1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 */ 27 28 /* 29 * The 512-byte leaf is broken into 32 16-byte chunks. 30 * chunk number n means l_chunk[n], even though the header precedes it. 31 * the names are stored null-terminated. 32 */ 33 34 #include <sys/zio.h> 35 #include <sys/spa.h> 36 #include <sys/dmu.h> 37 #include <sys/zfs_context.h> 38 #include <sys/fs/zfs.h> 39 #include <sys/zap.h> 40 #include <sys/zap_impl.h> 41 #include <sys/zap_leaf.h> 42 #include <sys/arc.h> 43 44 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, struct zap_leaf_entry *le, 45 uint16_t entry); 46 47 #define CHAIN_END 0xffff /* end of the chunk chain */ 48 49 #define LEAF_HASH(l, h) \ 50 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 51 ((h) >> \ 52 (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) 53 54 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)]) 55 56 static void 57 stv(int len, void *addr, uint64_t value) 58 { 59 switch (len) { 60 case 1: 61 *(uint8_t *)addr = value; 62 return; 63 case 2: 64 *(uint16_t *)addr = value; 65 return; 66 case 4: 67 *(uint32_t *)addr = value; 68 return; 69 case 8: 70 *(uint64_t *)addr = value; 71 return; 72 default: 73 PANIC("bad int len %d", len); 74 } 75 } 76 77 static uint64_t 78 ldv(int len, const void *addr) 79 { 80 switch (len) { 81 case 1: 82 return (*(uint8_t *)addr); 83 case 2: 84 return (*(uint16_t *)addr); 85 case 4: 86 return (*(uint32_t *)addr); 87 case 8: 88 return (*(uint64_t *)addr); 89 default: 90 PANIC("bad int len %d", len); 91 } 92 return (0xFEEDFACEDEADBEEFULL); 93 } 94 95 void 96 zap_leaf_byteswap(zap_leaf_phys_t *buf, size_t size) 97 { 98 zap_leaf_t l; 99 dmu_buf_t l_dbuf; 100 101 l_dbuf.db_data = buf; 102 l.l_bs = highbit64(size) - 1; 103 l.l_dbuf = &l_dbuf; 104 105 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); 106 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); 107 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); 108 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); 109 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); 110 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); 111 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); 112 113 for (uint_t i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) 114 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); 115 116 for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { 117 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); 118 struct zap_leaf_entry *le; 119 120 switch (lc->l_free.lf_type) { 121 case ZAP_CHUNK_ENTRY: 122 le = &lc->l_entry; 123 124 le->le_type = BSWAP_8(le->le_type); 125 le->le_value_intlen = BSWAP_8(le->le_value_intlen); 126 le->le_next = BSWAP_16(le->le_next); 127 le->le_name_chunk = BSWAP_16(le->le_name_chunk); 128 le->le_name_numints = BSWAP_16(le->le_name_numints); 129 le->le_value_chunk = BSWAP_16(le->le_value_chunk); 130 le->le_value_numints = BSWAP_16(le->le_value_numints); 131 le->le_cd = BSWAP_32(le->le_cd); 132 le->le_hash = BSWAP_64(le->le_hash); 133 break; 134 case ZAP_CHUNK_FREE: 135 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); 136 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); 137 break; 138 case ZAP_CHUNK_ARRAY: 139 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); 140 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); 141 /* la_array doesn't need swapping */ 142 break; 143 default: 144 cmn_err(CE_PANIC, "bad leaf type %d", 145 lc->l_free.lf_type); 146 } 147 } 148 } 149 150 void 151 zap_leaf_init(zap_leaf_t *l, boolean_t sort) 152 { 153 l->l_bs = highbit64(l->l_dbuf->db_size) - 1; 154 memset(&zap_leaf_phys(l)->l_hdr, 0, 155 sizeof (struct zap_leaf_header)); 156 memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 157 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 158 for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 159 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; 160 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; 161 } 162 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; 163 zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF; 164 zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 165 zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 166 if (sort) 167 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 168 } 169 170 /* 171 * Routines which manipulate leaf chunks (l_chunk[]). 172 */ 173 174 static uint16_t 175 zap_leaf_chunk_alloc(zap_leaf_t *l) 176 { 177 ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0); 178 179 uint_t chunk = zap_leaf_phys(l)->l_hdr.lh_freelist; 180 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 181 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); 182 183 zap_leaf_phys(l)->l_hdr.lh_freelist = 184 ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; 185 186 zap_leaf_phys(l)->l_hdr.lh_nfree--; 187 188 return (chunk); 189 } 190 191 static void 192 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) 193 { 194 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; 195 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 196 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 197 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); 198 199 zlf->lf_type = ZAP_CHUNK_FREE; 200 zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist; 201 memset(zlf->lf_pad, 0, sizeof (zlf->lf_pad)); /* help it to compress */ 202 zap_leaf_phys(l)->l_hdr.lh_freelist = chunk; 203 204 zap_leaf_phys(l)->l_hdr.lh_nfree++; 205 } 206 207 /* 208 * Routines which manipulate leaf arrays (zap_leaf_array type chunks). 209 */ 210 211 static uint16_t 212 zap_leaf_array_create(zap_leaf_t *l, const char *buf, 213 int integer_size, int num_integers) 214 { 215 uint16_t chunk_head; 216 uint16_t *chunkp = &chunk_head; 217 int byten = integer_size; 218 uint64_t value = 0; 219 int shift = (integer_size - 1) * 8; 220 int len = num_integers; 221 222 ASSERT3U(num_integers * integer_size, <=, ZAP_MAXVALUELEN); 223 224 if (len > 0) 225 value = ldv(integer_size, buf); 226 while (len > 0) { 227 uint16_t chunk = zap_leaf_chunk_alloc(l); 228 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 229 230 la->la_type = ZAP_CHUNK_ARRAY; 231 for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 232 la->la_array[i] = value >> shift; 233 value <<= 8; 234 if (--byten == 0) { 235 if (--len == 0) 236 break; 237 byten = integer_size; 238 buf += integer_size; 239 value = ldv(integer_size, buf); 240 } 241 } 242 243 *chunkp = chunk; 244 chunkp = &la->la_next; 245 } 246 *chunkp = CHAIN_END; 247 248 return (chunk_head); 249 } 250 251 /* 252 * Non-destructively copy array between leaves. 253 */ 254 static uint16_t 255 zap_leaf_array_copy(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) 256 { 257 uint16_t new_chunk; 258 uint16_t *nchunkp = &new_chunk; 259 260 while (chunk != CHAIN_END) { 261 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 262 uint16_t nchunk = zap_leaf_chunk_alloc(nl); 263 264 struct zap_leaf_array *la = 265 &ZAP_LEAF_CHUNK(l, chunk).l_array; 266 struct zap_leaf_array *nla = 267 &ZAP_LEAF_CHUNK(nl, nchunk).l_array; 268 ASSERT3U(la->la_type, ==, ZAP_CHUNK_ARRAY); 269 270 *nla = *la; /* structure assignment */ 271 272 chunk = la->la_next; 273 *nchunkp = nchunk; 274 nchunkp = &nla->la_next; 275 } 276 *nchunkp = CHAIN_END; 277 return (new_chunk); 278 } 279 280 /* 281 * Free array. Unlike trivial loop of zap_leaf_chunk_free() this does 282 * not reverse order of chunks in the free list, reducing fragmentation. 283 */ 284 static void 285 zap_leaf_array_free(zap_leaf_t *l, uint16_t chunk) 286 { 287 struct zap_leaf_header *hdr = &zap_leaf_phys(l)->l_hdr; 288 uint16_t *tailp = &hdr->lh_freelist; 289 uint16_t oldfree = *tailp; 290 291 while (chunk != CHAIN_END) { 292 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 293 zap_leaf_chunk_t *c = &ZAP_LEAF_CHUNK(l, chunk); 294 ASSERT3U(c->l_array.la_type, ==, ZAP_CHUNK_ARRAY); 295 296 *tailp = chunk; 297 chunk = c->l_array.la_next; 298 299 c->l_free.lf_type = ZAP_CHUNK_FREE; 300 memset(c->l_free.lf_pad, 0, sizeof (c->l_free.lf_pad)); 301 tailp = &c->l_free.lf_next; 302 303 ASSERT3U(hdr->lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 304 hdr->lh_nfree++; 305 } 306 307 *tailp = oldfree; 308 } 309 310 /* array_len and buf_len are in integers, not bytes */ 311 static void 312 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, 313 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, 314 void *buf) 315 { 316 int len = MIN(array_len, buf_len); 317 int byten = 0; 318 uint64_t value = 0; 319 char *p = buf; 320 321 ASSERT3U(array_int_len, <=, buf_int_len); 322 323 /* Fast path for one 8-byte integer */ 324 if (array_int_len == 8 && buf_int_len == 8 && len == 1) { 325 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 326 uint8_t *ip = la->la_array; 327 uint64_t *buf64 = buf; 328 329 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | 330 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | 331 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | 332 (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; 333 return; 334 } 335 336 /* Fast path for an array of 1-byte integers (eg. the entry name) */ 337 if (array_int_len == 1 && buf_int_len == 1 && 338 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { 339 while (chunk != CHAIN_END) { 340 struct zap_leaf_array *la = 341 &ZAP_LEAF_CHUNK(l, chunk).l_array; 342 memcpy(p, la->la_array, ZAP_LEAF_ARRAY_BYTES); 343 p += ZAP_LEAF_ARRAY_BYTES; 344 chunk = la->la_next; 345 } 346 return; 347 } 348 349 while (len > 0) { 350 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 351 352 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 353 for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 354 value = (value << 8) | la->la_array[i]; 355 byten++; 356 if (byten == array_int_len) { 357 stv(buf_int_len, p, value); 358 byten = 0; 359 len--; 360 if (len == 0) 361 return; 362 p += buf_int_len; 363 } 364 } 365 chunk = la->la_next; 366 } 367 } 368 369 static boolean_t 370 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, 371 uint_t chunk, int array_numints) 372 { 373 int bseen = 0; 374 375 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) { 376 uint64_t *thiskey = 377 kmem_alloc(array_numints * sizeof (*thiskey), KM_SLEEP); 378 ASSERT(zn->zn_key_intlen == sizeof (*thiskey)); 379 380 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints, 381 sizeof (*thiskey), array_numints, thiskey); 382 boolean_t match = memcmp(thiskey, zn->zn_key_orig, 383 array_numints * sizeof (*thiskey)) == 0; 384 kmem_free(thiskey, array_numints * sizeof (*thiskey)); 385 return (match); 386 } 387 388 ASSERT(zn->zn_key_intlen == 1); 389 if (zn->zn_matchtype & MT_NORMALIZE) { 390 char *thisname = kmem_alloc(array_numints, KM_SLEEP); 391 392 zap_leaf_array_read(l, chunk, sizeof (char), array_numints, 393 sizeof (char), array_numints, thisname); 394 boolean_t match = zap_match(zn, thisname); 395 kmem_free(thisname, array_numints); 396 return (match); 397 } 398 399 /* 400 * Fast path for exact matching. 401 * First check that the lengths match, so that we don't read 402 * past the end of the zn_key_orig array. 403 */ 404 if (array_numints != zn->zn_key_orig_numints) 405 return (B_FALSE); 406 while (bseen < array_numints) { 407 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 408 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES); 409 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 410 if (memcmp(la->la_array, (char *)zn->zn_key_orig + bseen, 411 toread)) 412 break; 413 chunk = la->la_next; 414 bseen += toread; 415 } 416 return (bseen == array_numints); 417 } 418 419 /* 420 * Routines which manipulate leaf entries. 421 */ 422 423 int 424 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) 425 { 426 struct zap_leaf_entry *le; 427 428 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 429 430 for (uint16_t *chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); 431 *chunkp != CHAIN_END; chunkp = &le->le_next) { 432 uint16_t chunk = *chunkp; 433 le = ZAP_LEAF_ENTRY(l, chunk); 434 435 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 436 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 437 438 if (le->le_hash != zn->zn_hash) 439 continue; 440 441 /* 442 * NB: the entry chain is always sorted by cd on 443 * normalized zap objects, so this will find the 444 * lowest-cd match for MT_NORMALIZE. 445 */ 446 ASSERT((zn->zn_matchtype == 0) || 447 (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); 448 if (zap_leaf_array_match(l, zn, le->le_name_chunk, 449 le->le_name_numints)) { 450 zeh->zeh_num_integers = le->le_value_numints; 451 zeh->zeh_integer_size = le->le_value_intlen; 452 zeh->zeh_cd = le->le_cd; 453 zeh->zeh_hash = le->le_hash; 454 zeh->zeh_chunkp = chunkp; 455 zeh->zeh_leaf = l; 456 return (0); 457 } 458 } 459 460 return (SET_ERROR(ENOENT)); 461 } 462 463 /* Return (h1,cd1 >= h2,cd2) */ 464 #define HCD_GTEQ(h1, cd1, h2, cd2) \ 465 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) 466 467 int 468 zap_leaf_lookup_closest(zap_leaf_t *l, 469 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) 470 { 471 uint64_t besth = -1ULL; 472 uint32_t bestcd = -1U; 473 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; 474 struct zap_leaf_entry *le; 475 476 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 477 478 for (uint16_t lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { 479 for (uint16_t chunk = zap_leaf_phys(l)->l_hash[lh]; 480 chunk != CHAIN_END; chunk = le->le_next) { 481 le = ZAP_LEAF_ENTRY(l, chunk); 482 483 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 484 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 485 486 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && 487 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { 488 ASSERT3U(bestlh, >=, lh); 489 bestlh = lh; 490 besth = le->le_hash; 491 bestcd = le->le_cd; 492 493 zeh->zeh_num_integers = le->le_value_numints; 494 zeh->zeh_integer_size = le->le_value_intlen; 495 zeh->zeh_cd = le->le_cd; 496 zeh->zeh_hash = le->le_hash; 497 zeh->zeh_fakechunk = chunk; 498 zeh->zeh_chunkp = &zeh->zeh_fakechunk; 499 zeh->zeh_leaf = l; 500 } 501 } 502 } 503 504 return (bestcd == -1U ? SET_ERROR(ENOENT) : 0); 505 } 506 507 int 508 zap_entry_read(const zap_entry_handle_t *zeh, 509 uint8_t integer_size, uint64_t num_integers, void *buf) 510 { 511 struct zap_leaf_entry *le = 512 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 513 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 514 515 if (le->le_value_intlen > integer_size) 516 return (SET_ERROR(EINVAL)); 517 518 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, 519 le->le_value_intlen, le->le_value_numints, 520 integer_size, num_integers, buf); 521 522 if (zeh->zeh_num_integers > num_integers) 523 return (SET_ERROR(EOVERFLOW)); 524 return (0); 525 526 } 527 528 int 529 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen, 530 char *buf) 531 { 532 struct zap_leaf_entry *le = 533 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 534 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 535 536 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 537 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8, 538 le->le_name_numints, 8, buflen / 8, buf); 539 } else { 540 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, 541 le->le_name_numints, 1, buflen, buf); 542 } 543 if (le->le_name_numints > buflen) 544 return (SET_ERROR(EOVERFLOW)); 545 return (0); 546 } 547 548 int 549 zap_entry_update(zap_entry_handle_t *zeh, 550 uint8_t integer_size, uint64_t num_integers, const void *buf) 551 { 552 zap_leaf_t *l = zeh->zeh_leaf; 553 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); 554 555 int delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - 556 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen); 557 558 if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks) 559 return (SET_ERROR(EAGAIN)); 560 561 zap_leaf_array_free(l, le->le_value_chunk); 562 le->le_value_chunk = 563 zap_leaf_array_create(l, buf, integer_size, num_integers); 564 le->le_value_numints = num_integers; 565 le->le_value_intlen = integer_size; 566 return (0); 567 } 568 569 void 570 zap_entry_remove(zap_entry_handle_t *zeh) 571 { 572 zap_leaf_t *l = zeh->zeh_leaf; 573 574 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); 575 576 uint16_t entry_chunk = *zeh->zeh_chunkp; 577 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry_chunk); 578 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 579 580 *zeh->zeh_chunkp = le->le_next; 581 582 /* Free in opposite order to reduce fragmentation. */ 583 zap_leaf_array_free(l, le->le_value_chunk); 584 zap_leaf_array_free(l, le->le_name_chunk); 585 zap_leaf_chunk_free(l, entry_chunk); 586 587 zap_leaf_phys(l)->l_hdr.lh_nentries--; 588 } 589 590 int 591 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd, 592 uint8_t integer_size, uint64_t num_integers, const void *buf, 593 zap_entry_handle_t *zeh) 594 { 595 uint16_t chunk; 596 struct zap_leaf_entry *le; 597 uint64_t h = zn->zn_hash; 598 599 uint64_t valuelen = integer_size * num_integers; 600 601 uint_t numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints * 602 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); 603 if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) 604 return (SET_ERROR(E2BIG)); 605 606 if (cd == ZAP_NEED_CD) { 607 /* find the lowest unused cd */ 608 if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { 609 cd = 0; 610 611 for (chunk = *LEAF_HASH_ENTPTR(l, h); 612 chunk != CHAIN_END; chunk = le->le_next) { 613 le = ZAP_LEAF_ENTRY(l, chunk); 614 if (le->le_cd > cd) 615 break; 616 if (le->le_hash == h) { 617 ASSERT3U(cd, ==, le->le_cd); 618 cd++; 619 } 620 } 621 } else { 622 /* old unsorted format; do it the O(n^2) way */ 623 for (cd = 0; ; cd++) { 624 for (chunk = *LEAF_HASH_ENTPTR(l, h); 625 chunk != CHAIN_END; chunk = le->le_next) { 626 le = ZAP_LEAF_ENTRY(l, chunk); 627 if (le->le_hash == h && 628 le->le_cd == cd) { 629 break; 630 } 631 } 632 /* If this cd is not in use, we are good. */ 633 if (chunk == CHAIN_END) 634 break; 635 } 636 } 637 /* 638 * We would run out of space in a block before we could 639 * store enough entries to run out of CD values. 640 */ 641 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap)); 642 } 643 644 if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks) 645 return (SET_ERROR(EAGAIN)); 646 647 /* make the entry */ 648 chunk = zap_leaf_chunk_alloc(l); 649 le = ZAP_LEAF_ENTRY(l, chunk); 650 le->le_type = ZAP_CHUNK_ENTRY; 651 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig, 652 zn->zn_key_intlen, zn->zn_key_orig_numints); 653 le->le_name_numints = zn->zn_key_orig_numints; 654 le->le_value_chunk = 655 zap_leaf_array_create(l, buf, integer_size, num_integers); 656 le->le_value_numints = num_integers; 657 le->le_value_intlen = integer_size; 658 le->le_hash = h; 659 le->le_cd = cd; 660 661 /* link it into the hash chain */ 662 /* XXX if we did the search above, we could just use that */ 663 uint16_t *chunkp = zap_leaf_rehash_entry(l, le, chunk); 664 665 zap_leaf_phys(l)->l_hdr.lh_nentries++; 666 667 zeh->zeh_leaf = l; 668 zeh->zeh_num_integers = num_integers; 669 zeh->zeh_integer_size = le->le_value_intlen; 670 zeh->zeh_cd = le->le_cd; 671 zeh->zeh_hash = le->le_hash; 672 zeh->zeh_chunkp = chunkp; 673 674 return (0); 675 } 676 677 /* 678 * Determine if there is another entry with the same normalized form. 679 * For performance purposes, either zn or name must be provided (the 680 * other can be NULL). Note, there usually won't be any hash 681 * conflicts, in which case we don't need the concatenated/normalized 682 * form of the name. But all callers have one of these on hand anyway, 683 * so might as well take advantage. A cleaner but slower interface 684 * would accept neither argument, and compute the normalized name as 685 * needed (using zap_name_alloc_str(zap_entry_read_name(zeh))). 686 */ 687 boolean_t 688 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, 689 const char *name, zap_t *zap) 690 { 691 struct zap_leaf_entry *le; 692 boolean_t allocdzn = B_FALSE; 693 694 if (zap->zap_normflags == 0) 695 return (B_FALSE); 696 697 for (uint16_t chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); 698 chunk != CHAIN_END; chunk = le->le_next) { 699 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); 700 if (le->le_hash != zeh->zeh_hash) 701 continue; 702 if (le->le_cd == zeh->zeh_cd) 703 continue; 704 705 if (zn == NULL) { 706 zn = zap_name_alloc_str(zap, name, MT_NORMALIZE); 707 allocdzn = B_TRUE; 708 } 709 if (zap_leaf_array_match(zeh->zeh_leaf, zn, 710 le->le_name_chunk, le->le_name_numints)) { 711 if (allocdzn) 712 zap_name_free(zn); 713 return (B_TRUE); 714 } 715 } 716 if (allocdzn) 717 zap_name_free(zn); 718 return (B_FALSE); 719 } 720 721 /* 722 * Routines for transferring entries between leafs. 723 */ 724 725 static uint16_t * 726 zap_leaf_rehash_entry(zap_leaf_t *l, struct zap_leaf_entry *le, uint16_t entry) 727 { 728 struct zap_leaf_entry *le2; 729 uint16_t *chunkp; 730 731 /* 732 * keep the entry chain sorted by cd 733 * NB: this will not cause problems for unsorted leafs, though 734 * it is unnecessary there. 735 */ 736 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); 737 *chunkp != CHAIN_END; chunkp = &le2->le_next) { 738 le2 = ZAP_LEAF_ENTRY(l, *chunkp); 739 if (le2->le_cd > le->le_cd) 740 break; 741 } 742 743 le->le_next = *chunkp; 744 *chunkp = entry; 745 return (chunkp); 746 } 747 748 static void 749 zap_leaf_transfer_entry(zap_leaf_t *l, uint_t entry, zap_leaf_t *nl) 750 { 751 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 752 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 753 754 uint16_t chunk = zap_leaf_chunk_alloc(nl); 755 struct zap_leaf_entry *nle = ZAP_LEAF_ENTRY(nl, chunk); 756 *nle = *le; /* structure assignment */ 757 758 (void) zap_leaf_rehash_entry(nl, nle, chunk); 759 760 nle->le_name_chunk = zap_leaf_array_copy(l, le->le_name_chunk, nl); 761 nle->le_value_chunk = zap_leaf_array_copy(l, le->le_value_chunk, nl); 762 763 /* Free in opposite order to reduce fragmentation. */ 764 zap_leaf_array_free(l, le->le_value_chunk); 765 zap_leaf_array_free(l, le->le_name_chunk); 766 zap_leaf_chunk_free(l, entry); 767 768 zap_leaf_phys(l)->l_hdr.lh_nentries--; 769 zap_leaf_phys(nl)->l_hdr.lh_nentries++; 770 } 771 772 /* 773 * Transfer the entries whose hash prefix ends in 1 to the new leaf. 774 */ 775 void 776 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) 777 { 778 uint_t bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len; 779 780 /* set new prefix and prefix_len */ 781 zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1; 782 zap_leaf_phys(l)->l_hdr.lh_prefix_len++; 783 zap_leaf_phys(nl)->l_hdr.lh_prefix = 784 zap_leaf_phys(l)->l_hdr.lh_prefix | 1; 785 zap_leaf_phys(nl)->l_hdr.lh_prefix_len = 786 zap_leaf_phys(l)->l_hdr.lh_prefix_len; 787 788 /* break existing hash chains */ 789 memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 790 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 791 792 if (sort) 793 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 794 795 /* 796 * Transfer entries whose hash bit 'bit' is set to nl; rehash 797 * the remaining entries 798 * 799 * NB: We could find entries via the hashtable instead. That 800 * would be O(hashents+numents) rather than O(numblks+numents), 801 * but this accesses memory more sequentially, and when we're 802 * called, the block is usually pretty full. 803 */ 804 for (uint_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 805 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); 806 if (le->le_type != ZAP_CHUNK_ENTRY) 807 continue; 808 809 if (le->le_hash & (1ULL << bit)) 810 zap_leaf_transfer_entry(l, i, nl); 811 else 812 (void) zap_leaf_rehash_entry(l, le, i); 813 } 814 } 815 816 void 817 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) 818 { 819 uint_t n = zap_f_phys(zap)->zap_ptrtbl.zt_shift - 820 zap_leaf_phys(l)->l_hdr.lh_prefix_len; 821 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 822 zs->zs_leafs_with_2n_pointers[n]++; 823 824 825 n = zap_leaf_phys(l)->l_hdr.lh_nentries/5; 826 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 827 zs->zs_blocks_with_n5_entries[n]++; 828 829 n = ((1<<FZAP_BLOCK_SHIFT(zap)) - 830 zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / 831 (1<<FZAP_BLOCK_SHIFT(zap)); 832 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 833 zs->zs_blocks_n_tenths_full[n]++; 834 835 for (uint_t i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { 836 uint_t nentries = 0; 837 uint_t chunk = zap_leaf_phys(l)->l_hash[i]; 838 839 while (chunk != CHAIN_END) { 840 struct zap_leaf_entry *le = 841 ZAP_LEAF_ENTRY(l, chunk); 842 843 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) + 844 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * 845 le->le_value_intlen); 846 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 847 zs->zs_entries_using_n_chunks[n]++; 848 849 chunk = le->le_next; 850 nentries++; 851 } 852 853 n = nentries; 854 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 855 zs->zs_buckets_with_n_entries[n]++; 856 } 857 } 858