1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 /* 28 * This file contains the top half of the zfs directory structure 29 * implementation. The bottom half is in zap_leaf.c. 30 * 31 * The zdir is an extendable hash data structure. There is a table of 32 * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are 33 * each a constant size and hold a variable number of directory entries. 34 * The buckets (aka "leaf nodes") are implemented in zap_leaf.c. 35 * 36 * The pointer table holds a power of 2 number of pointers. 37 * (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to 38 * by the pointer at index i in the table holds entries whose hash value 39 * has a zd_prefix_len - bit prefix 40 */ 41 42 #include <sys/spa.h> 43 #include <sys/dmu.h> 44 #include <sys/zfs_context.h> 45 #include <sys/zfs_znode.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/zap.h> 48 #include <sys/zap_impl.h> 49 #include <sys/zap_leaf.h> 50 51 /* 52 * If zap_iterate_prefetch is set, we will prefetch the entire ZAP object 53 * (all leaf blocks) when we start iterating over it. 54 * 55 * For zap_cursor_init(), the callers all intend to iterate through all the 56 * entries. There are a few cases where an error (typically i/o error) could 57 * cause it to bail out early. 58 * 59 * For zap_cursor_init_serialized(), there are callers that do the iteration 60 * outside of ZFS. Typically they would iterate over everything, but we 61 * don't have control of that. E.g. zfs_ioc_snapshot_list_next(), 62 * zcp_snapshots_iter(), and other iterators over things in the MOS - these 63 * are called by /sbin/zfs and channel programs. The other example is 64 * zfs_readdir() which iterates over directory entries for the getdents() 65 * syscall. /sbin/ls iterates to the end (unless it receives a signal), but 66 * userland doesn't have to. 67 * 68 * Given that the ZAP entries aren't returned in a specific order, the only 69 * legitimate use cases for partial iteration would be: 70 * 71 * 1. Pagination: e.g. you only want to display 100 entries at a time, so you 72 * get the first 100 and then wait for the user to hit "next page", which 73 * they may never do). 74 * 75 * 2. You want to know if there are more than X entries, without relying on 76 * the zfs-specific implementation of the directory's st_size (which is 77 * the number of entries). 78 */ 79 static int zap_iterate_prefetch = B_TRUE; 80 81 int fzap_default_block_shift = 14; /* 16k blocksize */ 82 83 static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks); 84 85 void 86 fzap_byteswap(void *vbuf, size_t size) 87 { 88 uint64_t block_type = *(uint64_t *)vbuf; 89 90 if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF)) 91 zap_leaf_byteswap(vbuf, size); 92 else { 93 /* it's a ptrtbl block */ 94 byteswap_uint64_array(vbuf, size); 95 } 96 } 97 98 void 99 fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags) 100 { 101 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 102 zap->zap_ismicro = FALSE; 103 104 zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync; 105 zap->zap_dbu.dbu_evict_func_async = NULL; 106 107 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0); 108 zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1; 109 110 zap_phys_t *zp = zap_f_phys(zap); 111 /* 112 * explicitly zero it since it might be coming from an 113 * initialized microzap 114 */ 115 memset(zap->zap_dbuf->db_data, 0, zap->zap_dbuf->db_size); 116 zp->zap_block_type = ZBT_HEADER; 117 zp->zap_magic = ZAP_MAGIC; 118 119 zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap); 120 121 zp->zap_freeblk = 2; /* block 1 will be the first leaf */ 122 zp->zap_num_leafs = 1; 123 zp->zap_num_entries = 0; 124 zp->zap_salt = zap->zap_salt; 125 zp->zap_normflags = zap->zap_normflags; 126 zp->zap_flags = flags; 127 128 /* block 1 will be the first leaf */ 129 for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++) 130 ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1; 131 132 /* 133 * set up block 1 - the first leaf 134 */ 135 dmu_buf_t *db; 136 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, 137 1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH)); 138 dmu_buf_will_dirty(db, tx); 139 140 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 141 l->l_dbuf = db; 142 143 zap_leaf_init(l, zp->zap_normflags != 0); 144 145 kmem_free(l, sizeof (zap_leaf_t)); 146 dmu_buf_rele(db, FTAG); 147 } 148 149 static int 150 zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx) 151 { 152 if (RW_WRITE_HELD(&zap->zap_rwlock)) 153 return (1); 154 if (rw_tryupgrade(&zap->zap_rwlock)) { 155 dmu_buf_will_dirty(zap->zap_dbuf, tx); 156 return (1); 157 } 158 return (0); 159 } 160 161 /* 162 * Generic routines for dealing with the pointer & cookie tables. 163 */ 164 165 static int 166 zap_table_grow(zap_t *zap, zap_table_phys_t *tbl, 167 void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n), 168 dmu_tx_t *tx) 169 { 170 uint64_t newblk; 171 int bs = FZAP_BLOCK_SHIFT(zap); 172 int hepb = 1<<(bs-4); 173 /* hepb = half the number of entries in a block */ 174 175 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 176 ASSERT(tbl->zt_blk != 0); 177 ASSERT(tbl->zt_numblks > 0); 178 179 if (tbl->zt_nextblk != 0) { 180 newblk = tbl->zt_nextblk; 181 } else { 182 newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2); 183 tbl->zt_nextblk = newblk; 184 ASSERT0(tbl->zt_blks_copied); 185 dmu_prefetch(zap->zap_objset, zap->zap_object, 0, 186 tbl->zt_blk << bs, tbl->zt_numblks << bs, 187 ZIO_PRIORITY_SYNC_READ); 188 } 189 190 /* 191 * Copy the ptrtbl from the old to new location. 192 */ 193 194 uint64_t b = tbl->zt_blks_copied; 195 dmu_buf_t *db_old; 196 int err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 197 (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH); 198 if (err != 0) 199 return (err); 200 201 /* first half of entries in old[b] go to new[2*b+0] */ 202 dmu_buf_t *db_new; 203 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, 204 (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 205 dmu_buf_will_dirty(db_new, tx); 206 transfer_func(db_old->db_data, db_new->db_data, hepb); 207 dmu_buf_rele(db_new, FTAG); 208 209 /* second half of entries in old[b] go to new[2*b+1] */ 210 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, 211 (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 212 dmu_buf_will_dirty(db_new, tx); 213 transfer_func((uint64_t *)db_old->db_data + hepb, 214 db_new->db_data, hepb); 215 dmu_buf_rele(db_new, FTAG); 216 217 dmu_buf_rele(db_old, FTAG); 218 219 tbl->zt_blks_copied++; 220 221 dprintf("copied block %llu of %llu\n", 222 (u_longlong_t)tbl->zt_blks_copied, 223 (u_longlong_t)tbl->zt_numblks); 224 225 if (tbl->zt_blks_copied == tbl->zt_numblks) { 226 (void) dmu_free_range(zap->zap_objset, zap->zap_object, 227 tbl->zt_blk << bs, tbl->zt_numblks << bs, tx); 228 229 tbl->zt_blk = newblk; 230 tbl->zt_numblks *= 2; 231 tbl->zt_shift++; 232 tbl->zt_nextblk = 0; 233 tbl->zt_blks_copied = 0; 234 235 dprintf("finished; numblocks now %llu (%uk entries)\n", 236 (u_longlong_t)tbl->zt_numblks, 1<<(tbl->zt_shift-10)); 237 } 238 239 return (0); 240 } 241 242 static int 243 zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val, 244 dmu_tx_t *tx) 245 { 246 int bs = FZAP_BLOCK_SHIFT(zap); 247 248 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 249 ASSERT(tbl->zt_blk != 0); 250 251 dprintf("storing %llx at index %llx\n", (u_longlong_t)val, 252 (u_longlong_t)idx); 253 254 uint64_t blk = idx >> (bs-3); 255 uint64_t off = idx & ((1<<(bs-3))-1); 256 257 dmu_buf_t *db; 258 int err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 259 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 260 if (err != 0) 261 return (err); 262 dmu_buf_will_dirty(db, tx); 263 264 if (tbl->zt_nextblk != 0) { 265 uint64_t idx2 = idx * 2; 266 uint64_t blk2 = idx2 >> (bs-3); 267 uint64_t off2 = idx2 & ((1<<(bs-3))-1); 268 dmu_buf_t *db2; 269 270 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 271 (tbl->zt_nextblk + blk2) << bs, FTAG, &db2, 272 DMU_READ_NO_PREFETCH); 273 if (err != 0) { 274 dmu_buf_rele(db, FTAG); 275 return (err); 276 } 277 dmu_buf_will_dirty(db2, tx); 278 ((uint64_t *)db2->db_data)[off2] = val; 279 ((uint64_t *)db2->db_data)[off2+1] = val; 280 dmu_buf_rele(db2, FTAG); 281 } 282 283 ((uint64_t *)db->db_data)[off] = val; 284 dmu_buf_rele(db, FTAG); 285 286 return (0); 287 } 288 289 static int 290 zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp) 291 { 292 int bs = FZAP_BLOCK_SHIFT(zap); 293 294 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 295 296 uint64_t blk = idx >> (bs-3); 297 uint64_t off = idx & ((1<<(bs-3))-1); 298 299 /* 300 * Note: this is equivalent to dmu_buf_hold(), but we use 301 * _dnode_enter / _by_dnode because it's faster because we don't 302 * have to hold the dnode. 303 */ 304 dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf); 305 dmu_buf_t *db; 306 int err = dmu_buf_hold_by_dnode(dn, 307 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 308 dmu_buf_dnode_exit(zap->zap_dbuf); 309 if (err != 0) 310 return (err); 311 *valp = ((uint64_t *)db->db_data)[off]; 312 dmu_buf_rele(db, FTAG); 313 314 if (tbl->zt_nextblk != 0) { 315 /* 316 * read the nextblk for the sake of i/o error checking, 317 * so that zap_table_load() will catch errors for 318 * zap_table_store. 319 */ 320 blk = (idx*2) >> (bs-3); 321 322 dn = dmu_buf_dnode_enter(zap->zap_dbuf); 323 err = dmu_buf_hold_by_dnode(dn, 324 (tbl->zt_nextblk + blk) << bs, FTAG, &db, 325 DMU_READ_NO_PREFETCH); 326 dmu_buf_dnode_exit(zap->zap_dbuf); 327 if (err == 0) 328 dmu_buf_rele(db, FTAG); 329 } 330 return (err); 331 } 332 333 /* 334 * Routines for growing the ptrtbl. 335 */ 336 337 static void 338 zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n) 339 { 340 for (int i = 0; i < n; i++) { 341 uint64_t lb = src[i]; 342 dst[2 * i + 0] = lb; 343 dst[2 * i + 1] = lb; 344 } 345 } 346 347 static int 348 zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx) 349 { 350 /* 351 * The pointer table should never use more hash bits than we 352 * have (otherwise we'd be using useless zero bits to index it). 353 * If we are within 2 bits of running out, stop growing, since 354 * this is already an aberrant condition. 355 */ 356 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2) 357 return (SET_ERROR(ENOSPC)); 358 359 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 360 /* 361 * We are outgrowing the "embedded" ptrtbl (the one 362 * stored in the header block). Give it its own entire 363 * block, which will double the size of the ptrtbl. 364 */ 365 ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, 366 ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 367 ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk); 368 369 uint64_t newblk = zap_allocate_blocks(zap, 1); 370 dmu_buf_t *db_new; 371 int err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 372 newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new, 373 DMU_READ_NO_PREFETCH); 374 if (err != 0) 375 return (err); 376 dmu_buf_will_dirty(db_new, tx); 377 zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 378 db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 379 dmu_buf_rele(db_new, FTAG); 380 381 zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk; 382 zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1; 383 zap_f_phys(zap)->zap_ptrtbl.zt_shift++; 384 385 ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, 386 zap_f_phys(zap)->zap_ptrtbl.zt_numblks << 387 (FZAP_BLOCK_SHIFT(zap)-3)); 388 389 return (0); 390 } else { 391 return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl, 392 zap_ptrtbl_transfer, tx)); 393 } 394 } 395 396 static void 397 zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx) 398 { 399 dmu_buf_will_dirty(zap->zap_dbuf, tx); 400 mutex_enter(&zap->zap_f.zap_num_entries_mtx); 401 ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta); 402 zap_f_phys(zap)->zap_num_entries += delta; 403 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 404 } 405 406 static uint64_t 407 zap_allocate_blocks(zap_t *zap, int nblocks) 408 { 409 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 410 uint64_t newblk = zap_f_phys(zap)->zap_freeblk; 411 zap_f_phys(zap)->zap_freeblk += nblocks; 412 return (newblk); 413 } 414 415 static void 416 zap_leaf_evict_sync(void *dbu) 417 { 418 zap_leaf_t *l = dbu; 419 420 rw_destroy(&l->l_rwlock); 421 kmem_free(l, sizeof (zap_leaf_t)); 422 } 423 424 static zap_leaf_t * 425 zap_create_leaf(zap_t *zap, dmu_tx_t *tx) 426 { 427 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 428 429 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 430 431 rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL); 432 rw_enter(&l->l_rwlock, RW_WRITER); 433 l->l_blkid = zap_allocate_blocks(zap, 1); 434 l->l_dbuf = NULL; 435 436 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object, 437 l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf, 438 DMU_READ_NO_PREFETCH)); 439 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); 440 VERIFY3P(NULL, ==, dmu_buf_set_user(l->l_dbuf, &l->l_dbu)); 441 dmu_buf_will_dirty(l->l_dbuf, tx); 442 443 zap_leaf_init(l, zap->zap_normflags != 0); 444 445 zap_f_phys(zap)->zap_num_leafs++; 446 447 return (l); 448 } 449 450 int 451 fzap_count(zap_t *zap, uint64_t *count) 452 { 453 ASSERT(!zap->zap_ismicro); 454 mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */ 455 *count = zap_f_phys(zap)->zap_num_entries; 456 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 457 return (0); 458 } 459 460 /* 461 * Routines for obtaining zap_leaf_t's 462 */ 463 464 void 465 zap_put_leaf(zap_leaf_t *l) 466 { 467 rw_exit(&l->l_rwlock); 468 dmu_buf_rele(l->l_dbuf, NULL); 469 } 470 471 static zap_leaf_t * 472 zap_open_leaf(uint64_t blkid, dmu_buf_t *db) 473 { 474 ASSERT(blkid != 0); 475 476 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 477 rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL); 478 rw_enter(&l->l_rwlock, RW_WRITER); 479 l->l_blkid = blkid; 480 l->l_bs = highbit64(db->db_size) - 1; 481 l->l_dbuf = db; 482 483 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); 484 zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu); 485 486 rw_exit(&l->l_rwlock); 487 if (winner != NULL) { 488 /* someone else set it first */ 489 zap_leaf_evict_sync(&l->l_dbu); 490 l = winner; 491 } 492 493 /* 494 * lhr_pad was previously used for the next leaf in the leaf 495 * chain. There should be no chained leafs (as we have removed 496 * support for them). 497 */ 498 ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1); 499 500 /* 501 * There should be more hash entries than there can be 502 * chunks to put in the hash table 503 */ 504 ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3); 505 506 /* The chunks should begin at the end of the hash table */ 507 ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *) 508 &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]); 509 510 /* The chunks should end at the end of the block */ 511 ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) - 512 (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size); 513 514 return (l); 515 } 516 517 static int 518 zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt, 519 zap_leaf_t **lp) 520 { 521 dmu_buf_t *db; 522 523 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 524 525 /* 526 * If system crashed just after dmu_free_long_range in zfs_rmnode, we 527 * would be left with an empty xattr dir in delete queue. blkid=0 528 * would be passed in when doing zfs_purgedir. If that's the case we 529 * should just return immediately. The underlying objects should 530 * already be freed, so this should be perfectly fine. 531 */ 532 if (blkid == 0) 533 return (SET_ERROR(ENOENT)); 534 535 int bs = FZAP_BLOCK_SHIFT(zap); 536 dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf); 537 int err = dmu_buf_hold_by_dnode(dn, 538 blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH); 539 dmu_buf_dnode_exit(zap->zap_dbuf); 540 if (err != 0) 541 return (err); 542 543 ASSERT3U(db->db_object, ==, zap->zap_object); 544 ASSERT3U(db->db_offset, ==, blkid << bs); 545 ASSERT3U(db->db_size, ==, 1 << bs); 546 ASSERT(blkid != 0); 547 548 zap_leaf_t *l = dmu_buf_get_user(db); 549 550 if (l == NULL) 551 l = zap_open_leaf(blkid, db); 552 553 rw_enter(&l->l_rwlock, lt); 554 /* 555 * Must lock before dirtying, otherwise zap_leaf_phys(l) could change, 556 * causing ASSERT below to fail. 557 */ 558 if (lt == RW_WRITER) 559 dmu_buf_will_dirty(db, tx); 560 ASSERT3U(l->l_blkid, ==, blkid); 561 ASSERT3P(l->l_dbuf, ==, db); 562 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF); 563 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 564 565 *lp = l; 566 return (0); 567 } 568 569 static int 570 zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp) 571 { 572 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 573 574 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 575 ASSERT3U(idx, <, 576 (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift)); 577 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 578 return (0); 579 } else { 580 return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl, 581 idx, valp)); 582 } 583 } 584 585 static int 586 zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx) 587 { 588 ASSERT(tx != NULL); 589 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 590 591 if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) { 592 ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk; 593 return (0); 594 } else { 595 return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl, 596 idx, blk, tx)); 597 } 598 } 599 600 static int 601 zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) 602 { 603 uint64_t blk; 604 605 ASSERT(zap->zap_dbuf == NULL || 606 zap_f_phys(zap) == zap->zap_dbuf->db_data); 607 608 /* Reality check for corrupt zap objects (leaf or header). */ 609 if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF && 610 zap_f_phys(zap)->zap_block_type != ZBT_HEADER) || 611 zap_f_phys(zap)->zap_magic != ZAP_MAGIC) { 612 return (SET_ERROR(EIO)); 613 } 614 615 uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 616 int err = zap_idx_to_blk(zap, idx, &blk); 617 if (err != 0) 618 return (err); 619 err = zap_get_leaf_byblk(zap, blk, tx, lt, lp); 620 621 ASSERT(err || 622 ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) == 623 zap_leaf_phys(*lp)->l_hdr.lh_prefix); 624 return (err); 625 } 626 627 static int 628 zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, 629 void *tag, dmu_tx_t *tx, zap_leaf_t **lp) 630 { 631 zap_t *zap = zn->zn_zap; 632 uint64_t hash = zn->zn_hash; 633 int err; 634 int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len; 635 636 ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 637 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 638 639 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 640 zap_leaf_phys(l)->l_hdr.lh_prefix); 641 642 if (zap_tryupgradedir(zap, tx) == 0 || 643 old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) { 644 /* We failed to upgrade, or need to grow the pointer table */ 645 objset_t *os = zap->zap_objset; 646 uint64_t object = zap->zap_object; 647 648 zap_put_leaf(l); 649 zap_unlockdir(zap, tag); 650 err = zap_lockdir(os, object, tx, RW_WRITER, 651 FALSE, FALSE, tag, &zn->zn_zap); 652 zap = zn->zn_zap; 653 if (err != 0) 654 return (err); 655 ASSERT(!zap->zap_ismicro); 656 657 while (old_prefix_len == 658 zap_f_phys(zap)->zap_ptrtbl.zt_shift) { 659 err = zap_grow_ptrtbl(zap, tx); 660 if (err != 0) 661 return (err); 662 } 663 664 err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l); 665 if (err != 0) 666 return (err); 667 668 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) { 669 /* it split while our locks were down */ 670 *lp = l; 671 return (0); 672 } 673 } 674 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 675 ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 676 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 677 zap_leaf_phys(l)->l_hdr.lh_prefix); 678 679 int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift - 680 (old_prefix_len + 1); 681 uint64_t sibling = 682 (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff; 683 684 /* check for i/o errors before doing zap_leaf_split */ 685 for (int i = 0; i < (1ULL << prefix_diff); i++) { 686 uint64_t blk; 687 err = zap_idx_to_blk(zap, sibling + i, &blk); 688 if (err != 0) 689 return (err); 690 ASSERT3U(blk, ==, l->l_blkid); 691 } 692 693 zap_leaf_t *nl = zap_create_leaf(zap, tx); 694 zap_leaf_split(l, nl, zap->zap_normflags != 0); 695 696 /* set sibling pointers */ 697 for (int i = 0; i < (1ULL << prefix_diff); i++) { 698 err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx); 699 ASSERT0(err); /* we checked for i/o errors above */ 700 } 701 702 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0); 703 704 if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) { 705 /* we want the sibling */ 706 zap_put_leaf(l); 707 *lp = nl; 708 } else { 709 zap_put_leaf(nl); 710 *lp = l; 711 } 712 713 return (0); 714 } 715 716 static void 717 zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, 718 void *tag, dmu_tx_t *tx) 719 { 720 zap_t *zap = zn->zn_zap; 721 int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; 722 int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift && 723 zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER); 724 725 zap_put_leaf(l); 726 727 if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) { 728 /* 729 * We are in the middle of growing the pointer table, or 730 * this leaf will soon make us grow it. 731 */ 732 if (zap_tryupgradedir(zap, tx) == 0) { 733 objset_t *os = zap->zap_objset; 734 uint64_t zapobj = zap->zap_object; 735 736 zap_unlockdir(zap, tag); 737 int err = zap_lockdir(os, zapobj, tx, 738 RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap); 739 zap = zn->zn_zap; 740 if (err != 0) 741 return; 742 } 743 744 /* could have finished growing while our locks were down */ 745 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift) 746 (void) zap_grow_ptrtbl(zap, tx); 747 } 748 } 749 750 static int 751 fzap_checkname(zap_name_t *zn) 752 { 753 if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) 754 return (SET_ERROR(ENAMETOOLONG)); 755 return (0); 756 } 757 758 static int 759 fzap_checksize(uint64_t integer_size, uint64_t num_integers) 760 { 761 /* Only integer sizes supported by C */ 762 switch (integer_size) { 763 case 1: 764 case 2: 765 case 4: 766 case 8: 767 break; 768 default: 769 return (SET_ERROR(EINVAL)); 770 } 771 772 if (integer_size * num_integers > ZAP_MAXVALUELEN) 773 return (SET_ERROR(E2BIG)); 774 775 return (0); 776 } 777 778 static int 779 fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers) 780 { 781 int err = fzap_checkname(zn); 782 if (err != 0) 783 return (err); 784 return (fzap_checksize(integer_size, num_integers)); 785 } 786 787 /* 788 * Routines for manipulating attributes. 789 */ 790 int 791 fzap_lookup(zap_name_t *zn, 792 uint64_t integer_size, uint64_t num_integers, void *buf, 793 char *realname, int rn_len, boolean_t *ncp) 794 { 795 zap_leaf_t *l; 796 zap_entry_handle_t zeh; 797 798 int err = fzap_checkname(zn); 799 if (err != 0) 800 return (err); 801 802 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 803 if (err != 0) 804 return (err); 805 err = zap_leaf_lookup(l, zn, &zeh); 806 if (err == 0) { 807 if ((err = fzap_checksize(integer_size, num_integers)) != 0) { 808 zap_put_leaf(l); 809 return (err); 810 } 811 812 err = zap_entry_read(&zeh, integer_size, num_integers, buf); 813 (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname); 814 if (ncp) { 815 *ncp = zap_entry_normalization_conflict(&zeh, 816 zn, NULL, zn->zn_zap); 817 } 818 } 819 820 zap_put_leaf(l); 821 return (err); 822 } 823 824 int 825 fzap_add_cd(zap_name_t *zn, 826 uint64_t integer_size, uint64_t num_integers, 827 const void *val, uint32_t cd, void *tag, dmu_tx_t *tx) 828 { 829 zap_leaf_t *l; 830 int err; 831 zap_entry_handle_t zeh; 832 zap_t *zap = zn->zn_zap; 833 834 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 835 ASSERT(!zap->zap_ismicro); 836 ASSERT(fzap_check(zn, integer_size, num_integers) == 0); 837 838 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 839 if (err != 0) 840 return (err); 841 retry: 842 err = zap_leaf_lookup(l, zn, &zeh); 843 if (err == 0) { 844 err = SET_ERROR(EEXIST); 845 goto out; 846 } 847 if (err != ENOENT) 848 goto out; 849 850 err = zap_entry_create(l, zn, cd, 851 integer_size, num_integers, val, &zeh); 852 853 if (err == 0) { 854 zap_increment_num_entries(zap, 1, tx); 855 } else if (err == EAGAIN) { 856 err = zap_expand_leaf(zn, l, tag, tx, &l); 857 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 858 if (err == 0) { 859 goto retry; 860 } else if (err == ENOSPC) { 861 /* 862 * If we failed to expand the leaf, then bailout 863 * as there is no point trying 864 * zap_put_leaf_maybe_grow_ptrtbl(). 865 */ 866 return (err); 867 } 868 } 869 870 out: 871 if (zap != NULL) 872 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); 873 return (err); 874 } 875 876 int 877 fzap_add(zap_name_t *zn, 878 uint64_t integer_size, uint64_t num_integers, 879 const void *val, void *tag, dmu_tx_t *tx) 880 { 881 int err = fzap_check(zn, integer_size, num_integers); 882 if (err != 0) 883 return (err); 884 885 return (fzap_add_cd(zn, integer_size, num_integers, 886 val, ZAP_NEED_CD, tag, tx)); 887 } 888 889 int 890 fzap_update(zap_name_t *zn, 891 int integer_size, uint64_t num_integers, const void *val, 892 void *tag, dmu_tx_t *tx) 893 { 894 zap_leaf_t *l; 895 int err; 896 boolean_t create; 897 zap_entry_handle_t zeh; 898 zap_t *zap = zn->zn_zap; 899 900 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 901 err = fzap_check(zn, integer_size, num_integers); 902 if (err != 0) 903 return (err); 904 905 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 906 if (err != 0) 907 return (err); 908 retry: 909 err = zap_leaf_lookup(l, zn, &zeh); 910 create = (err == ENOENT); 911 ASSERT(err == 0 || err == ENOENT); 912 913 if (create) { 914 err = zap_entry_create(l, zn, ZAP_NEED_CD, 915 integer_size, num_integers, val, &zeh); 916 if (err == 0) 917 zap_increment_num_entries(zap, 1, tx); 918 } else { 919 err = zap_entry_update(&zeh, integer_size, num_integers, val); 920 } 921 922 if (err == EAGAIN) { 923 err = zap_expand_leaf(zn, l, tag, tx, &l); 924 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 925 if (err == 0) 926 goto retry; 927 } 928 929 if (zap != NULL) 930 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); 931 return (err); 932 } 933 934 int 935 fzap_length(zap_name_t *zn, 936 uint64_t *integer_size, uint64_t *num_integers) 937 { 938 zap_leaf_t *l; 939 int err; 940 zap_entry_handle_t zeh; 941 942 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 943 if (err != 0) 944 return (err); 945 err = zap_leaf_lookup(l, zn, &zeh); 946 if (err != 0) 947 goto out; 948 949 if (integer_size != 0) 950 *integer_size = zeh.zeh_integer_size; 951 if (num_integers != 0) 952 *num_integers = zeh.zeh_num_integers; 953 out: 954 zap_put_leaf(l); 955 return (err); 956 } 957 958 int 959 fzap_remove(zap_name_t *zn, dmu_tx_t *tx) 960 { 961 zap_leaf_t *l; 962 int err; 963 zap_entry_handle_t zeh; 964 965 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l); 966 if (err != 0) 967 return (err); 968 err = zap_leaf_lookup(l, zn, &zeh); 969 if (err == 0) { 970 zap_entry_remove(&zeh); 971 zap_increment_num_entries(zn->zn_zap, -1, tx); 972 } 973 zap_put_leaf(l); 974 return (err); 975 } 976 977 void 978 fzap_prefetch(zap_name_t *zn) 979 { 980 uint64_t blk; 981 zap_t *zap = zn->zn_zap; 982 983 uint64_t idx = ZAP_HASH_IDX(zn->zn_hash, 984 zap_f_phys(zap)->zap_ptrtbl.zt_shift); 985 if (zap_idx_to_blk(zap, idx, &blk) != 0) 986 return; 987 int bs = FZAP_BLOCK_SHIFT(zap); 988 dmu_prefetch(zap->zap_objset, zap->zap_object, 0, blk << bs, 1 << bs, 989 ZIO_PRIORITY_SYNC_READ); 990 } 991 992 /* 993 * Helper functions for consumers. 994 */ 995 996 uint64_t 997 zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, 998 const char *name, dmu_tx_t *tx) 999 { 1000 return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx)); 1001 } 1002 1003 uint64_t 1004 zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, 1005 const char *name, int dnodesize, dmu_tx_t *tx) 1006 { 1007 uint64_t new_obj; 1008 1009 new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx); 1010 VERIFY(new_obj != 0); 1011 VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj, 1012 tx)); 1013 1014 return (new_obj); 1015 } 1016 1017 int 1018 zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, 1019 char *name) 1020 { 1021 zap_cursor_t zc; 1022 int err; 1023 1024 if (mask == 0) 1025 mask = -1ULL; 1026 1027 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 1028 for (zap_cursor_init(&zc, os, zapobj); 1029 (err = zap_cursor_retrieve(&zc, za)) == 0; 1030 zap_cursor_advance(&zc)) { 1031 if ((za->za_first_integer & mask) == (value & mask)) { 1032 (void) strlcpy(name, za->za_name, MAXNAMELEN); 1033 break; 1034 } 1035 } 1036 zap_cursor_fini(&zc); 1037 kmem_free(za, sizeof (*za)); 1038 return (err); 1039 } 1040 1041 int 1042 zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) 1043 { 1044 zap_cursor_t zc; 1045 int err = 0; 1046 1047 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 1048 for (zap_cursor_init(&zc, os, fromobj); 1049 zap_cursor_retrieve(&zc, za) == 0; 1050 (void) zap_cursor_advance(&zc)) { 1051 if (za->za_integer_length != 8 || za->za_num_integers != 1) { 1052 err = SET_ERROR(EINVAL); 1053 break; 1054 } 1055 err = zap_add(os, intoobj, za->za_name, 1056 8, 1, &za->za_first_integer, tx); 1057 if (err != 0) 1058 break; 1059 } 1060 zap_cursor_fini(&zc); 1061 kmem_free(za, sizeof (*za)); 1062 return (err); 1063 } 1064 1065 int 1066 zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1067 uint64_t value, dmu_tx_t *tx) 1068 { 1069 zap_cursor_t zc; 1070 int err = 0; 1071 1072 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 1073 for (zap_cursor_init(&zc, os, fromobj); 1074 zap_cursor_retrieve(&zc, za) == 0; 1075 (void) zap_cursor_advance(&zc)) { 1076 if (za->za_integer_length != 8 || za->za_num_integers != 1) { 1077 err = SET_ERROR(EINVAL); 1078 break; 1079 } 1080 err = zap_add(os, intoobj, za->za_name, 1081 8, 1, &value, tx); 1082 if (err != 0) 1083 break; 1084 } 1085 zap_cursor_fini(&zc); 1086 kmem_free(za, sizeof (*za)); 1087 return (err); 1088 } 1089 1090 int 1091 zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1092 dmu_tx_t *tx) 1093 { 1094 zap_cursor_t zc; 1095 int err = 0; 1096 1097 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 1098 for (zap_cursor_init(&zc, os, fromobj); 1099 zap_cursor_retrieve(&zc, za) == 0; 1100 (void) zap_cursor_advance(&zc)) { 1101 uint64_t delta = 0; 1102 1103 if (za->za_integer_length != 8 || za->za_num_integers != 1) { 1104 err = SET_ERROR(EINVAL); 1105 break; 1106 } 1107 1108 err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta); 1109 if (err != 0 && err != ENOENT) 1110 break; 1111 delta += za->za_first_integer; 1112 err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx); 1113 if (err != 0) 1114 break; 1115 } 1116 zap_cursor_fini(&zc); 1117 kmem_free(za, sizeof (*za)); 1118 return (err); 1119 } 1120 1121 int 1122 zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1123 { 1124 char name[20]; 1125 1126 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1127 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1128 } 1129 1130 int 1131 zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1132 { 1133 char name[20]; 1134 1135 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1136 return (zap_remove(os, obj, name, tx)); 1137 } 1138 1139 int 1140 zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value) 1141 { 1142 char name[20]; 1143 1144 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1145 return (zap_lookup(os, obj, name, 8, 1, &value)); 1146 } 1147 1148 int 1149 zap_add_int_key(objset_t *os, uint64_t obj, 1150 uint64_t key, uint64_t value, dmu_tx_t *tx) 1151 { 1152 char name[20]; 1153 1154 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1155 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1156 } 1157 1158 int 1159 zap_update_int_key(objset_t *os, uint64_t obj, 1160 uint64_t key, uint64_t value, dmu_tx_t *tx) 1161 { 1162 char name[20]; 1163 1164 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1165 return (zap_update(os, obj, name, 8, 1, &value, tx)); 1166 } 1167 1168 int 1169 zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep) 1170 { 1171 char name[20]; 1172 1173 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1174 return (zap_lookup(os, obj, name, 8, 1, valuep)); 1175 } 1176 1177 int 1178 zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, 1179 dmu_tx_t *tx) 1180 { 1181 uint64_t value = 0; 1182 1183 if (delta == 0) 1184 return (0); 1185 1186 int err = zap_lookup(os, obj, name, 8, 1, &value); 1187 if (err != 0 && err != ENOENT) 1188 return (err); 1189 value += delta; 1190 if (value == 0) 1191 err = zap_remove(os, obj, name, tx); 1192 else 1193 err = zap_update(os, obj, name, 8, 1, &value, tx); 1194 return (err); 1195 } 1196 1197 int 1198 zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, 1199 dmu_tx_t *tx) 1200 { 1201 char name[20]; 1202 1203 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1204 return (zap_increment(os, obj, name, delta, tx)); 1205 } 1206 1207 /* 1208 * Routines for iterating over the attributes. 1209 */ 1210 1211 int 1212 fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za) 1213 { 1214 int err = ENOENT; 1215 zap_entry_handle_t zeh; 1216 zap_leaf_t *l; 1217 1218 /* retrieve the next entry at or after zc_hash/zc_cd */ 1219 /* if no entry, return ENOENT */ 1220 1221 /* 1222 * If we are reading from the beginning, we're almost certain to 1223 * iterate over the entire ZAP object. If there are multiple leaf 1224 * blocks (freeblk > 2), prefetch the whole object (up to 1225 * dmu_prefetch_max bytes), so that we read the leaf blocks 1226 * concurrently. (Unless noprefetch was requested via 1227 * zap_cursor_init_noprefetch()). 1228 */ 1229 if (zc->zc_hash == 0 && zap_iterate_prefetch && 1230 zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) { 1231 dmu_prefetch(zc->zc_objset, zc->zc_zapobj, 0, 0, 1232 zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap), 1233 ZIO_PRIORITY_ASYNC_READ); 1234 } 1235 1236 if (zc->zc_leaf && 1237 (ZAP_HASH_IDX(zc->zc_hash, 1238 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) != 1239 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) { 1240 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1241 zap_put_leaf(zc->zc_leaf); 1242 zc->zc_leaf = NULL; 1243 } 1244 1245 again: 1246 if (zc->zc_leaf == NULL) { 1247 err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER, 1248 &zc->zc_leaf); 1249 if (err != 0) 1250 return (err); 1251 } else { 1252 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1253 } 1254 l = zc->zc_leaf; 1255 1256 err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh); 1257 1258 if (err == ENOENT) { 1259 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) { 1260 zc->zc_hash = -1ULL; 1261 zc->zc_cd = 0; 1262 } else { 1263 uint64_t nocare = (1ULL << 1264 (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1; 1265 1266 zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1; 1267 zc->zc_cd = 0; 1268 1269 if (zc->zc_hash == 0) { 1270 zc->zc_hash = -1ULL; 1271 } else { 1272 zap_put_leaf(zc->zc_leaf); 1273 zc->zc_leaf = NULL; 1274 goto again; 1275 } 1276 } 1277 } 1278 1279 if (err == 0) { 1280 zc->zc_hash = zeh.zeh_hash; 1281 zc->zc_cd = zeh.zeh_cd; 1282 za->za_integer_length = zeh.zeh_integer_size; 1283 za->za_num_integers = zeh.zeh_num_integers; 1284 if (zeh.zeh_num_integers == 0) { 1285 za->za_first_integer = 0; 1286 } else { 1287 err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer); 1288 ASSERT(err == 0 || err == EOVERFLOW); 1289 } 1290 err = zap_entry_read_name(zap, &zeh, 1291 sizeof (za->za_name), za->za_name); 1292 ASSERT(err == 0); 1293 1294 za->za_normalization_conflict = 1295 zap_entry_normalization_conflict(&zeh, 1296 NULL, za->za_name, zap); 1297 } 1298 rw_exit(&zc->zc_leaf->l_rwlock); 1299 return (err); 1300 } 1301 1302 static void 1303 zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs) 1304 { 1305 uint64_t lastblk = 0; 1306 1307 /* 1308 * NB: if a leaf has more pointers than an entire ptrtbl block 1309 * can hold, then it'll be accounted for more than once, since 1310 * we won't have lastblk. 1311 */ 1312 for (int i = 0; i < len; i++) { 1313 zap_leaf_t *l; 1314 1315 if (tbl[i] == lastblk) 1316 continue; 1317 lastblk = tbl[i]; 1318 1319 int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l); 1320 if (err == 0) { 1321 zap_leaf_stats(zap, l, zs); 1322 zap_put_leaf(l); 1323 } 1324 } 1325 } 1326 1327 void 1328 fzap_get_stats(zap_t *zap, zap_stats_t *zs) 1329 { 1330 int bs = FZAP_BLOCK_SHIFT(zap); 1331 zs->zs_blocksize = 1ULL << bs; 1332 1333 /* 1334 * Set zap_phys_t fields 1335 */ 1336 zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs; 1337 zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries; 1338 zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk; 1339 zs->zs_block_type = zap_f_phys(zap)->zap_block_type; 1340 zs->zs_magic = zap_f_phys(zap)->zap_magic; 1341 zs->zs_salt = zap_f_phys(zap)->zap_salt; 1342 1343 /* 1344 * Set zap_ptrtbl fields 1345 */ 1346 zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift; 1347 zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk; 1348 zs->zs_ptrtbl_blks_copied = 1349 zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied; 1350 zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk; 1351 zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks; 1352 zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; 1353 1354 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 1355 /* the ptrtbl is entirely in the header block. */ 1356 zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 1357 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs); 1358 } else { 1359 dmu_prefetch(zap->zap_objset, zap->zap_object, 0, 1360 zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs, 1361 zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs, 1362 ZIO_PRIORITY_SYNC_READ); 1363 1364 for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks; 1365 b++) { 1366 dmu_buf_t *db; 1367 int err; 1368 1369 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 1370 (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs, 1371 FTAG, &db, DMU_READ_NO_PREFETCH); 1372 if (err == 0) { 1373 zap_stats_ptrtbl(zap, db->db_data, 1374 1<<(bs-3), zs); 1375 dmu_buf_rele(db, FTAG); 1376 } 1377 } 1378 } 1379 } 1380 1381 /* CSTYLED */ 1382 ZFS_MODULE_PARAM(zfs, , zap_iterate_prefetch, INT, ZMOD_RW, 1383 "When iterating ZAP object, prefetch it"); 1384