1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 /* 30 * The 512-byte leaf is broken into 32 16-byte chunks. 31 * chunk number n means l_chunk[n], even though the header precedes it. 32 * the names are stored null-terminated. 33 */ 34 35 #include <sys/zio.h> 36 #include <sys/spa.h> 37 #include <sys/dmu.h> 38 #include <sys/zfs_context.h> 39 #include <sys/fs/zfs.h> 40 #include <sys/zap.h> 41 #include <sys/zap_impl.h> 42 #include <sys/zap_leaf.h> 43 #include <sys/arc.h> 44 45 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, struct zap_leaf_entry *le, 46 uint16_t entry); 47 48 #define CHAIN_END 0xffff /* end of the chunk chain */ 49 50 #define LEAF_HASH(l, h) \ 51 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 52 ((h) >> \ 53 (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) 54 55 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)]) 56 57 static void 58 stv(int len, void *addr, uint64_t value) 59 { 60 switch (len) { 61 case 1: 62 *(uint8_t *)addr = value; 63 return; 64 case 2: 65 *(uint16_t *)addr = value; 66 return; 67 case 4: 68 *(uint32_t *)addr = value; 69 return; 70 case 8: 71 *(uint64_t *)addr = value; 72 return; 73 default: 74 PANIC("bad int len %d", len); 75 } 76 } 77 78 static uint64_t 79 ldv(int len, const void *addr) 80 { 81 switch (len) { 82 case 1: 83 return (*(uint8_t *)addr); 84 case 2: 85 return (*(uint16_t *)addr); 86 case 4: 87 return (*(uint32_t *)addr); 88 case 8: 89 return (*(uint64_t *)addr); 90 default: 91 PANIC("bad int len %d", len); 92 } 93 return (0xFEEDFACEDEADBEEFULL); 94 } 95 96 void 97 zap_leaf_byteswap(zap_leaf_phys_t *buf, size_t size) 98 { 99 zap_leaf_t l; 100 dmu_buf_t l_dbuf; 101 102 l_dbuf.db_data = buf; 103 l.l_bs = highbit64(size) - 1; 104 l.l_dbuf = &l_dbuf; 105 106 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); 107 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); 108 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); 109 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); 110 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); 111 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); 112 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); 113 114 for (uint_t i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) 115 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); 116 117 for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { 118 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); 119 struct zap_leaf_entry *le; 120 121 switch (lc->l_free.lf_type) { 122 case ZAP_CHUNK_ENTRY: 123 le = &lc->l_entry; 124 125 le->le_type = BSWAP_8(le->le_type); 126 le->le_value_intlen = BSWAP_8(le->le_value_intlen); 127 le->le_next = BSWAP_16(le->le_next); 128 le->le_name_chunk = BSWAP_16(le->le_name_chunk); 129 le->le_name_numints = BSWAP_16(le->le_name_numints); 130 le->le_value_chunk = BSWAP_16(le->le_value_chunk); 131 le->le_value_numints = BSWAP_16(le->le_value_numints); 132 le->le_cd = BSWAP_32(le->le_cd); 133 le->le_hash = BSWAP_64(le->le_hash); 134 break; 135 case ZAP_CHUNK_FREE: 136 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); 137 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); 138 break; 139 case ZAP_CHUNK_ARRAY: 140 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); 141 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); 142 /* la_array doesn't need swapping */ 143 break; 144 default: 145 cmn_err(CE_PANIC, "bad leaf type %d", 146 lc->l_free.lf_type); 147 } 148 } 149 } 150 151 void 152 zap_leaf_init(zap_leaf_t *l, boolean_t sort) 153 { 154 l->l_bs = highbit64(l->l_dbuf->db_size) - 1; 155 memset(&zap_leaf_phys(l)->l_hdr, 0, 156 sizeof (struct zap_leaf_header)); 157 memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 158 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 159 for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 160 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; 161 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; 162 } 163 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; 164 zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF; 165 zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 166 zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 167 if (sort) 168 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 169 } 170 171 /* 172 * Routines which manipulate leaf chunks (l_chunk[]). 173 */ 174 175 static uint16_t 176 zap_leaf_chunk_alloc(zap_leaf_t *l) 177 { 178 ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0); 179 180 uint_t chunk = zap_leaf_phys(l)->l_hdr.lh_freelist; 181 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 182 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); 183 184 zap_leaf_phys(l)->l_hdr.lh_freelist = 185 ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; 186 187 zap_leaf_phys(l)->l_hdr.lh_nfree--; 188 189 return (chunk); 190 } 191 192 static void 193 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) 194 { 195 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; 196 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 197 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 198 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); 199 200 zlf->lf_type = ZAP_CHUNK_FREE; 201 zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist; 202 memset(zlf->lf_pad, 0, sizeof (zlf->lf_pad)); /* help it to compress */ 203 zap_leaf_phys(l)->l_hdr.lh_freelist = chunk; 204 205 zap_leaf_phys(l)->l_hdr.lh_nfree++; 206 } 207 208 /* 209 * Routines which manipulate leaf arrays (zap_leaf_array type chunks). 210 */ 211 212 static uint16_t 213 zap_leaf_array_create(zap_leaf_t *l, const char *buf, 214 int integer_size, int num_integers) 215 { 216 uint16_t chunk_head; 217 uint16_t *chunkp = &chunk_head; 218 int byten = integer_size; 219 uint64_t value = 0; 220 int shift = (integer_size - 1) * 8; 221 int len = num_integers; 222 223 ASSERT3U(num_integers * integer_size, <=, ZAP_MAXVALUELEN); 224 225 if (len > 0) 226 value = ldv(integer_size, buf); 227 while (len > 0) { 228 uint16_t chunk = zap_leaf_chunk_alloc(l); 229 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 230 231 la->la_type = ZAP_CHUNK_ARRAY; 232 for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 233 la->la_array[i] = value >> shift; 234 value <<= 8; 235 if (--byten == 0) { 236 if (--len == 0) 237 break; 238 byten = integer_size; 239 buf += integer_size; 240 value = ldv(integer_size, buf); 241 } 242 } 243 244 *chunkp = chunk; 245 chunkp = &la->la_next; 246 } 247 *chunkp = CHAIN_END; 248 249 return (chunk_head); 250 } 251 252 /* 253 * Non-destructively copy array between leaves. 254 */ 255 static uint16_t 256 zap_leaf_array_copy(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) 257 { 258 uint16_t new_chunk; 259 uint16_t *nchunkp = &new_chunk; 260 261 while (chunk != CHAIN_END) { 262 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 263 uint16_t nchunk = zap_leaf_chunk_alloc(nl); 264 265 struct zap_leaf_array *la = 266 &ZAP_LEAF_CHUNK(l, chunk).l_array; 267 struct zap_leaf_array *nla = 268 &ZAP_LEAF_CHUNK(nl, nchunk).l_array; 269 ASSERT3U(la->la_type, ==, ZAP_CHUNK_ARRAY); 270 271 *nla = *la; /* structure assignment */ 272 273 chunk = la->la_next; 274 *nchunkp = nchunk; 275 nchunkp = &nla->la_next; 276 } 277 *nchunkp = CHAIN_END; 278 return (new_chunk); 279 } 280 281 /* 282 * Free array. Unlike trivial loop of zap_leaf_chunk_free() this does 283 * not reverse order of chunks in the free list, reducing fragmentation. 284 */ 285 static void 286 zap_leaf_array_free(zap_leaf_t *l, uint16_t chunk) 287 { 288 struct zap_leaf_header *hdr = &zap_leaf_phys(l)->l_hdr; 289 uint16_t *tailp = &hdr->lh_freelist; 290 uint16_t oldfree = *tailp; 291 292 while (chunk != CHAIN_END) { 293 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 294 zap_leaf_chunk_t *c = &ZAP_LEAF_CHUNK(l, chunk); 295 ASSERT3U(c->l_array.la_type, ==, ZAP_CHUNK_ARRAY); 296 297 *tailp = chunk; 298 chunk = c->l_array.la_next; 299 300 c->l_free.lf_type = ZAP_CHUNK_FREE; 301 memset(c->l_free.lf_pad, 0, sizeof (c->l_free.lf_pad)); 302 tailp = &c->l_free.lf_next; 303 304 ASSERT3U(hdr->lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 305 hdr->lh_nfree++; 306 } 307 308 *tailp = oldfree; 309 } 310 311 /* array_len and buf_len are in integers, not bytes */ 312 static void 313 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, 314 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, 315 void *buf) 316 { 317 int len = MIN(array_len, buf_len); 318 int byten = 0; 319 uint64_t value = 0; 320 char *p = buf; 321 322 ASSERT3U(array_int_len, <=, buf_int_len); 323 324 /* Fast path for one 8-byte integer */ 325 if (array_int_len == 8 && buf_int_len == 8 && len == 1) { 326 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 327 uint8_t *ip = la->la_array; 328 uint64_t *buf64 = buf; 329 330 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | 331 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | 332 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | 333 (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; 334 return; 335 } 336 337 /* Fast path for an array of 1-byte integers (eg. the entry name) */ 338 if (array_int_len == 1 && buf_int_len == 1 && 339 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { 340 while (chunk != CHAIN_END) { 341 struct zap_leaf_array *la = 342 &ZAP_LEAF_CHUNK(l, chunk).l_array; 343 memcpy(p, la->la_array, ZAP_LEAF_ARRAY_BYTES); 344 p += ZAP_LEAF_ARRAY_BYTES; 345 chunk = la->la_next; 346 } 347 return; 348 } 349 350 while (len > 0) { 351 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 352 353 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 354 for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 355 value = (value << 8) | la->la_array[i]; 356 byten++; 357 if (byten == array_int_len) { 358 stv(buf_int_len, p, value); 359 byten = 0; 360 len--; 361 if (len == 0) 362 return; 363 p += buf_int_len; 364 } 365 } 366 chunk = la->la_next; 367 } 368 } 369 370 static boolean_t 371 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, 372 uint_t chunk, int array_numints) 373 { 374 int bseen = 0; 375 376 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) { 377 uint64_t *thiskey = 378 kmem_alloc(array_numints * sizeof (*thiskey), KM_SLEEP); 379 ASSERT(zn->zn_key_intlen == sizeof (*thiskey)); 380 381 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints, 382 sizeof (*thiskey), array_numints, thiskey); 383 boolean_t match = memcmp(thiskey, zn->zn_key_orig, 384 array_numints * sizeof (*thiskey)) == 0; 385 kmem_free(thiskey, array_numints * sizeof (*thiskey)); 386 return (match); 387 } 388 389 ASSERT(zn->zn_key_intlen == 1); 390 if (zn->zn_matchtype & MT_NORMALIZE) { 391 char *thisname = kmem_alloc(array_numints, KM_SLEEP); 392 393 zap_leaf_array_read(l, chunk, sizeof (char), array_numints, 394 sizeof (char), array_numints, thisname); 395 boolean_t match = zap_match(zn, thisname); 396 kmem_free(thisname, array_numints); 397 return (match); 398 } 399 400 /* 401 * Fast path for exact matching. 402 * First check that the lengths match, so that we don't read 403 * past the end of the zn_key_orig array. 404 */ 405 if (array_numints != zn->zn_key_orig_numints) 406 return (B_FALSE); 407 while (bseen < array_numints) { 408 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 409 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES); 410 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 411 if (memcmp(la->la_array, (char *)zn->zn_key_orig + bseen, 412 toread)) 413 break; 414 chunk = la->la_next; 415 bseen += toread; 416 } 417 return (bseen == array_numints); 418 } 419 420 /* 421 * Routines which manipulate leaf entries. 422 */ 423 424 int 425 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) 426 { 427 struct zap_leaf_entry *le; 428 429 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 430 431 for (uint16_t *chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); 432 *chunkp != CHAIN_END; chunkp = &le->le_next) { 433 uint16_t chunk = *chunkp; 434 le = ZAP_LEAF_ENTRY(l, chunk); 435 436 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 437 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 438 439 if (le->le_hash != zn->zn_hash) 440 continue; 441 442 /* 443 * NB: the entry chain is always sorted by cd on 444 * normalized zap objects, so this will find the 445 * lowest-cd match for MT_NORMALIZE. 446 */ 447 ASSERT((zn->zn_matchtype == 0) || 448 (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); 449 if (zap_leaf_array_match(l, zn, le->le_name_chunk, 450 le->le_name_numints)) { 451 zeh->zeh_num_integers = le->le_value_numints; 452 zeh->zeh_integer_size = le->le_value_intlen; 453 zeh->zeh_cd = le->le_cd; 454 zeh->zeh_hash = le->le_hash; 455 zeh->zeh_chunkp = chunkp; 456 zeh->zeh_leaf = l; 457 return (0); 458 } 459 } 460 461 return (SET_ERROR(ENOENT)); 462 } 463 464 /* Return (h1,cd1 >= h2,cd2) */ 465 #define HCD_GTEQ(h1, cd1, h2, cd2) \ 466 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) 467 468 int 469 zap_leaf_lookup_closest(zap_leaf_t *l, 470 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) 471 { 472 uint64_t besth = -1ULL; 473 uint32_t bestcd = -1U; 474 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; 475 struct zap_leaf_entry *le; 476 477 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 478 479 for (uint16_t lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { 480 for (uint16_t chunk = zap_leaf_phys(l)->l_hash[lh]; 481 chunk != CHAIN_END; chunk = le->le_next) { 482 le = ZAP_LEAF_ENTRY(l, chunk); 483 484 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 485 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 486 487 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && 488 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { 489 ASSERT3U(bestlh, >=, lh); 490 bestlh = lh; 491 besth = le->le_hash; 492 bestcd = le->le_cd; 493 494 zeh->zeh_num_integers = le->le_value_numints; 495 zeh->zeh_integer_size = le->le_value_intlen; 496 zeh->zeh_cd = le->le_cd; 497 zeh->zeh_hash = le->le_hash; 498 zeh->zeh_fakechunk = chunk; 499 zeh->zeh_chunkp = &zeh->zeh_fakechunk; 500 zeh->zeh_leaf = l; 501 } 502 } 503 } 504 505 return (bestcd == -1U ? SET_ERROR(ENOENT) : 0); 506 } 507 508 int 509 zap_entry_read(const zap_entry_handle_t *zeh, 510 uint8_t integer_size, uint64_t num_integers, void *buf) 511 { 512 struct zap_leaf_entry *le = 513 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 514 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 515 516 if (le->le_value_intlen > integer_size) 517 return (SET_ERROR(EINVAL)); 518 519 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, 520 le->le_value_intlen, le->le_value_numints, 521 integer_size, num_integers, buf); 522 523 if (zeh->zeh_num_integers > num_integers) 524 return (SET_ERROR(EOVERFLOW)); 525 return (0); 526 527 } 528 529 int 530 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen, 531 char *buf) 532 { 533 struct zap_leaf_entry *le = 534 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 535 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 536 537 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 538 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8, 539 le->le_name_numints, 8, buflen / 8, buf); 540 } else { 541 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, 542 le->le_name_numints, 1, buflen, buf); 543 } 544 if (le->le_name_numints > buflen) 545 return (SET_ERROR(EOVERFLOW)); 546 return (0); 547 } 548 549 int 550 zap_entry_update(zap_entry_handle_t *zeh, 551 uint8_t integer_size, uint64_t num_integers, const void *buf) 552 { 553 zap_leaf_t *l = zeh->zeh_leaf; 554 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); 555 556 int delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - 557 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen); 558 559 if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks) 560 return (SET_ERROR(EAGAIN)); 561 562 zap_leaf_array_free(l, le->le_value_chunk); 563 le->le_value_chunk = 564 zap_leaf_array_create(l, buf, integer_size, num_integers); 565 le->le_value_numints = num_integers; 566 le->le_value_intlen = integer_size; 567 return (0); 568 } 569 570 void 571 zap_entry_remove(zap_entry_handle_t *zeh) 572 { 573 zap_leaf_t *l = zeh->zeh_leaf; 574 575 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); 576 577 uint16_t entry_chunk = *zeh->zeh_chunkp; 578 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry_chunk); 579 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 580 581 *zeh->zeh_chunkp = le->le_next; 582 583 /* Free in opposite order to reduce fragmentation. */ 584 zap_leaf_array_free(l, le->le_value_chunk); 585 zap_leaf_array_free(l, le->le_name_chunk); 586 zap_leaf_chunk_free(l, entry_chunk); 587 588 zap_leaf_phys(l)->l_hdr.lh_nentries--; 589 } 590 591 int 592 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd, 593 uint8_t integer_size, uint64_t num_integers, const void *buf, 594 zap_entry_handle_t *zeh) 595 { 596 uint16_t chunk; 597 struct zap_leaf_entry *le; 598 uint64_t h = zn->zn_hash; 599 600 uint64_t valuelen = integer_size * num_integers; 601 602 uint_t numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints * 603 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); 604 if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) 605 return (SET_ERROR(E2BIG)); 606 607 if (cd == ZAP_NEED_CD) { 608 /* find the lowest unused cd */ 609 if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { 610 cd = 0; 611 612 for (chunk = *LEAF_HASH_ENTPTR(l, h); 613 chunk != CHAIN_END; chunk = le->le_next) { 614 le = ZAP_LEAF_ENTRY(l, chunk); 615 if (le->le_cd > cd) 616 break; 617 if (le->le_hash == h) { 618 ASSERT3U(cd, ==, le->le_cd); 619 cd++; 620 } 621 } 622 } else { 623 /* old unsorted format; do it the O(n^2) way */ 624 for (cd = 0; ; cd++) { 625 for (chunk = *LEAF_HASH_ENTPTR(l, h); 626 chunk != CHAIN_END; chunk = le->le_next) { 627 le = ZAP_LEAF_ENTRY(l, chunk); 628 if (le->le_hash == h && 629 le->le_cd == cd) { 630 break; 631 } 632 } 633 /* If this cd is not in use, we are good. */ 634 if (chunk == CHAIN_END) 635 break; 636 } 637 } 638 /* 639 * We would run out of space in a block before we could 640 * store enough entries to run out of CD values. 641 */ 642 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap)); 643 } 644 645 if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks) 646 return (SET_ERROR(EAGAIN)); 647 648 /* make the entry */ 649 chunk = zap_leaf_chunk_alloc(l); 650 le = ZAP_LEAF_ENTRY(l, chunk); 651 le->le_type = ZAP_CHUNK_ENTRY; 652 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig, 653 zn->zn_key_intlen, zn->zn_key_orig_numints); 654 le->le_name_numints = zn->zn_key_orig_numints; 655 le->le_value_chunk = 656 zap_leaf_array_create(l, buf, integer_size, num_integers); 657 le->le_value_numints = num_integers; 658 le->le_value_intlen = integer_size; 659 le->le_hash = h; 660 le->le_cd = cd; 661 662 /* link it into the hash chain */ 663 /* XXX if we did the search above, we could just use that */ 664 uint16_t *chunkp = zap_leaf_rehash_entry(l, le, chunk); 665 666 zap_leaf_phys(l)->l_hdr.lh_nentries++; 667 668 zeh->zeh_leaf = l; 669 zeh->zeh_num_integers = num_integers; 670 zeh->zeh_integer_size = le->le_value_intlen; 671 zeh->zeh_cd = le->le_cd; 672 zeh->zeh_hash = le->le_hash; 673 zeh->zeh_chunkp = chunkp; 674 675 return (0); 676 } 677 678 /* 679 * Determine if there is another entry with the same normalized form. 680 * For performance purposes, either zn or name must be provided (the 681 * other can be NULL). Note, there usually won't be any hash 682 * conflicts, in which case we don't need the concatenated/normalized 683 * form of the name. But all callers have one of these on hand anyway, 684 * so might as well take advantage. A cleaner but slower interface 685 * would accept neither argument, and compute the normalized name as 686 * needed (using zap_name_alloc_str(zap_entry_read_name(zeh))). 687 */ 688 boolean_t 689 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, 690 const char *name, zap_t *zap) 691 { 692 struct zap_leaf_entry *le; 693 boolean_t allocdzn = B_FALSE; 694 695 if (zap->zap_normflags == 0) 696 return (B_FALSE); 697 698 for (uint16_t chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); 699 chunk != CHAIN_END; chunk = le->le_next) { 700 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); 701 if (le->le_hash != zeh->zeh_hash) 702 continue; 703 if (le->le_cd == zeh->zeh_cd) 704 continue; 705 706 if (zn == NULL) { 707 zn = zap_name_alloc_str(zap, name, MT_NORMALIZE); 708 allocdzn = B_TRUE; 709 } 710 if (zap_leaf_array_match(zeh->zeh_leaf, zn, 711 le->le_name_chunk, le->le_name_numints)) { 712 if (allocdzn) 713 zap_name_free(zn); 714 return (B_TRUE); 715 } 716 } 717 if (allocdzn) 718 zap_name_free(zn); 719 return (B_FALSE); 720 } 721 722 /* 723 * Routines for transferring entries between leafs. 724 */ 725 726 static uint16_t * 727 zap_leaf_rehash_entry(zap_leaf_t *l, struct zap_leaf_entry *le, uint16_t entry) 728 { 729 struct zap_leaf_entry *le2; 730 uint16_t *chunkp; 731 732 /* 733 * keep the entry chain sorted by cd 734 * NB: this will not cause problems for unsorted leafs, though 735 * it is unnecessary there. 736 */ 737 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); 738 *chunkp != CHAIN_END; chunkp = &le2->le_next) { 739 le2 = ZAP_LEAF_ENTRY(l, *chunkp); 740 if (le2->le_cd > le->le_cd) 741 break; 742 } 743 744 le->le_next = *chunkp; 745 *chunkp = entry; 746 return (chunkp); 747 } 748 749 static void 750 zap_leaf_transfer_entry(zap_leaf_t *l, uint_t entry, zap_leaf_t *nl) 751 { 752 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 753 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 754 755 uint16_t chunk = zap_leaf_chunk_alloc(nl); 756 struct zap_leaf_entry *nle = ZAP_LEAF_ENTRY(nl, chunk); 757 *nle = *le; /* structure assignment */ 758 759 (void) zap_leaf_rehash_entry(nl, nle, chunk); 760 761 nle->le_name_chunk = zap_leaf_array_copy(l, le->le_name_chunk, nl); 762 nle->le_value_chunk = zap_leaf_array_copy(l, le->le_value_chunk, nl); 763 764 /* Free in opposite order to reduce fragmentation. */ 765 zap_leaf_array_free(l, le->le_value_chunk); 766 zap_leaf_array_free(l, le->le_name_chunk); 767 zap_leaf_chunk_free(l, entry); 768 769 zap_leaf_phys(l)->l_hdr.lh_nentries--; 770 zap_leaf_phys(nl)->l_hdr.lh_nentries++; 771 } 772 773 /* 774 * Transfer the entries whose hash prefix ends in 1 to the new leaf. 775 */ 776 void 777 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) 778 { 779 uint_t bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len; 780 781 /* set new prefix and prefix_len */ 782 zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1; 783 zap_leaf_phys(l)->l_hdr.lh_prefix_len++; 784 zap_leaf_phys(nl)->l_hdr.lh_prefix = 785 zap_leaf_phys(l)->l_hdr.lh_prefix | 1; 786 zap_leaf_phys(nl)->l_hdr.lh_prefix_len = 787 zap_leaf_phys(l)->l_hdr.lh_prefix_len; 788 789 /* break existing hash chains */ 790 memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 791 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 792 793 if (sort) 794 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 795 796 /* 797 * Transfer entries whose hash bit 'bit' is set to nl; rehash 798 * the remaining entries 799 * 800 * NB: We could find entries via the hashtable instead. That 801 * would be O(hashents+numents) rather than O(numblks+numents), 802 * but this accesses memory more sequentially, and when we're 803 * called, the block is usually pretty full. 804 */ 805 for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 806 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); 807 if (le->le_type != ZAP_CHUNK_ENTRY) 808 continue; 809 810 if (le->le_hash & (1ULL << bit)) 811 zap_leaf_transfer_entry(l, i, nl); 812 else 813 (void) zap_leaf_rehash_entry(l, le, i); 814 } 815 } 816 817 void 818 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) 819 { 820 uint_t n = zap_f_phys(zap)->zap_ptrtbl.zt_shift - 821 zap_leaf_phys(l)->l_hdr.lh_prefix_len; 822 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 823 zs->zs_leafs_with_2n_pointers[n]++; 824 825 826 n = zap_leaf_phys(l)->l_hdr.lh_nentries/5; 827 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 828 zs->zs_blocks_with_n5_entries[n]++; 829 830 n = ((1<<FZAP_BLOCK_SHIFT(zap)) - 831 zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / 832 (1<<FZAP_BLOCK_SHIFT(zap)); 833 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 834 zs->zs_blocks_n_tenths_full[n]++; 835 836 for (uint_t i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { 837 uint_t nentries = 0; 838 uint_t chunk = zap_leaf_phys(l)->l_hash[i]; 839 840 while (chunk != CHAIN_END) { 841 struct zap_leaf_entry *le = 842 ZAP_LEAF_ENTRY(l, chunk); 843 844 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) + 845 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * 846 le->le_value_intlen); 847 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 848 zs->zs_entries_using_n_chunks[n]++; 849 850 chunk = le->le_next; 851 nentries++; 852 } 853 854 n = nentries; 855 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 856 zs->zs_buckets_with_n_entries[n]++; 857 } 858 } 859