 0) {
754 dnode_rele(dn, tag);
755 return (err);
756 }
757 err = zap_lockdir_impl(dn, db, tag, tx, lti, fatreader, adding, zapp);
758 if (err != 0) {
759 dmu_buf_rele(db, tag);
760 dnode_rele(dn, tag);
761 }
762 return (err);
763 }
764
765 void
zap_unlockdir(zap_t * zap,const void * tag)766 zap_unlockdir(zap_t *zap, const void *tag)
767 {
768 rw_exit(&zap->zap_rwlock);
769 dnode_rele(zap->zap_dnode, tag);
770 dmu_buf_rele(zap->zap_dbuf, tag);
771 }
772
773 static int
mzap_upgrade(zap_t ** zapp,const void * tag,dmu_tx_t * tx,zap_flags_t flags)774 mzap_upgrade(zap_t **zapp, const void *tag, dmu_tx_t *tx, zap_flags_t flags)
775 {
776 int err = 0;
777 zap_t *zap = *zapp;
778
779 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
780
781 int sz = zap->zap_dbuf->db_size;
782 mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP);
783 memcpy(mzp, zap->zap_dbuf->db_data, sz);
784 int nchunks = zap->zap_m.zap_num_chunks;
785
786 if (!flags) {
787 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
788 1ULL << fzap_default_block_shift, 0, tx);
789 if (err != 0) {
790 vmem_free(mzp, sz);
791 return (err);
792 }
793 }
794
795 dprintf("upgrading obj=%llu with %u chunks\n",
796 (u_longlong_t)zap->zap_object, nchunks);
797 /* XXX destroy the tree later, so we can use the stored hash value */
798 mze_destroy(zap);
799
800 fzap_upgrade(zap, tx, flags);
801
802 zap_name_t *zn = zap_name_alloc(zap, B_FALSE);
803 for (int i = 0; i < nchunks; i++) {
804 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
805 if (mze->mze_name[0] == 0)
806 continue;
807 dprintf("adding %s=%llu\n",
808 mze->mze_name, (u_longlong_t)mze->mze_value);
809 zap_name_init_str(zn, mze->mze_name, 0);
810 /* If we fail here, we would end up losing entries */
811 VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
812 tag, tx));
813 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
814 }
815 zap_name_free(zn);
816 vmem_free(mzp, sz);
817 *zapp = zap;
818 return (0);
819 }
820
821 /*
822 * The "normflags" determine the behavior of the matchtype_t which is
823 * passed to zap_lookup_norm(). Names which have the same normalized
824 * version will be stored with the same hash value, and therefore we can
825 * perform normalization-insensitive lookups. We can be Unicode form-
826 * insensitive and/or case-insensitive. The following flags are valid for
827 * "normflags":
828 *
829 * U8_TEXTPREP_NFC
830 * U8_TEXTPREP_NFD
831 * U8_TEXTPREP_NFKC
832 * U8_TEXTPREP_NFKD
833 * U8_TEXTPREP_TOUPPER
834 *
835 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
836 * of them may be supplied.
837 */
838 void
mzap_create_impl(dnode_t * dn,int normflags,zap_flags_t flags,dmu_tx_t * tx)839 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx)
840 {
841 dmu_buf_t *db;
842
843 VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
844
845 dmu_buf_will_dirty(db, tx);
846 mzap_phys_t *zp = db->db_data;
847 zp->mz_block_type = ZBT_MICRO;
848 zp->mz_salt =
849 ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL;
850 zp->mz_normflags = normflags;
851
852 if (flags != 0) {
853 zap_t *zap;
854 /* Only fat zap supports flags; upgrade immediately. */
855 VERIFY(dnode_add_ref(dn, FTAG));
856 VERIFY0(zap_lockdir_impl(dn, db, FTAG, tx, RW_WRITER,
857 B_FALSE, B_FALSE, &zap));
858 VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
859 zap_unlockdir(zap, FTAG);
860 } else {
861 dmu_buf_rele(db, FTAG);
862 }
863 }
864
865 static uint64_t
zap_create_impl(objset_t * os,int normflags,zap_flags_t flags,dmu_object_type_t ot,int leaf_blockshift,int indirect_blockshift,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dnode_t ** allocated_dnode,const void * tag,dmu_tx_t * tx)866 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags,
867 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
868 dmu_object_type_t bonustype, int bonuslen, int dnodesize,
869 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
870 {
871 uint64_t obj;
872
873 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
874
875 if (allocated_dnode == NULL) {
876 dnode_t *dn;
877 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
878 indirect_blockshift, bonustype, bonuslen, dnodesize,
879 &dn, FTAG, tx);
880 mzap_create_impl(dn, normflags, flags, tx);
881 dnode_rele(dn, FTAG);
882 } else {
883 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
884 indirect_blockshift, bonustype, bonuslen, dnodesize,
885 allocated_dnode, tag, tx);
886 mzap_create_impl(*allocated_dnode, normflags, flags, tx);
887 }
888
889 return (obj);
890 }
891
892 int
zap_create_claim(objset_t * os,uint64_t obj,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)893 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
894 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
895 {
896 return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
897 0, tx));
898 }
899
900 int
zap_create_claim_dnsize(objset_t * os,uint64_t obj,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dmu_tx_t * tx)901 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
902 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
903 {
904 return (zap_create_claim_norm_dnsize(os, obj,
905 0, ot, bonustype, bonuslen, dnodesize, tx));
906 }
907
908 int
zap_create_claim_norm(objset_t * os,uint64_t obj,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)909 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
910 dmu_object_type_t ot,
911 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
912 {
913 return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
914 bonuslen, 0, tx));
915 }
916
917 int
zap_create_claim_norm_dnsize(objset_t * os,uint64_t obj,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dmu_tx_t * tx)918 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
919 dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
920 int dnodesize, dmu_tx_t *tx)
921 {
922 dnode_t *dn;
923 int error;
924
925 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
926 error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
927 dnodesize, tx);
928 if (error != 0)
929 return (error);
930
931 error = dnode_hold(os, obj, FTAG, &dn);
932 if (error != 0)
933 return (error);
934
935 mzap_create_impl(dn, normflags, 0, tx);
936
937 dnode_rele(dn, FTAG);
938
939 return (0);
940 }
941
942 uint64_t
zap_create(objset_t * os,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)943 zap_create(objset_t *os, dmu_object_type_t ot,
944 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
945 {
946 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
947 }
948
949 uint64_t
zap_create_dnsize(objset_t * os,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dmu_tx_t * tx)950 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
951 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
952 {
953 return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
954 dnodesize, tx));
955 }
956
957 uint64_t
zap_create_norm(objset_t * os,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)958 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
959 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
960 {
961 return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
962 0, tx));
963 }
964
965 uint64_t
zap_create_norm_dnsize(objset_t * os,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dmu_tx_t * tx)966 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
967 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
968 {
969 return (zap_create_impl(os, normflags, 0, ot, 0, 0,
970 bonustype, bonuslen, dnodesize, NULL, NULL, tx));
971 }
972
973 uint64_t
zap_create_flags(objset_t * os,int normflags,zap_flags_t flags,dmu_object_type_t ot,int leaf_blockshift,int indirect_blockshift,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)974 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
975 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
976 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
977 {
978 return (zap_create_flags_dnsize(os, normflags, flags, ot,
979 leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
980 }
981
982 uint64_t
zap_create_flags_dnsize(objset_t * os,int normflags,zap_flags_t flags,dmu_object_type_t ot,int leaf_blockshift,int indirect_blockshift,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dmu_tx_t * tx)983 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
984 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
985 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
986 {
987 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
988 indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL,
989 tx));
990 }
991
992 /*
993 * Create a zap object and return a pointer to the newly allocated dnode via
994 * the allocated_dnode argument. The returned dnode will be held and the
995 * caller is responsible for releasing the hold by calling dnode_rele().
996 */
997 uint64_t
zap_create_hold(objset_t * os,int normflags,zap_flags_t flags,dmu_object_type_t ot,int leaf_blockshift,int indirect_blockshift,dmu_object_type_t bonustype,int bonuslen,int dnodesize,dnode_t ** allocated_dnode,const void * tag,dmu_tx_t * tx)998 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
999 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
1000 dmu_object_type_t bonustype, int bonuslen, int dnodesize,
1001 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
1002 {
1003 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
1004 indirect_blockshift, bonustype, bonuslen, dnodesize,
1005 allocated_dnode, tag, tx));
1006 }
1007
1008 int
zap_destroy(objset_t * os,uint64_t zapobj,dmu_tx_t * tx)1009 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
1010 {
1011 /*
1012 * dmu_object_free will free the object number and free the
1013 * data. Freeing the data will cause our pageout function to be
1014 * called, which will destroy our data (zap_leaf_t's and zap_t).
1015 */
1016
1017 return (dmu_object_free(os, zapobj, tx));
1018 }
1019
1020 void
zap_evict_sync(void * dbu)1021 zap_evict_sync(void *dbu)
1022 {
1023 zap_t *zap = dbu;
1024
1025 rw_destroy(&zap->zap_rwlock);
1026
1027 if (zap->zap_ismicro)
1028 mze_destroy(zap);
1029 else
1030 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
1031
1032 kmem_free(zap, sizeof (zap_t));
1033 }
1034
1035 int
zap_count(objset_t * os,uint64_t zapobj,uint64_t * count)1036 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
1037 {
1038 zap_t *zap;
1039
1040 int err =
1041 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1042 if (err != 0)
1043 return (err);
1044 if (!zap->zap_ismicro) {
1045 err = fzap_count(zap, count);
1046 } else {
1047 *count = zap->zap_m.zap_num_entries;
1048 }
1049 zap_unlockdir(zap, FTAG);
1050 return (err);
1051 }
1052
1053 /*
1054 * zn may be NULL; if not specified, it will be computed if needed.
1055 * See also the comment above zap_entry_normalization_conflict().
1056 */
1057 static boolean_t
mzap_normalization_conflict(zap_t * zap,zap_name_t * zn,mzap_ent_t * mze,zfs_btree_index_t * idx)1058 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze,
1059 zfs_btree_index_t *idx)
1060 {
1061 boolean_t allocdzn = B_FALSE;
1062 mzap_ent_t *other;
1063 zfs_btree_index_t oidx;
1064
1065 if (zap->zap_normflags == 0)
1066 return (B_FALSE);
1067
1068 for (other = zfs_btree_prev(&zap->zap_m.zap_tree, idx, &oidx);
1069 other && other->mze_hash == mze->mze_hash;
1070 other = zfs_btree_prev(&zap->zap_m.zap_tree, &oidx, &oidx)) {
1071
1072 if (zn == NULL) {
1073 zn = zap_name_alloc_str(zap,
1074 MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
1075 allocdzn = B_TRUE;
1076 }
1077 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
1078 if (allocdzn)
1079 zap_name_free(zn);
1080 return (B_TRUE);
1081 }
1082 }
1083
1084 for (other = zfs_btree_next(&zap->zap_m.zap_tree, idx, &oidx);
1085 other && other->mze_hash == mze->mze_hash;
1086 other = zfs_btree_next(&zap->zap_m.zap_tree, &oidx, &oidx)) {
1087
1088 if (zn == NULL) {
1089 zn = zap_name_alloc_str(zap,
1090 MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
1091 allocdzn = B_TRUE;
1092 }
1093 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
1094 if (allocdzn)
1095 zap_name_free(zn);
1096 return (B_TRUE);
1097 }
1098 }
1099
1100 if (allocdzn)
1101 zap_name_free(zn);
1102 return (B_FALSE);
1103 }
1104
1105 /*
1106 * Routines for manipulating attributes.
1107 */
1108
1109 int
zap_lookup(objset_t * os,uint64_t zapobj,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf)1110 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
1111 uint64_t integer_size, uint64_t num_integers, void *buf)
1112 {
1113 return (zap_lookup_norm(os, zapobj, name, integer_size,
1114 num_integers, buf, 0, NULL, 0, NULL));
1115 }
1116
1117 static int
zap_lookup_impl(zap_t * zap,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf,matchtype_t mt,char * realname,int rn_len,boolean_t * ncp)1118 zap_lookup_impl(zap_t *zap, const char *name,
1119 uint64_t integer_size, uint64_t num_integers, void *buf,
1120 matchtype_t mt, char *realname, int rn_len,
1121 boolean_t *ncp)
1122 {
1123 int err = 0;
1124
1125 zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
1126 if (zn == NULL)
1127 return (SET_ERROR(ENOTSUP));
1128
1129 if (!zap->zap_ismicro) {
1130 err = fzap_lookup(zn, integer_size, num_integers, buf,
1131 realname, rn_len, ncp);
1132 } else {
1133 zfs_btree_index_t idx;
1134 mzap_ent_t *mze = mze_find(zn, &idx);
1135 if (mze == NULL) {
1136 err = SET_ERROR(ENOENT);
1137 } else {
1138 if (num_integers < 1) {
1139 err = SET_ERROR(EOVERFLOW);
1140 } else if (integer_size != 8) {
1141 err = SET_ERROR(EINVAL);
1142 } else {
1143 *(uint64_t *)buf =
1144 MZE_PHYS(zap, mze)->mze_value;
1145 if (realname != NULL)
1146 (void) strlcpy(realname,
1147 MZE_PHYS(zap, mze)->mze_name,
1148 rn_len);
1149 if (ncp) {
1150 *ncp = mzap_normalization_conflict(zap,
1151 zn, mze, &idx);
1152 }
1153 }
1154 }
1155 }
1156 zap_name_free(zn);
1157 return (err);
1158 }
1159
1160 int
zap_lookup_norm(objset_t * os,uint64_t zapobj,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf,matchtype_t mt,char * realname,int rn_len,boolean_t * ncp)1161 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
1162 uint64_t integer_size, uint64_t num_integers, void *buf,
1163 matchtype_t mt, char *realname, int rn_len,
1164 boolean_t *ncp)
1165 {
1166 zap_t *zap;
1167
1168 int err =
1169 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1170 if (err != 0)
1171 return (err);
1172 err = zap_lookup_impl(zap, name, integer_size,
1173 num_integers, buf, mt, realname, rn_len, ncp);
1174 zap_unlockdir(zap, FTAG);
1175 return (err);
1176 }
1177
1178 int
zap_prefetch(objset_t * os,uint64_t zapobj,const char * name)1179 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
1180 {
1181 zap_t *zap;
1182 int err;
1183 zap_name_t *zn;
1184
1185 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1186 if (err)
1187 return (err);
1188 zn = zap_name_alloc_str(zap, name, 0);
1189 if (zn == NULL) {
1190 zap_unlockdir(zap, FTAG);
1191 return (SET_ERROR(ENOTSUP));
1192 }
1193
1194 fzap_prefetch(zn);
1195 zap_name_free(zn);
1196 zap_unlockdir(zap, FTAG);
1197 return (err);
1198 }
1199
1200 int
zap_prefetch_object(objset_t * os,uint64_t zapobj)1201 zap_prefetch_object(objset_t *os, uint64_t zapobj)
1202 {
1203 int error;
1204 dmu_object_info_t doi;
1205
1206 error = dmu_object_info(os, zapobj, &doi);
1207 if (error == 0 && DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
1208 error = SET_ERROR(EINVAL);
1209 if (error == 0)
1210 dmu_prefetch_wait(os, zapobj, 0, doi.doi_max_offset);
1211
1212 return (error);
1213 }
1214
1215 int
zap_lookup_by_dnode(dnode_t * dn,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf)1216 zap_lookup_by_dnode(dnode_t *dn, const char *name,
1217 uint64_t integer_size, uint64_t num_integers, void *buf)
1218 {
1219 return (zap_lookup_norm_by_dnode(dn, name, integer_size,
1220 num_integers, buf, 0, NULL, 0, NULL));
1221 }
1222
1223 int
zap_lookup_norm_by_dnode(dnode_t * dn,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf,matchtype_t mt,char * realname,int rn_len,boolean_t * ncp)1224 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
1225 uint64_t integer_size, uint64_t num_integers, void *buf,
1226 matchtype_t mt, char *realname, int rn_len,
1227 boolean_t *ncp)
1228 {
1229 zap_t *zap;
1230
1231 int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
1232 FTAG, &zap);
1233 if (err != 0)
1234 return (err);
1235 err = zap_lookup_impl(zap, name, integer_size,
1236 num_integers, buf, mt, realname, rn_len, ncp);
1237 zap_unlockdir(zap, FTAG);
1238 return (err);
1239 }
1240
1241 static int
zap_prefetch_uint64_impl(zap_t * zap,const uint64_t * key,int key_numints)1242 zap_prefetch_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints)
1243 {
1244 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1245 if (zn == NULL) {
1246 zap_unlockdir(zap, FTAG);
1247 return (SET_ERROR(ENOTSUP));
1248 }
1249
1250 fzap_prefetch(zn);
1251 zap_name_free(zn);
1252 zap_unlockdir(zap, FTAG);
1253 return (0);
1254 }
1255
1256 int
zap_prefetch_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints)1257 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1258 int key_numints)
1259 {
1260 zap_t *zap;
1261
1262 int err =
1263 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1264 if (err != 0)
1265 return (err);
1266 err = zap_prefetch_uint64_impl(zap, key, key_numints);
1267 /* zap_prefetch_uint64_impl() calls zap_unlockdir() */
1268 return (err);
1269 }
1270
1271 int
zap_prefetch_uint64_by_dnode(dnode_t * dn,const uint64_t * key,int key_numints)1272 zap_prefetch_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints)
1273 {
1274 zap_t *zap;
1275
1276 int err =
1277 zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1278 if (err != 0)
1279 return (err);
1280 err = zap_prefetch_uint64_impl(zap, key, key_numints);
1281 /* zap_prefetch_uint64_impl() calls zap_unlockdir() */
1282 return (err);
1283 }
1284
1285 static int
zap_lookup_uint64_impl(zap_t * zap,const uint64_t * key,int key_numints,uint64_t integer_size,uint64_t num_integers,void * buf)1286 zap_lookup_uint64_impl(zap_t *zap, const uint64_t *key,
1287 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1288 {
1289 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1290 if (zn == NULL) {
1291 zap_unlockdir(zap, FTAG);
1292 return (SET_ERROR(ENOTSUP));
1293 }
1294
1295 int err = fzap_lookup(zn, integer_size, num_integers, buf,
1296 NULL, 0, NULL);
1297 zap_name_free(zn);
1298 zap_unlockdir(zap, FTAG);
1299 return (err);
1300 }
1301
1302 int
zap_lookup_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,uint64_t integer_size,uint64_t num_integers,void * buf)1303 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1304 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1305 {
1306 zap_t *zap;
1307
1308 int err =
1309 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1310 if (err != 0)
1311 return (err);
1312 err = zap_lookup_uint64_impl(zap, key, key_numints, integer_size,
1313 num_integers, buf);
1314 /* zap_lookup_uint64_impl() calls zap_unlockdir() */
1315 return (err);
1316 }
1317
1318 int
zap_lookup_uint64_by_dnode(dnode_t * dn,const uint64_t * key,int key_numints,uint64_t integer_size,uint64_t num_integers,void * buf)1319 zap_lookup_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
1320 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1321 {
1322 zap_t *zap;
1323
1324 int err =
1325 zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1326 if (err != 0)
1327 return (err);
1328 err = zap_lookup_uint64_impl(zap, key, key_numints, integer_size,
1329 num_integers, buf);
1330 /* zap_lookup_uint64_impl() calls zap_unlockdir() */
1331 return (err);
1332 }
1333
1334 int
zap_contains(objset_t * os,uint64_t zapobj,const char * name)1335 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1336 {
1337 int err = zap_lookup_norm(os, zapobj, name, 0,
1338 0, NULL, 0, NULL, 0, NULL);
1339 if (err == EOVERFLOW || err == EINVAL)
1340 err = 0; /* found, but skipped reading the value */
1341 return (err);
1342 }
1343
1344 int
zap_length(objset_t * os,uint64_t zapobj,const char * name,uint64_t * integer_size,uint64_t * num_integers)1345 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1346 uint64_t *integer_size, uint64_t *num_integers)
1347 {
1348 zap_t *zap;
1349
1350 int err =
1351 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1352 if (err != 0)
1353 return (err);
1354 zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
1355 if (zn == NULL) {
1356 zap_unlockdir(zap, FTAG);
1357 return (SET_ERROR(ENOTSUP));
1358 }
1359 if (!zap->zap_ismicro) {
1360 err = fzap_length(zn, integer_size, num_integers);
1361 } else {
1362 zfs_btree_index_t idx;
1363 mzap_ent_t *mze = mze_find(zn, &idx);
1364 if (mze == NULL) {
1365 err = SET_ERROR(ENOENT);
1366 } else {
1367 if (integer_size)
1368 *integer_size = 8;
1369 if (num_integers)
1370 *num_integers = 1;
1371 }
1372 }
1373 zap_name_free(zn);
1374 zap_unlockdir(zap, FTAG);
1375 return (err);
1376 }
1377
1378 int
zap_length_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,uint64_t * integer_size,uint64_t * num_integers)1379 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1380 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1381 {
1382 zap_t *zap;
1383
1384 int err =
1385 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1386 if (err != 0)
1387 return (err);
1388 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1389 if (zn == NULL) {
1390 zap_unlockdir(zap, FTAG);
1391 return (SET_ERROR(ENOTSUP));
1392 }
1393 err = fzap_length(zn, integer_size, num_integers);
1394 zap_name_free(zn);
1395 zap_unlockdir(zap, FTAG);
1396 return (err);
1397 }
1398
1399 static void
mzap_addent(zap_name_t * zn,uint64_t value)1400 mzap_addent(zap_name_t *zn, uint64_t value)
1401 {
1402 zap_t *zap = zn->zn_zap;
1403 uint16_t start = zap->zap_m.zap_alloc_next;
1404
1405 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1406
1407 #ifdef ZFS_DEBUG
1408 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1409 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1410 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1411 }
1412 #endif
1413
1414 uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
1415 /* given the limited size of the microzap, this can't happen */
1416 ASSERT(cd < zap_maxcd(zap));
1417
1418 again:
1419 for (uint16_t i = start; i < zap->zap_m.zap_num_chunks; i++) {
1420 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1421 if (mze->mze_name[0] == 0) {
1422 mze->mze_value = value;
1423 mze->mze_cd = cd;
1424 (void) strlcpy(mze->mze_name, zn->zn_key_orig,
1425 sizeof (mze->mze_name));
1426 zap->zap_m.zap_num_entries++;
1427 zap->zap_m.zap_alloc_next = i+1;
1428 if (zap->zap_m.zap_alloc_next ==
1429 zap->zap_m.zap_num_chunks)
1430 zap->zap_m.zap_alloc_next = 0;
1431 mze_insert(zap, i, zn->zn_hash);
1432 return;
1433 }
1434 }
1435 if (start != 0) {
1436 start = 0;
1437 goto again;
1438 }
1439 cmn_err(CE_PANIC, "out of entries!");
1440 }
1441
1442 static int
zap_add_impl(zap_t * zap,const char * key,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx,const void * tag)1443 zap_add_impl(zap_t *zap, const char *key,
1444 int integer_size, uint64_t num_integers,
1445 const void *val, dmu_tx_t *tx, const void *tag)
1446 {
1447 const uint64_t *intval = val;
1448 int err = 0;
1449
1450 zap_name_t *zn = zap_name_alloc_str(zap, key, 0);
1451 if (zn == NULL) {
1452 zap_unlockdir(zap, tag);
1453 return (SET_ERROR(ENOTSUP));
1454 }
1455 if (!zap->zap_ismicro) {
1456 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1457 zap = zn->zn_zap; /* fzap_add() may change zap */
1458 } else if (integer_size != 8 || num_integers != 1 ||
1459 strlen(key) >= MZAP_NAME_LEN ||
1460 !mze_canfit_fzap_leaf(zn, zn->zn_hash)) {
1461 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1462 if (err == 0) {
1463 err = fzap_add(zn, integer_size, num_integers, val,
1464 tag, tx);
1465 }
1466 zap = zn->zn_zap; /* fzap_add() may change zap */
1467 } else {
1468 zfs_btree_index_t idx;
1469 if (mze_find(zn, &idx) != NULL) {
1470 err = SET_ERROR(EEXIST);
1471 } else {
1472 mzap_addent(zn, *intval);
1473 }
1474 }
1475 ASSERT(zap == zn->zn_zap);
1476 zap_name_free(zn);
1477 if (zap != NULL) /* may be NULL if fzap_add() failed */
1478 zap_unlockdir(zap, tag);
1479 return (err);
1480 }
1481
1482 int
zap_add(objset_t * os,uint64_t zapobj,const char * key,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1483 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1484 int integer_size, uint64_t num_integers,
1485 const void *val, dmu_tx_t *tx)
1486 {
1487 zap_t *zap;
1488 int err;
1489
1490 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1491 if (err != 0)
1492 return (err);
1493 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1494 /* zap_add_impl() calls zap_unlockdir() */
1495 return (err);
1496 }
1497
1498 int
zap_add_by_dnode(dnode_t * dn,const char * key,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1499 zap_add_by_dnode(dnode_t *dn, const char *key,
1500 int integer_size, uint64_t num_integers,
1501 const void *val, dmu_tx_t *tx)
1502 {
1503 zap_t *zap;
1504 int err;
1505
1506 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1507 if (err != 0)
1508 return (err);
1509 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1510 /* zap_add_impl() calls zap_unlockdir() */
1511 return (err);
1512 }
1513
1514 static int
zap_add_uint64_impl(zap_t * zap,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx,const void * tag)1515 zap_add_uint64_impl(zap_t *zap, const uint64_t *key,
1516 int key_numints, int integer_size, uint64_t num_integers,
1517 const void *val, dmu_tx_t *tx, const void *tag)
1518 {
1519 int err;
1520
1521 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1522 if (zn == NULL) {
1523 zap_unlockdir(zap, tag);
1524 return (SET_ERROR(ENOTSUP));
1525 }
1526 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1527 zap = zn->zn_zap; /* fzap_add() may change zap */
1528 zap_name_free(zn);
1529 if (zap != NULL) /* may be NULL if fzap_add() failed */
1530 zap_unlockdir(zap, tag);
1531 return (err);
1532 }
1533
1534 int
zap_add_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1535 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1536 int key_numints, int integer_size, uint64_t num_integers,
1537 const void *val, dmu_tx_t *tx)
1538 {
1539 zap_t *zap;
1540
1541 int err =
1542 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1543 if (err != 0)
1544 return (err);
1545 err = zap_add_uint64_impl(zap, key, key_numints,
1546 integer_size, num_integers, val, tx, FTAG);
1547 /* zap_add_uint64_impl() calls zap_unlockdir() */
1548 return (err);
1549 }
1550
1551 int
zap_add_uint64_by_dnode(dnode_t * dn,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1552 zap_add_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
1553 int key_numints, int integer_size, uint64_t num_integers,
1554 const void *val, dmu_tx_t *tx)
1555 {
1556 zap_t *zap;
1557
1558 int err =
1559 zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1560 if (err != 0)
1561 return (err);
1562 err = zap_add_uint64_impl(zap, key, key_numints,
1563 integer_size, num_integers, val, tx, FTAG);
1564 /* zap_add_uint64_impl() calls zap_unlockdir() */
1565 return (err);
1566 }
1567
1568 int
zap_update(objset_t * os,uint64_t zapobj,const char * name,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1569 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1570 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1571 {
1572 zap_t *zap;
1573 const uint64_t *intval = val;
1574
1575 int err =
1576 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1577 if (err != 0)
1578 return (err);
1579 zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
1580 if (zn == NULL) {
1581 zap_unlockdir(zap, FTAG);
1582 return (SET_ERROR(ENOTSUP));
1583 }
1584 if (!zap->zap_ismicro) {
1585 err = fzap_update(zn, integer_size, num_integers, val,
1586 FTAG, tx);
1587 zap = zn->zn_zap; /* fzap_update() may change zap */
1588 } else if (integer_size != 8 || num_integers != 1 ||
1589 strlen(name) >= MZAP_NAME_LEN) {
1590 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1591 (u_longlong_t)zapobj, integer_size,
1592 (u_longlong_t)num_integers, name);
1593 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1594 if (err == 0) {
1595 err = fzap_update(zn, integer_size, num_integers,
1596 val, FTAG, tx);
1597 }
1598 zap = zn->zn_zap; /* fzap_update() may change zap */
1599 } else {
1600 zfs_btree_index_t idx;
1601 mzap_ent_t *mze = mze_find(zn, &idx);
1602 if (mze != NULL) {
1603 MZE_PHYS(zap, mze)->mze_value = *intval;
1604 } else {
1605 mzap_addent(zn, *intval);
1606 }
1607 }
1608 ASSERT(zap == zn->zn_zap);
1609 zap_name_free(zn);
1610 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1611 zap_unlockdir(zap, FTAG);
1612 return (err);
1613 }
1614
1615 static int
zap_update_uint64_impl(zap_t * zap,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx,const void * tag)1616 zap_update_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints,
1617 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx,
1618 const void *tag)
1619 {
1620 int err;
1621
1622 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1623 if (zn == NULL) {
1624 zap_unlockdir(zap, tag);
1625 return (SET_ERROR(ENOTSUP));
1626 }
1627 err = fzap_update(zn, integer_size, num_integers, val, tag, tx);
1628 zap = zn->zn_zap; /* fzap_update() may change zap */
1629 zap_name_free(zn);
1630 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1631 zap_unlockdir(zap, tag);
1632 return (err);
1633 }
1634
1635 int
zap_update_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1636 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1637 int key_numints, int integer_size, uint64_t num_integers, const void *val,
1638 dmu_tx_t *tx)
1639 {
1640 zap_t *zap;
1641
1642 int err =
1643 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1644 if (err != 0)
1645 return (err);
1646 err = zap_update_uint64_impl(zap, key, key_numints,
1647 integer_size, num_integers, val, tx, FTAG);
1648 /* zap_update_uint64_impl() calls zap_unlockdir() */
1649 return (err);
1650 }
1651
1652 int
zap_update_uint64_by_dnode(dnode_t * dn,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1653 zap_update_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints,
1654 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1655 {
1656 zap_t *zap;
1657
1658 int err =
1659 zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1660 if (err != 0)
1661 return (err);
1662 err = zap_update_uint64_impl(zap, key, key_numints,
1663 integer_size, num_integers, val, tx, FTAG);
1664 /* zap_update_uint64_impl() calls zap_unlockdir() */
1665 return (err);
1666 }
1667
1668 int
zap_remove(objset_t * os,uint64_t zapobj,const char * name,dmu_tx_t * tx)1669 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1670 {
1671 return (zap_remove_norm(os, zapobj, name, 0, tx));
1672 }
1673
1674 static int
zap_remove_impl(zap_t * zap,const char * name,matchtype_t mt,dmu_tx_t * tx)1675 zap_remove_impl(zap_t *zap, const char *name,
1676 matchtype_t mt, dmu_tx_t *tx)
1677 {
1678 int err = 0;
1679
1680 zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
1681 if (zn == NULL)
1682 return (SET_ERROR(ENOTSUP));
1683 if (!zap->zap_ismicro) {
1684 err = fzap_remove(zn, tx);
1685 } else {
1686 zfs_btree_index_t idx;
1687 mzap_ent_t *mze = mze_find(zn, &idx);
1688 if (mze == NULL) {
1689 err = SET_ERROR(ENOENT);
1690 } else {
1691 zap->zap_m.zap_num_entries--;
1692 memset(MZE_PHYS(zap, mze), 0, sizeof (mzap_ent_phys_t));
1693 zfs_btree_remove_idx(&zap->zap_m.zap_tree, &idx);
1694 }
1695 }
1696 zap_name_free(zn);
1697 return (err);
1698 }
1699
1700 int
zap_remove_norm(objset_t * os,uint64_t zapobj,const char * name,matchtype_t mt,dmu_tx_t * tx)1701 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1702 matchtype_t mt, dmu_tx_t *tx)
1703 {
1704 zap_t *zap;
1705 int err;
1706
1707 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1708 if (err)
1709 return (err);
1710 err = zap_remove_impl(zap, name, mt, tx);
1711 zap_unlockdir(zap, FTAG);
1712 return (err);
1713 }
1714
1715 int
zap_remove_by_dnode(dnode_t * dn,const char * name,dmu_tx_t * tx)1716 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1717 {
1718 zap_t *zap;
1719 int err;
1720
1721 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1722 if (err)
1723 return (err);
1724 err = zap_remove_impl(zap, name, 0, tx);
1725 zap_unlockdir(zap, FTAG);
1726 return (err);
1727 }
1728
1729 static int
zap_remove_uint64_impl(zap_t * zap,const uint64_t * key,int key_numints,dmu_tx_t * tx,const void * tag)1730 zap_remove_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints,
1731 dmu_tx_t *tx, const void *tag)
1732 {
1733 int err;
1734
1735 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1736 if (zn == NULL) {
1737 zap_unlockdir(zap, tag);
1738 return (SET_ERROR(ENOTSUP));
1739 }
1740 err = fzap_remove(zn, tx);
1741 zap_name_free(zn);
1742 zap_unlockdir(zap, tag);
1743 return (err);
1744 }
1745
1746 int
zap_remove_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,dmu_tx_t * tx)1747 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1748 int key_numints, dmu_tx_t *tx)
1749 {
1750 zap_t *zap;
1751
1752 int err =
1753 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1754 if (err != 0)
1755 return (err);
1756 err = zap_remove_uint64_impl(zap, key, key_numints, tx, FTAG);
1757 /* zap_remove_uint64_impl() calls zap_unlockdir() */
1758 return (err);
1759 }
1760
1761 int
zap_remove_uint64_by_dnode(dnode_t * dn,const uint64_t * key,int key_numints,dmu_tx_t * tx)1762 zap_remove_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints,
1763 dmu_tx_t *tx)
1764 {
1765 zap_t *zap;
1766
1767 int err =
1768 zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1769 if (err != 0)
1770 return (err);
1771 err = zap_remove_uint64_impl(zap, key, key_numints, tx, FTAG);
1772 /* zap_remove_uint64_impl() calls zap_unlockdir() */
1773 return (err);
1774 }
1775
1776
1777 static zap_attribute_t *
zap_attribute_alloc_impl(boolean_t longname)1778 zap_attribute_alloc_impl(boolean_t longname)
1779 {
1780 zap_attribute_t *za;
1781
1782 za = kmem_cache_alloc((longname)? zap_attr_long_cache : zap_attr_cache,
1783 KM_SLEEP);
1784 za->za_name_len = (longname)? ZAP_MAXNAMELEN_NEW : ZAP_MAXNAMELEN;
1785 return (za);
1786 }
1787
1788 zap_attribute_t *
zap_attribute_alloc(void)1789 zap_attribute_alloc(void)
1790 {
1791 return (zap_attribute_alloc_impl(B_FALSE));
1792 }
1793
1794 zap_attribute_t *
zap_attribute_long_alloc(void)1795 zap_attribute_long_alloc(void)
1796 {
1797 return (zap_attribute_alloc_impl(B_TRUE));
1798 }
1799
1800 void
zap_attribute_free(zap_attribute_t * za)1801 zap_attribute_free(zap_attribute_t *za)
1802 {
1803 if (za->za_name_len == ZAP_MAXNAMELEN) {
1804 kmem_cache_free(zap_attr_cache, za);
1805 } else {
1806 ASSERT3U(za->za_name_len, ==, ZAP_MAXNAMELEN_NEW);
1807 kmem_cache_free(zap_attr_long_cache, za);
1808 }
1809 }
1810
1811 /*
1812 * Routines for iterating over the attributes.
1813 */
1814
1815 static void
zap_cursor_init_impl(zap_cursor_t * zc,objset_t * os,uint64_t zapobj,uint64_t serialized,boolean_t prefetch)1816 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1817 uint64_t serialized, boolean_t prefetch)
1818 {
1819 zc->zc_objset = os;
1820 zc->zc_zap = NULL;
1821 zc->zc_leaf = NULL;
1822 zc->zc_zapobj = zapobj;
1823 zc->zc_serialized = serialized;
1824 zc->zc_hash = 0;
1825 zc->zc_cd = 0;
1826 zc->zc_prefetch = prefetch;
1827 }
1828 void
zap_cursor_init_serialized(zap_cursor_t * zc,objset_t * os,uint64_t zapobj,uint64_t serialized)1829 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1830 uint64_t serialized)
1831 {
1832 zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE);
1833 }
1834
1835 /*
1836 * Initialize a cursor at the beginning of the ZAP object. The entire
1837 * ZAP object will be prefetched.
1838 */
1839 void
zap_cursor_init(zap_cursor_t * zc,objset_t * os,uint64_t zapobj)1840 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1841 {
1842 zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE);
1843 }
1844
1845 /*
1846 * Initialize a cursor at the beginning, but request that we not prefetch
1847 * the entire ZAP object.
1848 */
1849 void
zap_cursor_init_noprefetch(zap_cursor_t * zc,objset_t * os,uint64_t zapobj)1850 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1851 {
1852 zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE);
1853 }
1854
1855 void
zap_cursor_fini(zap_cursor_t * zc)1856 zap_cursor_fini(zap_cursor_t *zc)
1857 {
1858 if (zc->zc_zap) {
1859 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1860 zap_unlockdir(zc->zc_zap, NULL);
1861 zc->zc_zap = NULL;
1862 }
1863 if (zc->zc_leaf) {
1864 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1865 zap_put_leaf(zc->zc_leaf);
1866 zc->zc_leaf = NULL;
1867 }
1868 zc->zc_objset = NULL;
1869 }
1870
1871 uint64_t
zap_cursor_serialize(zap_cursor_t * zc)1872 zap_cursor_serialize(zap_cursor_t *zc)
1873 {
1874 if (zc->zc_hash == -1ULL)
1875 return (-1ULL);
1876 if (zc->zc_zap == NULL)
1877 return (zc->zc_serialized);
1878 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1879 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1880
1881 /*
1882 * We want to keep the high 32 bits of the cursor zero if we can, so
1883 * that 32-bit programs can access this. So usually use a small
1884 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1885 * of the cursor.
1886 *
1887 * [ collision differentiator | zap_hashbits()-bit hash value ]
1888 */
1889 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1890 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1891 }
1892
1893 int
zap_cursor_retrieve(zap_cursor_t * zc,zap_attribute_t * za)1894 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1895 {
1896 int err;
1897
1898 if (zc->zc_hash == -1ULL)
1899 return (SET_ERROR(ENOENT));
1900
1901 if (zc->zc_zap == NULL) {
1902 int hb;
1903 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1904 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1905 if (err != 0)
1906 return (err);
1907
1908 /*
1909 * To support zap_cursor_init_serialized, advance, retrieve,
1910 * we must add to the existing zc_cd, which may already
1911 * be 1 due to the zap_cursor_advance.
1912 */
1913 ASSERT(zc->zc_hash == 0);
1914 hb = zap_hashbits(zc->zc_zap);
1915 zc->zc_hash = zc->zc_serialized << (64 - hb);
1916 zc->zc_cd += zc->zc_serialized >> hb;
1917 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1918 zc->zc_cd = 0;
1919 } else {
1920 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1921 }
1922 if (!zc->zc_zap->zap_ismicro) {
1923 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1924 } else {
1925 zfs_btree_index_t idx;
1926 mzap_ent_t mze_tofind;
1927
1928 mze_tofind.mze_hash = zc->zc_hash >> 32;
1929 mze_tofind.mze_cd = zc->zc_cd;
1930
1931 mzap_ent_t *mze = zfs_btree_find(&zc->zc_zap->zap_m.zap_tree,
1932 &mze_tofind, &idx);
1933 if (mze == NULL) {
1934 mze = zfs_btree_next(&zc->zc_zap->zap_m.zap_tree,
1935 &idx, &idx);
1936 }
1937 if (mze) {
1938 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1939 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1940 za->za_normalization_conflict =
1941 mzap_normalization_conflict(zc->zc_zap, NULL,
1942 mze, &idx);
1943 za->za_integer_length = 8;
1944 za->za_num_integers = 1;
1945 za->za_first_integer = mzep->mze_value;
1946 (void) strlcpy(za->za_name, mzep->mze_name,
1947 za->za_name_len);
1948 zc->zc_hash = (uint64_t)mze->mze_hash << 32;
1949 zc->zc_cd = mze->mze_cd;
1950 err = 0;
1951 } else {
1952 zc->zc_hash = -1ULL;
1953 err = SET_ERROR(ENOENT);
1954 }
1955 }
1956 rw_exit(&zc->zc_zap->zap_rwlock);
1957 return (err);
1958 }
1959
1960 void
zap_cursor_advance(zap_cursor_t * zc)1961 zap_cursor_advance(zap_cursor_t *zc)
1962 {
1963 if (zc->zc_hash == -1ULL)
1964 return;
1965 zc->zc_cd++;
1966 }
1967
1968 int
zap_get_stats(objset_t * os,uint64_t zapobj,zap_stats_t * zs)1969 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1970 {
1971 zap_t *zap;
1972
1973 int err =
1974 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1975 if (err != 0)
1976 return (err);
1977
1978 memset(zs, 0, sizeof (zap_stats_t));
1979
1980 if (zap->zap_ismicro) {
1981 zs->zs_blocksize = zap->zap_dbuf->db_size;
1982 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1983 zs->zs_num_blocks = 1;
1984 } else {
1985 fzap_get_stats(zap, zs);
1986 }
1987 zap_unlockdir(zap, FTAG);
1988 return (0);
1989 }
1990
1991 #if defined(_KERNEL)
1992 EXPORT_SYMBOL(zap_create);
1993 EXPORT_SYMBOL(zap_create_dnsize);
1994 EXPORT_SYMBOL(zap_create_norm);
1995 EXPORT_SYMBOL(zap_create_norm_dnsize);
1996 EXPORT_SYMBOL(zap_create_flags);
1997 EXPORT_SYMBOL(zap_create_flags_dnsize);
1998 EXPORT_SYMBOL(zap_create_claim);
1999 EXPORT_SYMBOL(zap_create_claim_norm);
2000 EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
2001 EXPORT_SYMBOL(zap_create_hold);
2002 EXPORT_SYMBOL(zap_destroy);
2003 EXPORT_SYMBOL(zap_lookup);
2004 EXPORT_SYMBOL(zap_lookup_by_dnode);
2005 EXPORT_SYMBOL(zap_lookup_norm);
2006 EXPORT_SYMBOL(zap_lookup_uint64);
2007 EXPORT_SYMBOL(zap_contains);
2008 EXPORT_SYMBOL(zap_prefetch);
2009 EXPORT_SYMBOL(zap_prefetch_uint64);
2010 EXPORT_SYMBOL(zap_prefetch_object);
2011 EXPORT_SYMBOL(zap_add);
2012 EXPORT_SYMBOL(zap_add_by_dnode);
2013 EXPORT_SYMBOL(zap_add_uint64);
2014 EXPORT_SYMBOL(zap_add_uint64_by_dnode);
2015 EXPORT_SYMBOL(zap_update);
2016 EXPORT_SYMBOL(zap_update_uint64);
2017 EXPORT_SYMBOL(zap_update_uint64_by_dnode);
2018 EXPORT_SYMBOL(zap_length);
2019 EXPORT_SYMBOL(zap_length_uint64);
2020 EXPORT_SYMBOL(zap_remove);
2021 EXPORT_SYMBOL(zap_remove_by_dnode);
2022 EXPORT_SYMBOL(zap_remove_norm);
2023 EXPORT_SYMBOL(zap_remove_uint64);
2024 EXPORT_SYMBOL(zap_remove_uint64_by_dnode);
2025 EXPORT_SYMBOL(zap_count);
2026 EXPORT_SYMBOL(zap_value_search);
2027 EXPORT_SYMBOL(zap_join);
2028 EXPORT_SYMBOL(zap_join_increment);
2029 EXPORT_SYMBOL(zap_add_int);
2030 EXPORT_SYMBOL(zap_remove_int);
2031 EXPORT_SYMBOL(zap_lookup_int);
2032 EXPORT_SYMBOL(zap_increment_int);
2033 EXPORT_SYMBOL(zap_add_int_key);
2034 EXPORT_SYMBOL(zap_lookup_int_key);
2035 EXPORT_SYMBOL(zap_increment);
2036 EXPORT_SYMBOL(zap_cursor_init);
2037 EXPORT_SYMBOL(zap_cursor_fini);
2038 EXPORT_SYMBOL(zap_cursor_retrieve);
2039 EXPORT_SYMBOL(zap_cursor_advance);
2040 EXPORT_SYMBOL(zap_cursor_serialize);
2041 EXPORT_SYMBOL(zap_cursor_init_serialized);
2042 EXPORT_SYMBOL(zap_get_stats);
2043
2044 ZFS_MODULE_PARAM(zfs, , zap_micro_max_size, INT, ZMOD_RW,
2045 "Maximum micro ZAP size before converting to a fat ZAP, "
2046 "in bytes (max 1M)");
2047 #endif
2048