xref: /freebsd/sys/contrib/openzfs/module/zfs/zap_micro.c (revision b9fa1500cb2265b95927e19b9d2119ca26d65be3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 #include <sys/zio.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zfs_context.h>
33 #include <sys/zap.h>
34 #include <sys/zap_impl.h>
35 #include <sys/zap_leaf.h>
36 #include <sys/btree.h>
37 #include <sys/arc.h>
38 #include <sys/dmu_objset.h>
39 
40 #ifdef _KERNEL
41 #include <sys/sunddi.h>
42 #endif
43 
44 int zap_micro_max_size = MZAP_MAX_BLKSZ;
45 
46 static int mzap_upgrade(zap_t **zapp,
47     const void *tag, dmu_tx_t *tx, zap_flags_t flags);
48 
49 uint64_t
50 zap_getflags(zap_t *zap)
51 {
52 	if (zap->zap_ismicro)
53 		return (0);
54 	return (zap_f_phys(zap)->zap_flags);
55 }
56 
57 int
58 zap_hashbits(zap_t *zap)
59 {
60 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
61 		return (48);
62 	else
63 		return (28);
64 }
65 
66 uint32_t
67 zap_maxcd(zap_t *zap)
68 {
69 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
70 		return ((1<<16)-1);
71 	else
72 		return (-1U);
73 }
74 
75 static uint64_t
76 zap_hash(zap_name_t *zn)
77 {
78 	zap_t *zap = zn->zn_zap;
79 	uint64_t h = 0;
80 
81 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
82 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
83 		h = *(uint64_t *)zn->zn_key_orig;
84 	} else {
85 		h = zap->zap_salt;
86 		ASSERT(h != 0);
87 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
88 
89 		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
90 			const uint64_t *wp = zn->zn_key_norm;
91 
92 			ASSERT(zn->zn_key_intlen == 8);
93 			for (int i = 0; i < zn->zn_key_norm_numints;
94 			    wp++, i++) {
95 				uint64_t word = *wp;
96 
97 				for (int j = 0; j < 8; j++) {
98 					h = (h >> 8) ^
99 					    zfs_crc64_table[(h ^ word) & 0xFF];
100 					word >>= NBBY;
101 				}
102 			}
103 		} else {
104 			const uint8_t *cp = zn->zn_key_norm;
105 
106 			/*
107 			 * We previously stored the terminating null on
108 			 * disk, but didn't hash it, so we need to
109 			 * continue to not hash it.  (The
110 			 * zn_key_*_numints includes the terminating
111 			 * null for non-binary keys.)
112 			 */
113 			int len = zn->zn_key_norm_numints - 1;
114 
115 			ASSERT(zn->zn_key_intlen == 1);
116 			for (int i = 0; i < len; cp++, i++) {
117 				h = (h >> 8) ^
118 				    zfs_crc64_table[(h ^ *cp) & 0xFF];
119 			}
120 		}
121 	}
122 	/*
123 	 * Don't use all 64 bits, since we need some in the cookie for
124 	 * the collision differentiator.  We MUST use the high bits,
125 	 * since those are the ones that we first pay attention to when
126 	 * choosing the bucket.
127 	 */
128 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
129 
130 	return (h);
131 }
132 
133 static int
134 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
135 {
136 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
137 
138 	size_t inlen = strlen(name) + 1;
139 	size_t outlen = ZAP_MAXNAMELEN;
140 
141 	int err = 0;
142 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
143 	    normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
144 	    U8_UNICODE_LATEST, &err);
145 
146 	return (err);
147 }
148 
149 boolean_t
150 zap_match(zap_name_t *zn, const char *matchname)
151 {
152 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
153 
154 	if (zn->zn_matchtype & MT_NORMALIZE) {
155 		char norm[ZAP_MAXNAMELEN];
156 
157 		if (zap_normalize(zn->zn_zap, matchname, norm,
158 		    zn->zn_normflags) != 0)
159 			return (B_FALSE);
160 
161 		return (strcmp(zn->zn_key_norm, norm) == 0);
162 	} else {
163 		return (strcmp(zn->zn_key_orig, matchname) == 0);
164 	}
165 }
166 
167 static zap_name_t *
168 zap_name_alloc(zap_t *zap)
169 {
170 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
171 	zn->zn_zap = zap;
172 	return (zn);
173 }
174 
175 void
176 zap_name_free(zap_name_t *zn)
177 {
178 	kmem_free(zn, sizeof (zap_name_t));
179 }
180 
181 static int
182 zap_name_init_str(zap_name_t *zn, const char *key, matchtype_t mt)
183 {
184 	zap_t *zap = zn->zn_zap;
185 
186 	zn->zn_key_intlen = sizeof (*key);
187 	zn->zn_key_orig = key;
188 	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
189 	zn->zn_matchtype = mt;
190 	zn->zn_normflags = zap->zap_normflags;
191 
192 	/*
193 	 * If we're dealing with a case sensitive lookup on a mixed or
194 	 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
195 	 * will fold case to all caps overriding the lookup request.
196 	 */
197 	if (mt & MT_MATCH_CASE)
198 		zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
199 
200 	if (zap->zap_normflags) {
201 		/*
202 		 * We *must* use zap_normflags because this normalization is
203 		 * what the hash is computed from.
204 		 */
205 		if (zap_normalize(zap, key, zn->zn_normbuf,
206 		    zap->zap_normflags) != 0)
207 			return (SET_ERROR(ENOTSUP));
208 		zn->zn_key_norm = zn->zn_normbuf;
209 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
210 	} else {
211 		if (mt != 0)
212 			return (SET_ERROR(ENOTSUP));
213 		zn->zn_key_norm = zn->zn_key_orig;
214 		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
215 	}
216 
217 	zn->zn_hash = zap_hash(zn);
218 
219 	if (zap->zap_normflags != zn->zn_normflags) {
220 		/*
221 		 * We *must* use zn_normflags because this normalization is
222 		 * what the matching is based on.  (Not the hash!)
223 		 */
224 		if (zap_normalize(zap, key, zn->zn_normbuf,
225 		    zn->zn_normflags) != 0)
226 			return (SET_ERROR(ENOTSUP));
227 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
228 	}
229 
230 	return (0);
231 }
232 
233 zap_name_t *
234 zap_name_alloc_str(zap_t *zap, const char *key, matchtype_t mt)
235 {
236 	zap_name_t *zn = zap_name_alloc(zap);
237 	if (zap_name_init_str(zn, key, mt) != 0) {
238 		zap_name_free(zn);
239 		return (NULL);
240 	}
241 	return (zn);
242 }
243 
244 static zap_name_t *
245 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
246 {
247 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
248 
249 	ASSERT(zap->zap_normflags == 0);
250 	zn->zn_zap = zap;
251 	zn->zn_key_intlen = sizeof (*key);
252 	zn->zn_key_orig = zn->zn_key_norm = key;
253 	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
254 	zn->zn_matchtype = 0;
255 
256 	zn->zn_hash = zap_hash(zn);
257 	return (zn);
258 }
259 
260 static void
261 mzap_byteswap(mzap_phys_t *buf, size_t size)
262 {
263 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
264 	buf->mz_salt = BSWAP_64(buf->mz_salt);
265 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
266 	int max = (size / MZAP_ENT_LEN) - 1;
267 	for (int i = 0; i < max; i++) {
268 		buf->mz_chunk[i].mze_value =
269 		    BSWAP_64(buf->mz_chunk[i].mze_value);
270 		buf->mz_chunk[i].mze_cd =
271 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
272 	}
273 }
274 
275 void
276 zap_byteswap(void *buf, size_t size)
277 {
278 	uint64_t block_type = *(uint64_t *)buf;
279 
280 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
281 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
282 		mzap_byteswap(buf, size);
283 	} else {
284 		fzap_byteswap(buf, size);
285 	}
286 }
287 
288 __attribute__((always_inline)) inline
289 static int
290 mze_compare(const void *arg1, const void *arg2)
291 {
292 	const mzap_ent_t *mze1 = arg1;
293 	const mzap_ent_t *mze2 = arg2;
294 
295 	return (TREE_CMP((uint64_t)(mze1->mze_hash) << 32 | mze1->mze_cd,
296 	    (uint64_t)(mze2->mze_hash) << 32 | mze2->mze_cd));
297 }
298 
299 ZFS_BTREE_FIND_IN_BUF_FUNC(mze_find_in_buf, mzap_ent_t,
300     mze_compare)
301 
302 static void
303 mze_insert(zap_t *zap, uint16_t chunkid, uint64_t hash)
304 {
305 	mzap_ent_t mze;
306 
307 	ASSERT(zap->zap_ismicro);
308 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
309 
310 	mze.mze_chunkid = chunkid;
311 	ASSERT0(hash & 0xffffffff);
312 	mze.mze_hash = hash >> 32;
313 	ASSERT3U(MZE_PHYS(zap, &mze)->mze_cd, <=, 0xffff);
314 	mze.mze_cd = (uint16_t)MZE_PHYS(zap, &mze)->mze_cd;
315 	ASSERT(MZE_PHYS(zap, &mze)->mze_name[0] != 0);
316 	zfs_btree_add(&zap->zap_m.zap_tree, &mze);
317 }
318 
319 static mzap_ent_t *
320 mze_find(zap_name_t *zn, zfs_btree_index_t *idx)
321 {
322 	mzap_ent_t mze_tofind;
323 	mzap_ent_t *mze;
324 	zfs_btree_t *tree = &zn->zn_zap->zap_m.zap_tree;
325 
326 	ASSERT(zn->zn_zap->zap_ismicro);
327 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
328 
329 	ASSERT0(zn->zn_hash & 0xffffffff);
330 	mze_tofind.mze_hash = zn->zn_hash >> 32;
331 	mze_tofind.mze_cd = 0;
332 
333 	mze = zfs_btree_find(tree, &mze_tofind, idx);
334 	if (mze == NULL)
335 		mze = zfs_btree_next(tree, idx, idx);
336 	for (; mze && mze->mze_hash == mze_tofind.mze_hash;
337 	    mze = zfs_btree_next(tree, idx, idx)) {
338 		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
339 		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
340 			return (mze);
341 	}
342 
343 	return (NULL);
344 }
345 
346 static uint32_t
347 mze_find_unused_cd(zap_t *zap, uint64_t hash)
348 {
349 	mzap_ent_t mze_tofind;
350 	zfs_btree_index_t idx;
351 	zfs_btree_t *tree = &zap->zap_m.zap_tree;
352 
353 	ASSERT(zap->zap_ismicro);
354 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
355 
356 	ASSERT0(hash & 0xffffffff);
357 	hash >>= 32;
358 	mze_tofind.mze_hash = hash;
359 	mze_tofind.mze_cd = 0;
360 
361 	uint32_t cd = 0;
362 	for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
363 	    mze && mze->mze_hash == hash;
364 	    mze = zfs_btree_next(tree, &idx, &idx)) {
365 		if (mze->mze_cd != cd)
366 			break;
367 		cd++;
368 	}
369 
370 	return (cd);
371 }
372 
373 /*
374  * Each mzap entry requires at max : 4 chunks
375  * 3 chunks for names + 1 chunk for value.
376  */
377 #define	MZAP_ENT_CHUNKS	(1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \
378 	ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t)))
379 
380 /*
381  * Check if the current entry keeps the colliding entries under the fatzap leaf
382  * size.
383  */
384 static boolean_t
385 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash)
386 {
387 	zap_t *zap = zn->zn_zap;
388 	mzap_ent_t mze_tofind;
389 	zfs_btree_index_t idx;
390 	zfs_btree_t *tree = &zap->zap_m.zap_tree;
391 	uint32_t mzap_ents = 0;
392 
393 	ASSERT0(hash & 0xffffffff);
394 	hash >>= 32;
395 	mze_tofind.mze_hash = hash;
396 	mze_tofind.mze_cd = 0;
397 
398 	for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
399 	    mze && mze->mze_hash == hash;
400 	    mze = zfs_btree_next(tree, &idx, &idx)) {
401 		mzap_ents++;
402 	}
403 
404 	/* Include the new entry being added */
405 	mzap_ents++;
406 
407 	return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS));
408 }
409 
410 static void
411 mze_destroy(zap_t *zap)
412 {
413 	zfs_btree_clear(&zap->zap_m.zap_tree);
414 	zfs_btree_destroy(&zap->zap_m.zap_tree);
415 }
416 
417 static zap_t *
418 mzap_open(dmu_buf_t *db)
419 {
420 	zap_t *winner;
421 	uint64_t *zap_hdr = (uint64_t *)db->db_data;
422 	uint64_t zap_block_type = zap_hdr[0];
423 	uint64_t zap_magic = zap_hdr[1];
424 
425 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
426 
427 	zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
428 	rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
429 	rw_enter(&zap->zap_rwlock, RW_WRITER);
430 	zap->zap_objset = dmu_buf_get_objset(db);
431 	zap->zap_object = db->db_object;
432 	zap->zap_dbuf = db;
433 
434 	if (zap_block_type != ZBT_MICRO) {
435 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
436 		    0);
437 		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
438 		if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
439 			winner = NULL;	/* No actual winner here... */
440 			goto handle_winner;
441 		}
442 	} else {
443 		zap->zap_ismicro = TRUE;
444 	}
445 
446 	/*
447 	 * Make sure that zap_ismicro is set before we let others see
448 	 * it, because zap_lockdir() checks zap_ismicro without the lock
449 	 * held.
450 	 */
451 	dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
452 	winner = dmu_buf_set_user(db, &zap->zap_dbu);
453 
454 	if (winner != NULL)
455 		goto handle_winner;
456 
457 	if (zap->zap_ismicro) {
458 		zap->zap_salt = zap_m_phys(zap)->mz_salt;
459 		zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
460 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
461 
462 		/*
463 		 * Reduce B-tree leaf from 4KB to 512 bytes to reduce memmove()
464 		 * overhead on massive inserts below.  It still allows to store
465 		 * 62 entries before we have to add 2KB B-tree core node.
466 		 */
467 		zfs_btree_create_custom(&zap->zap_m.zap_tree, mze_compare,
468 		    mze_find_in_buf, sizeof (mzap_ent_t), 512);
469 
470 		zap_name_t *zn = zap_name_alloc(zap);
471 		for (uint16_t i = 0; i < zap->zap_m.zap_num_chunks; i++) {
472 			mzap_ent_phys_t *mze =
473 			    &zap_m_phys(zap)->mz_chunk[i];
474 			if (mze->mze_name[0]) {
475 				zap->zap_m.zap_num_entries++;
476 				zap_name_init_str(zn, mze->mze_name, 0);
477 				mze_insert(zap, i, zn->zn_hash);
478 			}
479 		}
480 		zap_name_free(zn);
481 	} else {
482 		zap->zap_salt = zap_f_phys(zap)->zap_salt;
483 		zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
484 
485 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
486 		    2*ZAP_LEAF_CHUNKSIZE);
487 
488 		/*
489 		 * The embedded pointer table should not overlap the
490 		 * other members.
491 		 */
492 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
493 		    &zap_f_phys(zap)->zap_salt);
494 
495 		/*
496 		 * The embedded pointer table should end at the end of
497 		 * the block
498 		 */
499 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
500 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
501 		    (uintptr_t)zap_f_phys(zap), ==,
502 		    zap->zap_dbuf->db_size);
503 	}
504 	rw_exit(&zap->zap_rwlock);
505 	return (zap);
506 
507 handle_winner:
508 	rw_exit(&zap->zap_rwlock);
509 	rw_destroy(&zap->zap_rwlock);
510 	if (!zap->zap_ismicro)
511 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
512 	kmem_free(zap, sizeof (zap_t));
513 	return (winner);
514 }
515 
516 /*
517  * This routine "consumes" the caller's hold on the dbuf, which must
518  * have the specified tag.
519  */
520 static int
521 zap_lockdir_impl(dnode_t *dn, dmu_buf_t *db, const void *tag, dmu_tx_t *tx,
522     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
523 {
524 	ASSERT0(db->db_offset);
525 	objset_t *os = dmu_buf_get_objset(db);
526 	uint64_t obj = db->db_object;
527 	dmu_object_info_t doi;
528 
529 	*zapp = NULL;
530 
531 	dmu_object_info_from_dnode(dn, &doi);
532 	if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
533 		return (SET_ERROR(EINVAL));
534 
535 	zap_t *zap = dmu_buf_get_user(db);
536 	if (zap == NULL) {
537 		zap = mzap_open(db);
538 		if (zap == NULL) {
539 			/*
540 			 * mzap_open() didn't like what it saw on-disk.
541 			 * Check for corruption!
542 			 */
543 			return (SET_ERROR(EIO));
544 		}
545 	}
546 
547 	/*
548 	 * We're checking zap_ismicro without the lock held, in order to
549 	 * tell what type of lock we want.  Once we have some sort of
550 	 * lock, see if it really is the right type.  In practice this
551 	 * can only be different if it was upgraded from micro to fat,
552 	 * and micro wanted WRITER but fat only needs READER.
553 	 */
554 	krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
555 	rw_enter(&zap->zap_rwlock, lt);
556 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
557 		/* it was upgraded, now we only need reader */
558 		ASSERT(lt == RW_WRITER);
559 		ASSERT(RW_READER ==
560 		    ((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
561 		rw_downgrade(&zap->zap_rwlock);
562 		lt = RW_READER;
563 	}
564 
565 	zap->zap_objset = os;
566 	zap->zap_dnode = dn;
567 
568 	if (lt == RW_WRITER)
569 		dmu_buf_will_dirty(db, tx);
570 
571 	ASSERT3P(zap->zap_dbuf, ==, db);
572 
573 	ASSERT(!zap->zap_ismicro ||
574 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
575 	if (zap->zap_ismicro && tx && adding &&
576 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
577 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
578 		if (newsz > zap_micro_max_size) {
579 			dprintf("upgrading obj %llu: num_entries=%u\n",
580 			    (u_longlong_t)obj, zap->zap_m.zap_num_entries);
581 			*zapp = zap;
582 			int err = mzap_upgrade(zapp, tag, tx, 0);
583 			if (err != 0)
584 				rw_exit(&zap->zap_rwlock);
585 			return (err);
586 		}
587 		VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
588 		zap->zap_m.zap_num_chunks =
589 		    db->db_size / MZAP_ENT_LEN - 1;
590 	}
591 
592 	*zapp = zap;
593 	return (0);
594 }
595 
596 static int
597 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
598     krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
599     zap_t **zapp)
600 {
601 	dmu_buf_t *db;
602 	int err;
603 
604 	err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
605 	if (err != 0)
606 		return (err);
607 	err = zap_lockdir_impl(dn, db, tag, tx, lti, fatreader, adding, zapp);
608 	if (err != 0)
609 		dmu_buf_rele(db, tag);
610 	else
611 		VERIFY(dnode_add_ref(dn, tag));
612 	return (err);
613 }
614 
615 int
616 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
617     krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
618     zap_t **zapp)
619 {
620 	dnode_t *dn;
621 	dmu_buf_t *db;
622 	int err;
623 
624 	err = dnode_hold(os, obj, tag, &dn);
625 	if (err != 0)
626 		return (err);
627 	err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
628 	if (err != 0) {
629 		dnode_rele(dn, tag);
630 		return (err);
631 	}
632 	err = zap_lockdir_impl(dn, db, tag, tx, lti, fatreader, adding, zapp);
633 	if (err != 0) {
634 		dmu_buf_rele(db, tag);
635 		dnode_rele(dn, tag);
636 	}
637 	return (err);
638 }
639 
640 void
641 zap_unlockdir(zap_t *zap, const void *tag)
642 {
643 	rw_exit(&zap->zap_rwlock);
644 	dnode_rele(zap->zap_dnode, tag);
645 	dmu_buf_rele(zap->zap_dbuf, tag);
646 }
647 
648 static int
649 mzap_upgrade(zap_t **zapp, const void *tag, dmu_tx_t *tx, zap_flags_t flags)
650 {
651 	int err = 0;
652 	zap_t *zap = *zapp;
653 
654 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
655 
656 	int sz = zap->zap_dbuf->db_size;
657 	mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP);
658 	memcpy(mzp, zap->zap_dbuf->db_data, sz);
659 	int nchunks = zap->zap_m.zap_num_chunks;
660 
661 	if (!flags) {
662 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
663 		    1ULL << fzap_default_block_shift, 0, tx);
664 		if (err != 0) {
665 			vmem_free(mzp, sz);
666 			return (err);
667 		}
668 	}
669 
670 	dprintf("upgrading obj=%llu with %u chunks\n",
671 	    (u_longlong_t)zap->zap_object, nchunks);
672 	/* XXX destroy the tree later, so we can use the stored hash value */
673 	mze_destroy(zap);
674 
675 	fzap_upgrade(zap, tx, flags);
676 
677 	zap_name_t *zn = zap_name_alloc(zap);
678 	for (int i = 0; i < nchunks; i++) {
679 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
680 		if (mze->mze_name[0] == 0)
681 			continue;
682 		dprintf("adding %s=%llu\n",
683 		    mze->mze_name, (u_longlong_t)mze->mze_value);
684 		zap_name_init_str(zn, mze->mze_name, 0);
685 		/* If we fail here, we would end up losing entries */
686 		VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
687 		    tag, tx));
688 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
689 	}
690 	zap_name_free(zn);
691 	vmem_free(mzp, sz);
692 	*zapp = zap;
693 	return (0);
694 }
695 
696 /*
697  * The "normflags" determine the behavior of the matchtype_t which is
698  * passed to zap_lookup_norm().  Names which have the same normalized
699  * version will be stored with the same hash value, and therefore we can
700  * perform normalization-insensitive lookups.  We can be Unicode form-
701  * insensitive and/or case-insensitive.  The following flags are valid for
702  * "normflags":
703  *
704  * U8_TEXTPREP_NFC
705  * U8_TEXTPREP_NFD
706  * U8_TEXTPREP_NFKC
707  * U8_TEXTPREP_NFKD
708  * U8_TEXTPREP_TOUPPER
709  *
710  * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
711  * of them may be supplied.
712  */
713 void
714 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx)
715 {
716 	dmu_buf_t *db;
717 
718 	VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
719 
720 	dmu_buf_will_dirty(db, tx);
721 	mzap_phys_t *zp = db->db_data;
722 	zp->mz_block_type = ZBT_MICRO;
723 	zp->mz_salt =
724 	    ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL;
725 	zp->mz_normflags = normflags;
726 
727 	if (flags != 0) {
728 		zap_t *zap;
729 		/* Only fat zap supports flags; upgrade immediately. */
730 		VERIFY(dnode_add_ref(dn, FTAG));
731 		VERIFY0(zap_lockdir_impl(dn, db, FTAG, tx, RW_WRITER,
732 		    B_FALSE, B_FALSE, &zap));
733 		VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
734 		zap_unlockdir(zap, FTAG);
735 	} else {
736 		dmu_buf_rele(db, FTAG);
737 	}
738 }
739 
740 static uint64_t
741 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags,
742     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
743     dmu_object_type_t bonustype, int bonuslen, int dnodesize,
744     dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
745 {
746 	uint64_t obj;
747 
748 	ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
749 
750 	if (allocated_dnode == NULL) {
751 		dnode_t *dn;
752 		obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
753 		    indirect_blockshift, bonustype, bonuslen, dnodesize,
754 		    &dn, FTAG, tx);
755 		mzap_create_impl(dn, normflags, flags, tx);
756 		dnode_rele(dn, FTAG);
757 	} else {
758 		obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
759 		    indirect_blockshift, bonustype, bonuslen, dnodesize,
760 		    allocated_dnode, tag, tx);
761 		mzap_create_impl(*allocated_dnode, normflags, flags, tx);
762 	}
763 
764 	return (obj);
765 }
766 
767 int
768 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
769     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
770 {
771 	return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
772 	    0, tx));
773 }
774 
775 int
776 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
777     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
778 {
779 	return (zap_create_claim_norm_dnsize(os, obj,
780 	    0, ot, bonustype, bonuslen, dnodesize, tx));
781 }
782 
783 int
784 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
785     dmu_object_type_t ot,
786     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
787 {
788 	return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
789 	    bonuslen, 0, tx));
790 }
791 
792 int
793 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
794     dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
795     int dnodesize, dmu_tx_t *tx)
796 {
797 	dnode_t *dn;
798 	int error;
799 
800 	ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
801 	error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
802 	    dnodesize, tx);
803 	if (error != 0)
804 		return (error);
805 
806 	error = dnode_hold(os, obj, FTAG, &dn);
807 	if (error != 0)
808 		return (error);
809 
810 	mzap_create_impl(dn, normflags, 0, tx);
811 
812 	dnode_rele(dn, FTAG);
813 
814 	return (0);
815 }
816 
817 uint64_t
818 zap_create(objset_t *os, dmu_object_type_t ot,
819     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
820 {
821 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
822 }
823 
824 uint64_t
825 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
826     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
827 {
828 	return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
829 	    dnodesize, tx));
830 }
831 
832 uint64_t
833 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
834     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
835 {
836 	return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
837 	    0, tx));
838 }
839 
840 uint64_t
841 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
842     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
843 {
844 	return (zap_create_impl(os, normflags, 0, ot, 0, 0,
845 	    bonustype, bonuslen, dnodesize, NULL, NULL, tx));
846 }
847 
848 uint64_t
849 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
850     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
851     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
852 {
853 	return (zap_create_flags_dnsize(os, normflags, flags, ot,
854 	    leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
855 }
856 
857 uint64_t
858 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
859     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
860     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
861 {
862 	return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
863 	    indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL,
864 	    tx));
865 }
866 
867 /*
868  * Create a zap object and return a pointer to the newly allocated dnode via
869  * the allocated_dnode argument.  The returned dnode will be held and the
870  * caller is responsible for releasing the hold by calling dnode_rele().
871  */
872 uint64_t
873 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
874     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
875     dmu_object_type_t bonustype, int bonuslen, int dnodesize,
876     dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
877 {
878 	return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
879 	    indirect_blockshift, bonustype, bonuslen, dnodesize,
880 	    allocated_dnode, tag, tx));
881 }
882 
883 int
884 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
885 {
886 	/*
887 	 * dmu_object_free will free the object number and free the
888 	 * data.  Freeing the data will cause our pageout function to be
889 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
890 	 */
891 
892 	return (dmu_object_free(os, zapobj, tx));
893 }
894 
895 void
896 zap_evict_sync(void *dbu)
897 {
898 	zap_t *zap = dbu;
899 
900 	rw_destroy(&zap->zap_rwlock);
901 
902 	if (zap->zap_ismicro)
903 		mze_destroy(zap);
904 	else
905 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
906 
907 	kmem_free(zap, sizeof (zap_t));
908 }
909 
910 int
911 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
912 {
913 	zap_t *zap;
914 
915 	int err =
916 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
917 	if (err != 0)
918 		return (err);
919 	if (!zap->zap_ismicro) {
920 		err = fzap_count(zap, count);
921 	} else {
922 		*count = zap->zap_m.zap_num_entries;
923 	}
924 	zap_unlockdir(zap, FTAG);
925 	return (err);
926 }
927 
928 /*
929  * zn may be NULL; if not specified, it will be computed if needed.
930  * See also the comment above zap_entry_normalization_conflict().
931  */
932 static boolean_t
933 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze,
934     zfs_btree_index_t *idx)
935 {
936 	boolean_t allocdzn = B_FALSE;
937 	mzap_ent_t *other;
938 	zfs_btree_index_t oidx;
939 
940 	if (zap->zap_normflags == 0)
941 		return (B_FALSE);
942 
943 	for (other = zfs_btree_prev(&zap->zap_m.zap_tree, idx, &oidx);
944 	    other && other->mze_hash == mze->mze_hash;
945 	    other = zfs_btree_prev(&zap->zap_m.zap_tree, &oidx, &oidx)) {
946 
947 		if (zn == NULL) {
948 			zn = zap_name_alloc_str(zap,
949 			    MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
950 			allocdzn = B_TRUE;
951 		}
952 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
953 			if (allocdzn)
954 				zap_name_free(zn);
955 			return (B_TRUE);
956 		}
957 	}
958 
959 	for (other = zfs_btree_next(&zap->zap_m.zap_tree, idx, &oidx);
960 	    other && other->mze_hash == mze->mze_hash;
961 	    other = zfs_btree_next(&zap->zap_m.zap_tree, &oidx, &oidx)) {
962 
963 		if (zn == NULL) {
964 			zn = zap_name_alloc_str(zap,
965 			    MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
966 			allocdzn = B_TRUE;
967 		}
968 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
969 			if (allocdzn)
970 				zap_name_free(zn);
971 			return (B_TRUE);
972 		}
973 	}
974 
975 	if (allocdzn)
976 		zap_name_free(zn);
977 	return (B_FALSE);
978 }
979 
980 /*
981  * Routines for manipulating attributes.
982  */
983 
984 int
985 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
986     uint64_t integer_size, uint64_t num_integers, void *buf)
987 {
988 	return (zap_lookup_norm(os, zapobj, name, integer_size,
989 	    num_integers, buf, 0, NULL, 0, NULL));
990 }
991 
992 static int
993 zap_lookup_impl(zap_t *zap, const char *name,
994     uint64_t integer_size, uint64_t num_integers, void *buf,
995     matchtype_t mt, char *realname, int rn_len,
996     boolean_t *ncp)
997 {
998 	int err = 0;
999 
1000 	zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
1001 	if (zn == NULL)
1002 		return (SET_ERROR(ENOTSUP));
1003 
1004 	if (!zap->zap_ismicro) {
1005 		err = fzap_lookup(zn, integer_size, num_integers, buf,
1006 		    realname, rn_len, ncp);
1007 	} else {
1008 		zfs_btree_index_t idx;
1009 		mzap_ent_t *mze = mze_find(zn, &idx);
1010 		if (mze == NULL) {
1011 			err = SET_ERROR(ENOENT);
1012 		} else {
1013 			if (num_integers < 1) {
1014 				err = SET_ERROR(EOVERFLOW);
1015 			} else if (integer_size != 8) {
1016 				err = SET_ERROR(EINVAL);
1017 			} else {
1018 				*(uint64_t *)buf =
1019 				    MZE_PHYS(zap, mze)->mze_value;
1020 				if (realname != NULL)
1021 					(void) strlcpy(realname,
1022 					    MZE_PHYS(zap, mze)->mze_name,
1023 					    rn_len);
1024 				if (ncp) {
1025 					*ncp = mzap_normalization_conflict(zap,
1026 					    zn, mze, &idx);
1027 				}
1028 			}
1029 		}
1030 	}
1031 	zap_name_free(zn);
1032 	return (err);
1033 }
1034 
1035 int
1036 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
1037     uint64_t integer_size, uint64_t num_integers, void *buf,
1038     matchtype_t mt, char *realname, int rn_len,
1039     boolean_t *ncp)
1040 {
1041 	zap_t *zap;
1042 
1043 	int err =
1044 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1045 	if (err != 0)
1046 		return (err);
1047 	err = zap_lookup_impl(zap, name, integer_size,
1048 	    num_integers, buf, mt, realname, rn_len, ncp);
1049 	zap_unlockdir(zap, FTAG);
1050 	return (err);
1051 }
1052 
1053 int
1054 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
1055 {
1056 	zap_t *zap;
1057 	int err;
1058 	zap_name_t *zn;
1059 
1060 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1061 	if (err)
1062 		return (err);
1063 	zn = zap_name_alloc_str(zap, name, 0);
1064 	if (zn == NULL) {
1065 		zap_unlockdir(zap, FTAG);
1066 		return (SET_ERROR(ENOTSUP));
1067 	}
1068 
1069 	fzap_prefetch(zn);
1070 	zap_name_free(zn);
1071 	zap_unlockdir(zap, FTAG);
1072 	return (err);
1073 }
1074 
1075 int
1076 zap_lookup_by_dnode(dnode_t *dn, const char *name,
1077     uint64_t integer_size, uint64_t num_integers, void *buf)
1078 {
1079 	return (zap_lookup_norm_by_dnode(dn, name, integer_size,
1080 	    num_integers, buf, 0, NULL, 0, NULL));
1081 }
1082 
1083 int
1084 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
1085     uint64_t integer_size, uint64_t num_integers, void *buf,
1086     matchtype_t mt, char *realname, int rn_len,
1087     boolean_t *ncp)
1088 {
1089 	zap_t *zap;
1090 
1091 	int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
1092 	    FTAG, &zap);
1093 	if (err != 0)
1094 		return (err);
1095 	err = zap_lookup_impl(zap, name, integer_size,
1096 	    num_integers, buf, mt, realname, rn_len, ncp);
1097 	zap_unlockdir(zap, FTAG);
1098 	return (err);
1099 }
1100 
1101 int
1102 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1103     int key_numints)
1104 {
1105 	zap_t *zap;
1106 
1107 	int err =
1108 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1109 	if (err != 0)
1110 		return (err);
1111 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1112 	if (zn == NULL) {
1113 		zap_unlockdir(zap, FTAG);
1114 		return (SET_ERROR(ENOTSUP));
1115 	}
1116 
1117 	fzap_prefetch(zn);
1118 	zap_name_free(zn);
1119 	zap_unlockdir(zap, FTAG);
1120 	return (err);
1121 }
1122 
1123 int
1124 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1125     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1126 {
1127 	zap_t *zap;
1128 
1129 	int err =
1130 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1131 	if (err != 0)
1132 		return (err);
1133 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1134 	if (zn == NULL) {
1135 		zap_unlockdir(zap, FTAG);
1136 		return (SET_ERROR(ENOTSUP));
1137 	}
1138 
1139 	err = fzap_lookup(zn, integer_size, num_integers, buf,
1140 	    NULL, 0, NULL);
1141 	zap_name_free(zn);
1142 	zap_unlockdir(zap, FTAG);
1143 	return (err);
1144 }
1145 
1146 int
1147 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1148 {
1149 	int err = zap_lookup_norm(os, zapobj, name, 0,
1150 	    0, NULL, 0, NULL, 0, NULL);
1151 	if (err == EOVERFLOW || err == EINVAL)
1152 		err = 0; /* found, but skipped reading the value */
1153 	return (err);
1154 }
1155 
1156 int
1157 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1158     uint64_t *integer_size, uint64_t *num_integers)
1159 {
1160 	zap_t *zap;
1161 
1162 	int err =
1163 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1164 	if (err != 0)
1165 		return (err);
1166 	zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
1167 	if (zn == NULL) {
1168 		zap_unlockdir(zap, FTAG);
1169 		return (SET_ERROR(ENOTSUP));
1170 	}
1171 	if (!zap->zap_ismicro) {
1172 		err = fzap_length(zn, integer_size, num_integers);
1173 	} else {
1174 		zfs_btree_index_t idx;
1175 		mzap_ent_t *mze = mze_find(zn, &idx);
1176 		if (mze == NULL) {
1177 			err = SET_ERROR(ENOENT);
1178 		} else {
1179 			if (integer_size)
1180 				*integer_size = 8;
1181 			if (num_integers)
1182 				*num_integers = 1;
1183 		}
1184 	}
1185 	zap_name_free(zn);
1186 	zap_unlockdir(zap, FTAG);
1187 	return (err);
1188 }
1189 
1190 int
1191 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1192     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1193 {
1194 	zap_t *zap;
1195 
1196 	int err =
1197 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1198 	if (err != 0)
1199 		return (err);
1200 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1201 	if (zn == NULL) {
1202 		zap_unlockdir(zap, FTAG);
1203 		return (SET_ERROR(ENOTSUP));
1204 	}
1205 	err = fzap_length(zn, integer_size, num_integers);
1206 	zap_name_free(zn);
1207 	zap_unlockdir(zap, FTAG);
1208 	return (err);
1209 }
1210 
1211 static void
1212 mzap_addent(zap_name_t *zn, uint64_t value)
1213 {
1214 	zap_t *zap = zn->zn_zap;
1215 	uint16_t start = zap->zap_m.zap_alloc_next;
1216 
1217 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1218 
1219 #ifdef ZFS_DEBUG
1220 	for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1221 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1222 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1223 	}
1224 #endif
1225 
1226 	uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
1227 	/* given the limited size of the microzap, this can't happen */
1228 	ASSERT(cd < zap_maxcd(zap));
1229 
1230 again:
1231 	for (uint16_t i = start; i < zap->zap_m.zap_num_chunks; i++) {
1232 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1233 		if (mze->mze_name[0] == 0) {
1234 			mze->mze_value = value;
1235 			mze->mze_cd = cd;
1236 			(void) strlcpy(mze->mze_name, zn->zn_key_orig,
1237 			    sizeof (mze->mze_name));
1238 			zap->zap_m.zap_num_entries++;
1239 			zap->zap_m.zap_alloc_next = i+1;
1240 			if (zap->zap_m.zap_alloc_next ==
1241 			    zap->zap_m.zap_num_chunks)
1242 				zap->zap_m.zap_alloc_next = 0;
1243 			mze_insert(zap, i, zn->zn_hash);
1244 			return;
1245 		}
1246 	}
1247 	if (start != 0) {
1248 		start = 0;
1249 		goto again;
1250 	}
1251 	cmn_err(CE_PANIC, "out of entries!");
1252 }
1253 
1254 static int
1255 zap_add_impl(zap_t *zap, const char *key,
1256     int integer_size, uint64_t num_integers,
1257     const void *val, dmu_tx_t *tx, const void *tag)
1258 {
1259 	const uint64_t *intval = val;
1260 	int err = 0;
1261 
1262 	zap_name_t *zn = zap_name_alloc_str(zap, key, 0);
1263 	if (zn == NULL) {
1264 		zap_unlockdir(zap, tag);
1265 		return (SET_ERROR(ENOTSUP));
1266 	}
1267 	if (!zap->zap_ismicro) {
1268 		err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1269 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1270 	} else if (integer_size != 8 || num_integers != 1 ||
1271 	    strlen(key) >= MZAP_NAME_LEN ||
1272 	    !mze_canfit_fzap_leaf(zn, zn->zn_hash)) {
1273 		err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1274 		if (err == 0) {
1275 			err = fzap_add(zn, integer_size, num_integers, val,
1276 			    tag, tx);
1277 		}
1278 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1279 	} else {
1280 		zfs_btree_index_t idx;
1281 		if (mze_find(zn, &idx) != NULL) {
1282 			err = SET_ERROR(EEXIST);
1283 		} else {
1284 			mzap_addent(zn, *intval);
1285 		}
1286 	}
1287 	ASSERT(zap == zn->zn_zap);
1288 	zap_name_free(zn);
1289 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1290 		zap_unlockdir(zap, tag);
1291 	return (err);
1292 }
1293 
1294 int
1295 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1296     int integer_size, uint64_t num_integers,
1297     const void *val, dmu_tx_t *tx)
1298 {
1299 	zap_t *zap;
1300 	int err;
1301 
1302 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1303 	if (err != 0)
1304 		return (err);
1305 	err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1306 	/* zap_add_impl() calls zap_unlockdir() */
1307 	return (err);
1308 }
1309 
1310 int
1311 zap_add_by_dnode(dnode_t *dn, const char *key,
1312     int integer_size, uint64_t num_integers,
1313     const void *val, dmu_tx_t *tx)
1314 {
1315 	zap_t *zap;
1316 	int err;
1317 
1318 	err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1319 	if (err != 0)
1320 		return (err);
1321 	err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1322 	/* zap_add_impl() calls zap_unlockdir() */
1323 	return (err);
1324 }
1325 
1326 static int
1327 zap_add_uint64_impl(zap_t *zap, const uint64_t *key,
1328     int key_numints, int integer_size, uint64_t num_integers,
1329     const void *val, dmu_tx_t *tx, const void *tag)
1330 {
1331 	int err;
1332 
1333 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1334 	if (zn == NULL) {
1335 		zap_unlockdir(zap, tag);
1336 		return (SET_ERROR(ENOTSUP));
1337 	}
1338 	err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1339 	zap = zn->zn_zap;	/* fzap_add() may change zap */
1340 	zap_name_free(zn);
1341 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1342 		zap_unlockdir(zap, tag);
1343 	return (err);
1344 }
1345 
1346 int
1347 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1348     int key_numints, int integer_size, uint64_t num_integers,
1349     const void *val, dmu_tx_t *tx)
1350 {
1351 	zap_t *zap;
1352 
1353 	int err =
1354 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1355 	if (err != 0)
1356 		return (err);
1357 	err = zap_add_uint64_impl(zap, key, key_numints,
1358 	    integer_size, num_integers, val, tx, FTAG);
1359 	/* zap_add_uint64_impl() calls zap_unlockdir() */
1360 	return (err);
1361 }
1362 
1363 int
1364 zap_add_uint64_by_dnode(dnode_t *dn, const uint64_t *key,
1365     int key_numints, int integer_size, uint64_t num_integers,
1366     const void *val, dmu_tx_t *tx)
1367 {
1368 	zap_t *zap;
1369 
1370 	int err =
1371 	    zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1372 	if (err != 0)
1373 		return (err);
1374 	err = zap_add_uint64_impl(zap, key, key_numints,
1375 	    integer_size, num_integers, val, tx, FTAG);
1376 	/* zap_add_uint64_impl() calls zap_unlockdir() */
1377 	return (err);
1378 }
1379 
1380 int
1381 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1382     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1383 {
1384 	zap_t *zap;
1385 	const uint64_t *intval = val;
1386 
1387 	int err =
1388 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1389 	if (err != 0)
1390 		return (err);
1391 	zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
1392 	if (zn == NULL) {
1393 		zap_unlockdir(zap, FTAG);
1394 		return (SET_ERROR(ENOTSUP));
1395 	}
1396 	if (!zap->zap_ismicro) {
1397 		err = fzap_update(zn, integer_size, num_integers, val,
1398 		    FTAG, tx);
1399 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1400 	} else if (integer_size != 8 || num_integers != 1 ||
1401 	    strlen(name) >= MZAP_NAME_LEN) {
1402 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1403 		    (u_longlong_t)zapobj, integer_size,
1404 		    (u_longlong_t)num_integers, name);
1405 		err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1406 		if (err == 0) {
1407 			err = fzap_update(zn, integer_size, num_integers,
1408 			    val, FTAG, tx);
1409 		}
1410 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1411 	} else {
1412 		zfs_btree_index_t idx;
1413 		mzap_ent_t *mze = mze_find(zn, &idx);
1414 		if (mze != NULL) {
1415 			MZE_PHYS(zap, mze)->mze_value = *intval;
1416 		} else {
1417 			mzap_addent(zn, *intval);
1418 		}
1419 	}
1420 	ASSERT(zap == zn->zn_zap);
1421 	zap_name_free(zn);
1422 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1423 		zap_unlockdir(zap, FTAG);
1424 	return (err);
1425 }
1426 
1427 static int
1428 zap_update_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints,
1429     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx,
1430     const void *tag)
1431 {
1432 	int err;
1433 
1434 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1435 	if (zn == NULL) {
1436 		zap_unlockdir(zap, tag);
1437 		return (SET_ERROR(ENOTSUP));
1438 	}
1439 	err = fzap_update(zn, integer_size, num_integers, val, tag, tx);
1440 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1441 	zap_name_free(zn);
1442 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1443 		zap_unlockdir(zap, tag);
1444 	return (err);
1445 }
1446 
1447 int
1448 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1449     int key_numints, int integer_size, uint64_t num_integers, const void *val,
1450     dmu_tx_t *tx)
1451 {
1452 	zap_t *zap;
1453 
1454 	int err =
1455 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1456 	if (err != 0)
1457 		return (err);
1458 	err = zap_update_uint64_impl(zap, key, key_numints,
1459 	    integer_size, num_integers, val, tx, FTAG);
1460 	/* zap_update_uint64_impl() calls zap_unlockdir() */
1461 	return (err);
1462 }
1463 
1464 int
1465 zap_update_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints,
1466     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1467 {
1468 	zap_t *zap;
1469 
1470 	int err =
1471 	    zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1472 	if (err != 0)
1473 		return (err);
1474 	err = zap_update_uint64_impl(zap, key, key_numints,
1475 	    integer_size, num_integers, val, tx, FTAG);
1476 	/* zap_update_uint64_impl() calls zap_unlockdir() */
1477 	return (err);
1478 }
1479 
1480 int
1481 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1482 {
1483 	return (zap_remove_norm(os, zapobj, name, 0, tx));
1484 }
1485 
1486 static int
1487 zap_remove_impl(zap_t *zap, const char *name,
1488     matchtype_t mt, dmu_tx_t *tx)
1489 {
1490 	int err = 0;
1491 
1492 	zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
1493 	if (zn == NULL)
1494 		return (SET_ERROR(ENOTSUP));
1495 	if (!zap->zap_ismicro) {
1496 		err = fzap_remove(zn, tx);
1497 	} else {
1498 		zfs_btree_index_t idx;
1499 		mzap_ent_t *mze = mze_find(zn, &idx);
1500 		if (mze == NULL) {
1501 			err = SET_ERROR(ENOENT);
1502 		} else {
1503 			zap->zap_m.zap_num_entries--;
1504 			memset(MZE_PHYS(zap, mze), 0, sizeof (mzap_ent_phys_t));
1505 			zfs_btree_remove_idx(&zap->zap_m.zap_tree, &idx);
1506 		}
1507 	}
1508 	zap_name_free(zn);
1509 	return (err);
1510 }
1511 
1512 int
1513 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1514     matchtype_t mt, dmu_tx_t *tx)
1515 {
1516 	zap_t *zap;
1517 	int err;
1518 
1519 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1520 	if (err)
1521 		return (err);
1522 	err = zap_remove_impl(zap, name, mt, tx);
1523 	zap_unlockdir(zap, FTAG);
1524 	return (err);
1525 }
1526 
1527 int
1528 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1529 {
1530 	zap_t *zap;
1531 	int err;
1532 
1533 	err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1534 	if (err)
1535 		return (err);
1536 	err = zap_remove_impl(zap, name, 0, tx);
1537 	zap_unlockdir(zap, FTAG);
1538 	return (err);
1539 }
1540 
1541 static int
1542 zap_remove_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints,
1543     dmu_tx_t *tx, const void *tag)
1544 {
1545 	int err;
1546 
1547 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1548 	if (zn == NULL) {
1549 		zap_unlockdir(zap, tag);
1550 		return (SET_ERROR(ENOTSUP));
1551 	}
1552 	err = fzap_remove(zn, tx);
1553 	zap_name_free(zn);
1554 	zap_unlockdir(zap, tag);
1555 	return (err);
1556 }
1557 
1558 int
1559 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1560     int key_numints, dmu_tx_t *tx)
1561 {
1562 	zap_t *zap;
1563 
1564 	int err =
1565 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1566 	if (err != 0)
1567 		return (err);
1568 	err = zap_remove_uint64_impl(zap, key, key_numints, tx, FTAG);
1569 	/* zap_remove_uint64_impl() calls zap_unlockdir() */
1570 	return (err);
1571 }
1572 
1573 int
1574 zap_remove_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints,
1575     dmu_tx_t *tx)
1576 {
1577 	zap_t *zap;
1578 
1579 	int err =
1580 	    zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1581 	if (err != 0)
1582 		return (err);
1583 	err = zap_remove_uint64_impl(zap, key, key_numints, tx, FTAG);
1584 	/* zap_remove_uint64_impl() calls zap_unlockdir() */
1585 	return (err);
1586 }
1587 
1588 /*
1589  * Routines for iterating over the attributes.
1590  */
1591 
1592 static void
1593 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1594     uint64_t serialized, boolean_t prefetch)
1595 {
1596 	zc->zc_objset = os;
1597 	zc->zc_zap = NULL;
1598 	zc->zc_leaf = NULL;
1599 	zc->zc_zapobj = zapobj;
1600 	zc->zc_serialized = serialized;
1601 	zc->zc_hash = 0;
1602 	zc->zc_cd = 0;
1603 	zc->zc_prefetch = prefetch;
1604 }
1605 void
1606 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1607     uint64_t serialized)
1608 {
1609 	zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE);
1610 }
1611 
1612 /*
1613  * Initialize a cursor at the beginning of the ZAP object.  The entire
1614  * ZAP object will be prefetched.
1615  */
1616 void
1617 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1618 {
1619 	zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE);
1620 }
1621 
1622 /*
1623  * Initialize a cursor at the beginning, but request that we not prefetch
1624  * the entire ZAP object.
1625  */
1626 void
1627 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1628 {
1629 	zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE);
1630 }
1631 
1632 void
1633 zap_cursor_fini(zap_cursor_t *zc)
1634 {
1635 	if (zc->zc_zap) {
1636 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1637 		zap_unlockdir(zc->zc_zap, NULL);
1638 		zc->zc_zap = NULL;
1639 	}
1640 	if (zc->zc_leaf) {
1641 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1642 		zap_put_leaf(zc->zc_leaf);
1643 		zc->zc_leaf = NULL;
1644 	}
1645 	zc->zc_objset = NULL;
1646 }
1647 
1648 uint64_t
1649 zap_cursor_serialize(zap_cursor_t *zc)
1650 {
1651 	if (zc->zc_hash == -1ULL)
1652 		return (-1ULL);
1653 	if (zc->zc_zap == NULL)
1654 		return (zc->zc_serialized);
1655 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1656 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1657 
1658 	/*
1659 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1660 	 * that 32-bit programs can access this.  So usually use a small
1661 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1662 	 * of the cursor.
1663 	 *
1664 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1665 	 */
1666 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1667 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1668 }
1669 
1670 int
1671 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1672 {
1673 	int err;
1674 
1675 	if (zc->zc_hash == -1ULL)
1676 		return (SET_ERROR(ENOENT));
1677 
1678 	if (zc->zc_zap == NULL) {
1679 		int hb;
1680 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1681 		    RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1682 		if (err != 0)
1683 			return (err);
1684 
1685 		/*
1686 		 * To support zap_cursor_init_serialized, advance, retrieve,
1687 		 * we must add to the existing zc_cd, which may already
1688 		 * be 1 due to the zap_cursor_advance.
1689 		 */
1690 		ASSERT(zc->zc_hash == 0);
1691 		hb = zap_hashbits(zc->zc_zap);
1692 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1693 		zc->zc_cd += zc->zc_serialized >> hb;
1694 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1695 			zc->zc_cd = 0;
1696 	} else {
1697 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1698 	}
1699 	if (!zc->zc_zap->zap_ismicro) {
1700 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1701 	} else {
1702 		zfs_btree_index_t idx;
1703 		mzap_ent_t mze_tofind;
1704 
1705 		mze_tofind.mze_hash = zc->zc_hash >> 32;
1706 		mze_tofind.mze_cd = zc->zc_cd;
1707 
1708 		mzap_ent_t *mze = zfs_btree_find(&zc->zc_zap->zap_m.zap_tree,
1709 		    &mze_tofind, &idx);
1710 		if (mze == NULL) {
1711 			mze = zfs_btree_next(&zc->zc_zap->zap_m.zap_tree,
1712 			    &idx, &idx);
1713 		}
1714 		if (mze) {
1715 			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1716 			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1717 			za->za_normalization_conflict =
1718 			    mzap_normalization_conflict(zc->zc_zap, NULL,
1719 			    mze, &idx);
1720 			za->za_integer_length = 8;
1721 			za->za_num_integers = 1;
1722 			za->za_first_integer = mzep->mze_value;
1723 			(void) strlcpy(za->za_name, mzep->mze_name,
1724 			    sizeof (za->za_name));
1725 			zc->zc_hash = (uint64_t)mze->mze_hash << 32;
1726 			zc->zc_cd = mze->mze_cd;
1727 			err = 0;
1728 		} else {
1729 			zc->zc_hash = -1ULL;
1730 			err = SET_ERROR(ENOENT);
1731 		}
1732 	}
1733 	rw_exit(&zc->zc_zap->zap_rwlock);
1734 	return (err);
1735 }
1736 
1737 void
1738 zap_cursor_advance(zap_cursor_t *zc)
1739 {
1740 	if (zc->zc_hash == -1ULL)
1741 		return;
1742 	zc->zc_cd++;
1743 }
1744 
1745 int
1746 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1747 {
1748 	zap_t *zap;
1749 
1750 	int err =
1751 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1752 	if (err != 0)
1753 		return (err);
1754 
1755 	memset(zs, 0, sizeof (zap_stats_t));
1756 
1757 	if (zap->zap_ismicro) {
1758 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1759 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1760 		zs->zs_num_blocks = 1;
1761 	} else {
1762 		fzap_get_stats(zap, zs);
1763 	}
1764 	zap_unlockdir(zap, FTAG);
1765 	return (0);
1766 }
1767 
1768 #if defined(_KERNEL)
1769 EXPORT_SYMBOL(zap_create);
1770 EXPORT_SYMBOL(zap_create_dnsize);
1771 EXPORT_SYMBOL(zap_create_norm);
1772 EXPORT_SYMBOL(zap_create_norm_dnsize);
1773 EXPORT_SYMBOL(zap_create_flags);
1774 EXPORT_SYMBOL(zap_create_flags_dnsize);
1775 EXPORT_SYMBOL(zap_create_claim);
1776 EXPORT_SYMBOL(zap_create_claim_norm);
1777 EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
1778 EXPORT_SYMBOL(zap_create_hold);
1779 EXPORT_SYMBOL(zap_destroy);
1780 EXPORT_SYMBOL(zap_lookup);
1781 EXPORT_SYMBOL(zap_lookup_by_dnode);
1782 EXPORT_SYMBOL(zap_lookup_norm);
1783 EXPORT_SYMBOL(zap_lookup_uint64);
1784 EXPORT_SYMBOL(zap_contains);
1785 EXPORT_SYMBOL(zap_prefetch);
1786 EXPORT_SYMBOL(zap_prefetch_uint64);
1787 EXPORT_SYMBOL(zap_add);
1788 EXPORT_SYMBOL(zap_add_by_dnode);
1789 EXPORT_SYMBOL(zap_add_uint64);
1790 EXPORT_SYMBOL(zap_add_uint64_by_dnode);
1791 EXPORT_SYMBOL(zap_update);
1792 EXPORT_SYMBOL(zap_update_uint64);
1793 EXPORT_SYMBOL(zap_update_uint64_by_dnode);
1794 EXPORT_SYMBOL(zap_length);
1795 EXPORT_SYMBOL(zap_length_uint64);
1796 EXPORT_SYMBOL(zap_remove);
1797 EXPORT_SYMBOL(zap_remove_by_dnode);
1798 EXPORT_SYMBOL(zap_remove_norm);
1799 EXPORT_SYMBOL(zap_remove_uint64);
1800 EXPORT_SYMBOL(zap_remove_uint64_by_dnode);
1801 EXPORT_SYMBOL(zap_count);
1802 EXPORT_SYMBOL(zap_value_search);
1803 EXPORT_SYMBOL(zap_join);
1804 EXPORT_SYMBOL(zap_join_increment);
1805 EXPORT_SYMBOL(zap_add_int);
1806 EXPORT_SYMBOL(zap_remove_int);
1807 EXPORT_SYMBOL(zap_lookup_int);
1808 EXPORT_SYMBOL(zap_increment_int);
1809 EXPORT_SYMBOL(zap_add_int_key);
1810 EXPORT_SYMBOL(zap_lookup_int_key);
1811 EXPORT_SYMBOL(zap_increment);
1812 EXPORT_SYMBOL(zap_cursor_init);
1813 EXPORT_SYMBOL(zap_cursor_fini);
1814 EXPORT_SYMBOL(zap_cursor_retrieve);
1815 EXPORT_SYMBOL(zap_cursor_advance);
1816 EXPORT_SYMBOL(zap_cursor_serialize);
1817 EXPORT_SYMBOL(zap_cursor_init_serialized);
1818 EXPORT_SYMBOL(zap_get_stats);
1819 
1820 /* CSTYLED */
1821 ZFS_MODULE_PARAM(zfs, , zap_micro_max_size, INT, ZMOD_RW,
1822 	"Maximum micro ZAP size, before converting to a fat ZAP, in bytes");
1823 #endif
1824