1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 * Copyright (c) 2024, Klara, Inc. 28 */ 29 30 #include <sys/zio.h> 31 #include <sys/spa.h> 32 #include <sys/dmu.h> 33 #include <sys/zfs_context.h> 34 #include <sys/zap.h> 35 #include <sys/zap_impl.h> 36 #include <sys/zap_leaf.h> 37 #include <sys/btree.h> 38 #include <sys/arc.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/spa_impl.h> 41 42 #ifdef _KERNEL 43 #include <sys/sunddi.h> 44 #endif 45 46 /* 47 * The maximum size (in bytes) of a microzap before it is converted to a 48 * fatzap. It will be rounded up to next multiple of 512 (SPA_MINBLOCKSIZE). 49 * 50 * By definition, a microzap must fit into a single block, so this has 51 * traditionally been SPA_OLD_MAXBLOCKSIZE, and is set to that by default. 52 * Setting this higher requires both the large_blocks feature (to even create 53 * blocks that large) and the large_microzap feature (to enable the stream 54 * machinery to understand not to try to split a microzap block). 55 * 56 * If large_microzap is enabled, this value will be clamped to 57 * spa_maxblocksize(). If not, it will be clamped to SPA_OLD_MAXBLOCKSIZE. 58 */ 59 static int zap_micro_max_size = SPA_OLD_MAXBLOCKSIZE; 60 61 uint64_t 62 zap_get_micro_max_size(spa_t *spa) 63 { 64 uint64_t maxsz = P2ROUNDUP(zap_micro_max_size, SPA_MINBLOCKSIZE); 65 if (maxsz <= SPA_OLD_MAXBLOCKSIZE) 66 return (maxsz); 67 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_MICROZAP)) 68 return (MIN(maxsz, spa_maxblocksize(spa))); 69 return (SPA_OLD_MAXBLOCKSIZE); 70 } 71 72 static int mzap_upgrade(zap_t **zapp, 73 const void *tag, dmu_tx_t *tx, zap_flags_t flags); 74 75 uint64_t 76 zap_getflags(zap_t *zap) 77 { 78 if (zap->zap_ismicro) 79 return (0); 80 return (zap_f_phys(zap)->zap_flags); 81 } 82 83 int 84 zap_hashbits(zap_t *zap) 85 { 86 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 87 return (48); 88 else 89 return (28); 90 } 91 92 uint32_t 93 zap_maxcd(zap_t *zap) 94 { 95 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 96 return ((1<<16)-1); 97 else 98 return (-1U); 99 } 100 101 static uint64_t 102 zap_hash(zap_name_t *zn) 103 { 104 zap_t *zap = zn->zn_zap; 105 uint64_t h = 0; 106 107 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { 108 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); 109 h = *(uint64_t *)zn->zn_key_orig; 110 } else { 111 h = zap->zap_salt; 112 ASSERT(h != 0); 113 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 114 115 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 116 const uint64_t *wp = zn->zn_key_norm; 117 118 ASSERT(zn->zn_key_intlen == 8); 119 for (int i = 0; i < zn->zn_key_norm_numints; 120 wp++, i++) { 121 uint64_t word = *wp; 122 123 for (int j = 0; j < 8; j++) { 124 h = (h >> 8) ^ 125 zfs_crc64_table[(h ^ word) & 0xFF]; 126 word >>= NBBY; 127 } 128 } 129 } else { 130 const uint8_t *cp = zn->zn_key_norm; 131 132 /* 133 * We previously stored the terminating null on 134 * disk, but didn't hash it, so we need to 135 * continue to not hash it. (The 136 * zn_key_*_numints includes the terminating 137 * null for non-binary keys.) 138 */ 139 int len = zn->zn_key_norm_numints - 1; 140 141 ASSERT(zn->zn_key_intlen == 1); 142 for (int i = 0; i < len; cp++, i++) { 143 h = (h >> 8) ^ 144 zfs_crc64_table[(h ^ *cp) & 0xFF]; 145 } 146 } 147 } 148 /* 149 * Don't use all 64 bits, since we need some in the cookie for 150 * the collision differentiator. We MUST use the high bits, 151 * since those are the ones that we first pay attention to when 152 * choosing the bucket. 153 */ 154 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); 155 156 return (h); 157 } 158 159 static int 160 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags, 161 size_t outlen) 162 { 163 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); 164 165 size_t inlen = strlen(name) + 1; 166 167 int err = 0; 168 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 169 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID, 170 U8_UNICODE_LATEST, &err); 171 172 return (err); 173 } 174 175 boolean_t 176 zap_match(zap_name_t *zn, const char *matchname) 177 { 178 boolean_t res = B_FALSE; 179 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); 180 181 if (zn->zn_matchtype & MT_NORMALIZE) { 182 size_t namelen = zn->zn_normbuf_len; 183 char normbuf[ZAP_MAXNAMELEN]; 184 char *norm = normbuf; 185 186 /* 187 * Cannot allocate this on-stack as it exceed the stack-limit of 188 * 1024. 189 */ 190 if (namelen > ZAP_MAXNAMELEN) 191 norm = kmem_alloc(namelen, KM_SLEEP); 192 193 if (zap_normalize(zn->zn_zap, matchname, norm, 194 zn->zn_normflags, namelen) != 0) { 195 res = B_FALSE; 196 } else { 197 res = (strcmp(zn->zn_key_norm, norm) == 0); 198 } 199 if (norm != normbuf) 200 kmem_free(norm, namelen); 201 } else { 202 res = (strcmp(zn->zn_key_orig, matchname) == 0); 203 } 204 return (res); 205 } 206 207 static kmem_cache_t *zap_name_cache; 208 static kmem_cache_t *zap_attr_cache; 209 static kmem_cache_t *zap_name_long_cache; 210 static kmem_cache_t *zap_attr_long_cache; 211 212 void 213 zap_init(void) 214 { 215 zap_name_cache = kmem_cache_create("zap_name", 216 sizeof (zap_name_t) + ZAP_MAXNAMELEN, 0, NULL, NULL, 217 NULL, NULL, NULL, 0); 218 219 zap_attr_cache = kmem_cache_create("zap_attr_cache", 220 sizeof (zap_attribute_t) + ZAP_MAXNAMELEN, 0, NULL, 221 NULL, NULL, NULL, NULL, 0); 222 223 zap_name_long_cache = kmem_cache_create("zap_name_long", 224 sizeof (zap_name_t) + ZAP_MAXNAMELEN_NEW, 0, NULL, NULL, 225 NULL, NULL, NULL, 0); 226 227 zap_attr_long_cache = kmem_cache_create("zap_attr_long_cache", 228 sizeof (zap_attribute_t) + ZAP_MAXNAMELEN_NEW, 0, NULL, 229 NULL, NULL, NULL, NULL, 0); 230 } 231 232 void 233 zap_fini(void) 234 { 235 kmem_cache_destroy(zap_name_cache); 236 kmem_cache_destroy(zap_attr_cache); 237 kmem_cache_destroy(zap_name_long_cache); 238 kmem_cache_destroy(zap_attr_long_cache); 239 } 240 241 static zap_name_t * 242 zap_name_alloc(zap_t *zap, boolean_t longname) 243 { 244 kmem_cache_t *cache = longname ? zap_name_long_cache : zap_name_cache; 245 zap_name_t *zn = kmem_cache_alloc(cache, KM_SLEEP); 246 247 zn->zn_zap = zap; 248 zn->zn_normbuf_len = longname ? ZAP_MAXNAMELEN_NEW : ZAP_MAXNAMELEN; 249 return (zn); 250 } 251 252 void 253 zap_name_free(zap_name_t *zn) 254 { 255 if (zn->zn_normbuf_len == ZAP_MAXNAMELEN) { 256 kmem_cache_free(zap_name_cache, zn); 257 } else { 258 ASSERT3U(zn->zn_normbuf_len, ==, ZAP_MAXNAMELEN_NEW); 259 kmem_cache_free(zap_name_long_cache, zn); 260 } 261 } 262 263 static int 264 zap_name_init_str(zap_name_t *zn, const char *key, matchtype_t mt) 265 { 266 zap_t *zap = zn->zn_zap; 267 size_t key_len = strlen(key) + 1; 268 269 /* Make sure zn is allocated for longname if key is long */ 270 IMPLY(key_len > ZAP_MAXNAMELEN, 271 zn->zn_normbuf_len == ZAP_MAXNAMELEN_NEW); 272 273 zn->zn_key_intlen = sizeof (*key); 274 zn->zn_key_orig = key; 275 zn->zn_key_orig_numints = key_len; 276 zn->zn_matchtype = mt; 277 zn->zn_normflags = zap->zap_normflags; 278 279 /* 280 * If we're dealing with a case sensitive lookup on a mixed or 281 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup 282 * will fold case to all caps overriding the lookup request. 283 */ 284 if (mt & MT_MATCH_CASE) 285 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER; 286 287 if (zap->zap_normflags) { 288 /* 289 * We *must* use zap_normflags because this normalization is 290 * what the hash is computed from. 291 */ 292 if (zap_normalize(zap, key, zn->zn_normbuf, 293 zap->zap_normflags, zn->zn_normbuf_len) != 0) 294 return (SET_ERROR(ENOTSUP)); 295 zn->zn_key_norm = zn->zn_normbuf; 296 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 297 } else { 298 if (mt != 0) 299 return (SET_ERROR(ENOTSUP)); 300 zn->zn_key_norm = zn->zn_key_orig; 301 zn->zn_key_norm_numints = zn->zn_key_orig_numints; 302 } 303 304 zn->zn_hash = zap_hash(zn); 305 306 if (zap->zap_normflags != zn->zn_normflags) { 307 /* 308 * We *must* use zn_normflags because this normalization is 309 * what the matching is based on. (Not the hash!) 310 */ 311 if (zap_normalize(zap, key, zn->zn_normbuf, 312 zn->zn_normflags, zn->zn_normbuf_len) != 0) 313 return (SET_ERROR(ENOTSUP)); 314 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 315 } 316 317 return (0); 318 } 319 320 zap_name_t * 321 zap_name_alloc_str(zap_t *zap, const char *key, matchtype_t mt) 322 { 323 size_t key_len = strlen(key) + 1; 324 zap_name_t *zn = zap_name_alloc(zap, (key_len > ZAP_MAXNAMELEN)); 325 if (zap_name_init_str(zn, key, mt) != 0) { 326 zap_name_free(zn); 327 return (NULL); 328 } 329 return (zn); 330 } 331 332 static zap_name_t * 333 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) 334 { 335 zap_name_t *zn = kmem_cache_alloc(zap_name_cache, KM_SLEEP); 336 337 ASSERT(zap->zap_normflags == 0); 338 zn->zn_zap = zap; 339 zn->zn_key_intlen = sizeof (*key); 340 zn->zn_key_orig = zn->zn_key_norm = key; 341 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; 342 zn->zn_matchtype = 0; 343 zn->zn_normbuf_len = ZAP_MAXNAMELEN; 344 345 zn->zn_hash = zap_hash(zn); 346 return (zn); 347 } 348 349 static void 350 mzap_byteswap(mzap_phys_t *buf, size_t size) 351 { 352 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 353 buf->mz_salt = BSWAP_64(buf->mz_salt); 354 buf->mz_normflags = BSWAP_64(buf->mz_normflags); 355 int max = (size / MZAP_ENT_LEN) - 1; 356 for (int i = 0; i < max; i++) { 357 buf->mz_chunk[i].mze_value = 358 BSWAP_64(buf->mz_chunk[i].mze_value); 359 buf->mz_chunk[i].mze_cd = 360 BSWAP_32(buf->mz_chunk[i].mze_cd); 361 } 362 } 363 364 void 365 zap_byteswap(void *buf, size_t size) 366 { 367 uint64_t block_type = *(uint64_t *)buf; 368 369 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 370 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 371 mzap_byteswap(buf, size); 372 } else { 373 fzap_byteswap(buf, size); 374 } 375 } 376 377 __attribute__((always_inline)) inline 378 static int 379 mze_compare(const void *arg1, const void *arg2) 380 { 381 const mzap_ent_t *mze1 = arg1; 382 const mzap_ent_t *mze2 = arg2; 383 384 return (TREE_CMP((uint64_t)(mze1->mze_hash) << 32 | mze1->mze_cd, 385 (uint64_t)(mze2->mze_hash) << 32 | mze2->mze_cd)); 386 } 387 388 ZFS_BTREE_FIND_IN_BUF_FUNC(mze_find_in_buf, mzap_ent_t, 389 mze_compare) 390 391 static void 392 mze_insert(zap_t *zap, uint16_t chunkid, uint64_t hash) 393 { 394 mzap_ent_t mze; 395 396 ASSERT(zap->zap_ismicro); 397 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 398 399 mze.mze_chunkid = chunkid; 400 ASSERT0(hash & 0xffffffff); 401 mze.mze_hash = hash >> 32; 402 ASSERT3U(MZE_PHYS(zap, &mze)->mze_cd, <=, 0xffff); 403 mze.mze_cd = (uint16_t)MZE_PHYS(zap, &mze)->mze_cd; 404 ASSERT(MZE_PHYS(zap, &mze)->mze_name[0] != 0); 405 zfs_btree_add(&zap->zap_m.zap_tree, &mze); 406 } 407 408 static mzap_ent_t * 409 mze_find(zap_name_t *zn, zfs_btree_index_t *idx) 410 { 411 mzap_ent_t mze_tofind; 412 mzap_ent_t *mze; 413 zfs_btree_t *tree = &zn->zn_zap->zap_m.zap_tree; 414 415 ASSERT(zn->zn_zap->zap_ismicro); 416 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 417 418 ASSERT0(zn->zn_hash & 0xffffffff); 419 mze_tofind.mze_hash = zn->zn_hash >> 32; 420 mze_tofind.mze_cd = 0; 421 422 mze = zfs_btree_find(tree, &mze_tofind, idx); 423 if (mze == NULL) 424 mze = zfs_btree_next(tree, idx, idx); 425 for (; mze && mze->mze_hash == mze_tofind.mze_hash; 426 mze = zfs_btree_next(tree, idx, idx)) { 427 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); 428 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) 429 return (mze); 430 } 431 432 return (NULL); 433 } 434 435 static uint32_t 436 mze_find_unused_cd(zap_t *zap, uint64_t hash) 437 { 438 mzap_ent_t mze_tofind; 439 zfs_btree_index_t idx; 440 zfs_btree_t *tree = &zap->zap_m.zap_tree; 441 442 ASSERT(zap->zap_ismicro); 443 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 444 445 ASSERT0(hash & 0xffffffff); 446 hash >>= 32; 447 mze_tofind.mze_hash = hash; 448 mze_tofind.mze_cd = 0; 449 450 uint32_t cd = 0; 451 for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx); 452 mze && mze->mze_hash == hash; 453 mze = zfs_btree_next(tree, &idx, &idx)) { 454 if (mze->mze_cd != cd) 455 break; 456 cd++; 457 } 458 459 return (cd); 460 } 461 462 /* 463 * Each mzap entry requires at max : 4 chunks 464 * 3 chunks for names + 1 chunk for value. 465 */ 466 #define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \ 467 ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t))) 468 469 /* 470 * Check if the current entry keeps the colliding entries under the fatzap leaf 471 * size. 472 */ 473 static boolean_t 474 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash) 475 { 476 zap_t *zap = zn->zn_zap; 477 mzap_ent_t mze_tofind; 478 zfs_btree_index_t idx; 479 zfs_btree_t *tree = &zap->zap_m.zap_tree; 480 uint32_t mzap_ents = 0; 481 482 ASSERT0(hash & 0xffffffff); 483 hash >>= 32; 484 mze_tofind.mze_hash = hash; 485 mze_tofind.mze_cd = 0; 486 487 for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx); 488 mze && mze->mze_hash == hash; 489 mze = zfs_btree_next(tree, &idx, &idx)) { 490 mzap_ents++; 491 } 492 493 /* Include the new entry being added */ 494 mzap_ents++; 495 496 return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS)); 497 } 498 499 static void 500 mze_destroy(zap_t *zap) 501 { 502 zfs_btree_clear(&zap->zap_m.zap_tree); 503 zfs_btree_destroy(&zap->zap_m.zap_tree); 504 } 505 506 static zap_t * 507 mzap_open(dmu_buf_t *db) 508 { 509 zap_t *winner; 510 uint64_t *zap_hdr = (uint64_t *)db->db_data; 511 uint64_t zap_block_type = zap_hdr[0]; 512 uint64_t zap_magic = zap_hdr[1]; 513 514 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 515 516 zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 517 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL); 518 rw_enter(&zap->zap_rwlock, RW_WRITER); 519 zap->zap_objset = dmu_buf_get_objset(db); 520 zap->zap_object = db->db_object; 521 zap->zap_dbuf = db; 522 523 if (zap_block_type != ZBT_MICRO) { 524 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 525 0); 526 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; 527 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) { 528 winner = NULL; /* No actual winner here... */ 529 goto handle_winner; 530 } 531 } else { 532 zap->zap_ismicro = TRUE; 533 } 534 535 /* 536 * Make sure that zap_ismicro is set before we let others see 537 * it, because zap_lockdir() checks zap_ismicro without the lock 538 * held. 539 */ 540 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf); 541 winner = dmu_buf_set_user(db, &zap->zap_dbu); 542 543 if (winner != NULL) 544 goto handle_winner; 545 546 if (zap->zap_ismicro) { 547 zap->zap_salt = zap_m_phys(zap)->mz_salt; 548 zap->zap_normflags = zap_m_phys(zap)->mz_normflags; 549 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 550 551 /* 552 * Reduce B-tree leaf from 4KB to 512 bytes to reduce memmove() 553 * overhead on massive inserts below. It still allows to store 554 * 62 entries before we have to add 2KB B-tree core node. 555 */ 556 zfs_btree_create_custom(&zap->zap_m.zap_tree, mze_compare, 557 mze_find_in_buf, sizeof (mzap_ent_t), 512); 558 559 zap_name_t *zn = zap_name_alloc(zap, B_FALSE); 560 for (uint16_t i = 0; i < zap->zap_m.zap_num_chunks; i++) { 561 mzap_ent_phys_t *mze = 562 &zap_m_phys(zap)->mz_chunk[i]; 563 if (mze->mze_name[0]) { 564 zap->zap_m.zap_num_entries++; 565 zap_name_init_str(zn, mze->mze_name, 0); 566 mze_insert(zap, i, zn->zn_hash); 567 } 568 } 569 zap_name_free(zn); 570 } else { 571 zap->zap_salt = zap_f_phys(zap)->zap_salt; 572 zap->zap_normflags = zap_f_phys(zap)->zap_normflags; 573 574 ASSERT3U(sizeof (struct zap_leaf_header), ==, 575 2*ZAP_LEAF_CHUNKSIZE); 576 577 /* 578 * The embedded pointer table should not overlap the 579 * other members. 580 */ 581 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 582 &zap_f_phys(zap)->zap_salt); 583 584 /* 585 * The embedded pointer table should end at the end of 586 * the block 587 */ 588 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 589 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 590 (uintptr_t)zap_f_phys(zap), ==, 591 zap->zap_dbuf->db_size); 592 } 593 rw_exit(&zap->zap_rwlock); 594 return (zap); 595 596 handle_winner: 597 rw_exit(&zap->zap_rwlock); 598 rw_destroy(&zap->zap_rwlock); 599 if (!zap->zap_ismicro) 600 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 601 kmem_free(zap, sizeof (zap_t)); 602 return (winner); 603 } 604 605 /* 606 * This routine "consumes" the caller's hold on the dbuf, which must 607 * have the specified tag. 608 */ 609 static int 610 zap_lockdir_impl(dnode_t *dn, dmu_buf_t *db, const void *tag, dmu_tx_t *tx, 611 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 612 { 613 ASSERT0(db->db_offset); 614 objset_t *os = dmu_buf_get_objset(db); 615 uint64_t obj = db->db_object; 616 dmu_object_info_t doi; 617 618 *zapp = NULL; 619 620 dmu_object_info_from_dnode(dn, &doi); 621 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP) 622 return (SET_ERROR(EINVAL)); 623 624 zap_t *zap = dmu_buf_get_user(db); 625 if (zap == NULL) { 626 zap = mzap_open(db); 627 if (zap == NULL) { 628 /* 629 * mzap_open() didn't like what it saw on-disk. 630 * Check for corruption! 631 */ 632 return (SET_ERROR(EIO)); 633 } 634 } 635 636 /* 637 * We're checking zap_ismicro without the lock held, in order to 638 * tell what type of lock we want. Once we have some sort of 639 * lock, see if it really is the right type. In practice this 640 * can only be different if it was upgraded from micro to fat, 641 * and micro wanted WRITER but fat only needs READER. 642 */ 643 krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 644 rw_enter(&zap->zap_rwlock, lt); 645 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 646 /* it was upgraded, now we only need reader */ 647 ASSERT(lt == RW_WRITER); 648 ASSERT(RW_READER == 649 ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)); 650 rw_downgrade(&zap->zap_rwlock); 651 lt = RW_READER; 652 } 653 654 zap->zap_objset = os; 655 zap->zap_dnode = dn; 656 657 if (lt == RW_WRITER) 658 dmu_buf_will_dirty(db, tx); 659 660 ASSERT3P(zap->zap_dbuf, ==, db); 661 662 ASSERT(!zap->zap_ismicro || 663 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 664 if (zap->zap_ismicro && tx && adding && 665 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 666 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 667 if (newsz > zap_get_micro_max_size(dmu_objset_spa(os))) { 668 dprintf("upgrading obj %llu: num_entries=%u\n", 669 (u_longlong_t)obj, zap->zap_m.zap_num_entries); 670 *zapp = zap; 671 int err = mzap_upgrade(zapp, tag, tx, 0); 672 if (err != 0) 673 rw_exit(&zap->zap_rwlock); 674 return (err); 675 } 676 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx)); 677 zap->zap_m.zap_num_chunks = 678 db->db_size / MZAP_ENT_LEN - 1; 679 680 if (newsz > SPA_OLD_MAXBLOCKSIZE) { 681 dsl_dataset_t *ds = dmu_objset_ds(os); 682 if (!dsl_dataset_feature_is_active(ds, 683 SPA_FEATURE_LARGE_MICROZAP)) { 684 /* 685 * A microzap just grew beyond the old limit 686 * for the first time, so we have to ensure the 687 * feature flag is activated. 688 * zap_get_micro_max_size() won't let us get 689 * here if the feature is not enabled, so we 690 * don't need any other checks beforehand. 691 * 692 * Since we're in open context, we can't 693 * activate the feature directly, so we instead 694 * flag it on the dataset for next sync. 695 */ 696 dsl_dataset_dirty(ds, tx); 697 mutex_enter(&ds->ds_lock); 698 ds->ds_feature_activation 699 [SPA_FEATURE_LARGE_MICROZAP] = 700 (void *)B_TRUE; 701 mutex_exit(&ds->ds_lock); 702 } 703 } 704 } 705 706 *zapp = zap; 707 return (0); 708 } 709 710 static int 711 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx, 712 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag, 713 zap_t **zapp) 714 { 715 dmu_buf_t *db; 716 int err; 717 718 err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH); 719 if (err != 0) 720 return (err); 721 err = zap_lockdir_impl(dn, db, tag, tx, lti, fatreader, adding, zapp); 722 if (err != 0) 723 dmu_buf_rele(db, tag); 724 else 725 VERIFY(dnode_add_ref(dn, tag)); 726 return (err); 727 } 728 729 int 730 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 731 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag, 732 zap_t **zapp) 733 { 734 dnode_t *dn; 735 dmu_buf_t *db; 736 int err; 737 738 err = dnode_hold(os, obj, tag, &dn); 739 if (err != 0) 740 return (err); 741 err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH); 742 if (err != 0) { 743 dnode_rele(dn, tag); 744 return (err); 745 } 746 err = zap_lockdir_impl(dn, db, tag, tx, lti, fatreader, adding, zapp); 747 if (err != 0) { 748 dmu_buf_rele(db, tag); 749 dnode_rele(dn, tag); 750 } 751 return (err); 752 } 753 754 void 755 zap_unlockdir(zap_t *zap, const void *tag) 756 { 757 rw_exit(&zap->zap_rwlock); 758 dnode_rele(zap->zap_dnode, tag); 759 dmu_buf_rele(zap->zap_dbuf, tag); 760 } 761 762 static int 763 mzap_upgrade(zap_t **zapp, const void *tag, dmu_tx_t *tx, zap_flags_t flags) 764 { 765 int err = 0; 766 zap_t *zap = *zapp; 767 768 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 769 770 int sz = zap->zap_dbuf->db_size; 771 mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP); 772 memcpy(mzp, zap->zap_dbuf->db_data, sz); 773 int nchunks = zap->zap_m.zap_num_chunks; 774 775 if (!flags) { 776 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 777 1ULL << fzap_default_block_shift, 0, tx); 778 if (err != 0) { 779 vmem_free(mzp, sz); 780 return (err); 781 } 782 } 783 784 dprintf("upgrading obj=%llu with %u chunks\n", 785 (u_longlong_t)zap->zap_object, nchunks); 786 /* XXX destroy the tree later, so we can use the stored hash value */ 787 mze_destroy(zap); 788 789 fzap_upgrade(zap, tx, flags); 790 791 zap_name_t *zn = zap_name_alloc(zap, B_FALSE); 792 for (int i = 0; i < nchunks; i++) { 793 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 794 if (mze->mze_name[0] == 0) 795 continue; 796 dprintf("adding %s=%llu\n", 797 mze->mze_name, (u_longlong_t)mze->mze_value); 798 zap_name_init_str(zn, mze->mze_name, 0); 799 /* If we fail here, we would end up losing entries */ 800 VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, 801 tag, tx)); 802 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 803 } 804 zap_name_free(zn); 805 vmem_free(mzp, sz); 806 *zapp = zap; 807 return (0); 808 } 809 810 /* 811 * The "normflags" determine the behavior of the matchtype_t which is 812 * passed to zap_lookup_norm(). Names which have the same normalized 813 * version will be stored with the same hash value, and therefore we can 814 * perform normalization-insensitive lookups. We can be Unicode form- 815 * insensitive and/or case-insensitive. The following flags are valid for 816 * "normflags": 817 * 818 * U8_TEXTPREP_NFC 819 * U8_TEXTPREP_NFD 820 * U8_TEXTPREP_NFKC 821 * U8_TEXTPREP_NFKD 822 * U8_TEXTPREP_TOUPPER 823 * 824 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one 825 * of them may be supplied. 826 */ 827 void 828 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx) 829 { 830 dmu_buf_t *db; 831 832 VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); 833 834 dmu_buf_will_dirty(db, tx); 835 mzap_phys_t *zp = db->db_data; 836 zp->mz_block_type = ZBT_MICRO; 837 zp->mz_salt = 838 ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL; 839 zp->mz_normflags = normflags; 840 841 if (flags != 0) { 842 zap_t *zap; 843 /* Only fat zap supports flags; upgrade immediately. */ 844 VERIFY(dnode_add_ref(dn, FTAG)); 845 VERIFY0(zap_lockdir_impl(dn, db, FTAG, tx, RW_WRITER, 846 B_FALSE, B_FALSE, &zap)); 847 VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags)); 848 zap_unlockdir(zap, FTAG); 849 } else { 850 dmu_buf_rele(db, FTAG); 851 } 852 } 853 854 static uint64_t 855 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags, 856 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 857 dmu_object_type_t bonustype, int bonuslen, int dnodesize, 858 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx) 859 { 860 uint64_t obj; 861 862 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); 863 864 if (allocated_dnode == NULL) { 865 dnode_t *dn; 866 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift, 867 indirect_blockshift, bonustype, bonuslen, dnodesize, 868 &dn, FTAG, tx); 869 mzap_create_impl(dn, normflags, flags, tx); 870 dnode_rele(dn, FTAG); 871 } else { 872 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift, 873 indirect_blockshift, bonustype, bonuslen, dnodesize, 874 allocated_dnode, tag, tx); 875 mzap_create_impl(*allocated_dnode, normflags, flags, tx); 876 } 877 878 return (obj); 879 } 880 881 int 882 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 883 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 884 { 885 return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen, 886 0, tx)); 887 } 888 889 int 890 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot, 891 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 892 { 893 return (zap_create_claim_norm_dnsize(os, obj, 894 0, ot, bonustype, bonuslen, dnodesize, tx)); 895 } 896 897 int 898 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 899 dmu_object_type_t ot, 900 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 901 { 902 return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype, 903 bonuslen, 0, tx)); 904 } 905 906 int 907 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags, 908 dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, 909 int dnodesize, dmu_tx_t *tx) 910 { 911 dnode_t *dn; 912 int error; 913 914 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); 915 error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen, 916 dnodesize, tx); 917 if (error != 0) 918 return (error); 919 920 error = dnode_hold(os, obj, FTAG, &dn); 921 if (error != 0) 922 return (error); 923 924 mzap_create_impl(dn, normflags, 0, tx); 925 926 dnode_rele(dn, FTAG); 927 928 return (0); 929 } 930 931 uint64_t 932 zap_create(objset_t *os, dmu_object_type_t ot, 933 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 934 { 935 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 936 } 937 938 uint64_t 939 zap_create_dnsize(objset_t *os, dmu_object_type_t ot, 940 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 941 { 942 return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen, 943 dnodesize, tx)); 944 } 945 946 uint64_t 947 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 948 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 949 { 950 return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen, 951 0, tx)); 952 } 953 954 uint64_t 955 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot, 956 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 957 { 958 return (zap_create_impl(os, normflags, 0, ot, 0, 0, 959 bonustype, bonuslen, dnodesize, NULL, NULL, tx)); 960 } 961 962 uint64_t 963 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 964 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 965 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 966 { 967 return (zap_create_flags_dnsize(os, normflags, flags, ot, 968 leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx)); 969 } 970 971 uint64_t 972 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags, 973 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 974 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 975 { 976 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift, 977 indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL, 978 tx)); 979 } 980 981 /* 982 * Create a zap object and return a pointer to the newly allocated dnode via 983 * the allocated_dnode argument. The returned dnode will be held and the 984 * caller is responsible for releasing the hold by calling dnode_rele(). 985 */ 986 uint64_t 987 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags, 988 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 989 dmu_object_type_t bonustype, int bonuslen, int dnodesize, 990 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx) 991 { 992 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift, 993 indirect_blockshift, bonustype, bonuslen, dnodesize, 994 allocated_dnode, tag, tx)); 995 } 996 997 int 998 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 999 { 1000 /* 1001 * dmu_object_free will free the object number and free the 1002 * data. Freeing the data will cause our pageout function to be 1003 * called, which will destroy our data (zap_leaf_t's and zap_t). 1004 */ 1005 1006 return (dmu_object_free(os, zapobj, tx)); 1007 } 1008 1009 void 1010 zap_evict_sync(void *dbu) 1011 { 1012 zap_t *zap = dbu; 1013 1014 rw_destroy(&zap->zap_rwlock); 1015 1016 if (zap->zap_ismicro) 1017 mze_destroy(zap); 1018 else 1019 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 1020 1021 kmem_free(zap, sizeof (zap_t)); 1022 } 1023 1024 int 1025 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 1026 { 1027 zap_t *zap; 1028 1029 int err = 1030 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1031 if (err != 0) 1032 return (err); 1033 if (!zap->zap_ismicro) { 1034 err = fzap_count(zap, count); 1035 } else { 1036 *count = zap->zap_m.zap_num_entries; 1037 } 1038 zap_unlockdir(zap, FTAG); 1039 return (err); 1040 } 1041 1042 /* 1043 * zn may be NULL; if not specified, it will be computed if needed. 1044 * See also the comment above zap_entry_normalization_conflict(). 1045 */ 1046 static boolean_t 1047 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze, 1048 zfs_btree_index_t *idx) 1049 { 1050 boolean_t allocdzn = B_FALSE; 1051 mzap_ent_t *other; 1052 zfs_btree_index_t oidx; 1053 1054 if (zap->zap_normflags == 0) 1055 return (B_FALSE); 1056 1057 for (other = zfs_btree_prev(&zap->zap_m.zap_tree, idx, &oidx); 1058 other && other->mze_hash == mze->mze_hash; 1059 other = zfs_btree_prev(&zap->zap_m.zap_tree, &oidx, &oidx)) { 1060 1061 if (zn == NULL) { 1062 zn = zap_name_alloc_str(zap, 1063 MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE); 1064 allocdzn = B_TRUE; 1065 } 1066 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { 1067 if (allocdzn) 1068 zap_name_free(zn); 1069 return (B_TRUE); 1070 } 1071 } 1072 1073 for (other = zfs_btree_next(&zap->zap_m.zap_tree, idx, &oidx); 1074 other && other->mze_hash == mze->mze_hash; 1075 other = zfs_btree_next(&zap->zap_m.zap_tree, &oidx, &oidx)) { 1076 1077 if (zn == NULL) { 1078 zn = zap_name_alloc_str(zap, 1079 MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE); 1080 allocdzn = B_TRUE; 1081 } 1082 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { 1083 if (allocdzn) 1084 zap_name_free(zn); 1085 return (B_TRUE); 1086 } 1087 } 1088 1089 if (allocdzn) 1090 zap_name_free(zn); 1091 return (B_FALSE); 1092 } 1093 1094 /* 1095 * Routines for manipulating attributes. 1096 */ 1097 1098 int 1099 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 1100 uint64_t integer_size, uint64_t num_integers, void *buf) 1101 { 1102 return (zap_lookup_norm(os, zapobj, name, integer_size, 1103 num_integers, buf, 0, NULL, 0, NULL)); 1104 } 1105 1106 static int 1107 zap_lookup_impl(zap_t *zap, const char *name, 1108 uint64_t integer_size, uint64_t num_integers, void *buf, 1109 matchtype_t mt, char *realname, int rn_len, 1110 boolean_t *ncp) 1111 { 1112 int err = 0; 1113 1114 zap_name_t *zn = zap_name_alloc_str(zap, name, mt); 1115 if (zn == NULL) 1116 return (SET_ERROR(ENOTSUP)); 1117 1118 if (!zap->zap_ismicro) { 1119 err = fzap_lookup(zn, integer_size, num_integers, buf, 1120 realname, rn_len, ncp); 1121 } else { 1122 zfs_btree_index_t idx; 1123 mzap_ent_t *mze = mze_find(zn, &idx); 1124 if (mze == NULL) { 1125 err = SET_ERROR(ENOENT); 1126 } else { 1127 if (num_integers < 1) { 1128 err = SET_ERROR(EOVERFLOW); 1129 } else if (integer_size != 8) { 1130 err = SET_ERROR(EINVAL); 1131 } else { 1132 *(uint64_t *)buf = 1133 MZE_PHYS(zap, mze)->mze_value; 1134 if (realname != NULL) 1135 (void) strlcpy(realname, 1136 MZE_PHYS(zap, mze)->mze_name, 1137 rn_len); 1138 if (ncp) { 1139 *ncp = mzap_normalization_conflict(zap, 1140 zn, mze, &idx); 1141 } 1142 } 1143 } 1144 } 1145 zap_name_free(zn); 1146 return (err); 1147 } 1148 1149 int 1150 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 1151 uint64_t integer_size, uint64_t num_integers, void *buf, 1152 matchtype_t mt, char *realname, int rn_len, 1153 boolean_t *ncp) 1154 { 1155 zap_t *zap; 1156 1157 int err = 1158 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1159 if (err != 0) 1160 return (err); 1161 err = zap_lookup_impl(zap, name, integer_size, 1162 num_integers, buf, mt, realname, rn_len, ncp); 1163 zap_unlockdir(zap, FTAG); 1164 return (err); 1165 } 1166 1167 int 1168 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name) 1169 { 1170 zap_t *zap; 1171 int err; 1172 zap_name_t *zn; 1173 1174 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1175 if (err) 1176 return (err); 1177 zn = zap_name_alloc_str(zap, name, 0); 1178 if (zn == NULL) { 1179 zap_unlockdir(zap, FTAG); 1180 return (SET_ERROR(ENOTSUP)); 1181 } 1182 1183 fzap_prefetch(zn); 1184 zap_name_free(zn); 1185 zap_unlockdir(zap, FTAG); 1186 return (err); 1187 } 1188 1189 int 1190 zap_prefetch_object(objset_t *os, uint64_t zapobj) 1191 { 1192 int error; 1193 dmu_object_info_t doi; 1194 1195 error = dmu_object_info(os, zapobj, &doi); 1196 if (error == 0 && DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP) 1197 error = SET_ERROR(EINVAL); 1198 if (error == 0) 1199 dmu_prefetch_wait(os, zapobj, 0, doi.doi_max_offset); 1200 1201 return (error); 1202 } 1203 1204 int 1205 zap_lookup_by_dnode(dnode_t *dn, const char *name, 1206 uint64_t integer_size, uint64_t num_integers, void *buf) 1207 { 1208 return (zap_lookup_norm_by_dnode(dn, name, integer_size, 1209 num_integers, buf, 0, NULL, 0, NULL)); 1210 } 1211 1212 int 1213 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name, 1214 uint64_t integer_size, uint64_t num_integers, void *buf, 1215 matchtype_t mt, char *realname, int rn_len, 1216 boolean_t *ncp) 1217 { 1218 zap_t *zap; 1219 1220 int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE, 1221 FTAG, &zap); 1222 if (err != 0) 1223 return (err); 1224 err = zap_lookup_impl(zap, name, integer_size, 1225 num_integers, buf, mt, realname, rn_len, ncp); 1226 zap_unlockdir(zap, FTAG); 1227 return (err); 1228 } 1229 1230 int 1231 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1232 int key_numints) 1233 { 1234 zap_t *zap; 1235 1236 int err = 1237 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1238 if (err != 0) 1239 return (err); 1240 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1241 if (zn == NULL) { 1242 zap_unlockdir(zap, FTAG); 1243 return (SET_ERROR(ENOTSUP)); 1244 } 1245 1246 fzap_prefetch(zn); 1247 zap_name_free(zn); 1248 zap_unlockdir(zap, FTAG); 1249 return (err); 1250 } 1251 1252 int 1253 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1254 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) 1255 { 1256 zap_t *zap; 1257 1258 int err = 1259 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1260 if (err != 0) 1261 return (err); 1262 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1263 if (zn == NULL) { 1264 zap_unlockdir(zap, FTAG); 1265 return (SET_ERROR(ENOTSUP)); 1266 } 1267 1268 err = fzap_lookup(zn, integer_size, num_integers, buf, 1269 NULL, 0, NULL); 1270 zap_name_free(zn); 1271 zap_unlockdir(zap, FTAG); 1272 return (err); 1273 } 1274 1275 int 1276 zap_contains(objset_t *os, uint64_t zapobj, const char *name) 1277 { 1278 int err = zap_lookup_norm(os, zapobj, name, 0, 1279 0, NULL, 0, NULL, 0, NULL); 1280 if (err == EOVERFLOW || err == EINVAL) 1281 err = 0; /* found, but skipped reading the value */ 1282 return (err); 1283 } 1284 1285 int 1286 zap_length(objset_t *os, uint64_t zapobj, const char *name, 1287 uint64_t *integer_size, uint64_t *num_integers) 1288 { 1289 zap_t *zap; 1290 1291 int err = 1292 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1293 if (err != 0) 1294 return (err); 1295 zap_name_t *zn = zap_name_alloc_str(zap, name, 0); 1296 if (zn == NULL) { 1297 zap_unlockdir(zap, FTAG); 1298 return (SET_ERROR(ENOTSUP)); 1299 } 1300 if (!zap->zap_ismicro) { 1301 err = fzap_length(zn, integer_size, num_integers); 1302 } else { 1303 zfs_btree_index_t idx; 1304 mzap_ent_t *mze = mze_find(zn, &idx); 1305 if (mze == NULL) { 1306 err = SET_ERROR(ENOENT); 1307 } else { 1308 if (integer_size) 1309 *integer_size = 8; 1310 if (num_integers) 1311 *num_integers = 1; 1312 } 1313 } 1314 zap_name_free(zn); 1315 zap_unlockdir(zap, FTAG); 1316 return (err); 1317 } 1318 1319 int 1320 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1321 int key_numints, uint64_t *integer_size, uint64_t *num_integers) 1322 { 1323 zap_t *zap; 1324 1325 int err = 1326 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1327 if (err != 0) 1328 return (err); 1329 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1330 if (zn == NULL) { 1331 zap_unlockdir(zap, FTAG); 1332 return (SET_ERROR(ENOTSUP)); 1333 } 1334 err = fzap_length(zn, integer_size, num_integers); 1335 zap_name_free(zn); 1336 zap_unlockdir(zap, FTAG); 1337 return (err); 1338 } 1339 1340 static void 1341 mzap_addent(zap_name_t *zn, uint64_t value) 1342 { 1343 zap_t *zap = zn->zn_zap; 1344 uint16_t start = zap->zap_m.zap_alloc_next; 1345 1346 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 1347 1348 #ifdef ZFS_DEBUG 1349 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) { 1350 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 1351 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); 1352 } 1353 #endif 1354 1355 uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash); 1356 /* given the limited size of the microzap, this can't happen */ 1357 ASSERT(cd < zap_maxcd(zap)); 1358 1359 again: 1360 for (uint16_t i = start; i < zap->zap_m.zap_num_chunks; i++) { 1361 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 1362 if (mze->mze_name[0] == 0) { 1363 mze->mze_value = value; 1364 mze->mze_cd = cd; 1365 (void) strlcpy(mze->mze_name, zn->zn_key_orig, 1366 sizeof (mze->mze_name)); 1367 zap->zap_m.zap_num_entries++; 1368 zap->zap_m.zap_alloc_next = i+1; 1369 if (zap->zap_m.zap_alloc_next == 1370 zap->zap_m.zap_num_chunks) 1371 zap->zap_m.zap_alloc_next = 0; 1372 mze_insert(zap, i, zn->zn_hash); 1373 return; 1374 } 1375 } 1376 if (start != 0) { 1377 start = 0; 1378 goto again; 1379 } 1380 cmn_err(CE_PANIC, "out of entries!"); 1381 } 1382 1383 static int 1384 zap_add_impl(zap_t *zap, const char *key, 1385 int integer_size, uint64_t num_integers, 1386 const void *val, dmu_tx_t *tx, const void *tag) 1387 { 1388 const uint64_t *intval = val; 1389 int err = 0; 1390 1391 zap_name_t *zn = zap_name_alloc_str(zap, key, 0); 1392 if (zn == NULL) { 1393 zap_unlockdir(zap, tag); 1394 return (SET_ERROR(ENOTSUP)); 1395 } 1396 if (!zap->zap_ismicro) { 1397 err = fzap_add(zn, integer_size, num_integers, val, tag, tx); 1398 zap = zn->zn_zap; /* fzap_add() may change zap */ 1399 } else if (integer_size != 8 || num_integers != 1 || 1400 strlen(key) >= MZAP_NAME_LEN || 1401 !mze_canfit_fzap_leaf(zn, zn->zn_hash)) { 1402 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0); 1403 if (err == 0) { 1404 err = fzap_add(zn, integer_size, num_integers, val, 1405 tag, tx); 1406 } 1407 zap = zn->zn_zap; /* fzap_add() may change zap */ 1408 } else { 1409 zfs_btree_index_t idx; 1410 if (mze_find(zn, &idx) != NULL) { 1411 err = SET_ERROR(EEXIST); 1412 } else { 1413 mzap_addent(zn, *intval); 1414 } 1415 } 1416 ASSERT(zap == zn->zn_zap); 1417 zap_name_free(zn); 1418 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1419 zap_unlockdir(zap, tag); 1420 return (err); 1421 } 1422 1423 int 1424 zap_add(objset_t *os, uint64_t zapobj, const char *key, 1425 int integer_size, uint64_t num_integers, 1426 const void *val, dmu_tx_t *tx) 1427 { 1428 zap_t *zap; 1429 int err; 1430 1431 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1432 if (err != 0) 1433 return (err); 1434 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); 1435 /* zap_add_impl() calls zap_unlockdir() */ 1436 return (err); 1437 } 1438 1439 int 1440 zap_add_by_dnode(dnode_t *dn, const char *key, 1441 int integer_size, uint64_t num_integers, 1442 const void *val, dmu_tx_t *tx) 1443 { 1444 zap_t *zap; 1445 int err; 1446 1447 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1448 if (err != 0) 1449 return (err); 1450 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); 1451 /* zap_add_impl() calls zap_unlockdir() */ 1452 return (err); 1453 } 1454 1455 static int 1456 zap_add_uint64_impl(zap_t *zap, const uint64_t *key, 1457 int key_numints, int integer_size, uint64_t num_integers, 1458 const void *val, dmu_tx_t *tx, const void *tag) 1459 { 1460 int err; 1461 1462 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1463 if (zn == NULL) { 1464 zap_unlockdir(zap, tag); 1465 return (SET_ERROR(ENOTSUP)); 1466 } 1467 err = fzap_add(zn, integer_size, num_integers, val, tag, tx); 1468 zap = zn->zn_zap; /* fzap_add() may change zap */ 1469 zap_name_free(zn); 1470 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1471 zap_unlockdir(zap, tag); 1472 return (err); 1473 } 1474 1475 int 1476 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1477 int key_numints, int integer_size, uint64_t num_integers, 1478 const void *val, dmu_tx_t *tx) 1479 { 1480 zap_t *zap; 1481 1482 int err = 1483 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1484 if (err != 0) 1485 return (err); 1486 err = zap_add_uint64_impl(zap, key, key_numints, 1487 integer_size, num_integers, val, tx, FTAG); 1488 /* zap_add_uint64_impl() calls zap_unlockdir() */ 1489 return (err); 1490 } 1491 1492 int 1493 zap_add_uint64_by_dnode(dnode_t *dn, const uint64_t *key, 1494 int key_numints, int integer_size, uint64_t num_integers, 1495 const void *val, dmu_tx_t *tx) 1496 { 1497 zap_t *zap; 1498 1499 int err = 1500 zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1501 if (err != 0) 1502 return (err); 1503 err = zap_add_uint64_impl(zap, key, key_numints, 1504 integer_size, num_integers, val, tx, FTAG); 1505 /* zap_add_uint64_impl() calls zap_unlockdir() */ 1506 return (err); 1507 } 1508 1509 int 1510 zap_update(objset_t *os, uint64_t zapobj, const char *name, 1511 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1512 { 1513 zap_t *zap; 1514 const uint64_t *intval = val; 1515 1516 int err = 1517 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1518 if (err != 0) 1519 return (err); 1520 zap_name_t *zn = zap_name_alloc_str(zap, name, 0); 1521 if (zn == NULL) { 1522 zap_unlockdir(zap, FTAG); 1523 return (SET_ERROR(ENOTSUP)); 1524 } 1525 if (!zap->zap_ismicro) { 1526 err = fzap_update(zn, integer_size, num_integers, val, 1527 FTAG, tx); 1528 zap = zn->zn_zap; /* fzap_update() may change zap */ 1529 } else if (integer_size != 8 || num_integers != 1 || 1530 strlen(name) >= MZAP_NAME_LEN) { 1531 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 1532 (u_longlong_t)zapobj, integer_size, 1533 (u_longlong_t)num_integers, name); 1534 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0); 1535 if (err == 0) { 1536 err = fzap_update(zn, integer_size, num_integers, 1537 val, FTAG, tx); 1538 } 1539 zap = zn->zn_zap; /* fzap_update() may change zap */ 1540 } else { 1541 zfs_btree_index_t idx; 1542 mzap_ent_t *mze = mze_find(zn, &idx); 1543 if (mze != NULL) { 1544 MZE_PHYS(zap, mze)->mze_value = *intval; 1545 } else { 1546 mzap_addent(zn, *intval); 1547 } 1548 } 1549 ASSERT(zap == zn->zn_zap); 1550 zap_name_free(zn); 1551 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1552 zap_unlockdir(zap, FTAG); 1553 return (err); 1554 } 1555 1556 static int 1557 zap_update_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints, 1558 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx, 1559 const void *tag) 1560 { 1561 int err; 1562 1563 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1564 if (zn == NULL) { 1565 zap_unlockdir(zap, tag); 1566 return (SET_ERROR(ENOTSUP)); 1567 } 1568 err = fzap_update(zn, integer_size, num_integers, val, tag, tx); 1569 zap = zn->zn_zap; /* fzap_update() may change zap */ 1570 zap_name_free(zn); 1571 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1572 zap_unlockdir(zap, tag); 1573 return (err); 1574 } 1575 1576 int 1577 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1578 int key_numints, int integer_size, uint64_t num_integers, const void *val, 1579 dmu_tx_t *tx) 1580 { 1581 zap_t *zap; 1582 1583 int err = 1584 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1585 if (err != 0) 1586 return (err); 1587 err = zap_update_uint64_impl(zap, key, key_numints, 1588 integer_size, num_integers, val, tx, FTAG); 1589 /* zap_update_uint64_impl() calls zap_unlockdir() */ 1590 return (err); 1591 } 1592 1593 int 1594 zap_update_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints, 1595 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1596 { 1597 zap_t *zap; 1598 1599 int err = 1600 zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1601 if (err != 0) 1602 return (err); 1603 err = zap_update_uint64_impl(zap, key, key_numints, 1604 integer_size, num_integers, val, tx, FTAG); 1605 /* zap_update_uint64_impl() calls zap_unlockdir() */ 1606 return (err); 1607 } 1608 1609 int 1610 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 1611 { 1612 return (zap_remove_norm(os, zapobj, name, 0, tx)); 1613 } 1614 1615 static int 1616 zap_remove_impl(zap_t *zap, const char *name, 1617 matchtype_t mt, dmu_tx_t *tx) 1618 { 1619 int err = 0; 1620 1621 zap_name_t *zn = zap_name_alloc_str(zap, name, mt); 1622 if (zn == NULL) 1623 return (SET_ERROR(ENOTSUP)); 1624 if (!zap->zap_ismicro) { 1625 err = fzap_remove(zn, tx); 1626 } else { 1627 zfs_btree_index_t idx; 1628 mzap_ent_t *mze = mze_find(zn, &idx); 1629 if (mze == NULL) { 1630 err = SET_ERROR(ENOENT); 1631 } else { 1632 zap->zap_m.zap_num_entries--; 1633 memset(MZE_PHYS(zap, mze), 0, sizeof (mzap_ent_phys_t)); 1634 zfs_btree_remove_idx(&zap->zap_m.zap_tree, &idx); 1635 } 1636 } 1637 zap_name_free(zn); 1638 return (err); 1639 } 1640 1641 int 1642 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 1643 matchtype_t mt, dmu_tx_t *tx) 1644 { 1645 zap_t *zap; 1646 int err; 1647 1648 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1649 if (err) 1650 return (err); 1651 err = zap_remove_impl(zap, name, mt, tx); 1652 zap_unlockdir(zap, FTAG); 1653 return (err); 1654 } 1655 1656 int 1657 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx) 1658 { 1659 zap_t *zap; 1660 int err; 1661 1662 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1663 if (err) 1664 return (err); 1665 err = zap_remove_impl(zap, name, 0, tx); 1666 zap_unlockdir(zap, FTAG); 1667 return (err); 1668 } 1669 1670 static int 1671 zap_remove_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints, 1672 dmu_tx_t *tx, const void *tag) 1673 { 1674 int err; 1675 1676 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1677 if (zn == NULL) { 1678 zap_unlockdir(zap, tag); 1679 return (SET_ERROR(ENOTSUP)); 1680 } 1681 err = fzap_remove(zn, tx); 1682 zap_name_free(zn); 1683 zap_unlockdir(zap, tag); 1684 return (err); 1685 } 1686 1687 int 1688 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1689 int key_numints, dmu_tx_t *tx) 1690 { 1691 zap_t *zap; 1692 1693 int err = 1694 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1695 if (err != 0) 1696 return (err); 1697 err = zap_remove_uint64_impl(zap, key, key_numints, tx, FTAG); 1698 /* zap_remove_uint64_impl() calls zap_unlockdir() */ 1699 return (err); 1700 } 1701 1702 int 1703 zap_remove_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints, 1704 dmu_tx_t *tx) 1705 { 1706 zap_t *zap; 1707 1708 int err = 1709 zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1710 if (err != 0) 1711 return (err); 1712 err = zap_remove_uint64_impl(zap, key, key_numints, tx, FTAG); 1713 /* zap_remove_uint64_impl() calls zap_unlockdir() */ 1714 return (err); 1715 } 1716 1717 1718 static zap_attribute_t * 1719 zap_attribute_alloc_impl(boolean_t longname) 1720 { 1721 zap_attribute_t *za; 1722 1723 za = kmem_cache_alloc((longname)? zap_attr_long_cache : zap_attr_cache, 1724 KM_SLEEP); 1725 za->za_name_len = (longname)? ZAP_MAXNAMELEN_NEW : ZAP_MAXNAMELEN; 1726 return (za); 1727 } 1728 1729 zap_attribute_t * 1730 zap_attribute_alloc(void) 1731 { 1732 return (zap_attribute_alloc_impl(B_FALSE)); 1733 } 1734 1735 zap_attribute_t * 1736 zap_attribute_long_alloc(void) 1737 { 1738 return (zap_attribute_alloc_impl(B_TRUE)); 1739 } 1740 1741 void 1742 zap_attribute_free(zap_attribute_t *za) 1743 { 1744 if (za->za_name_len == ZAP_MAXNAMELEN) { 1745 kmem_cache_free(zap_attr_cache, za); 1746 } else { 1747 ASSERT3U(za->za_name_len, ==, ZAP_MAXNAMELEN_NEW); 1748 kmem_cache_free(zap_attr_long_cache, za); 1749 } 1750 } 1751 1752 /* 1753 * Routines for iterating over the attributes. 1754 */ 1755 1756 static void 1757 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1758 uint64_t serialized, boolean_t prefetch) 1759 { 1760 zc->zc_objset = os; 1761 zc->zc_zap = NULL; 1762 zc->zc_leaf = NULL; 1763 zc->zc_zapobj = zapobj; 1764 zc->zc_serialized = serialized; 1765 zc->zc_hash = 0; 1766 zc->zc_cd = 0; 1767 zc->zc_prefetch = prefetch; 1768 } 1769 void 1770 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1771 uint64_t serialized) 1772 { 1773 zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE); 1774 } 1775 1776 /* 1777 * Initialize a cursor at the beginning of the ZAP object. The entire 1778 * ZAP object will be prefetched. 1779 */ 1780 void 1781 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1782 { 1783 zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE); 1784 } 1785 1786 /* 1787 * Initialize a cursor at the beginning, but request that we not prefetch 1788 * the entire ZAP object. 1789 */ 1790 void 1791 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1792 { 1793 zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE); 1794 } 1795 1796 void 1797 zap_cursor_fini(zap_cursor_t *zc) 1798 { 1799 if (zc->zc_zap) { 1800 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1801 zap_unlockdir(zc->zc_zap, NULL); 1802 zc->zc_zap = NULL; 1803 } 1804 if (zc->zc_leaf) { 1805 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1806 zap_put_leaf(zc->zc_leaf); 1807 zc->zc_leaf = NULL; 1808 } 1809 zc->zc_objset = NULL; 1810 } 1811 1812 uint64_t 1813 zap_cursor_serialize(zap_cursor_t *zc) 1814 { 1815 if (zc->zc_hash == -1ULL) 1816 return (-1ULL); 1817 if (zc->zc_zap == NULL) 1818 return (zc->zc_serialized); 1819 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); 1820 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); 1821 1822 /* 1823 * We want to keep the high 32 bits of the cursor zero if we can, so 1824 * that 32-bit programs can access this. So usually use a small 1825 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits 1826 * of the cursor. 1827 * 1828 * [ collision differentiator | zap_hashbits()-bit hash value ] 1829 */ 1830 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | 1831 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); 1832 } 1833 1834 int 1835 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 1836 { 1837 int err; 1838 1839 if (zc->zc_hash == -1ULL) 1840 return (SET_ERROR(ENOENT)); 1841 1842 if (zc->zc_zap == NULL) { 1843 int hb; 1844 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1845 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap); 1846 if (err != 0) 1847 return (err); 1848 1849 /* 1850 * To support zap_cursor_init_serialized, advance, retrieve, 1851 * we must add to the existing zc_cd, which may already 1852 * be 1 due to the zap_cursor_advance. 1853 */ 1854 ASSERT(zc->zc_hash == 0); 1855 hb = zap_hashbits(zc->zc_zap); 1856 zc->zc_hash = zc->zc_serialized << (64 - hb); 1857 zc->zc_cd += zc->zc_serialized >> hb; 1858 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ 1859 zc->zc_cd = 0; 1860 } else { 1861 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1862 } 1863 if (!zc->zc_zap->zap_ismicro) { 1864 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1865 } else { 1866 zfs_btree_index_t idx; 1867 mzap_ent_t mze_tofind; 1868 1869 mze_tofind.mze_hash = zc->zc_hash >> 32; 1870 mze_tofind.mze_cd = zc->zc_cd; 1871 1872 mzap_ent_t *mze = zfs_btree_find(&zc->zc_zap->zap_m.zap_tree, 1873 &mze_tofind, &idx); 1874 if (mze == NULL) { 1875 mze = zfs_btree_next(&zc->zc_zap->zap_m.zap_tree, 1876 &idx, &idx); 1877 } 1878 if (mze) { 1879 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); 1880 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); 1881 za->za_normalization_conflict = 1882 mzap_normalization_conflict(zc->zc_zap, NULL, 1883 mze, &idx); 1884 za->za_integer_length = 8; 1885 za->za_num_integers = 1; 1886 za->za_first_integer = mzep->mze_value; 1887 (void) strlcpy(za->za_name, mzep->mze_name, 1888 za->za_name_len); 1889 zc->zc_hash = (uint64_t)mze->mze_hash << 32; 1890 zc->zc_cd = mze->mze_cd; 1891 err = 0; 1892 } else { 1893 zc->zc_hash = -1ULL; 1894 err = SET_ERROR(ENOENT); 1895 } 1896 } 1897 rw_exit(&zc->zc_zap->zap_rwlock); 1898 return (err); 1899 } 1900 1901 void 1902 zap_cursor_advance(zap_cursor_t *zc) 1903 { 1904 if (zc->zc_hash == -1ULL) 1905 return; 1906 zc->zc_cd++; 1907 } 1908 1909 int 1910 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1911 { 1912 zap_t *zap; 1913 1914 int err = 1915 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1916 if (err != 0) 1917 return (err); 1918 1919 memset(zs, 0, sizeof (zap_stats_t)); 1920 1921 if (zap->zap_ismicro) { 1922 zs->zs_blocksize = zap->zap_dbuf->db_size; 1923 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1924 zs->zs_num_blocks = 1; 1925 } else { 1926 fzap_get_stats(zap, zs); 1927 } 1928 zap_unlockdir(zap, FTAG); 1929 return (0); 1930 } 1931 1932 #if defined(_KERNEL) 1933 EXPORT_SYMBOL(zap_create); 1934 EXPORT_SYMBOL(zap_create_dnsize); 1935 EXPORT_SYMBOL(zap_create_norm); 1936 EXPORT_SYMBOL(zap_create_norm_dnsize); 1937 EXPORT_SYMBOL(zap_create_flags); 1938 EXPORT_SYMBOL(zap_create_flags_dnsize); 1939 EXPORT_SYMBOL(zap_create_claim); 1940 EXPORT_SYMBOL(zap_create_claim_norm); 1941 EXPORT_SYMBOL(zap_create_claim_norm_dnsize); 1942 EXPORT_SYMBOL(zap_create_hold); 1943 EXPORT_SYMBOL(zap_destroy); 1944 EXPORT_SYMBOL(zap_lookup); 1945 EXPORT_SYMBOL(zap_lookup_by_dnode); 1946 EXPORT_SYMBOL(zap_lookup_norm); 1947 EXPORT_SYMBOL(zap_lookup_uint64); 1948 EXPORT_SYMBOL(zap_contains); 1949 EXPORT_SYMBOL(zap_prefetch); 1950 EXPORT_SYMBOL(zap_prefetch_uint64); 1951 EXPORT_SYMBOL(zap_prefetch_object); 1952 EXPORT_SYMBOL(zap_add); 1953 EXPORT_SYMBOL(zap_add_by_dnode); 1954 EXPORT_SYMBOL(zap_add_uint64); 1955 EXPORT_SYMBOL(zap_add_uint64_by_dnode); 1956 EXPORT_SYMBOL(zap_update); 1957 EXPORT_SYMBOL(zap_update_uint64); 1958 EXPORT_SYMBOL(zap_update_uint64_by_dnode); 1959 EXPORT_SYMBOL(zap_length); 1960 EXPORT_SYMBOL(zap_length_uint64); 1961 EXPORT_SYMBOL(zap_remove); 1962 EXPORT_SYMBOL(zap_remove_by_dnode); 1963 EXPORT_SYMBOL(zap_remove_norm); 1964 EXPORT_SYMBOL(zap_remove_uint64); 1965 EXPORT_SYMBOL(zap_remove_uint64_by_dnode); 1966 EXPORT_SYMBOL(zap_count); 1967 EXPORT_SYMBOL(zap_value_search); 1968 EXPORT_SYMBOL(zap_join); 1969 EXPORT_SYMBOL(zap_join_increment); 1970 EXPORT_SYMBOL(zap_add_int); 1971 EXPORT_SYMBOL(zap_remove_int); 1972 EXPORT_SYMBOL(zap_lookup_int); 1973 EXPORT_SYMBOL(zap_increment_int); 1974 EXPORT_SYMBOL(zap_add_int_key); 1975 EXPORT_SYMBOL(zap_lookup_int_key); 1976 EXPORT_SYMBOL(zap_increment); 1977 EXPORT_SYMBOL(zap_cursor_init); 1978 EXPORT_SYMBOL(zap_cursor_fini); 1979 EXPORT_SYMBOL(zap_cursor_retrieve); 1980 EXPORT_SYMBOL(zap_cursor_advance); 1981 EXPORT_SYMBOL(zap_cursor_serialize); 1982 EXPORT_SYMBOL(zap_cursor_init_serialized); 1983 EXPORT_SYMBOL(zap_get_stats); 1984 1985 /* CSTYLED */ 1986 ZFS_MODULE_PARAM(zfs, , zap_micro_max_size, INT, ZMOD_RW, 1987 "Maximum micro ZAP size, before converting to a fat ZAP, in bytes"); 1988 #endif 1989