1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 */ 27 28 /* 29 * The 512-byte leaf is broken into 32 16-byte chunks. 30 * chunk number n means l_chunk[n], even though the header precedes it. 31 * the names are stored null-terminated. 32 */ 33 34 #include <sys/zio.h> 35 #include <sys/spa.h> 36 #include <sys/dmu.h> 37 #include <sys/zfs_context.h> 38 #include <sys/fs/zfs.h> 39 #include <sys/zap.h> 40 #include <sys/zap_impl.h> 41 #include <sys/zap_leaf.h> 42 #include <sys/arc.h> 43 44 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry); 45 46 #define CHAIN_END 0xffff /* end of the chunk chain */ 47 48 #define LEAF_HASH(l, h) \ 49 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 50 ((h) >> \ 51 (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) 52 53 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)]) 54 55 static void 56 zap_memset(void *a, int c, size_t n) 57 { 58 char *cp = a; 59 char *cpend = cp + n; 60 61 while (cp < cpend) 62 *cp++ = c; 63 } 64 65 static void 66 stv(int len, void *addr, uint64_t value) 67 { 68 switch (len) { 69 case 1: 70 *(uint8_t *)addr = value; 71 return; 72 case 2: 73 *(uint16_t *)addr = value; 74 return; 75 case 4: 76 *(uint32_t *)addr = value; 77 return; 78 case 8: 79 *(uint64_t *)addr = value; 80 return; 81 default: 82 cmn_err(CE_PANIC, "bad int len %d", len); 83 } 84 } 85 86 static uint64_t 87 ldv(int len, const void *addr) 88 { 89 switch (len) { 90 case 1: 91 return (*(uint8_t *)addr); 92 case 2: 93 return (*(uint16_t *)addr); 94 case 4: 95 return (*(uint32_t *)addr); 96 case 8: 97 return (*(uint64_t *)addr); 98 default: 99 cmn_err(CE_PANIC, "bad int len %d", len); 100 } 101 return (0xFEEDFACEDEADBEEFULL); 102 } 103 104 void 105 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) 106 { 107 zap_leaf_t l; 108 dmu_buf_t l_dbuf; 109 110 l_dbuf.db_data = buf; 111 l.l_bs = highbit64(size) - 1; 112 l.l_dbuf = &l_dbuf; 113 114 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); 115 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); 116 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); 117 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); 118 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); 119 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); 120 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); 121 122 for (int i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) 123 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); 124 125 for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { 126 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); 127 struct zap_leaf_entry *le; 128 129 switch (lc->l_free.lf_type) { 130 case ZAP_CHUNK_ENTRY: 131 le = &lc->l_entry; 132 133 le->le_type = BSWAP_8(le->le_type); 134 le->le_value_intlen = BSWAP_8(le->le_value_intlen); 135 le->le_next = BSWAP_16(le->le_next); 136 le->le_name_chunk = BSWAP_16(le->le_name_chunk); 137 le->le_name_numints = BSWAP_16(le->le_name_numints); 138 le->le_value_chunk = BSWAP_16(le->le_value_chunk); 139 le->le_value_numints = BSWAP_16(le->le_value_numints); 140 le->le_cd = BSWAP_32(le->le_cd); 141 le->le_hash = BSWAP_64(le->le_hash); 142 break; 143 case ZAP_CHUNK_FREE: 144 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); 145 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); 146 break; 147 case ZAP_CHUNK_ARRAY: 148 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); 149 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); 150 /* la_array doesn't need swapping */ 151 break; 152 default: 153 cmn_err(CE_PANIC, "bad leaf type %d", 154 lc->l_free.lf_type); 155 } 156 } 157 } 158 159 void 160 zap_leaf_init(zap_leaf_t *l, boolean_t sort) 161 { 162 l->l_bs = highbit64(l->l_dbuf->db_size) - 1; 163 zap_memset(&zap_leaf_phys(l)->l_hdr, 0, 164 sizeof (struct zap_leaf_header)); 165 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 166 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 167 for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 168 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; 169 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; 170 } 171 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; 172 zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF; 173 zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 174 zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 175 if (sort) 176 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 177 } 178 179 /* 180 * Routines which manipulate leaf chunks (l_chunk[]). 181 */ 182 183 static uint16_t 184 zap_leaf_chunk_alloc(zap_leaf_t *l) 185 { 186 ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0); 187 188 int chunk = zap_leaf_phys(l)->l_hdr.lh_freelist; 189 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 190 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); 191 192 zap_leaf_phys(l)->l_hdr.lh_freelist = 193 ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; 194 195 zap_leaf_phys(l)->l_hdr.lh_nfree--; 196 197 return (chunk); 198 } 199 200 static void 201 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) 202 { 203 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; 204 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 205 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 206 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); 207 208 zlf->lf_type = ZAP_CHUNK_FREE; 209 zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist; 210 memset(zlf->lf_pad, 0, sizeof (zlf->lf_pad)); /* help it to compress */ 211 zap_leaf_phys(l)->l_hdr.lh_freelist = chunk; 212 213 zap_leaf_phys(l)->l_hdr.lh_nfree++; 214 } 215 216 /* 217 * Routines which manipulate leaf arrays (zap_leaf_array type chunks). 218 */ 219 220 static uint16_t 221 zap_leaf_array_create(zap_leaf_t *l, const char *buf, 222 int integer_size, int num_integers) 223 { 224 uint16_t chunk_head; 225 uint16_t *chunkp = &chunk_head; 226 int byten = 0; 227 uint64_t value = 0; 228 int shift = (integer_size - 1) * 8; 229 int len = num_integers; 230 231 ASSERT3U(num_integers * integer_size, <=, ZAP_MAXVALUELEN); 232 233 while (len > 0) { 234 uint16_t chunk = zap_leaf_chunk_alloc(l); 235 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 236 237 la->la_type = ZAP_CHUNK_ARRAY; 238 for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 239 if (byten == 0) 240 value = ldv(integer_size, buf); 241 la->la_array[i] = value >> shift; 242 value <<= 8; 243 if (++byten == integer_size) { 244 byten = 0; 245 buf += integer_size; 246 if (--len == 0) 247 break; 248 } 249 } 250 251 *chunkp = chunk; 252 chunkp = &la->la_next; 253 } 254 *chunkp = CHAIN_END; 255 256 return (chunk_head); 257 } 258 259 static void 260 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) 261 { 262 uint16_t chunk = *chunkp; 263 264 *chunkp = CHAIN_END; 265 266 while (chunk != CHAIN_END) { 267 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; 268 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, 269 ZAP_CHUNK_ARRAY); 270 zap_leaf_chunk_free(l, chunk); 271 chunk = nextchunk; 272 } 273 } 274 275 /* array_len and buf_len are in integers, not bytes */ 276 static void 277 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, 278 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, 279 void *buf) 280 { 281 int len = MIN(array_len, buf_len); 282 int byten = 0; 283 uint64_t value = 0; 284 char *p = buf; 285 286 ASSERT3U(array_int_len, <=, buf_int_len); 287 288 /* Fast path for one 8-byte integer */ 289 if (array_int_len == 8 && buf_int_len == 8 && len == 1) { 290 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 291 uint8_t *ip = la->la_array; 292 uint64_t *buf64 = buf; 293 294 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | 295 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | 296 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | 297 (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; 298 return; 299 } 300 301 /* Fast path for an array of 1-byte integers (eg. the entry name) */ 302 if (array_int_len == 1 && buf_int_len == 1 && 303 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { 304 while (chunk != CHAIN_END) { 305 struct zap_leaf_array *la = 306 &ZAP_LEAF_CHUNK(l, chunk).l_array; 307 memcpy(p, la->la_array, ZAP_LEAF_ARRAY_BYTES); 308 p += ZAP_LEAF_ARRAY_BYTES; 309 chunk = la->la_next; 310 } 311 return; 312 } 313 314 while (len > 0) { 315 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 316 317 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 318 for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 319 value = (value << 8) | la->la_array[i]; 320 byten++; 321 if (byten == array_int_len) { 322 stv(buf_int_len, p, value); 323 byten = 0; 324 len--; 325 if (len == 0) 326 return; 327 p += buf_int_len; 328 } 329 } 330 chunk = la->la_next; 331 } 332 } 333 334 static boolean_t 335 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, 336 int chunk, int array_numints) 337 { 338 int bseen = 0; 339 340 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) { 341 uint64_t *thiskey = 342 kmem_alloc(array_numints * sizeof (*thiskey), KM_SLEEP); 343 ASSERT(zn->zn_key_intlen == sizeof (*thiskey)); 344 345 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints, 346 sizeof (*thiskey), array_numints, thiskey); 347 boolean_t match = memcmp(thiskey, zn->zn_key_orig, 348 array_numints * sizeof (*thiskey)) == 0; 349 kmem_free(thiskey, array_numints * sizeof (*thiskey)); 350 return (match); 351 } 352 353 ASSERT(zn->zn_key_intlen == 1); 354 if (zn->zn_matchtype & MT_NORMALIZE) { 355 char *thisname = kmem_alloc(array_numints, KM_SLEEP); 356 357 zap_leaf_array_read(l, chunk, sizeof (char), array_numints, 358 sizeof (char), array_numints, thisname); 359 boolean_t match = zap_match(zn, thisname); 360 kmem_free(thisname, array_numints); 361 return (match); 362 } 363 364 /* 365 * Fast path for exact matching. 366 * First check that the lengths match, so that we don't read 367 * past the end of the zn_key_orig array. 368 */ 369 if (array_numints != zn->zn_key_orig_numints) 370 return (B_FALSE); 371 while (bseen < array_numints) { 372 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 373 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES); 374 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 375 if (memcmp(la->la_array, (char *)zn->zn_key_orig + bseen, 376 toread)) 377 break; 378 chunk = la->la_next; 379 bseen += toread; 380 } 381 return (bseen == array_numints); 382 } 383 384 /* 385 * Routines which manipulate leaf entries. 386 */ 387 388 int 389 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) 390 { 391 struct zap_leaf_entry *le; 392 393 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 394 395 for (uint16_t *chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); 396 *chunkp != CHAIN_END; chunkp = &le->le_next) { 397 uint16_t chunk = *chunkp; 398 le = ZAP_LEAF_ENTRY(l, chunk); 399 400 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 401 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 402 403 if (le->le_hash != zn->zn_hash) 404 continue; 405 406 /* 407 * NB: the entry chain is always sorted by cd on 408 * normalized zap objects, so this will find the 409 * lowest-cd match for MT_NORMALIZE. 410 */ 411 ASSERT((zn->zn_matchtype == 0) || 412 (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); 413 if (zap_leaf_array_match(l, zn, le->le_name_chunk, 414 le->le_name_numints)) { 415 zeh->zeh_num_integers = le->le_value_numints; 416 zeh->zeh_integer_size = le->le_value_intlen; 417 zeh->zeh_cd = le->le_cd; 418 zeh->zeh_hash = le->le_hash; 419 zeh->zeh_chunkp = chunkp; 420 zeh->zeh_leaf = l; 421 return (0); 422 } 423 } 424 425 return (SET_ERROR(ENOENT)); 426 } 427 428 /* Return (h1,cd1 >= h2,cd2) */ 429 #define HCD_GTEQ(h1, cd1, h2, cd2) \ 430 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) 431 432 int 433 zap_leaf_lookup_closest(zap_leaf_t *l, 434 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) 435 { 436 uint64_t besth = -1ULL; 437 uint32_t bestcd = -1U; 438 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; 439 struct zap_leaf_entry *le; 440 441 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 442 443 for (uint16_t lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { 444 for (uint16_t chunk = zap_leaf_phys(l)->l_hash[lh]; 445 chunk != CHAIN_END; chunk = le->le_next) { 446 le = ZAP_LEAF_ENTRY(l, chunk); 447 448 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 449 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 450 451 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && 452 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { 453 ASSERT3U(bestlh, >=, lh); 454 bestlh = lh; 455 besth = le->le_hash; 456 bestcd = le->le_cd; 457 458 zeh->zeh_num_integers = le->le_value_numints; 459 zeh->zeh_integer_size = le->le_value_intlen; 460 zeh->zeh_cd = le->le_cd; 461 zeh->zeh_hash = le->le_hash; 462 zeh->zeh_fakechunk = chunk; 463 zeh->zeh_chunkp = &zeh->zeh_fakechunk; 464 zeh->zeh_leaf = l; 465 } 466 } 467 } 468 469 return (bestcd == -1U ? SET_ERROR(ENOENT) : 0); 470 } 471 472 int 473 zap_entry_read(const zap_entry_handle_t *zeh, 474 uint8_t integer_size, uint64_t num_integers, void *buf) 475 { 476 struct zap_leaf_entry *le = 477 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 478 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 479 480 if (le->le_value_intlen > integer_size) 481 return (SET_ERROR(EINVAL)); 482 483 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, 484 le->le_value_intlen, le->le_value_numints, 485 integer_size, num_integers, buf); 486 487 if (zeh->zeh_num_integers > num_integers) 488 return (SET_ERROR(EOVERFLOW)); 489 return (0); 490 491 } 492 493 int 494 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen, 495 char *buf) 496 { 497 struct zap_leaf_entry *le = 498 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 499 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 500 501 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 502 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8, 503 le->le_name_numints, 8, buflen / 8, buf); 504 } else { 505 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, 506 le->le_name_numints, 1, buflen, buf); 507 } 508 if (le->le_name_numints > buflen) 509 return (SET_ERROR(EOVERFLOW)); 510 return (0); 511 } 512 513 int 514 zap_entry_update(zap_entry_handle_t *zeh, 515 uint8_t integer_size, uint64_t num_integers, const void *buf) 516 { 517 zap_leaf_t *l = zeh->zeh_leaf; 518 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); 519 520 int delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - 521 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen); 522 523 if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks) 524 return (SET_ERROR(EAGAIN)); 525 526 zap_leaf_array_free(l, &le->le_value_chunk); 527 le->le_value_chunk = 528 zap_leaf_array_create(l, buf, integer_size, num_integers); 529 le->le_value_numints = num_integers; 530 le->le_value_intlen = integer_size; 531 return (0); 532 } 533 534 void 535 zap_entry_remove(zap_entry_handle_t *zeh) 536 { 537 zap_leaf_t *l = zeh->zeh_leaf; 538 539 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); 540 541 uint16_t entry_chunk = *zeh->zeh_chunkp; 542 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry_chunk); 543 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 544 545 zap_leaf_array_free(l, &le->le_name_chunk); 546 zap_leaf_array_free(l, &le->le_value_chunk); 547 548 *zeh->zeh_chunkp = le->le_next; 549 zap_leaf_chunk_free(l, entry_chunk); 550 551 zap_leaf_phys(l)->l_hdr.lh_nentries--; 552 } 553 554 int 555 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd, 556 uint8_t integer_size, uint64_t num_integers, const void *buf, 557 zap_entry_handle_t *zeh) 558 { 559 uint16_t chunk; 560 struct zap_leaf_entry *le; 561 uint64_t h = zn->zn_hash; 562 563 uint64_t valuelen = integer_size * num_integers; 564 565 int numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints * 566 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); 567 if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) 568 return (SET_ERROR(E2BIG)); 569 570 if (cd == ZAP_NEED_CD) { 571 /* find the lowest unused cd */ 572 if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { 573 cd = 0; 574 575 for (chunk = *LEAF_HASH_ENTPTR(l, h); 576 chunk != CHAIN_END; chunk = le->le_next) { 577 le = ZAP_LEAF_ENTRY(l, chunk); 578 if (le->le_cd > cd) 579 break; 580 if (le->le_hash == h) { 581 ASSERT3U(cd, ==, le->le_cd); 582 cd++; 583 } 584 } 585 } else { 586 /* old unsorted format; do it the O(n^2) way */ 587 for (cd = 0; ; cd++) { 588 for (chunk = *LEAF_HASH_ENTPTR(l, h); 589 chunk != CHAIN_END; chunk = le->le_next) { 590 le = ZAP_LEAF_ENTRY(l, chunk); 591 if (le->le_hash == h && 592 le->le_cd == cd) { 593 break; 594 } 595 } 596 /* If this cd is not in use, we are good. */ 597 if (chunk == CHAIN_END) 598 break; 599 } 600 } 601 /* 602 * We would run out of space in a block before we could 603 * store enough entries to run out of CD values. 604 */ 605 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap)); 606 } 607 608 if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks) 609 return (SET_ERROR(EAGAIN)); 610 611 /* make the entry */ 612 chunk = zap_leaf_chunk_alloc(l); 613 le = ZAP_LEAF_ENTRY(l, chunk); 614 le->le_type = ZAP_CHUNK_ENTRY; 615 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig, 616 zn->zn_key_intlen, zn->zn_key_orig_numints); 617 le->le_name_numints = zn->zn_key_orig_numints; 618 le->le_value_chunk = 619 zap_leaf_array_create(l, buf, integer_size, num_integers); 620 le->le_value_numints = num_integers; 621 le->le_value_intlen = integer_size; 622 le->le_hash = h; 623 le->le_cd = cd; 624 625 /* link it into the hash chain */ 626 /* XXX if we did the search above, we could just use that */ 627 uint16_t *chunkp = zap_leaf_rehash_entry(l, chunk); 628 629 zap_leaf_phys(l)->l_hdr.lh_nentries++; 630 631 zeh->zeh_leaf = l; 632 zeh->zeh_num_integers = num_integers; 633 zeh->zeh_integer_size = le->le_value_intlen; 634 zeh->zeh_cd = le->le_cd; 635 zeh->zeh_hash = le->le_hash; 636 zeh->zeh_chunkp = chunkp; 637 638 return (0); 639 } 640 641 /* 642 * Determine if there is another entry with the same normalized form. 643 * For performance purposes, either zn or name must be provided (the 644 * other can be NULL). Note, there usually won't be any hash 645 * conflicts, in which case we don't need the concatenated/normalized 646 * form of the name. But all callers have one of these on hand anyway, 647 * so might as well take advantage. A cleaner but slower interface 648 * would accept neither argument, and compute the normalized name as 649 * needed (using zap_name_alloc_str(zap_entry_read_name(zeh))). 650 */ 651 boolean_t 652 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, 653 const char *name, zap_t *zap) 654 { 655 struct zap_leaf_entry *le; 656 boolean_t allocdzn = B_FALSE; 657 658 if (zap->zap_normflags == 0) 659 return (B_FALSE); 660 661 for (uint16_t chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); 662 chunk != CHAIN_END; chunk = le->le_next) { 663 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); 664 if (le->le_hash != zeh->zeh_hash) 665 continue; 666 if (le->le_cd == zeh->zeh_cd) 667 continue; 668 669 if (zn == NULL) { 670 zn = zap_name_alloc_str(zap, name, MT_NORMALIZE); 671 allocdzn = B_TRUE; 672 } 673 if (zap_leaf_array_match(zeh->zeh_leaf, zn, 674 le->le_name_chunk, le->le_name_numints)) { 675 if (allocdzn) 676 zap_name_free(zn); 677 return (B_TRUE); 678 } 679 } 680 if (allocdzn) 681 zap_name_free(zn); 682 return (B_FALSE); 683 } 684 685 /* 686 * Routines for transferring entries between leafs. 687 */ 688 689 static uint16_t * 690 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) 691 { 692 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 693 struct zap_leaf_entry *le2; 694 uint16_t *chunkp; 695 696 /* 697 * keep the entry chain sorted by cd 698 * NB: this will not cause problems for unsorted leafs, though 699 * it is unnecessary there. 700 */ 701 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); 702 *chunkp != CHAIN_END; chunkp = &le2->le_next) { 703 le2 = ZAP_LEAF_ENTRY(l, *chunkp); 704 if (le2->le_cd > le->le_cd) 705 break; 706 } 707 708 le->le_next = *chunkp; 709 *chunkp = entry; 710 return (chunkp); 711 } 712 713 static uint16_t 714 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) 715 { 716 uint16_t new_chunk; 717 uint16_t *nchunkp = &new_chunk; 718 719 while (chunk != CHAIN_END) { 720 uint16_t nchunk = zap_leaf_chunk_alloc(nl); 721 struct zap_leaf_array *nla = 722 &ZAP_LEAF_CHUNK(nl, nchunk).l_array; 723 struct zap_leaf_array *la = 724 &ZAP_LEAF_CHUNK(l, chunk).l_array; 725 int nextchunk = la->la_next; 726 727 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 728 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); 729 730 *nla = *la; /* structure assignment */ 731 732 zap_leaf_chunk_free(l, chunk); 733 chunk = nextchunk; 734 *nchunkp = nchunk; 735 nchunkp = &nla->la_next; 736 } 737 *nchunkp = CHAIN_END; 738 return (new_chunk); 739 } 740 741 static void 742 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) 743 { 744 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 745 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 746 747 uint16_t chunk = zap_leaf_chunk_alloc(nl); 748 struct zap_leaf_entry *nle = ZAP_LEAF_ENTRY(nl, chunk); 749 *nle = *le; /* structure assignment */ 750 751 (void) zap_leaf_rehash_entry(nl, chunk); 752 753 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); 754 nle->le_value_chunk = 755 zap_leaf_transfer_array(l, le->le_value_chunk, nl); 756 757 zap_leaf_chunk_free(l, entry); 758 759 zap_leaf_phys(l)->l_hdr.lh_nentries--; 760 zap_leaf_phys(nl)->l_hdr.lh_nentries++; 761 } 762 763 /* 764 * Transfer the entries whose hash prefix ends in 1 to the new leaf. 765 */ 766 void 767 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) 768 { 769 int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len; 770 771 /* set new prefix and prefix_len */ 772 zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1; 773 zap_leaf_phys(l)->l_hdr.lh_prefix_len++; 774 zap_leaf_phys(nl)->l_hdr.lh_prefix = 775 zap_leaf_phys(l)->l_hdr.lh_prefix | 1; 776 zap_leaf_phys(nl)->l_hdr.lh_prefix_len = 777 zap_leaf_phys(l)->l_hdr.lh_prefix_len; 778 779 /* break existing hash chains */ 780 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 781 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 782 783 if (sort) 784 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 785 786 /* 787 * Transfer entries whose hash bit 'bit' is set to nl; rehash 788 * the remaining entries 789 * 790 * NB: We could find entries via the hashtable instead. That 791 * would be O(hashents+numents) rather than O(numblks+numents), 792 * but this accesses memory more sequentially, and when we're 793 * called, the block is usually pretty full. 794 */ 795 for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 796 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); 797 if (le->le_type != ZAP_CHUNK_ENTRY) 798 continue; 799 800 if (le->le_hash & (1ULL << bit)) 801 zap_leaf_transfer_entry(l, i, nl); 802 else 803 (void) zap_leaf_rehash_entry(l, i); 804 } 805 } 806 807 void 808 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) 809 { 810 int n = zap_f_phys(zap)->zap_ptrtbl.zt_shift - 811 zap_leaf_phys(l)->l_hdr.lh_prefix_len; 812 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 813 zs->zs_leafs_with_2n_pointers[n]++; 814 815 816 n = zap_leaf_phys(l)->l_hdr.lh_nentries/5; 817 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 818 zs->zs_blocks_with_n5_entries[n]++; 819 820 n = ((1<<FZAP_BLOCK_SHIFT(zap)) - 821 zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / 822 (1<<FZAP_BLOCK_SHIFT(zap)); 823 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 824 zs->zs_blocks_n_tenths_full[n]++; 825 826 for (int i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { 827 int nentries = 0; 828 int chunk = zap_leaf_phys(l)->l_hash[i]; 829 830 while (chunk != CHAIN_END) { 831 struct zap_leaf_entry *le = 832 ZAP_LEAF_ENTRY(l, chunk); 833 834 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) + 835 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * 836 le->le_value_intlen); 837 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 838 zs->zs_entries_using_n_chunks[n]++; 839 840 chunk = le->le_next; 841 nentries++; 842 } 843 844 n = nentries; 845 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 846 zs->zs_buckets_with_n_entries[n]++; 847 } 848 } 849