xref: /freebsd/sys/contrib/openzfs/module/zfs/zap.c (revision 86dc8398c9ca2283c5d6984992b7a585257b5adb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  */
26 
27 /*
28  * This file contains the top half of the zfs directory structure
29  * implementation. The bottom half is in zap_leaf.c.
30  *
31  * The zdir is an extendable hash data structure. There is a table of
32  * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are
33  * each a constant size and hold a variable number of directory entries.
34  * The buckets (aka "leaf nodes") are implemented in zap_leaf.c.
35  *
36  * The pointer table holds a power of 2 number of pointers.
37  * (1<<zap_t->zd_data->zd_phys->zd_prefix_len).  The bucket pointed to
38  * by the pointer at index i in the table holds entries whose hash value
39  * has a zd_prefix_len - bit prefix
40  */
41 
42 #include <sys/spa.h>
43 #include <sys/dmu.h>
44 #include <sys/zfs_context.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/zap.h>
48 #include <sys/zap_impl.h>
49 #include <sys/zap_leaf.h>
50 
51 /*
52  * If zap_iterate_prefetch is set, we will prefetch the entire ZAP object
53  * (all leaf blocks) when we start iterating over it.
54  *
55  * For zap_cursor_init(), the callers all intend to iterate through all the
56  * entries.  There are a few cases where an error (typically i/o error) could
57  * cause it to bail out early.
58  *
59  * For zap_cursor_init_serialized(), there are callers that do the iteration
60  * outside of ZFS.  Typically they would iterate over everything, but we
61  * don't have control of that.  E.g. zfs_ioc_snapshot_list_next(),
62  * zcp_snapshots_iter(), and other iterators over things in the MOS - these
63  * are called by /sbin/zfs and channel programs.  The other example is
64  * zfs_readdir() which iterates over directory entries for the getdents()
65  * syscall.  /sbin/ls iterates to the end (unless it receives a signal), but
66  * userland doesn't have to.
67  *
68  * Given that the ZAP entries aren't returned in a specific order, the only
69  * legitimate use cases for partial iteration would be:
70  *
71  * 1. Pagination: e.g. you only want to display 100 entries at a time, so you
72  *    get the first 100 and then wait for the user to hit "next page", which
73  *    they may never do).
74  *
75  * 2. You want to know if there are more than X entries, without relying on
76  *    the zfs-specific implementation of the directory's st_size (which is
77  *    the number of entries).
78  */
79 static int zap_iterate_prefetch = B_TRUE;
80 
81 int fzap_default_block_shift = 14; /* 16k blocksize */
82 
83 static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks);
84 
85 void
86 fzap_byteswap(void *vbuf, size_t size)
87 {
88 	uint64_t block_type = *(uint64_t *)vbuf;
89 
90 	if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF))
91 		zap_leaf_byteswap(vbuf, size);
92 	else {
93 		/* it's a ptrtbl block */
94 		byteswap_uint64_array(vbuf, size);
95 	}
96 }
97 
98 void
99 fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags)
100 {
101 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
102 	zap->zap_ismicro = FALSE;
103 
104 	zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync;
105 	zap->zap_dbu.dbu_evict_func_async = NULL;
106 
107 	mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0);
108 	zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1;
109 
110 	zap_phys_t *zp = zap_f_phys(zap);
111 	/*
112 	 * explicitly zero it since it might be coming from an
113 	 * initialized microzap
114 	 */
115 	memset(zap->zap_dbuf->db_data, 0, zap->zap_dbuf->db_size);
116 	zp->zap_block_type = ZBT_HEADER;
117 	zp->zap_magic = ZAP_MAGIC;
118 
119 	zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap);
120 
121 	zp->zap_freeblk = 2;		/* block 1 will be the first leaf */
122 	zp->zap_num_leafs = 1;
123 	zp->zap_num_entries = 0;
124 	zp->zap_salt = zap->zap_salt;
125 	zp->zap_normflags = zap->zap_normflags;
126 	zp->zap_flags = flags;
127 
128 	/* block 1 will be the first leaf */
129 	for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++)
130 		ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1;
131 
132 	/*
133 	 * set up block 1 - the first leaf
134 	 */
135 	dmu_buf_t *db;
136 	VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
137 	    1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH));
138 	dmu_buf_will_dirty(db, tx);
139 
140 	zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
141 	l->l_dbuf = db;
142 
143 	zap_leaf_init(l, zp->zap_normflags != 0);
144 
145 	kmem_free(l, sizeof (zap_leaf_t));
146 	dmu_buf_rele(db, FTAG);
147 }
148 
149 static int
150 zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx)
151 {
152 	if (RW_WRITE_HELD(&zap->zap_rwlock))
153 		return (1);
154 	if (rw_tryupgrade(&zap->zap_rwlock)) {
155 		dmu_buf_will_dirty(zap->zap_dbuf, tx);
156 		return (1);
157 	}
158 	return (0);
159 }
160 
161 /*
162  * Generic routines for dealing with the pointer & cookie tables.
163  */
164 
165 static int
166 zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
167     void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
168     dmu_tx_t *tx)
169 {
170 	uint64_t newblk;
171 	int bs = FZAP_BLOCK_SHIFT(zap);
172 	int hepb = 1<<(bs-4);
173 	/* hepb = half the number of entries in a block */
174 
175 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
176 	ASSERT(tbl->zt_blk != 0);
177 	ASSERT(tbl->zt_numblks > 0);
178 
179 	if (tbl->zt_nextblk != 0) {
180 		newblk = tbl->zt_nextblk;
181 	} else {
182 		newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
183 		tbl->zt_nextblk = newblk;
184 		ASSERT0(tbl->zt_blks_copied);
185 		dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
186 		    tbl->zt_blk << bs, tbl->zt_numblks << bs,
187 		    ZIO_PRIORITY_SYNC_READ);
188 	}
189 
190 	/*
191 	 * Copy the ptrtbl from the old to new location.
192 	 */
193 
194 	uint64_t b = tbl->zt_blks_copied;
195 	dmu_buf_t *db_old;
196 	int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
197 	    (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
198 	if (err != 0)
199 		return (err);
200 
201 	/* first half of entries in old[b] go to new[2*b+0] */
202 	dmu_buf_t *db_new;
203 	VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
204 	    (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
205 	dmu_buf_will_dirty(db_new, tx);
206 	transfer_func(db_old->db_data, db_new->db_data, hepb);
207 	dmu_buf_rele(db_new, FTAG);
208 
209 	/* second half of entries in old[b] go to new[2*b+1] */
210 	VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
211 	    (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
212 	dmu_buf_will_dirty(db_new, tx);
213 	transfer_func((uint64_t *)db_old->db_data + hepb,
214 	    db_new->db_data, hepb);
215 	dmu_buf_rele(db_new, FTAG);
216 
217 	dmu_buf_rele(db_old, FTAG);
218 
219 	tbl->zt_blks_copied++;
220 
221 	dprintf("copied block %llu of %llu\n",
222 	    (u_longlong_t)tbl->zt_blks_copied,
223 	    (u_longlong_t)tbl->zt_numblks);
224 
225 	if (tbl->zt_blks_copied == tbl->zt_numblks) {
226 		(void) dmu_free_range(zap->zap_objset, zap->zap_object,
227 		    tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);
228 
229 		tbl->zt_blk = newblk;
230 		tbl->zt_numblks *= 2;
231 		tbl->zt_shift++;
232 		tbl->zt_nextblk = 0;
233 		tbl->zt_blks_copied = 0;
234 
235 		dprintf("finished; numblocks now %llu (%uk entries)\n",
236 		    (u_longlong_t)tbl->zt_numblks, 1<<(tbl->zt_shift-10));
237 	}
238 
239 	return (0);
240 }
241 
242 static int
243 zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val,
244     dmu_tx_t *tx)
245 {
246 	int bs = FZAP_BLOCK_SHIFT(zap);
247 
248 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
249 	ASSERT(tbl->zt_blk != 0);
250 
251 	dprintf("storing %llx at index %llx\n", (u_longlong_t)val,
252 	    (u_longlong_t)idx);
253 
254 	uint64_t blk = idx >> (bs-3);
255 	uint64_t off = idx & ((1<<(bs-3))-1);
256 
257 	dmu_buf_t *db;
258 	int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
259 	    (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
260 	if (err != 0)
261 		return (err);
262 	dmu_buf_will_dirty(db, tx);
263 
264 	if (tbl->zt_nextblk != 0) {
265 		uint64_t idx2 = idx * 2;
266 		uint64_t blk2 = idx2 >> (bs-3);
267 		uint64_t off2 = idx2 & ((1<<(bs-3))-1);
268 		dmu_buf_t *db2;
269 
270 		err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
271 		    (tbl->zt_nextblk + blk2) << bs, FTAG, &db2,
272 		    DMU_READ_NO_PREFETCH);
273 		if (err != 0) {
274 			dmu_buf_rele(db, FTAG);
275 			return (err);
276 		}
277 		dmu_buf_will_dirty(db2, tx);
278 		((uint64_t *)db2->db_data)[off2] = val;
279 		((uint64_t *)db2->db_data)[off2+1] = val;
280 		dmu_buf_rele(db2, FTAG);
281 	}
282 
283 	((uint64_t *)db->db_data)[off] = val;
284 	dmu_buf_rele(db, FTAG);
285 
286 	return (0);
287 }
288 
289 static int
290 zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp)
291 {
292 	int bs = FZAP_BLOCK_SHIFT(zap);
293 
294 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
295 
296 	uint64_t blk = idx >> (bs-3);
297 	uint64_t off = idx & ((1<<(bs-3))-1);
298 
299 	/*
300 	 * Note: this is equivalent to dmu_buf_hold(), but we use
301 	 * _dnode_enter / _by_dnode because it's faster because we don't
302 	 * have to hold the dnode.
303 	 */
304 	dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf);
305 	dmu_buf_t *db;
306 	int err = dmu_buf_hold_by_dnode(dn,
307 	    (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
308 	dmu_buf_dnode_exit(zap->zap_dbuf);
309 	if (err != 0)
310 		return (err);
311 	*valp = ((uint64_t *)db->db_data)[off];
312 	dmu_buf_rele(db, FTAG);
313 
314 	if (tbl->zt_nextblk != 0) {
315 		/*
316 		 * read the nextblk for the sake of i/o error checking,
317 		 * so that zap_table_load() will catch errors for
318 		 * zap_table_store.
319 		 */
320 		blk = (idx*2) >> (bs-3);
321 
322 		dn = dmu_buf_dnode_enter(zap->zap_dbuf);
323 		err = dmu_buf_hold_by_dnode(dn,
324 		    (tbl->zt_nextblk + blk) << bs, FTAG, &db,
325 		    DMU_READ_NO_PREFETCH);
326 		dmu_buf_dnode_exit(zap->zap_dbuf);
327 		if (err == 0)
328 			dmu_buf_rele(db, FTAG);
329 	}
330 	return (err);
331 }
332 
333 /*
334  * Routines for growing the ptrtbl.
335  */
336 
337 static void
338 zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n)
339 {
340 	for (int i = 0; i < n; i++) {
341 		uint64_t lb = src[i];
342 		dst[2 * i + 0] = lb;
343 		dst[2 * i + 1] = lb;
344 	}
345 }
346 
347 static int
348 zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
349 {
350 	/*
351 	 * The pointer table should never use more hash bits than we
352 	 * have (otherwise we'd be using useless zero bits to index it).
353 	 * If we are within 2 bits of running out, stop growing, since
354 	 * this is already an aberrant condition.
355 	 */
356 	if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
357 		return (SET_ERROR(ENOSPC));
358 
359 	if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
360 		/*
361 		 * We are outgrowing the "embedded" ptrtbl (the one
362 		 * stored in the header block).  Give it its own entire
363 		 * block, which will double the size of the ptrtbl.
364 		 */
365 		ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
366 		    ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
367 		ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk);
368 
369 		uint64_t newblk = zap_allocate_blocks(zap, 1);
370 		dmu_buf_t *db_new;
371 		int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
372 		    newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
373 		    DMU_READ_NO_PREFETCH);
374 		if (err != 0)
375 			return (err);
376 		dmu_buf_will_dirty(db_new, tx);
377 		zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
378 		    db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
379 		dmu_buf_rele(db_new, FTAG);
380 
381 		zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk;
382 		zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1;
383 		zap_f_phys(zap)->zap_ptrtbl.zt_shift++;
384 
385 		ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
386 		    zap_f_phys(zap)->zap_ptrtbl.zt_numblks <<
387 		    (FZAP_BLOCK_SHIFT(zap)-3));
388 
389 		return (0);
390 	} else {
391 		return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl,
392 		    zap_ptrtbl_transfer, tx));
393 	}
394 }
395 
396 static void
397 zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx)
398 {
399 	dmu_buf_will_dirty(zap->zap_dbuf, tx);
400 	mutex_enter(&zap->zap_f.zap_num_entries_mtx);
401 	ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta);
402 	zap_f_phys(zap)->zap_num_entries += delta;
403 	mutex_exit(&zap->zap_f.zap_num_entries_mtx);
404 }
405 
406 static uint64_t
407 zap_allocate_blocks(zap_t *zap, int nblocks)
408 {
409 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
410 	uint64_t newblk = zap_f_phys(zap)->zap_freeblk;
411 	zap_f_phys(zap)->zap_freeblk += nblocks;
412 	return (newblk);
413 }
414 
415 static void
416 zap_leaf_evict_sync(void *dbu)
417 {
418 	zap_leaf_t *l = dbu;
419 
420 	rw_destroy(&l->l_rwlock);
421 	kmem_free(l, sizeof (zap_leaf_t));
422 }
423 
424 static zap_leaf_t *
425 zap_create_leaf(zap_t *zap, dmu_tx_t *tx)
426 {
427 	zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
428 
429 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
430 
431 	rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL);
432 	rw_enter(&l->l_rwlock, RW_WRITER);
433 	l->l_blkid = zap_allocate_blocks(zap, 1);
434 	l->l_dbuf = NULL;
435 
436 	VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
437 	    l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf,
438 	    DMU_READ_NO_PREFETCH));
439 	dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
440 	VERIFY3P(NULL, ==, dmu_buf_set_user(l->l_dbuf, &l->l_dbu));
441 	dmu_buf_will_dirty(l->l_dbuf, tx);
442 
443 	zap_leaf_init(l, zap->zap_normflags != 0);
444 
445 	zap_f_phys(zap)->zap_num_leafs++;
446 
447 	return (l);
448 }
449 
450 int
451 fzap_count(zap_t *zap, uint64_t *count)
452 {
453 	ASSERT(!zap->zap_ismicro);
454 	mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */
455 	*count = zap_f_phys(zap)->zap_num_entries;
456 	mutex_exit(&zap->zap_f.zap_num_entries_mtx);
457 	return (0);
458 }
459 
460 /*
461  * Routines for obtaining zap_leaf_t's
462  */
463 
464 void
465 zap_put_leaf(zap_leaf_t *l)
466 {
467 	rw_exit(&l->l_rwlock);
468 	dmu_buf_rele(l->l_dbuf, NULL);
469 }
470 
471 static zap_leaf_t *
472 zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
473 {
474 	ASSERT(blkid != 0);
475 
476 	zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
477 	rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
478 	rw_enter(&l->l_rwlock, RW_WRITER);
479 	l->l_blkid = blkid;
480 	l->l_bs = highbit64(db->db_size) - 1;
481 	l->l_dbuf = db;
482 
483 	dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
484 	zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu);
485 
486 	rw_exit(&l->l_rwlock);
487 	if (winner != NULL) {
488 		/* someone else set it first */
489 		zap_leaf_evict_sync(&l->l_dbu);
490 		l = winner;
491 	}
492 
493 	/*
494 	 * lhr_pad was previously used for the next leaf in the leaf
495 	 * chain.  There should be no chained leafs (as we have removed
496 	 * support for them).
497 	 */
498 	ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1);
499 
500 	/*
501 	 * There should be more hash entries than there can be
502 	 * chunks to put in the hash table
503 	 */
504 	ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);
505 
506 	/* The chunks should begin at the end of the hash table */
507 	ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *)
508 	    &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);
509 
510 	/* The chunks should end at the end of the block */
511 	ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
512 	    (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size);
513 
514 	return (l);
515 }
516 
517 static int
518 zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt,
519     zap_leaf_t **lp)
520 {
521 	dmu_buf_t *db;
522 
523 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
524 
525 	/*
526 	 * If system crashed just after dmu_free_long_range in zfs_rmnode, we
527 	 * would be left with an empty xattr dir in delete queue. blkid=0
528 	 * would be passed in when doing zfs_purgedir. If that's the case we
529 	 * should just return immediately. The underlying objects should
530 	 * already be freed, so this should be perfectly fine.
531 	 */
532 	if (blkid == 0)
533 		return (SET_ERROR(ENOENT));
534 
535 	int bs = FZAP_BLOCK_SHIFT(zap);
536 	dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf);
537 	int err = dmu_buf_hold_by_dnode(dn,
538 	    blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH);
539 	dmu_buf_dnode_exit(zap->zap_dbuf);
540 	if (err != 0)
541 		return (err);
542 
543 	ASSERT3U(db->db_object, ==, zap->zap_object);
544 	ASSERT3U(db->db_offset, ==, blkid << bs);
545 	ASSERT3U(db->db_size, ==, 1 << bs);
546 	ASSERT(blkid != 0);
547 
548 	zap_leaf_t *l = dmu_buf_get_user(db);
549 
550 	if (l == NULL)
551 		l = zap_open_leaf(blkid, db);
552 
553 	rw_enter(&l->l_rwlock, lt);
554 	/*
555 	 * Must lock before dirtying, otherwise zap_leaf_phys(l) could change,
556 	 * causing ASSERT below to fail.
557 	 */
558 	if (lt == RW_WRITER)
559 		dmu_buf_will_dirty(db, tx);
560 	ASSERT3U(l->l_blkid, ==, blkid);
561 	ASSERT3P(l->l_dbuf, ==, db);
562 	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF);
563 	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
564 
565 	*lp = l;
566 	return (0);
567 }
568 
569 static int
570 zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp)
571 {
572 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
573 
574 	if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
575 		ASSERT3U(idx, <,
576 		    (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
577 		*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
578 		return (0);
579 	} else {
580 		return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl,
581 		    idx, valp));
582 	}
583 }
584 
585 static int
586 zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx)
587 {
588 	ASSERT(tx != NULL);
589 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
590 
591 	if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) {
592 		ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk;
593 		return (0);
594 	} else {
595 		return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl,
596 		    idx, blk, tx));
597 	}
598 }
599 
600 static int
601 zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp)
602 {
603 	uint64_t blk;
604 
605 	ASSERT(zap->zap_dbuf == NULL ||
606 	    zap_f_phys(zap) == zap->zap_dbuf->db_data);
607 
608 	/* Reality check for corrupt zap objects (leaf or header). */
609 	if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF &&
610 	    zap_f_phys(zap)->zap_block_type != ZBT_HEADER) ||
611 	    zap_f_phys(zap)->zap_magic != ZAP_MAGIC) {
612 		return (SET_ERROR(EIO));
613 	}
614 
615 	uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
616 	int err = zap_idx_to_blk(zap, idx, &blk);
617 	if (err != 0)
618 		return (err);
619 	err = zap_get_leaf_byblk(zap, blk, tx, lt, lp);
620 
621 	ASSERT(err ||
622 	    ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) ==
623 	    zap_leaf_phys(*lp)->l_hdr.lh_prefix);
624 	return (err);
625 }
626 
627 static int
628 zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l,
629     void *tag, dmu_tx_t *tx, zap_leaf_t **lp)
630 {
631 	zap_t *zap = zn->zn_zap;
632 	uint64_t hash = zn->zn_hash;
633 	int err;
634 	int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
635 
636 	ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
637 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
638 
639 	ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
640 	    zap_leaf_phys(l)->l_hdr.lh_prefix);
641 
642 	if (zap_tryupgradedir(zap, tx) == 0 ||
643 	    old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
644 		/* We failed to upgrade, or need to grow the pointer table */
645 		objset_t *os = zap->zap_objset;
646 		uint64_t object = zap->zap_object;
647 
648 		zap_put_leaf(l);
649 		zap_unlockdir(zap, tag);
650 		err = zap_lockdir(os, object, tx, RW_WRITER,
651 		    FALSE, FALSE, tag, &zn->zn_zap);
652 		zap = zn->zn_zap;
653 		if (err != 0)
654 			return (err);
655 		ASSERT(!zap->zap_ismicro);
656 
657 		while (old_prefix_len ==
658 		    zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
659 			err = zap_grow_ptrtbl(zap, tx);
660 			if (err != 0)
661 				return (err);
662 		}
663 
664 		err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
665 		if (err != 0)
666 			return (err);
667 
668 		if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) {
669 			/* it split while our locks were down */
670 			*lp = l;
671 			return (0);
672 		}
673 	}
674 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
675 	ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
676 	ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
677 	    zap_leaf_phys(l)->l_hdr.lh_prefix);
678 
679 	int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
680 	    (old_prefix_len + 1);
681 	uint64_t sibling =
682 	    (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;
683 
684 	/* check for i/o errors before doing zap_leaf_split */
685 	for (int i = 0; i < (1ULL << prefix_diff); i++) {
686 		uint64_t blk;
687 		err = zap_idx_to_blk(zap, sibling + i, &blk);
688 		if (err != 0)
689 			return (err);
690 		ASSERT3U(blk, ==, l->l_blkid);
691 	}
692 
693 	zap_leaf_t *nl = zap_create_leaf(zap, tx);
694 	zap_leaf_split(l, nl, zap->zap_normflags != 0);
695 
696 	/* set sibling pointers */
697 	for (int i = 0; i < (1ULL << prefix_diff); i++) {
698 		err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx);
699 		ASSERT0(err); /* we checked for i/o errors above */
700 	}
701 
702 	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0);
703 
704 	if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) {
705 		/* we want the sibling */
706 		zap_put_leaf(l);
707 		*lp = nl;
708 	} else {
709 		zap_put_leaf(nl);
710 		*lp = l;
711 	}
712 
713 	return (0);
714 }
715 
716 static void
717 zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l,
718     void *tag, dmu_tx_t *tx)
719 {
720 	zap_t *zap = zn->zn_zap;
721 	int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
722 	int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift &&
723 	    zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER);
724 
725 	zap_put_leaf(l);
726 
727 	if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) {
728 		/*
729 		 * We are in the middle of growing the pointer table, or
730 		 * this leaf will soon make us grow it.
731 		 */
732 		if (zap_tryupgradedir(zap, tx) == 0) {
733 			objset_t *os = zap->zap_objset;
734 			uint64_t zapobj = zap->zap_object;
735 
736 			zap_unlockdir(zap, tag);
737 			int err = zap_lockdir(os, zapobj, tx,
738 			    RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap);
739 			zap = zn->zn_zap;
740 			if (err != 0)
741 				return;
742 		}
743 
744 		/* could have finished growing while our locks were down */
745 		if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift)
746 			(void) zap_grow_ptrtbl(zap, tx);
747 	}
748 }
749 
750 static int
751 fzap_checkname(zap_name_t *zn)
752 {
753 	if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN)
754 		return (SET_ERROR(ENAMETOOLONG));
755 	return (0);
756 }
757 
758 static int
759 fzap_checksize(uint64_t integer_size, uint64_t num_integers)
760 {
761 	/* Only integer sizes supported by C */
762 	switch (integer_size) {
763 	case 1:
764 	case 2:
765 	case 4:
766 	case 8:
767 		break;
768 	default:
769 		return (SET_ERROR(EINVAL));
770 	}
771 
772 	if (integer_size * num_integers > ZAP_MAXVALUELEN)
773 		return (SET_ERROR(E2BIG));
774 
775 	return (0);
776 }
777 
778 static int
779 fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers)
780 {
781 	int err = fzap_checkname(zn);
782 	if (err != 0)
783 		return (err);
784 	return (fzap_checksize(integer_size, num_integers));
785 }
786 
787 /*
788  * Routines for manipulating attributes.
789  */
790 int
791 fzap_lookup(zap_name_t *zn,
792     uint64_t integer_size, uint64_t num_integers, void *buf,
793     char *realname, int rn_len, boolean_t *ncp)
794 {
795 	zap_leaf_t *l;
796 	zap_entry_handle_t zeh;
797 
798 	int err = fzap_checkname(zn);
799 	if (err != 0)
800 		return (err);
801 
802 	err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
803 	if (err != 0)
804 		return (err);
805 	err = zap_leaf_lookup(l, zn, &zeh);
806 	if (err == 0) {
807 		if ((err = fzap_checksize(integer_size, num_integers)) != 0) {
808 			zap_put_leaf(l);
809 			return (err);
810 		}
811 
812 		err = zap_entry_read(&zeh, integer_size, num_integers, buf);
813 		(void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname);
814 		if (ncp) {
815 			*ncp = zap_entry_normalization_conflict(&zeh,
816 			    zn, NULL, zn->zn_zap);
817 		}
818 	}
819 
820 	zap_put_leaf(l);
821 	return (err);
822 }
823 
824 int
825 fzap_add_cd(zap_name_t *zn,
826     uint64_t integer_size, uint64_t num_integers,
827     const void *val, uint32_t cd, void *tag, dmu_tx_t *tx)
828 {
829 	zap_leaf_t *l;
830 	int err;
831 	zap_entry_handle_t zeh;
832 	zap_t *zap = zn->zn_zap;
833 
834 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
835 	ASSERT(!zap->zap_ismicro);
836 	ASSERT(fzap_check(zn, integer_size, num_integers) == 0);
837 
838 	err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
839 	if (err != 0)
840 		return (err);
841 retry:
842 	err = zap_leaf_lookup(l, zn, &zeh);
843 	if (err == 0) {
844 		err = SET_ERROR(EEXIST);
845 		goto out;
846 	}
847 	if (err != ENOENT)
848 		goto out;
849 
850 	err = zap_entry_create(l, zn, cd,
851 	    integer_size, num_integers, val, &zeh);
852 
853 	if (err == 0) {
854 		zap_increment_num_entries(zap, 1, tx);
855 	} else if (err == EAGAIN) {
856 		err = zap_expand_leaf(zn, l, tag, tx, &l);
857 		zap = zn->zn_zap;	/* zap_expand_leaf() may change zap */
858 		if (err == 0) {
859 			goto retry;
860 		} else if (err == ENOSPC) {
861 			/*
862 			 * If we failed to expand the leaf, then bailout
863 			 * as there is no point trying
864 			 * zap_put_leaf_maybe_grow_ptrtbl().
865 			 */
866 			return (err);
867 		}
868 	}
869 
870 out:
871 	if (zap != NULL)
872 		zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
873 	return (err);
874 }
875 
876 int
877 fzap_add(zap_name_t *zn,
878     uint64_t integer_size, uint64_t num_integers,
879     const void *val, void *tag, dmu_tx_t *tx)
880 {
881 	int err = fzap_check(zn, integer_size, num_integers);
882 	if (err != 0)
883 		return (err);
884 
885 	return (fzap_add_cd(zn, integer_size, num_integers,
886 	    val, ZAP_NEED_CD, tag, tx));
887 }
888 
889 int
890 fzap_update(zap_name_t *zn,
891     int integer_size, uint64_t num_integers, const void *val,
892     void *tag, dmu_tx_t *tx)
893 {
894 	zap_leaf_t *l;
895 	int err;
896 	boolean_t create;
897 	zap_entry_handle_t zeh;
898 	zap_t *zap = zn->zn_zap;
899 
900 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
901 	err = fzap_check(zn, integer_size, num_integers);
902 	if (err != 0)
903 		return (err);
904 
905 	err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
906 	if (err != 0)
907 		return (err);
908 retry:
909 	err = zap_leaf_lookup(l, zn, &zeh);
910 	create = (err == ENOENT);
911 	ASSERT(err == 0 || err == ENOENT);
912 
913 	if (create) {
914 		err = zap_entry_create(l, zn, ZAP_NEED_CD,
915 		    integer_size, num_integers, val, &zeh);
916 		if (err == 0)
917 			zap_increment_num_entries(zap, 1, tx);
918 	} else {
919 		err = zap_entry_update(&zeh, integer_size, num_integers, val);
920 	}
921 
922 	if (err == EAGAIN) {
923 		err = zap_expand_leaf(zn, l, tag, tx, &l);
924 		zap = zn->zn_zap;	/* zap_expand_leaf() may change zap */
925 		if (err == 0)
926 			goto retry;
927 	}
928 
929 	if (zap != NULL)
930 		zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
931 	return (err);
932 }
933 
934 int
935 fzap_length(zap_name_t *zn,
936     uint64_t *integer_size, uint64_t *num_integers)
937 {
938 	zap_leaf_t *l;
939 	int err;
940 	zap_entry_handle_t zeh;
941 
942 	err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
943 	if (err != 0)
944 		return (err);
945 	err = zap_leaf_lookup(l, zn, &zeh);
946 	if (err != 0)
947 		goto out;
948 
949 	if (integer_size != 0)
950 		*integer_size = zeh.zeh_integer_size;
951 	if (num_integers != 0)
952 		*num_integers = zeh.zeh_num_integers;
953 out:
954 	zap_put_leaf(l);
955 	return (err);
956 }
957 
958 int
959 fzap_remove(zap_name_t *zn, dmu_tx_t *tx)
960 {
961 	zap_leaf_t *l;
962 	int err;
963 	zap_entry_handle_t zeh;
964 
965 	err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l);
966 	if (err != 0)
967 		return (err);
968 	err = zap_leaf_lookup(l, zn, &zeh);
969 	if (err == 0) {
970 		zap_entry_remove(&zeh);
971 		zap_increment_num_entries(zn->zn_zap, -1, tx);
972 	}
973 	zap_put_leaf(l);
974 	return (err);
975 }
976 
977 void
978 fzap_prefetch(zap_name_t *zn)
979 {
980 	uint64_t blk;
981 	zap_t *zap = zn->zn_zap;
982 
983 	uint64_t idx = ZAP_HASH_IDX(zn->zn_hash,
984 	    zap_f_phys(zap)->zap_ptrtbl.zt_shift);
985 	if (zap_idx_to_blk(zap, idx, &blk) != 0)
986 		return;
987 	int bs = FZAP_BLOCK_SHIFT(zap);
988 	dmu_prefetch(zap->zap_objset, zap->zap_object, 0, blk << bs, 1 << bs,
989 	    ZIO_PRIORITY_SYNC_READ);
990 }
991 
992 /*
993  * Helper functions for consumers.
994  */
995 
996 uint64_t
997 zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
998     const char *name, dmu_tx_t *tx)
999 {
1000 	return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx));
1001 }
1002 
1003 uint64_t
1004 zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
1005     const char *name, int dnodesize, dmu_tx_t *tx)
1006 {
1007 	uint64_t new_obj;
1008 
1009 	new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx);
1010 	VERIFY(new_obj != 0);
1011 	VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj,
1012 	    tx));
1013 
1014 	return (new_obj);
1015 }
1016 
1017 int
1018 zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask,
1019     char *name)
1020 {
1021 	zap_cursor_t zc;
1022 	int err;
1023 
1024 	if (mask == 0)
1025 		mask = -1ULL;
1026 
1027 	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1028 	for (zap_cursor_init(&zc, os, zapobj);
1029 	    (err = zap_cursor_retrieve(&zc, za)) == 0;
1030 	    zap_cursor_advance(&zc)) {
1031 		if ((za->za_first_integer & mask) == (value & mask)) {
1032 			(void) strlcpy(name, za->za_name, MAXNAMELEN);
1033 			break;
1034 		}
1035 	}
1036 	zap_cursor_fini(&zc);
1037 	kmem_free(za, sizeof (*za));
1038 	return (err);
1039 }
1040 
1041 int
1042 zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx)
1043 {
1044 	zap_cursor_t zc;
1045 	int err = 0;
1046 
1047 	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1048 	for (zap_cursor_init(&zc, os, fromobj);
1049 	    zap_cursor_retrieve(&zc, za) == 0;
1050 	    (void) zap_cursor_advance(&zc)) {
1051 		if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1052 			err = SET_ERROR(EINVAL);
1053 			break;
1054 		}
1055 		err = zap_add(os, intoobj, za->za_name,
1056 		    8, 1, &za->za_first_integer, tx);
1057 		if (err != 0)
1058 			break;
1059 	}
1060 	zap_cursor_fini(&zc);
1061 	kmem_free(za, sizeof (*za));
1062 	return (err);
1063 }
1064 
1065 int
1066 zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
1067     uint64_t value, dmu_tx_t *tx)
1068 {
1069 	zap_cursor_t zc;
1070 	int err = 0;
1071 
1072 	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1073 	for (zap_cursor_init(&zc, os, fromobj);
1074 	    zap_cursor_retrieve(&zc, za) == 0;
1075 	    (void) zap_cursor_advance(&zc)) {
1076 		if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1077 			err = SET_ERROR(EINVAL);
1078 			break;
1079 		}
1080 		err = zap_add(os, intoobj, za->za_name,
1081 		    8, 1, &value, tx);
1082 		if (err != 0)
1083 			break;
1084 	}
1085 	zap_cursor_fini(&zc);
1086 	kmem_free(za, sizeof (*za));
1087 	return (err);
1088 }
1089 
1090 int
1091 zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
1092     dmu_tx_t *tx)
1093 {
1094 	zap_cursor_t zc;
1095 	int err = 0;
1096 
1097 	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1098 	for (zap_cursor_init(&zc, os, fromobj);
1099 	    zap_cursor_retrieve(&zc, za) == 0;
1100 	    (void) zap_cursor_advance(&zc)) {
1101 		uint64_t delta = 0;
1102 
1103 		if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1104 			err = SET_ERROR(EINVAL);
1105 			break;
1106 		}
1107 
1108 		err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta);
1109 		if (err != 0 && err != ENOENT)
1110 			break;
1111 		delta += za->za_first_integer;
1112 		err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx);
1113 		if (err != 0)
1114 			break;
1115 	}
1116 	zap_cursor_fini(&zc);
1117 	kmem_free(za, sizeof (*za));
1118 	return (err);
1119 }
1120 
1121 int
1122 zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
1123 {
1124 	char name[20];
1125 
1126 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1127 	return (zap_add(os, obj, name, 8, 1, &value, tx));
1128 }
1129 
1130 int
1131 zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
1132 {
1133 	char name[20];
1134 
1135 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1136 	return (zap_remove(os, obj, name, tx));
1137 }
1138 
1139 int
1140 zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value)
1141 {
1142 	char name[20];
1143 
1144 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1145 	return (zap_lookup(os, obj, name, 8, 1, &value));
1146 }
1147 
1148 int
1149 zap_add_int_key(objset_t *os, uint64_t obj,
1150     uint64_t key, uint64_t value, dmu_tx_t *tx)
1151 {
1152 	char name[20];
1153 
1154 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1155 	return (zap_add(os, obj, name, 8, 1, &value, tx));
1156 }
1157 
1158 int
1159 zap_update_int_key(objset_t *os, uint64_t obj,
1160     uint64_t key, uint64_t value, dmu_tx_t *tx)
1161 {
1162 	char name[20];
1163 
1164 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1165 	return (zap_update(os, obj, name, 8, 1, &value, tx));
1166 }
1167 
1168 int
1169 zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep)
1170 {
1171 	char name[20];
1172 
1173 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1174 	return (zap_lookup(os, obj, name, 8, 1, valuep));
1175 }
1176 
1177 int
1178 zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
1179     dmu_tx_t *tx)
1180 {
1181 	uint64_t value = 0;
1182 
1183 	if (delta == 0)
1184 		return (0);
1185 
1186 	int err = zap_lookup(os, obj, name, 8, 1, &value);
1187 	if (err != 0 && err != ENOENT)
1188 		return (err);
1189 	value += delta;
1190 	if (value == 0)
1191 		err = zap_remove(os, obj, name, tx);
1192 	else
1193 		err = zap_update(os, obj, name, 8, 1, &value, tx);
1194 	return (err);
1195 }
1196 
1197 int
1198 zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
1199     dmu_tx_t *tx)
1200 {
1201 	char name[20];
1202 
1203 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1204 	return (zap_increment(os, obj, name, delta, tx));
1205 }
1206 
1207 /*
1208  * Routines for iterating over the attributes.
1209  */
1210 
1211 int
1212 fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za)
1213 {
1214 	int err = ENOENT;
1215 	zap_entry_handle_t zeh;
1216 	zap_leaf_t *l;
1217 
1218 	/* retrieve the next entry at or after zc_hash/zc_cd */
1219 	/* if no entry, return ENOENT */
1220 
1221 	/*
1222 	 * If we are reading from the beginning, we're almost certain to
1223 	 * iterate over the entire ZAP object.  If there are multiple leaf
1224 	 * blocks (freeblk > 2), prefetch the whole object (up to
1225 	 * dmu_prefetch_max bytes), so that we read the leaf blocks
1226 	 * concurrently. (Unless noprefetch was requested via
1227 	 * zap_cursor_init_noprefetch()).
1228 	 */
1229 	if (zc->zc_hash == 0 && zap_iterate_prefetch &&
1230 	    zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) {
1231 		dmu_prefetch(zc->zc_objset, zc->zc_zapobj, 0, 0,
1232 		    zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap),
1233 		    ZIO_PRIORITY_ASYNC_READ);
1234 	}
1235 
1236 	if (zc->zc_leaf &&
1237 	    (ZAP_HASH_IDX(zc->zc_hash,
1238 	    zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) !=
1239 	    zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) {
1240 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1241 		zap_put_leaf(zc->zc_leaf);
1242 		zc->zc_leaf = NULL;
1243 	}
1244 
1245 again:
1246 	if (zc->zc_leaf == NULL) {
1247 		err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER,
1248 		    &zc->zc_leaf);
1249 		if (err != 0)
1250 			return (err);
1251 	} else {
1252 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1253 	}
1254 	l = zc->zc_leaf;
1255 
1256 	err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh);
1257 
1258 	if (err == ENOENT) {
1259 		if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) {
1260 			zc->zc_hash = -1ULL;
1261 			zc->zc_cd = 0;
1262 		} else {
1263 			uint64_t nocare = (1ULL <<
1264 			    (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1;
1265 
1266 			zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1;
1267 			zc->zc_cd = 0;
1268 
1269 			if (zc->zc_hash == 0) {
1270 				zc->zc_hash = -1ULL;
1271 			} else {
1272 				zap_put_leaf(zc->zc_leaf);
1273 				zc->zc_leaf = NULL;
1274 				goto again;
1275 			}
1276 		}
1277 	}
1278 
1279 	if (err == 0) {
1280 		zc->zc_hash = zeh.zeh_hash;
1281 		zc->zc_cd = zeh.zeh_cd;
1282 		za->za_integer_length = zeh.zeh_integer_size;
1283 		za->za_num_integers = zeh.zeh_num_integers;
1284 		if (zeh.zeh_num_integers == 0) {
1285 			za->za_first_integer = 0;
1286 		} else {
1287 			err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer);
1288 			ASSERT(err == 0 || err == EOVERFLOW);
1289 		}
1290 		err = zap_entry_read_name(zap, &zeh,
1291 		    sizeof (za->za_name), za->za_name);
1292 		ASSERT(err == 0);
1293 
1294 		za->za_normalization_conflict =
1295 		    zap_entry_normalization_conflict(&zeh,
1296 		    NULL, za->za_name, zap);
1297 	}
1298 	rw_exit(&zc->zc_leaf->l_rwlock);
1299 	return (err);
1300 }
1301 
1302 static void
1303 zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs)
1304 {
1305 	uint64_t lastblk = 0;
1306 
1307 	/*
1308 	 * NB: if a leaf has more pointers than an entire ptrtbl block
1309 	 * can hold, then it'll be accounted for more than once, since
1310 	 * we won't have lastblk.
1311 	 */
1312 	for (int i = 0; i < len; i++) {
1313 		zap_leaf_t *l;
1314 
1315 		if (tbl[i] == lastblk)
1316 			continue;
1317 		lastblk = tbl[i];
1318 
1319 		int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l);
1320 		if (err == 0) {
1321 			zap_leaf_stats(zap, l, zs);
1322 			zap_put_leaf(l);
1323 		}
1324 	}
1325 }
1326 
1327 void
1328 fzap_get_stats(zap_t *zap, zap_stats_t *zs)
1329 {
1330 	int bs = FZAP_BLOCK_SHIFT(zap);
1331 	zs->zs_blocksize = 1ULL << bs;
1332 
1333 	/*
1334 	 * Set zap_phys_t fields
1335 	 */
1336 	zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs;
1337 	zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries;
1338 	zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk;
1339 	zs->zs_block_type = zap_f_phys(zap)->zap_block_type;
1340 	zs->zs_magic = zap_f_phys(zap)->zap_magic;
1341 	zs->zs_salt = zap_f_phys(zap)->zap_salt;
1342 
1343 	/*
1344 	 * Set zap_ptrtbl fields
1345 	 */
1346 	zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1347 	zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk;
1348 	zs->zs_ptrtbl_blks_copied =
1349 	    zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied;
1350 	zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk;
1351 	zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
1352 	zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1353 
1354 	if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
1355 		/* the ptrtbl is entirely in the header block. */
1356 		zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
1357 		    1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs);
1358 	} else {
1359 		dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
1360 		    zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs,
1361 		    zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs,
1362 		    ZIO_PRIORITY_SYNC_READ);
1363 
1364 		for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
1365 		    b++) {
1366 			dmu_buf_t *db;
1367 			int err;
1368 
1369 			err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
1370 			    (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs,
1371 			    FTAG, &db, DMU_READ_NO_PREFETCH);
1372 			if (err == 0) {
1373 				zap_stats_ptrtbl(zap, db->db_data,
1374 				    1<<(bs-3), zs);
1375 				dmu_buf_rele(db, FTAG);
1376 			}
1377 		}
1378 	}
1379 }
1380 
1381 /* CSTYLED */
1382 ZFS_MODULE_PARAM(zfs, , zap_iterate_prefetch, INT, ZMOD_RW,
1383 	"When iterating ZAP object, prefetch it");
1384