xref: /freebsd/sys/contrib/openzfs/module/zfs/zap_micro.c (revision a03411e84728e9b267056fd31c7d1d9d1dc1b01e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 #include <sys/zio.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zfs_context.h>
33 #include <sys/zap.h>
34 #include <sys/zap_impl.h>
35 #include <sys/zap_leaf.h>
36 #include <sys/btree.h>
37 #include <sys/arc.h>
38 #include <sys/dmu_objset.h>
39 
40 #ifdef _KERNEL
41 #include <sys/sunddi.h>
42 #endif
43 
44 int zap_micro_max_size = MZAP_MAX_BLKSZ;
45 
46 static int mzap_upgrade(zap_t **zapp,
47     const void *tag, dmu_tx_t *tx, zap_flags_t flags);
48 
49 uint64_t
50 zap_getflags(zap_t *zap)
51 {
52 	if (zap->zap_ismicro)
53 		return (0);
54 	return (zap_f_phys(zap)->zap_flags);
55 }
56 
57 int
58 zap_hashbits(zap_t *zap)
59 {
60 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
61 		return (48);
62 	else
63 		return (28);
64 }
65 
66 uint32_t
67 zap_maxcd(zap_t *zap)
68 {
69 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
70 		return ((1<<16)-1);
71 	else
72 		return (-1U);
73 }
74 
75 static uint64_t
76 zap_hash(zap_name_t *zn)
77 {
78 	zap_t *zap = zn->zn_zap;
79 	uint64_t h = 0;
80 
81 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
82 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
83 		h = *(uint64_t *)zn->zn_key_orig;
84 	} else {
85 		h = zap->zap_salt;
86 		ASSERT(h != 0);
87 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
88 
89 		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
90 			const uint64_t *wp = zn->zn_key_norm;
91 
92 			ASSERT(zn->zn_key_intlen == 8);
93 			for (int i = 0; i < zn->zn_key_norm_numints;
94 			    wp++, i++) {
95 				uint64_t word = *wp;
96 
97 				for (int j = 0; j < 8; j++) {
98 					h = (h >> 8) ^
99 					    zfs_crc64_table[(h ^ word) & 0xFF];
100 					word >>= NBBY;
101 				}
102 			}
103 		} else {
104 			const uint8_t *cp = zn->zn_key_norm;
105 
106 			/*
107 			 * We previously stored the terminating null on
108 			 * disk, but didn't hash it, so we need to
109 			 * continue to not hash it.  (The
110 			 * zn_key_*_numints includes the terminating
111 			 * null for non-binary keys.)
112 			 */
113 			int len = zn->zn_key_norm_numints - 1;
114 
115 			ASSERT(zn->zn_key_intlen == 1);
116 			for (int i = 0; i < len; cp++, i++) {
117 				h = (h >> 8) ^
118 				    zfs_crc64_table[(h ^ *cp) & 0xFF];
119 			}
120 		}
121 	}
122 	/*
123 	 * Don't use all 64 bits, since we need some in the cookie for
124 	 * the collision differentiator.  We MUST use the high bits,
125 	 * since those are the ones that we first pay attention to when
126 	 * choosing the bucket.
127 	 */
128 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
129 
130 	return (h);
131 }
132 
133 static int
134 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
135 {
136 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
137 
138 	size_t inlen = strlen(name) + 1;
139 	size_t outlen = ZAP_MAXNAMELEN;
140 
141 	int err = 0;
142 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
143 	    normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
144 	    U8_UNICODE_LATEST, &err);
145 
146 	return (err);
147 }
148 
149 boolean_t
150 zap_match(zap_name_t *zn, const char *matchname)
151 {
152 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
153 
154 	if (zn->zn_matchtype & MT_NORMALIZE) {
155 		char norm[ZAP_MAXNAMELEN];
156 
157 		if (zap_normalize(zn->zn_zap, matchname, norm,
158 		    zn->zn_normflags) != 0)
159 			return (B_FALSE);
160 
161 		return (strcmp(zn->zn_key_norm, norm) == 0);
162 	} else {
163 		return (strcmp(zn->zn_key_orig, matchname) == 0);
164 	}
165 }
166 
167 static zap_name_t *
168 zap_name_alloc(zap_t *zap)
169 {
170 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
171 	zn->zn_zap = zap;
172 	return (zn);
173 }
174 
175 void
176 zap_name_free(zap_name_t *zn)
177 {
178 	kmem_free(zn, sizeof (zap_name_t));
179 }
180 
181 static int
182 zap_name_init_str(zap_name_t *zn, const char *key, matchtype_t mt)
183 {
184 	zap_t *zap = zn->zn_zap;
185 
186 	zn->zn_key_intlen = sizeof (*key);
187 	zn->zn_key_orig = key;
188 	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
189 	zn->zn_matchtype = mt;
190 	zn->zn_normflags = zap->zap_normflags;
191 
192 	/*
193 	 * If we're dealing with a case sensitive lookup on a mixed or
194 	 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
195 	 * will fold case to all caps overriding the lookup request.
196 	 */
197 	if (mt & MT_MATCH_CASE)
198 		zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
199 
200 	if (zap->zap_normflags) {
201 		/*
202 		 * We *must* use zap_normflags because this normalization is
203 		 * what the hash is computed from.
204 		 */
205 		if (zap_normalize(zap, key, zn->zn_normbuf,
206 		    zap->zap_normflags) != 0)
207 			return (SET_ERROR(ENOTSUP));
208 		zn->zn_key_norm = zn->zn_normbuf;
209 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
210 	} else {
211 		if (mt != 0)
212 			return (SET_ERROR(ENOTSUP));
213 		zn->zn_key_norm = zn->zn_key_orig;
214 		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
215 	}
216 
217 	zn->zn_hash = zap_hash(zn);
218 
219 	if (zap->zap_normflags != zn->zn_normflags) {
220 		/*
221 		 * We *must* use zn_normflags because this normalization is
222 		 * what the matching is based on.  (Not the hash!)
223 		 */
224 		if (zap_normalize(zap, key, zn->zn_normbuf,
225 		    zn->zn_normflags) != 0)
226 			return (SET_ERROR(ENOTSUP));
227 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
228 	}
229 
230 	return (0);
231 }
232 
233 zap_name_t *
234 zap_name_alloc_str(zap_t *zap, const char *key, matchtype_t mt)
235 {
236 	zap_name_t *zn = zap_name_alloc(zap);
237 	if (zap_name_init_str(zn, key, mt) != 0) {
238 		zap_name_free(zn);
239 		return (NULL);
240 	}
241 	return (zn);
242 }
243 
244 static zap_name_t *
245 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
246 {
247 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
248 
249 	ASSERT(zap->zap_normflags == 0);
250 	zn->zn_zap = zap;
251 	zn->zn_key_intlen = sizeof (*key);
252 	zn->zn_key_orig = zn->zn_key_norm = key;
253 	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
254 	zn->zn_matchtype = 0;
255 
256 	zn->zn_hash = zap_hash(zn);
257 	return (zn);
258 }
259 
260 static void
261 mzap_byteswap(mzap_phys_t *buf, size_t size)
262 {
263 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
264 	buf->mz_salt = BSWAP_64(buf->mz_salt);
265 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
266 	int max = (size / MZAP_ENT_LEN) - 1;
267 	for (int i = 0; i < max; i++) {
268 		buf->mz_chunk[i].mze_value =
269 		    BSWAP_64(buf->mz_chunk[i].mze_value);
270 		buf->mz_chunk[i].mze_cd =
271 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
272 	}
273 }
274 
275 void
276 zap_byteswap(void *buf, size_t size)
277 {
278 	uint64_t block_type = *(uint64_t *)buf;
279 
280 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
281 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
282 		mzap_byteswap(buf, size);
283 	} else {
284 		fzap_byteswap(buf, size);
285 	}
286 }
287 
288 __attribute__((always_inline)) inline
289 static int
290 mze_compare(const void *arg1, const void *arg2)
291 {
292 	const mzap_ent_t *mze1 = arg1;
293 	const mzap_ent_t *mze2 = arg2;
294 
295 	return (TREE_CMP((uint64_t)(mze1->mze_hash) << 32 | mze1->mze_cd,
296 	    (uint64_t)(mze2->mze_hash) << 32 | mze2->mze_cd));
297 }
298 
299 ZFS_BTREE_FIND_IN_BUF_FUNC(mze_find_in_buf, mzap_ent_t,
300     mze_compare)
301 
302 static void
303 mze_insert(zap_t *zap, uint16_t chunkid, uint64_t hash)
304 {
305 	mzap_ent_t mze;
306 
307 	ASSERT(zap->zap_ismicro);
308 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
309 
310 	mze.mze_chunkid = chunkid;
311 	ASSERT0(hash & 0xffffffff);
312 	mze.mze_hash = hash >> 32;
313 	ASSERT3U(MZE_PHYS(zap, &mze)->mze_cd, <=, 0xffff);
314 	mze.mze_cd = (uint16_t)MZE_PHYS(zap, &mze)->mze_cd;
315 	ASSERT(MZE_PHYS(zap, &mze)->mze_name[0] != 0);
316 	zfs_btree_add(&zap->zap_m.zap_tree, &mze);
317 }
318 
319 static mzap_ent_t *
320 mze_find(zap_name_t *zn, zfs_btree_index_t *idx)
321 {
322 	mzap_ent_t mze_tofind;
323 	mzap_ent_t *mze;
324 	zfs_btree_t *tree = &zn->zn_zap->zap_m.zap_tree;
325 
326 	ASSERT(zn->zn_zap->zap_ismicro);
327 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
328 
329 	ASSERT0(zn->zn_hash & 0xffffffff);
330 	mze_tofind.mze_hash = zn->zn_hash >> 32;
331 	mze_tofind.mze_cd = 0;
332 
333 	mze = zfs_btree_find(tree, &mze_tofind, idx);
334 	if (mze == NULL)
335 		mze = zfs_btree_next(tree, idx, idx);
336 	for (; mze && mze->mze_hash == mze_tofind.mze_hash;
337 	    mze = zfs_btree_next(tree, idx, idx)) {
338 		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
339 		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
340 			return (mze);
341 	}
342 
343 	return (NULL);
344 }
345 
346 static uint32_t
347 mze_find_unused_cd(zap_t *zap, uint64_t hash)
348 {
349 	mzap_ent_t mze_tofind;
350 	zfs_btree_index_t idx;
351 	zfs_btree_t *tree = &zap->zap_m.zap_tree;
352 
353 	ASSERT(zap->zap_ismicro);
354 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
355 
356 	ASSERT0(hash & 0xffffffff);
357 	hash >>= 32;
358 	mze_tofind.mze_hash = hash;
359 	mze_tofind.mze_cd = 0;
360 
361 	uint32_t cd = 0;
362 	for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
363 	    mze && mze->mze_hash == hash;
364 	    mze = zfs_btree_next(tree, &idx, &idx)) {
365 		if (mze->mze_cd != cd)
366 			break;
367 		cd++;
368 	}
369 
370 	return (cd);
371 }
372 
373 /*
374  * Each mzap entry requires at max : 4 chunks
375  * 3 chunks for names + 1 chunk for value.
376  */
377 #define	MZAP_ENT_CHUNKS	(1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \
378 	ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t)))
379 
380 /*
381  * Check if the current entry keeps the colliding entries under the fatzap leaf
382  * size.
383  */
384 static boolean_t
385 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash)
386 {
387 	zap_t *zap = zn->zn_zap;
388 	mzap_ent_t mze_tofind;
389 	zfs_btree_index_t idx;
390 	zfs_btree_t *tree = &zap->zap_m.zap_tree;
391 	uint32_t mzap_ents = 0;
392 
393 	ASSERT0(hash & 0xffffffff);
394 	hash >>= 32;
395 	mze_tofind.mze_hash = hash;
396 	mze_tofind.mze_cd = 0;
397 
398 	for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx);
399 	    mze && mze->mze_hash == hash;
400 	    mze = zfs_btree_next(tree, &idx, &idx)) {
401 		mzap_ents++;
402 	}
403 
404 	/* Include the new entry being added */
405 	mzap_ents++;
406 
407 	return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS));
408 }
409 
410 static void
411 mze_destroy(zap_t *zap)
412 {
413 	zfs_btree_clear(&zap->zap_m.zap_tree);
414 	zfs_btree_destroy(&zap->zap_m.zap_tree);
415 }
416 
417 static zap_t *
418 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
419 {
420 	zap_t *winner;
421 	uint64_t *zap_hdr = (uint64_t *)db->db_data;
422 	uint64_t zap_block_type = zap_hdr[0];
423 	uint64_t zap_magic = zap_hdr[1];
424 
425 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
426 
427 	zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
428 	rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
429 	rw_enter(&zap->zap_rwlock, RW_WRITER);
430 	zap->zap_objset = os;
431 	zap->zap_object = obj;
432 	zap->zap_dbuf = db;
433 
434 	if (zap_block_type != ZBT_MICRO) {
435 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
436 		    0);
437 		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
438 		if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
439 			winner = NULL;	/* No actual winner here... */
440 			goto handle_winner;
441 		}
442 	} else {
443 		zap->zap_ismicro = TRUE;
444 	}
445 
446 	/*
447 	 * Make sure that zap_ismicro is set before we let others see
448 	 * it, because zap_lockdir() checks zap_ismicro without the lock
449 	 * held.
450 	 */
451 	dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
452 	winner = dmu_buf_set_user(db, &zap->zap_dbu);
453 
454 	if (winner != NULL)
455 		goto handle_winner;
456 
457 	if (zap->zap_ismicro) {
458 		zap->zap_salt = zap_m_phys(zap)->mz_salt;
459 		zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
460 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
461 
462 		/*
463 		 * Reduce B-tree leaf from 4KB to 512 bytes to reduce memmove()
464 		 * overhead on massive inserts below.  It still allows to store
465 		 * 62 entries before we have to add 2KB B-tree core node.
466 		 */
467 		zfs_btree_create_custom(&zap->zap_m.zap_tree, mze_compare,
468 		    mze_find_in_buf, sizeof (mzap_ent_t), 512);
469 
470 		zap_name_t *zn = zap_name_alloc(zap);
471 		for (uint16_t i = 0; i < zap->zap_m.zap_num_chunks; i++) {
472 			mzap_ent_phys_t *mze =
473 			    &zap_m_phys(zap)->mz_chunk[i];
474 			if (mze->mze_name[0]) {
475 				zap->zap_m.zap_num_entries++;
476 				zap_name_init_str(zn, mze->mze_name, 0);
477 				mze_insert(zap, i, zn->zn_hash);
478 			}
479 		}
480 		zap_name_free(zn);
481 	} else {
482 		zap->zap_salt = zap_f_phys(zap)->zap_salt;
483 		zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
484 
485 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
486 		    2*ZAP_LEAF_CHUNKSIZE);
487 
488 		/*
489 		 * The embedded pointer table should not overlap the
490 		 * other members.
491 		 */
492 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
493 		    &zap_f_phys(zap)->zap_salt);
494 
495 		/*
496 		 * The embedded pointer table should end at the end of
497 		 * the block
498 		 */
499 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
500 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
501 		    (uintptr_t)zap_f_phys(zap), ==,
502 		    zap->zap_dbuf->db_size);
503 	}
504 	rw_exit(&zap->zap_rwlock);
505 	return (zap);
506 
507 handle_winner:
508 	rw_exit(&zap->zap_rwlock);
509 	rw_destroy(&zap->zap_rwlock);
510 	if (!zap->zap_ismicro)
511 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
512 	kmem_free(zap, sizeof (zap_t));
513 	return (winner);
514 }
515 
516 /*
517  * This routine "consumes" the caller's hold on the dbuf, which must
518  * have the specified tag.
519  */
520 static int
521 zap_lockdir_impl(dmu_buf_t *db, const void *tag, dmu_tx_t *tx,
522     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
523 {
524 	ASSERT0(db->db_offset);
525 	objset_t *os = dmu_buf_get_objset(db);
526 	uint64_t obj = db->db_object;
527 	dmu_object_info_t doi;
528 
529 	*zapp = NULL;
530 
531 	dmu_object_info_from_db(db, &doi);
532 	if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
533 		return (SET_ERROR(EINVAL));
534 
535 	zap_t *zap = dmu_buf_get_user(db);
536 	if (zap == NULL) {
537 		zap = mzap_open(os, obj, db);
538 		if (zap == NULL) {
539 			/*
540 			 * mzap_open() didn't like what it saw on-disk.
541 			 * Check for corruption!
542 			 */
543 			return (SET_ERROR(EIO));
544 		}
545 	}
546 
547 	/*
548 	 * We're checking zap_ismicro without the lock held, in order to
549 	 * tell what type of lock we want.  Once we have some sort of
550 	 * lock, see if it really is the right type.  In practice this
551 	 * can only be different if it was upgraded from micro to fat,
552 	 * and micro wanted WRITER but fat only needs READER.
553 	 */
554 	krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
555 	rw_enter(&zap->zap_rwlock, lt);
556 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
557 		/* it was upgraded, now we only need reader */
558 		ASSERT(lt == RW_WRITER);
559 		ASSERT(RW_READER ==
560 		    ((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
561 		rw_downgrade(&zap->zap_rwlock);
562 		lt = RW_READER;
563 	}
564 
565 	zap->zap_objset = os;
566 
567 	if (lt == RW_WRITER)
568 		dmu_buf_will_dirty(db, tx);
569 
570 	ASSERT3P(zap->zap_dbuf, ==, db);
571 
572 	ASSERT(!zap->zap_ismicro ||
573 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
574 	if (zap->zap_ismicro && tx && adding &&
575 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
576 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
577 		if (newsz > zap_micro_max_size) {
578 			dprintf("upgrading obj %llu: num_entries=%u\n",
579 			    (u_longlong_t)obj, zap->zap_m.zap_num_entries);
580 			*zapp = zap;
581 			int err = mzap_upgrade(zapp, tag, tx, 0);
582 			if (err != 0)
583 				rw_exit(&zap->zap_rwlock);
584 			return (err);
585 		}
586 		VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
587 		zap->zap_m.zap_num_chunks =
588 		    db->db_size / MZAP_ENT_LEN - 1;
589 	}
590 
591 	*zapp = zap;
592 	return (0);
593 }
594 
595 static int
596 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
597     krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
598     zap_t **zapp)
599 {
600 	dmu_buf_t *db;
601 
602 	int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
603 	if (err != 0) {
604 		return (err);
605 	}
606 #ifdef ZFS_DEBUG
607 	{
608 		dmu_object_info_t doi;
609 		dmu_object_info_from_db(db, &doi);
610 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
611 	}
612 #endif
613 
614 	err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
615 	if (err != 0) {
616 		dmu_buf_rele(db, tag);
617 	}
618 	return (err);
619 }
620 
621 int
622 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
623     krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag,
624     zap_t **zapp)
625 {
626 	dmu_buf_t *db;
627 
628 	int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
629 	if (err != 0)
630 		return (err);
631 #ifdef ZFS_DEBUG
632 	{
633 		dmu_object_info_t doi;
634 		dmu_object_info_from_db(db, &doi);
635 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
636 	}
637 #endif
638 	err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
639 	if (err != 0)
640 		dmu_buf_rele(db, tag);
641 	return (err);
642 }
643 
644 void
645 zap_unlockdir(zap_t *zap, const void *tag)
646 {
647 	rw_exit(&zap->zap_rwlock);
648 	dmu_buf_rele(zap->zap_dbuf, tag);
649 }
650 
651 static int
652 mzap_upgrade(zap_t **zapp, const void *tag, dmu_tx_t *tx, zap_flags_t flags)
653 {
654 	int err = 0;
655 	zap_t *zap = *zapp;
656 
657 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
658 
659 	int sz = zap->zap_dbuf->db_size;
660 	mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP);
661 	memcpy(mzp, zap->zap_dbuf->db_data, sz);
662 	int nchunks = zap->zap_m.zap_num_chunks;
663 
664 	if (!flags) {
665 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
666 		    1ULL << fzap_default_block_shift, 0, tx);
667 		if (err != 0) {
668 			vmem_free(mzp, sz);
669 			return (err);
670 		}
671 	}
672 
673 	dprintf("upgrading obj=%llu with %u chunks\n",
674 	    (u_longlong_t)zap->zap_object, nchunks);
675 	/* XXX destroy the tree later, so we can use the stored hash value */
676 	mze_destroy(zap);
677 
678 	fzap_upgrade(zap, tx, flags);
679 
680 	zap_name_t *zn = zap_name_alloc(zap);
681 	for (int i = 0; i < nchunks; i++) {
682 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
683 		if (mze->mze_name[0] == 0)
684 			continue;
685 		dprintf("adding %s=%llu\n",
686 		    mze->mze_name, (u_longlong_t)mze->mze_value);
687 		zap_name_init_str(zn, mze->mze_name, 0);
688 		/* If we fail here, we would end up losing entries */
689 		VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
690 		    tag, tx));
691 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
692 	}
693 	zap_name_free(zn);
694 	vmem_free(mzp, sz);
695 	*zapp = zap;
696 	return (0);
697 }
698 
699 /*
700  * The "normflags" determine the behavior of the matchtype_t which is
701  * passed to zap_lookup_norm().  Names which have the same normalized
702  * version will be stored with the same hash value, and therefore we can
703  * perform normalization-insensitive lookups.  We can be Unicode form-
704  * insensitive and/or case-insensitive.  The following flags are valid for
705  * "normflags":
706  *
707  * U8_TEXTPREP_NFC
708  * U8_TEXTPREP_NFD
709  * U8_TEXTPREP_NFKC
710  * U8_TEXTPREP_NFKD
711  * U8_TEXTPREP_TOUPPER
712  *
713  * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
714  * of them may be supplied.
715  */
716 void
717 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx)
718 {
719 	dmu_buf_t *db;
720 
721 	VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
722 
723 	dmu_buf_will_dirty(db, tx);
724 	mzap_phys_t *zp = db->db_data;
725 	zp->mz_block_type = ZBT_MICRO;
726 	zp->mz_salt =
727 	    ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL;
728 	zp->mz_normflags = normflags;
729 
730 	if (flags != 0) {
731 		zap_t *zap;
732 		/* Only fat zap supports flags; upgrade immediately. */
733 		VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER,
734 		    B_FALSE, B_FALSE, &zap));
735 		VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
736 		zap_unlockdir(zap, FTAG);
737 	} else {
738 		dmu_buf_rele(db, FTAG);
739 	}
740 }
741 
742 static uint64_t
743 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags,
744     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
745     dmu_object_type_t bonustype, int bonuslen, int dnodesize,
746     dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
747 {
748 	uint64_t obj;
749 
750 	ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
751 
752 	if (allocated_dnode == NULL) {
753 		dnode_t *dn;
754 		obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
755 		    indirect_blockshift, bonustype, bonuslen, dnodesize,
756 		    &dn, FTAG, tx);
757 		mzap_create_impl(dn, normflags, flags, tx);
758 		dnode_rele(dn, FTAG);
759 	} else {
760 		obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
761 		    indirect_blockshift, bonustype, bonuslen, dnodesize,
762 		    allocated_dnode, tag, tx);
763 		mzap_create_impl(*allocated_dnode, normflags, flags, tx);
764 	}
765 
766 	return (obj);
767 }
768 
769 int
770 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
771     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
772 {
773 	return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
774 	    0, tx));
775 }
776 
777 int
778 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
779     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
780 {
781 	return (zap_create_claim_norm_dnsize(os, obj,
782 	    0, ot, bonustype, bonuslen, dnodesize, tx));
783 }
784 
785 int
786 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
787     dmu_object_type_t ot,
788     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
789 {
790 	return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
791 	    bonuslen, 0, tx));
792 }
793 
794 int
795 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
796     dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
797     int dnodesize, dmu_tx_t *tx)
798 {
799 	dnode_t *dn;
800 	int error;
801 
802 	ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
803 	error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
804 	    dnodesize, tx);
805 	if (error != 0)
806 		return (error);
807 
808 	error = dnode_hold(os, obj, FTAG, &dn);
809 	if (error != 0)
810 		return (error);
811 
812 	mzap_create_impl(dn, normflags, 0, tx);
813 
814 	dnode_rele(dn, FTAG);
815 
816 	return (0);
817 }
818 
819 uint64_t
820 zap_create(objset_t *os, dmu_object_type_t ot,
821     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
822 {
823 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
824 }
825 
826 uint64_t
827 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
828     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
829 {
830 	return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
831 	    dnodesize, tx));
832 }
833 
834 uint64_t
835 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
836     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
837 {
838 	return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
839 	    0, tx));
840 }
841 
842 uint64_t
843 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
844     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
845 {
846 	return (zap_create_impl(os, normflags, 0, ot, 0, 0,
847 	    bonustype, bonuslen, dnodesize, NULL, NULL, tx));
848 }
849 
850 uint64_t
851 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
852     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
853     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
854 {
855 	return (zap_create_flags_dnsize(os, normflags, flags, ot,
856 	    leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
857 }
858 
859 uint64_t
860 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
861     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
862     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
863 {
864 	return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
865 	    indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL,
866 	    tx));
867 }
868 
869 /*
870  * Create a zap object and return a pointer to the newly allocated dnode via
871  * the allocated_dnode argument.  The returned dnode will be held and the
872  * caller is responsible for releasing the hold by calling dnode_rele().
873  */
874 uint64_t
875 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
876     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
877     dmu_object_type_t bonustype, int bonuslen, int dnodesize,
878     dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
879 {
880 	return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
881 	    indirect_blockshift, bonustype, bonuslen, dnodesize,
882 	    allocated_dnode, tag, tx));
883 }
884 
885 int
886 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
887 {
888 	/*
889 	 * dmu_object_free will free the object number and free the
890 	 * data.  Freeing the data will cause our pageout function to be
891 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
892 	 */
893 
894 	return (dmu_object_free(os, zapobj, tx));
895 }
896 
897 void
898 zap_evict_sync(void *dbu)
899 {
900 	zap_t *zap = dbu;
901 
902 	rw_destroy(&zap->zap_rwlock);
903 
904 	if (zap->zap_ismicro)
905 		mze_destroy(zap);
906 	else
907 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
908 
909 	kmem_free(zap, sizeof (zap_t));
910 }
911 
912 int
913 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
914 {
915 	zap_t *zap;
916 
917 	int err =
918 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
919 	if (err != 0)
920 		return (err);
921 	if (!zap->zap_ismicro) {
922 		err = fzap_count(zap, count);
923 	} else {
924 		*count = zap->zap_m.zap_num_entries;
925 	}
926 	zap_unlockdir(zap, FTAG);
927 	return (err);
928 }
929 
930 /*
931  * zn may be NULL; if not specified, it will be computed if needed.
932  * See also the comment above zap_entry_normalization_conflict().
933  */
934 static boolean_t
935 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze,
936     zfs_btree_index_t *idx)
937 {
938 	boolean_t allocdzn = B_FALSE;
939 	mzap_ent_t *other;
940 	zfs_btree_index_t oidx;
941 
942 	if (zap->zap_normflags == 0)
943 		return (B_FALSE);
944 
945 	for (other = zfs_btree_prev(&zap->zap_m.zap_tree, idx, &oidx);
946 	    other && other->mze_hash == mze->mze_hash;
947 	    other = zfs_btree_prev(&zap->zap_m.zap_tree, &oidx, &oidx)) {
948 
949 		if (zn == NULL) {
950 			zn = zap_name_alloc_str(zap,
951 			    MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
952 			allocdzn = B_TRUE;
953 		}
954 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
955 			if (allocdzn)
956 				zap_name_free(zn);
957 			return (B_TRUE);
958 		}
959 	}
960 
961 	for (other = zfs_btree_next(&zap->zap_m.zap_tree, idx, &oidx);
962 	    other && other->mze_hash == mze->mze_hash;
963 	    other = zfs_btree_next(&zap->zap_m.zap_tree, &oidx, &oidx)) {
964 
965 		if (zn == NULL) {
966 			zn = zap_name_alloc_str(zap,
967 			    MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE);
968 			allocdzn = B_TRUE;
969 		}
970 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
971 			if (allocdzn)
972 				zap_name_free(zn);
973 			return (B_TRUE);
974 		}
975 	}
976 
977 	if (allocdzn)
978 		zap_name_free(zn);
979 	return (B_FALSE);
980 }
981 
982 /*
983  * Routines for manipulating attributes.
984  */
985 
986 int
987 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
988     uint64_t integer_size, uint64_t num_integers, void *buf)
989 {
990 	return (zap_lookup_norm(os, zapobj, name, integer_size,
991 	    num_integers, buf, 0, NULL, 0, NULL));
992 }
993 
994 static int
995 zap_lookup_impl(zap_t *zap, const char *name,
996     uint64_t integer_size, uint64_t num_integers, void *buf,
997     matchtype_t mt, char *realname, int rn_len,
998     boolean_t *ncp)
999 {
1000 	int err = 0;
1001 
1002 	zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
1003 	if (zn == NULL)
1004 		return (SET_ERROR(ENOTSUP));
1005 
1006 	if (!zap->zap_ismicro) {
1007 		err = fzap_lookup(zn, integer_size, num_integers, buf,
1008 		    realname, rn_len, ncp);
1009 	} else {
1010 		zfs_btree_index_t idx;
1011 		mzap_ent_t *mze = mze_find(zn, &idx);
1012 		if (mze == NULL) {
1013 			err = SET_ERROR(ENOENT);
1014 		} else {
1015 			if (num_integers < 1) {
1016 				err = SET_ERROR(EOVERFLOW);
1017 			} else if (integer_size != 8) {
1018 				err = SET_ERROR(EINVAL);
1019 			} else {
1020 				*(uint64_t *)buf =
1021 				    MZE_PHYS(zap, mze)->mze_value;
1022 				if (realname != NULL)
1023 					(void) strlcpy(realname,
1024 					    MZE_PHYS(zap, mze)->mze_name,
1025 					    rn_len);
1026 				if (ncp) {
1027 					*ncp = mzap_normalization_conflict(zap,
1028 					    zn, mze, &idx);
1029 				}
1030 			}
1031 		}
1032 	}
1033 	zap_name_free(zn);
1034 	return (err);
1035 }
1036 
1037 int
1038 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
1039     uint64_t integer_size, uint64_t num_integers, void *buf,
1040     matchtype_t mt, char *realname, int rn_len,
1041     boolean_t *ncp)
1042 {
1043 	zap_t *zap;
1044 
1045 	int err =
1046 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1047 	if (err != 0)
1048 		return (err);
1049 	err = zap_lookup_impl(zap, name, integer_size,
1050 	    num_integers, buf, mt, realname, rn_len, ncp);
1051 	zap_unlockdir(zap, FTAG);
1052 	return (err);
1053 }
1054 
1055 int
1056 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
1057 {
1058 	zap_t *zap;
1059 	int err;
1060 	zap_name_t *zn;
1061 
1062 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1063 	if (err)
1064 		return (err);
1065 	zn = zap_name_alloc_str(zap, name, 0);
1066 	if (zn == NULL) {
1067 		zap_unlockdir(zap, FTAG);
1068 		return (SET_ERROR(ENOTSUP));
1069 	}
1070 
1071 	fzap_prefetch(zn);
1072 	zap_name_free(zn);
1073 	zap_unlockdir(zap, FTAG);
1074 	return (err);
1075 }
1076 
1077 int
1078 zap_lookup_by_dnode(dnode_t *dn, const char *name,
1079     uint64_t integer_size, uint64_t num_integers, void *buf)
1080 {
1081 	return (zap_lookup_norm_by_dnode(dn, name, integer_size,
1082 	    num_integers, buf, 0, NULL, 0, NULL));
1083 }
1084 
1085 int
1086 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
1087     uint64_t integer_size, uint64_t num_integers, void *buf,
1088     matchtype_t mt, char *realname, int rn_len,
1089     boolean_t *ncp)
1090 {
1091 	zap_t *zap;
1092 
1093 	int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
1094 	    FTAG, &zap);
1095 	if (err != 0)
1096 		return (err);
1097 	err = zap_lookup_impl(zap, name, integer_size,
1098 	    num_integers, buf, mt, realname, rn_len, ncp);
1099 	zap_unlockdir(zap, FTAG);
1100 	return (err);
1101 }
1102 
1103 int
1104 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1105     int key_numints)
1106 {
1107 	zap_t *zap;
1108 
1109 	int err =
1110 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1111 	if (err != 0)
1112 		return (err);
1113 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1114 	if (zn == NULL) {
1115 		zap_unlockdir(zap, FTAG);
1116 		return (SET_ERROR(ENOTSUP));
1117 	}
1118 
1119 	fzap_prefetch(zn);
1120 	zap_name_free(zn);
1121 	zap_unlockdir(zap, FTAG);
1122 	return (err);
1123 }
1124 
1125 int
1126 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1127     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1128 {
1129 	zap_t *zap;
1130 
1131 	int err =
1132 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1133 	if (err != 0)
1134 		return (err);
1135 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1136 	if (zn == NULL) {
1137 		zap_unlockdir(zap, FTAG);
1138 		return (SET_ERROR(ENOTSUP));
1139 	}
1140 
1141 	err = fzap_lookup(zn, integer_size, num_integers, buf,
1142 	    NULL, 0, NULL);
1143 	zap_name_free(zn);
1144 	zap_unlockdir(zap, FTAG);
1145 	return (err);
1146 }
1147 
1148 int
1149 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1150 {
1151 	int err = zap_lookup_norm(os, zapobj, name, 0,
1152 	    0, NULL, 0, NULL, 0, NULL);
1153 	if (err == EOVERFLOW || err == EINVAL)
1154 		err = 0; /* found, but skipped reading the value */
1155 	return (err);
1156 }
1157 
1158 int
1159 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1160     uint64_t *integer_size, uint64_t *num_integers)
1161 {
1162 	zap_t *zap;
1163 
1164 	int err =
1165 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1166 	if (err != 0)
1167 		return (err);
1168 	zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
1169 	if (zn == NULL) {
1170 		zap_unlockdir(zap, FTAG);
1171 		return (SET_ERROR(ENOTSUP));
1172 	}
1173 	if (!zap->zap_ismicro) {
1174 		err = fzap_length(zn, integer_size, num_integers);
1175 	} else {
1176 		zfs_btree_index_t idx;
1177 		mzap_ent_t *mze = mze_find(zn, &idx);
1178 		if (mze == NULL) {
1179 			err = SET_ERROR(ENOENT);
1180 		} else {
1181 			if (integer_size)
1182 				*integer_size = 8;
1183 			if (num_integers)
1184 				*num_integers = 1;
1185 		}
1186 	}
1187 	zap_name_free(zn);
1188 	zap_unlockdir(zap, FTAG);
1189 	return (err);
1190 }
1191 
1192 int
1193 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1194     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1195 {
1196 	zap_t *zap;
1197 
1198 	int err =
1199 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1200 	if (err != 0)
1201 		return (err);
1202 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1203 	if (zn == NULL) {
1204 		zap_unlockdir(zap, FTAG);
1205 		return (SET_ERROR(ENOTSUP));
1206 	}
1207 	err = fzap_length(zn, integer_size, num_integers);
1208 	zap_name_free(zn);
1209 	zap_unlockdir(zap, FTAG);
1210 	return (err);
1211 }
1212 
1213 static void
1214 mzap_addent(zap_name_t *zn, uint64_t value)
1215 {
1216 	zap_t *zap = zn->zn_zap;
1217 	uint16_t start = zap->zap_m.zap_alloc_next;
1218 
1219 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1220 
1221 #ifdef ZFS_DEBUG
1222 	for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1223 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1224 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1225 	}
1226 #endif
1227 
1228 	uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
1229 	/* given the limited size of the microzap, this can't happen */
1230 	ASSERT(cd < zap_maxcd(zap));
1231 
1232 again:
1233 	for (uint16_t i = start; i < zap->zap_m.zap_num_chunks; i++) {
1234 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1235 		if (mze->mze_name[0] == 0) {
1236 			mze->mze_value = value;
1237 			mze->mze_cd = cd;
1238 			(void) strlcpy(mze->mze_name, zn->zn_key_orig,
1239 			    sizeof (mze->mze_name));
1240 			zap->zap_m.zap_num_entries++;
1241 			zap->zap_m.zap_alloc_next = i+1;
1242 			if (zap->zap_m.zap_alloc_next ==
1243 			    zap->zap_m.zap_num_chunks)
1244 				zap->zap_m.zap_alloc_next = 0;
1245 			mze_insert(zap, i, zn->zn_hash);
1246 			return;
1247 		}
1248 	}
1249 	if (start != 0) {
1250 		start = 0;
1251 		goto again;
1252 	}
1253 	cmn_err(CE_PANIC, "out of entries!");
1254 }
1255 
1256 static int
1257 zap_add_impl(zap_t *zap, const char *key,
1258     int integer_size, uint64_t num_integers,
1259     const void *val, dmu_tx_t *tx, const void *tag)
1260 {
1261 	const uint64_t *intval = val;
1262 	int err = 0;
1263 
1264 	zap_name_t *zn = zap_name_alloc_str(zap, key, 0);
1265 	if (zn == NULL) {
1266 		zap_unlockdir(zap, tag);
1267 		return (SET_ERROR(ENOTSUP));
1268 	}
1269 	if (!zap->zap_ismicro) {
1270 		err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1271 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1272 	} else if (integer_size != 8 || num_integers != 1 ||
1273 	    strlen(key) >= MZAP_NAME_LEN ||
1274 	    !mze_canfit_fzap_leaf(zn, zn->zn_hash)) {
1275 		err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1276 		if (err == 0) {
1277 			err = fzap_add(zn, integer_size, num_integers, val,
1278 			    tag, tx);
1279 		}
1280 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1281 	} else {
1282 		zfs_btree_index_t idx;
1283 		if (mze_find(zn, &idx) != NULL) {
1284 			err = SET_ERROR(EEXIST);
1285 		} else {
1286 			mzap_addent(zn, *intval);
1287 		}
1288 	}
1289 	ASSERT(zap == zn->zn_zap);
1290 	zap_name_free(zn);
1291 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1292 		zap_unlockdir(zap, tag);
1293 	return (err);
1294 }
1295 
1296 int
1297 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1298     int integer_size, uint64_t num_integers,
1299     const void *val, dmu_tx_t *tx)
1300 {
1301 	zap_t *zap;
1302 	int err;
1303 
1304 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1305 	if (err != 0)
1306 		return (err);
1307 	err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1308 	/* zap_add_impl() calls zap_unlockdir() */
1309 	return (err);
1310 }
1311 
1312 int
1313 zap_add_by_dnode(dnode_t *dn, const char *key,
1314     int integer_size, uint64_t num_integers,
1315     const void *val, dmu_tx_t *tx)
1316 {
1317 	zap_t *zap;
1318 	int err;
1319 
1320 	err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1321 	if (err != 0)
1322 		return (err);
1323 	err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1324 	/* zap_add_impl() calls zap_unlockdir() */
1325 	return (err);
1326 }
1327 
1328 int
1329 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1330     int key_numints, int integer_size, uint64_t num_integers,
1331     const void *val, dmu_tx_t *tx)
1332 {
1333 	zap_t *zap;
1334 
1335 	int err =
1336 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1337 	if (err != 0)
1338 		return (err);
1339 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1340 	if (zn == NULL) {
1341 		zap_unlockdir(zap, FTAG);
1342 		return (SET_ERROR(ENOTSUP));
1343 	}
1344 	err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1345 	zap = zn->zn_zap;	/* fzap_add() may change zap */
1346 	zap_name_free(zn);
1347 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1348 		zap_unlockdir(zap, FTAG);
1349 	return (err);
1350 }
1351 
1352 int
1353 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1354     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1355 {
1356 	zap_t *zap;
1357 	const uint64_t *intval = val;
1358 
1359 	int err =
1360 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1361 	if (err != 0)
1362 		return (err);
1363 	zap_name_t *zn = zap_name_alloc_str(zap, name, 0);
1364 	if (zn == NULL) {
1365 		zap_unlockdir(zap, FTAG);
1366 		return (SET_ERROR(ENOTSUP));
1367 	}
1368 	if (!zap->zap_ismicro) {
1369 		err = fzap_update(zn, integer_size, num_integers, val,
1370 		    FTAG, tx);
1371 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1372 	} else if (integer_size != 8 || num_integers != 1 ||
1373 	    strlen(name) >= MZAP_NAME_LEN) {
1374 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1375 		    (u_longlong_t)zapobj, integer_size,
1376 		    (u_longlong_t)num_integers, name);
1377 		err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1378 		if (err == 0) {
1379 			err = fzap_update(zn, integer_size, num_integers,
1380 			    val, FTAG, tx);
1381 		}
1382 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1383 	} else {
1384 		zfs_btree_index_t idx;
1385 		mzap_ent_t *mze = mze_find(zn, &idx);
1386 		if (mze != NULL) {
1387 			MZE_PHYS(zap, mze)->mze_value = *intval;
1388 		} else {
1389 			mzap_addent(zn, *intval);
1390 		}
1391 	}
1392 	ASSERT(zap == zn->zn_zap);
1393 	zap_name_free(zn);
1394 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1395 		zap_unlockdir(zap, FTAG);
1396 	return (err);
1397 }
1398 
1399 int
1400 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1401     int key_numints,
1402     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1403 {
1404 	zap_t *zap;
1405 
1406 	int err =
1407 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1408 	if (err != 0)
1409 		return (err);
1410 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1411 	if (zn == NULL) {
1412 		zap_unlockdir(zap, FTAG);
1413 		return (SET_ERROR(ENOTSUP));
1414 	}
1415 	err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
1416 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1417 	zap_name_free(zn);
1418 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1419 		zap_unlockdir(zap, FTAG);
1420 	return (err);
1421 }
1422 
1423 int
1424 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1425 {
1426 	return (zap_remove_norm(os, zapobj, name, 0, tx));
1427 }
1428 
1429 static int
1430 zap_remove_impl(zap_t *zap, const char *name,
1431     matchtype_t mt, dmu_tx_t *tx)
1432 {
1433 	int err = 0;
1434 
1435 	zap_name_t *zn = zap_name_alloc_str(zap, name, mt);
1436 	if (zn == NULL)
1437 		return (SET_ERROR(ENOTSUP));
1438 	if (!zap->zap_ismicro) {
1439 		err = fzap_remove(zn, tx);
1440 	} else {
1441 		zfs_btree_index_t idx;
1442 		mzap_ent_t *mze = mze_find(zn, &idx);
1443 		if (mze == NULL) {
1444 			err = SET_ERROR(ENOENT);
1445 		} else {
1446 			zap->zap_m.zap_num_entries--;
1447 			memset(MZE_PHYS(zap, mze), 0, sizeof (mzap_ent_phys_t));
1448 			zfs_btree_remove_idx(&zap->zap_m.zap_tree, &idx);
1449 		}
1450 	}
1451 	zap_name_free(zn);
1452 	return (err);
1453 }
1454 
1455 int
1456 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1457     matchtype_t mt, dmu_tx_t *tx)
1458 {
1459 	zap_t *zap;
1460 	int err;
1461 
1462 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1463 	if (err)
1464 		return (err);
1465 	err = zap_remove_impl(zap, name, mt, tx);
1466 	zap_unlockdir(zap, FTAG);
1467 	return (err);
1468 }
1469 
1470 int
1471 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1472 {
1473 	zap_t *zap;
1474 	int err;
1475 
1476 	err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1477 	if (err)
1478 		return (err);
1479 	err = zap_remove_impl(zap, name, 0, tx);
1480 	zap_unlockdir(zap, FTAG);
1481 	return (err);
1482 }
1483 
1484 int
1485 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1486     int key_numints, dmu_tx_t *tx)
1487 {
1488 	zap_t *zap;
1489 
1490 	int err =
1491 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1492 	if (err != 0)
1493 		return (err);
1494 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1495 	if (zn == NULL) {
1496 		zap_unlockdir(zap, FTAG);
1497 		return (SET_ERROR(ENOTSUP));
1498 	}
1499 	err = fzap_remove(zn, tx);
1500 	zap_name_free(zn);
1501 	zap_unlockdir(zap, FTAG);
1502 	return (err);
1503 }
1504 
1505 /*
1506  * Routines for iterating over the attributes.
1507  */
1508 
1509 static void
1510 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1511     uint64_t serialized, boolean_t prefetch)
1512 {
1513 	zc->zc_objset = os;
1514 	zc->zc_zap = NULL;
1515 	zc->zc_leaf = NULL;
1516 	zc->zc_zapobj = zapobj;
1517 	zc->zc_serialized = serialized;
1518 	zc->zc_hash = 0;
1519 	zc->zc_cd = 0;
1520 	zc->zc_prefetch = prefetch;
1521 }
1522 void
1523 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1524     uint64_t serialized)
1525 {
1526 	zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE);
1527 }
1528 
1529 /*
1530  * Initialize a cursor at the beginning of the ZAP object.  The entire
1531  * ZAP object will be prefetched.
1532  */
1533 void
1534 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1535 {
1536 	zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE);
1537 }
1538 
1539 /*
1540  * Initialize a cursor at the beginning, but request that we not prefetch
1541  * the entire ZAP object.
1542  */
1543 void
1544 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1545 {
1546 	zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE);
1547 }
1548 
1549 void
1550 zap_cursor_fini(zap_cursor_t *zc)
1551 {
1552 	if (zc->zc_zap) {
1553 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1554 		zap_unlockdir(zc->zc_zap, NULL);
1555 		zc->zc_zap = NULL;
1556 	}
1557 	if (zc->zc_leaf) {
1558 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1559 		zap_put_leaf(zc->zc_leaf);
1560 		zc->zc_leaf = NULL;
1561 	}
1562 	zc->zc_objset = NULL;
1563 }
1564 
1565 uint64_t
1566 zap_cursor_serialize(zap_cursor_t *zc)
1567 {
1568 	if (zc->zc_hash == -1ULL)
1569 		return (-1ULL);
1570 	if (zc->zc_zap == NULL)
1571 		return (zc->zc_serialized);
1572 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1573 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1574 
1575 	/*
1576 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1577 	 * that 32-bit programs can access this.  So usually use a small
1578 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1579 	 * of the cursor.
1580 	 *
1581 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1582 	 */
1583 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1584 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1585 }
1586 
1587 int
1588 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1589 {
1590 	int err;
1591 
1592 	if (zc->zc_hash == -1ULL)
1593 		return (SET_ERROR(ENOENT));
1594 
1595 	if (zc->zc_zap == NULL) {
1596 		int hb;
1597 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1598 		    RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1599 		if (err != 0)
1600 			return (err);
1601 
1602 		/*
1603 		 * To support zap_cursor_init_serialized, advance, retrieve,
1604 		 * we must add to the existing zc_cd, which may already
1605 		 * be 1 due to the zap_cursor_advance.
1606 		 */
1607 		ASSERT(zc->zc_hash == 0);
1608 		hb = zap_hashbits(zc->zc_zap);
1609 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1610 		zc->zc_cd += zc->zc_serialized >> hb;
1611 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1612 			zc->zc_cd = 0;
1613 	} else {
1614 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1615 	}
1616 	if (!zc->zc_zap->zap_ismicro) {
1617 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1618 	} else {
1619 		zfs_btree_index_t idx;
1620 		mzap_ent_t mze_tofind;
1621 
1622 		mze_tofind.mze_hash = zc->zc_hash >> 32;
1623 		mze_tofind.mze_cd = zc->zc_cd;
1624 
1625 		mzap_ent_t *mze = zfs_btree_find(&zc->zc_zap->zap_m.zap_tree,
1626 		    &mze_tofind, &idx);
1627 		if (mze == NULL) {
1628 			mze = zfs_btree_next(&zc->zc_zap->zap_m.zap_tree,
1629 			    &idx, &idx);
1630 		}
1631 		if (mze) {
1632 			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1633 			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1634 			za->za_normalization_conflict =
1635 			    mzap_normalization_conflict(zc->zc_zap, NULL,
1636 			    mze, &idx);
1637 			za->za_integer_length = 8;
1638 			za->za_num_integers = 1;
1639 			za->za_first_integer = mzep->mze_value;
1640 			(void) strlcpy(za->za_name, mzep->mze_name,
1641 			    sizeof (za->za_name));
1642 			zc->zc_hash = (uint64_t)mze->mze_hash << 32;
1643 			zc->zc_cd = mze->mze_cd;
1644 			err = 0;
1645 		} else {
1646 			zc->zc_hash = -1ULL;
1647 			err = SET_ERROR(ENOENT);
1648 		}
1649 	}
1650 	rw_exit(&zc->zc_zap->zap_rwlock);
1651 	return (err);
1652 }
1653 
1654 void
1655 zap_cursor_advance(zap_cursor_t *zc)
1656 {
1657 	if (zc->zc_hash == -1ULL)
1658 		return;
1659 	zc->zc_cd++;
1660 }
1661 
1662 int
1663 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1664 {
1665 	zap_t *zap;
1666 
1667 	int err =
1668 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1669 	if (err != 0)
1670 		return (err);
1671 
1672 	memset(zs, 0, sizeof (zap_stats_t));
1673 
1674 	if (zap->zap_ismicro) {
1675 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1676 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1677 		zs->zs_num_blocks = 1;
1678 	} else {
1679 		fzap_get_stats(zap, zs);
1680 	}
1681 	zap_unlockdir(zap, FTAG);
1682 	return (0);
1683 }
1684 
1685 #if defined(_KERNEL)
1686 EXPORT_SYMBOL(zap_create);
1687 EXPORT_SYMBOL(zap_create_dnsize);
1688 EXPORT_SYMBOL(zap_create_norm);
1689 EXPORT_SYMBOL(zap_create_norm_dnsize);
1690 EXPORT_SYMBOL(zap_create_flags);
1691 EXPORT_SYMBOL(zap_create_flags_dnsize);
1692 EXPORT_SYMBOL(zap_create_claim);
1693 EXPORT_SYMBOL(zap_create_claim_norm);
1694 EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
1695 EXPORT_SYMBOL(zap_create_hold);
1696 EXPORT_SYMBOL(zap_destroy);
1697 EXPORT_SYMBOL(zap_lookup);
1698 EXPORT_SYMBOL(zap_lookup_by_dnode);
1699 EXPORT_SYMBOL(zap_lookup_norm);
1700 EXPORT_SYMBOL(zap_lookup_uint64);
1701 EXPORT_SYMBOL(zap_contains);
1702 EXPORT_SYMBOL(zap_prefetch);
1703 EXPORT_SYMBOL(zap_prefetch_uint64);
1704 EXPORT_SYMBOL(zap_add);
1705 EXPORT_SYMBOL(zap_add_by_dnode);
1706 EXPORT_SYMBOL(zap_add_uint64);
1707 EXPORT_SYMBOL(zap_update);
1708 EXPORT_SYMBOL(zap_update_uint64);
1709 EXPORT_SYMBOL(zap_length);
1710 EXPORT_SYMBOL(zap_length_uint64);
1711 EXPORT_SYMBOL(zap_remove);
1712 EXPORT_SYMBOL(zap_remove_by_dnode);
1713 EXPORT_SYMBOL(zap_remove_norm);
1714 EXPORT_SYMBOL(zap_remove_uint64);
1715 EXPORT_SYMBOL(zap_count);
1716 EXPORT_SYMBOL(zap_value_search);
1717 EXPORT_SYMBOL(zap_join);
1718 EXPORT_SYMBOL(zap_join_increment);
1719 EXPORT_SYMBOL(zap_add_int);
1720 EXPORT_SYMBOL(zap_remove_int);
1721 EXPORT_SYMBOL(zap_lookup_int);
1722 EXPORT_SYMBOL(zap_increment_int);
1723 EXPORT_SYMBOL(zap_add_int_key);
1724 EXPORT_SYMBOL(zap_lookup_int_key);
1725 EXPORT_SYMBOL(zap_increment);
1726 EXPORT_SYMBOL(zap_cursor_init);
1727 EXPORT_SYMBOL(zap_cursor_fini);
1728 EXPORT_SYMBOL(zap_cursor_retrieve);
1729 EXPORT_SYMBOL(zap_cursor_advance);
1730 EXPORT_SYMBOL(zap_cursor_serialize);
1731 EXPORT_SYMBOL(zap_cursor_init_serialized);
1732 EXPORT_SYMBOL(zap_get_stats);
1733 
1734 /* CSTYLED */
1735 ZFS_MODULE_PARAM(zfs, , zap_micro_max_size, INT, ZMOD_RW,
1736 	"Maximum micro ZAP size, before converting to a fat ZAP, in bytes");
1737 #endif
1738