1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 /* 28 * This file contains the top half of the zfs directory structure 29 * implementation. The bottom half is in zap_leaf.c. 30 * 31 * The zdir is an extendable hash data structure. There is a table of 32 * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are 33 * each a constant size and hold a variable number of directory entries. 34 * The buckets (aka "leaf nodes") are implemented in zap_leaf.c. 35 * 36 * The pointer table holds a power of 2 number of pointers. 37 * (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to 38 * by the pointer at index i in the table holds entries whose hash value 39 * has a zd_prefix_len - bit prefix 40 */ 41 42 #include <sys/spa.h> 43 #include <sys/dmu.h> 44 #include <sys/zfs_context.h> 45 #include <sys/zfs_znode.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/zap.h> 48 #include <sys/zap_impl.h> 49 #include <sys/zap_leaf.h> 50 51 /* 52 * If zap_iterate_prefetch is set, we will prefetch the entire ZAP object 53 * (all leaf blocks) when we start iterating over it. 54 * 55 * For zap_cursor_init(), the callers all intend to iterate through all the 56 * entries. There are a few cases where an error (typically i/o error) could 57 * cause it to bail out early. 58 * 59 * For zap_cursor_init_serialized(), there are callers that do the iteration 60 * outside of ZFS. Typically they would iterate over everything, but we 61 * don't have control of that. E.g. zfs_ioc_snapshot_list_next(), 62 * zcp_snapshots_iter(), and other iterators over things in the MOS - these 63 * are called by /sbin/zfs and channel programs. The other example is 64 * zfs_readdir() which iterates over directory entries for the getdents() 65 * syscall. /sbin/ls iterates to the end (unless it receives a signal), but 66 * userland doesn't have to. 67 * 68 * Given that the ZAP entries aren't returned in a specific order, the only 69 * legitimate use cases for partial iteration would be: 70 * 71 * 1. Pagination: e.g. you only want to display 100 entries at a time, so you 72 * get the first 100 and then wait for the user to hit "next page", which 73 * they may never do). 74 * 75 * 2. You want to know if there are more than X entries, without relying on 76 * the zfs-specific implementation of the directory's st_size (which is 77 * the number of entries). 78 */ 79 static int zap_iterate_prefetch = B_TRUE; 80 81 int fzap_default_block_shift = 14; /* 16k blocksize */ 82 83 static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks); 84 85 void 86 fzap_byteswap(void *vbuf, size_t size) 87 { 88 uint64_t block_type = *(uint64_t *)vbuf; 89 90 if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF)) 91 zap_leaf_byteswap(vbuf, size); 92 else { 93 /* it's a ptrtbl block */ 94 byteswap_uint64_array(vbuf, size); 95 } 96 } 97 98 void 99 fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags) 100 { 101 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 102 zap->zap_ismicro = FALSE; 103 104 zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync; 105 zap->zap_dbu.dbu_evict_func_async = NULL; 106 107 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0); 108 zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1; 109 110 zap_phys_t *zp = zap_f_phys(zap); 111 /* 112 * explicitly zero it since it might be coming from an 113 * initialized microzap 114 */ 115 memset(zap->zap_dbuf->db_data, 0, zap->zap_dbuf->db_size); 116 zp->zap_block_type = ZBT_HEADER; 117 zp->zap_magic = ZAP_MAGIC; 118 119 zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap); 120 121 zp->zap_freeblk = 2; /* block 1 will be the first leaf */ 122 zp->zap_num_leafs = 1; 123 zp->zap_num_entries = 0; 124 zp->zap_salt = zap->zap_salt; 125 zp->zap_normflags = zap->zap_normflags; 126 zp->zap_flags = flags; 127 128 /* block 1 will be the first leaf */ 129 for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++) 130 ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1; 131 132 /* 133 * set up block 1 - the first leaf 134 */ 135 dmu_buf_t *db; 136 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode, 137 1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH)); 138 dmu_buf_will_dirty(db, tx); 139 140 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 141 l->l_dbuf = db; 142 143 zap_leaf_init(l, zp->zap_normflags != 0); 144 145 kmem_free(l, sizeof (zap_leaf_t)); 146 dmu_buf_rele(db, FTAG); 147 } 148 149 static int 150 zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx) 151 { 152 if (RW_WRITE_HELD(&zap->zap_rwlock)) 153 return (1); 154 if (rw_tryupgrade(&zap->zap_rwlock)) { 155 dmu_buf_will_dirty(zap->zap_dbuf, tx); 156 return (1); 157 } 158 return (0); 159 } 160 161 /* 162 * Generic routines for dealing with the pointer & cookie tables. 163 */ 164 165 static int 166 zap_table_grow(zap_t *zap, zap_table_phys_t *tbl, 167 void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n), 168 dmu_tx_t *tx) 169 { 170 uint64_t newblk; 171 int bs = FZAP_BLOCK_SHIFT(zap); 172 int hepb = 1<<(bs-4); 173 /* hepb = half the number of entries in a block */ 174 175 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 176 ASSERT(tbl->zt_blk != 0); 177 ASSERT(tbl->zt_numblks > 0); 178 179 if (tbl->zt_nextblk != 0) { 180 newblk = tbl->zt_nextblk; 181 } else { 182 newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2); 183 tbl->zt_nextblk = newblk; 184 ASSERT0(tbl->zt_blks_copied); 185 dmu_prefetch_by_dnode(zap->zap_dnode, 0, 186 tbl->zt_blk << bs, tbl->zt_numblks << bs, 187 ZIO_PRIORITY_SYNC_READ); 188 } 189 190 /* 191 * Copy the ptrtbl from the old to new location. 192 */ 193 194 uint64_t b = tbl->zt_blks_copied; 195 dmu_buf_t *db_old; 196 int err = dmu_buf_hold_by_dnode(zap->zap_dnode, 197 (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH); 198 if (err != 0) 199 return (err); 200 201 /* first half of entries in old[b] go to new[2*b+0] */ 202 dmu_buf_t *db_new; 203 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode, 204 (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 205 dmu_buf_will_dirty(db_new, tx); 206 transfer_func(db_old->db_data, db_new->db_data, hepb); 207 dmu_buf_rele(db_new, FTAG); 208 209 /* second half of entries in old[b] go to new[2*b+1] */ 210 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode, 211 (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 212 dmu_buf_will_dirty(db_new, tx); 213 transfer_func((uint64_t *)db_old->db_data + hepb, 214 db_new->db_data, hepb); 215 dmu_buf_rele(db_new, FTAG); 216 217 dmu_buf_rele(db_old, FTAG); 218 219 tbl->zt_blks_copied++; 220 221 dprintf("copied block %llu of %llu\n", 222 (u_longlong_t)tbl->zt_blks_copied, 223 (u_longlong_t)tbl->zt_numblks); 224 225 if (tbl->zt_blks_copied == tbl->zt_numblks) { 226 (void) dmu_free_range(zap->zap_objset, zap->zap_object, 227 tbl->zt_blk << bs, tbl->zt_numblks << bs, tx); 228 229 tbl->zt_blk = newblk; 230 tbl->zt_numblks *= 2; 231 tbl->zt_shift++; 232 tbl->zt_nextblk = 0; 233 tbl->zt_blks_copied = 0; 234 235 dprintf("finished; numblocks now %llu (%uk entries)\n", 236 (u_longlong_t)tbl->zt_numblks, 1<<(tbl->zt_shift-10)); 237 } 238 239 return (0); 240 } 241 242 static int 243 zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val, 244 dmu_tx_t *tx) 245 { 246 int bs = FZAP_BLOCK_SHIFT(zap); 247 248 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 249 ASSERT(tbl->zt_blk != 0); 250 251 dprintf("storing %llx at index %llx\n", (u_longlong_t)val, 252 (u_longlong_t)idx); 253 254 uint64_t blk = idx >> (bs-3); 255 uint64_t off = idx & ((1<<(bs-3))-1); 256 257 dmu_buf_t *db; 258 int err = dmu_buf_hold_by_dnode(zap->zap_dnode, 259 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 260 if (err != 0) 261 return (err); 262 dmu_buf_will_dirty(db, tx); 263 264 if (tbl->zt_nextblk != 0) { 265 uint64_t idx2 = idx * 2; 266 uint64_t blk2 = idx2 >> (bs-3); 267 uint64_t off2 = idx2 & ((1<<(bs-3))-1); 268 dmu_buf_t *db2; 269 270 err = dmu_buf_hold_by_dnode(zap->zap_dnode, 271 (tbl->zt_nextblk + blk2) << bs, FTAG, &db2, 272 DMU_READ_NO_PREFETCH); 273 if (err != 0) { 274 dmu_buf_rele(db, FTAG); 275 return (err); 276 } 277 dmu_buf_will_dirty(db2, tx); 278 ((uint64_t *)db2->db_data)[off2] = val; 279 ((uint64_t *)db2->db_data)[off2+1] = val; 280 dmu_buf_rele(db2, FTAG); 281 } 282 283 ((uint64_t *)db->db_data)[off] = val; 284 dmu_buf_rele(db, FTAG); 285 286 return (0); 287 } 288 289 static int 290 zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp) 291 { 292 int bs = FZAP_BLOCK_SHIFT(zap); 293 294 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 295 296 uint64_t blk = idx >> (bs-3); 297 uint64_t off = idx & ((1<<(bs-3))-1); 298 299 dmu_buf_t *db; 300 int err = dmu_buf_hold_by_dnode(zap->zap_dnode, 301 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 302 if (err != 0) 303 return (err); 304 *valp = ((uint64_t *)db->db_data)[off]; 305 dmu_buf_rele(db, FTAG); 306 307 if (tbl->zt_nextblk != 0) { 308 /* 309 * read the nextblk for the sake of i/o error checking, 310 * so that zap_table_load() will catch errors for 311 * zap_table_store. 312 */ 313 blk = (idx*2) >> (bs-3); 314 315 err = dmu_buf_hold_by_dnode(zap->zap_dnode, 316 (tbl->zt_nextblk + blk) << bs, FTAG, &db, 317 DMU_READ_NO_PREFETCH); 318 if (err == 0) 319 dmu_buf_rele(db, FTAG); 320 } 321 return (err); 322 } 323 324 /* 325 * Routines for growing the ptrtbl. 326 */ 327 328 static void 329 zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n) 330 { 331 for (int i = 0; i < n; i++) { 332 uint64_t lb = src[i]; 333 dst[2 * i + 0] = lb; 334 dst[2 * i + 1] = lb; 335 } 336 } 337 338 static int 339 zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx) 340 { 341 /* 342 * The pointer table should never use more hash bits than we 343 * have (otherwise we'd be using useless zero bits to index it). 344 * If we are within 2 bits of running out, stop growing, since 345 * this is already an aberrant condition. 346 */ 347 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2) 348 return (SET_ERROR(ENOSPC)); 349 350 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 351 /* 352 * We are outgrowing the "embedded" ptrtbl (the one 353 * stored in the header block). Give it its own entire 354 * block, which will double the size of the ptrtbl. 355 */ 356 ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, 357 ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 358 ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk); 359 360 uint64_t newblk = zap_allocate_blocks(zap, 1); 361 dmu_buf_t *db_new; 362 int err = dmu_buf_hold_by_dnode(zap->zap_dnode, 363 newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new, 364 DMU_READ_NO_PREFETCH); 365 if (err != 0) 366 return (err); 367 dmu_buf_will_dirty(db_new, tx); 368 zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 369 db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 370 dmu_buf_rele(db_new, FTAG); 371 372 zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk; 373 zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1; 374 zap_f_phys(zap)->zap_ptrtbl.zt_shift++; 375 376 ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==, 377 zap_f_phys(zap)->zap_ptrtbl.zt_numblks << 378 (FZAP_BLOCK_SHIFT(zap)-3)); 379 380 return (0); 381 } else { 382 return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl, 383 zap_ptrtbl_transfer, tx)); 384 } 385 } 386 387 static void 388 zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx) 389 { 390 dmu_buf_will_dirty(zap->zap_dbuf, tx); 391 mutex_enter(&zap->zap_f.zap_num_entries_mtx); 392 ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta); 393 zap_f_phys(zap)->zap_num_entries += delta; 394 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 395 } 396 397 static uint64_t 398 zap_allocate_blocks(zap_t *zap, int nblocks) 399 { 400 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 401 uint64_t newblk = zap_f_phys(zap)->zap_freeblk; 402 zap_f_phys(zap)->zap_freeblk += nblocks; 403 return (newblk); 404 } 405 406 static void 407 zap_leaf_evict_sync(void *dbu) 408 { 409 zap_leaf_t *l = dbu; 410 411 rw_destroy(&l->l_rwlock); 412 kmem_free(l, sizeof (zap_leaf_t)); 413 } 414 415 static zap_leaf_t * 416 zap_create_leaf(zap_t *zap, dmu_tx_t *tx) 417 { 418 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 419 420 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 421 422 rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL); 423 rw_enter(&l->l_rwlock, RW_WRITER); 424 l->l_blkid = zap_allocate_blocks(zap, 1); 425 l->l_dbuf = NULL; 426 427 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode, 428 l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf, 429 DMU_READ_NO_PREFETCH)); 430 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); 431 VERIFY3P(NULL, ==, dmu_buf_set_user(l->l_dbuf, &l->l_dbu)); 432 dmu_buf_will_dirty(l->l_dbuf, tx); 433 434 zap_leaf_init(l, zap->zap_normflags != 0); 435 436 zap_f_phys(zap)->zap_num_leafs++; 437 438 return (l); 439 } 440 441 int 442 fzap_count(zap_t *zap, uint64_t *count) 443 { 444 ASSERT(!zap->zap_ismicro); 445 mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */ 446 *count = zap_f_phys(zap)->zap_num_entries; 447 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 448 return (0); 449 } 450 451 /* 452 * Routines for obtaining zap_leaf_t's 453 */ 454 455 void 456 zap_put_leaf(zap_leaf_t *l) 457 { 458 rw_exit(&l->l_rwlock); 459 dmu_buf_rele(l->l_dbuf, NULL); 460 } 461 462 static zap_leaf_t * 463 zap_open_leaf(uint64_t blkid, dmu_buf_t *db) 464 { 465 ASSERT(blkid != 0); 466 467 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 468 rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL); 469 rw_enter(&l->l_rwlock, RW_WRITER); 470 l->l_blkid = blkid; 471 l->l_bs = highbit64(db->db_size) - 1; 472 l->l_dbuf = db; 473 474 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf); 475 zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu); 476 477 rw_exit(&l->l_rwlock); 478 if (winner != NULL) { 479 /* someone else set it first */ 480 zap_leaf_evict_sync(&l->l_dbu); 481 l = winner; 482 } 483 484 /* 485 * lhr_pad was previously used for the next leaf in the leaf 486 * chain. There should be no chained leafs (as we have removed 487 * support for them). 488 */ 489 ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1); 490 491 /* 492 * There should be more hash entries than there can be 493 * chunks to put in the hash table 494 */ 495 ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3); 496 497 /* The chunks should begin at the end of the hash table */ 498 ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *) 499 &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]); 500 501 /* The chunks should end at the end of the block */ 502 ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) - 503 (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size); 504 505 return (l); 506 } 507 508 static int 509 zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt, 510 zap_leaf_t **lp) 511 { 512 dmu_buf_t *db; 513 514 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 515 516 /* 517 * If system crashed just after dmu_free_long_range in zfs_rmnode, we 518 * would be left with an empty xattr dir in delete queue. blkid=0 519 * would be passed in when doing zfs_purgedir. If that's the case we 520 * should just return immediately. The underlying objects should 521 * already be freed, so this should be perfectly fine. 522 */ 523 if (blkid == 0) 524 return (SET_ERROR(ENOENT)); 525 526 int bs = FZAP_BLOCK_SHIFT(zap); 527 int err = dmu_buf_hold_by_dnode(zap->zap_dnode, 528 blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH); 529 if (err != 0) 530 return (err); 531 532 ASSERT3U(db->db_object, ==, zap->zap_object); 533 ASSERT3U(db->db_offset, ==, blkid << bs); 534 ASSERT3U(db->db_size, ==, 1 << bs); 535 ASSERT(blkid != 0); 536 537 zap_leaf_t *l = dmu_buf_get_user(db); 538 539 if (l == NULL) 540 l = zap_open_leaf(blkid, db); 541 542 rw_enter(&l->l_rwlock, lt); 543 /* 544 * Must lock before dirtying, otherwise zap_leaf_phys(l) could change, 545 * causing ASSERT below to fail. 546 */ 547 if (lt == RW_WRITER) 548 dmu_buf_will_dirty(db, tx); 549 ASSERT3U(l->l_blkid, ==, blkid); 550 ASSERT3P(l->l_dbuf, ==, db); 551 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF); 552 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 553 554 *lp = l; 555 return (0); 556 } 557 558 static int 559 zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp) 560 { 561 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 562 563 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 564 ASSERT3U(idx, <, 565 (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift)); 566 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 567 return (0); 568 } else { 569 return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl, 570 idx, valp)); 571 } 572 } 573 574 static int 575 zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx) 576 { 577 ASSERT(tx != NULL); 578 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 579 580 if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) { 581 ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk; 582 return (0); 583 } else { 584 return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl, 585 idx, blk, tx)); 586 } 587 } 588 589 static int 590 zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) 591 { 592 uint64_t blk; 593 594 ASSERT(zap->zap_dbuf == NULL || 595 zap_f_phys(zap) == zap->zap_dbuf->db_data); 596 597 /* Reality check for corrupt zap objects (leaf or header). */ 598 if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF && 599 zap_f_phys(zap)->zap_block_type != ZBT_HEADER) || 600 zap_f_phys(zap)->zap_magic != ZAP_MAGIC) { 601 return (SET_ERROR(EIO)); 602 } 603 604 uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 605 int err = zap_idx_to_blk(zap, idx, &blk); 606 if (err != 0) 607 return (err); 608 err = zap_get_leaf_byblk(zap, blk, tx, lt, lp); 609 610 ASSERT(err || 611 ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) == 612 zap_leaf_phys(*lp)->l_hdr.lh_prefix); 613 return (err); 614 } 615 616 static int 617 zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, 618 const void *tag, dmu_tx_t *tx, zap_leaf_t **lp) 619 { 620 zap_t *zap = zn->zn_zap; 621 uint64_t hash = zn->zn_hash; 622 int err; 623 int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len; 624 625 ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 626 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 627 628 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 629 zap_leaf_phys(l)->l_hdr.lh_prefix); 630 631 if (zap_tryupgradedir(zap, tx) == 0 || 632 old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) { 633 /* We failed to upgrade, or need to grow the pointer table */ 634 objset_t *os = zap->zap_objset; 635 uint64_t object = zap->zap_object; 636 637 zap_put_leaf(l); 638 zap_unlockdir(zap, tag); 639 err = zap_lockdir(os, object, tx, RW_WRITER, 640 FALSE, FALSE, tag, &zn->zn_zap); 641 zap = zn->zn_zap; 642 if (err != 0) 643 return (err); 644 ASSERT(!zap->zap_ismicro); 645 646 while (old_prefix_len == 647 zap_f_phys(zap)->zap_ptrtbl.zt_shift) { 648 err = zap_grow_ptrtbl(zap, tx); 649 if (err != 0) 650 return (err); 651 } 652 653 err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l); 654 if (err != 0) 655 return (err); 656 657 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) { 658 /* it split while our locks were down */ 659 *lp = l; 660 return (0); 661 } 662 } 663 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 664 ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift); 665 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 666 zap_leaf_phys(l)->l_hdr.lh_prefix); 667 668 int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift - 669 (old_prefix_len + 1); 670 uint64_t sibling = 671 (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff; 672 673 /* check for i/o errors before doing zap_leaf_split */ 674 for (int i = 0; i < (1ULL << prefix_diff); i++) { 675 uint64_t blk; 676 err = zap_idx_to_blk(zap, sibling + i, &blk); 677 if (err != 0) 678 return (err); 679 ASSERT3U(blk, ==, l->l_blkid); 680 } 681 682 zap_leaf_t *nl = zap_create_leaf(zap, tx); 683 zap_leaf_split(l, nl, zap->zap_normflags != 0); 684 685 /* set sibling pointers */ 686 for (int i = 0; i < (1ULL << prefix_diff); i++) { 687 err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx); 688 ASSERT0(err); /* we checked for i/o errors above */ 689 } 690 691 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0); 692 693 if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) { 694 /* we want the sibling */ 695 zap_put_leaf(l); 696 *lp = nl; 697 } else { 698 zap_put_leaf(nl); 699 *lp = l; 700 } 701 702 return (0); 703 } 704 705 static void 706 zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, 707 const void *tag, dmu_tx_t *tx) 708 { 709 zap_t *zap = zn->zn_zap; 710 int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; 711 int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift && 712 zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER); 713 714 zap_put_leaf(l); 715 716 if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) { 717 /* 718 * We are in the middle of growing the pointer table, or 719 * this leaf will soon make us grow it. 720 */ 721 if (zap_tryupgradedir(zap, tx) == 0) { 722 objset_t *os = zap->zap_objset; 723 uint64_t zapobj = zap->zap_object; 724 725 zap_unlockdir(zap, tag); 726 int err = zap_lockdir(os, zapobj, tx, 727 RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap); 728 zap = zn->zn_zap; 729 if (err != 0) 730 return; 731 } 732 733 /* could have finished growing while our locks were down */ 734 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift) 735 (void) zap_grow_ptrtbl(zap, tx); 736 } 737 } 738 739 static int 740 fzap_checkname(zap_name_t *zn) 741 { 742 if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) 743 return (SET_ERROR(ENAMETOOLONG)); 744 return (0); 745 } 746 747 static int 748 fzap_checksize(uint64_t integer_size, uint64_t num_integers) 749 { 750 /* Only integer sizes supported by C */ 751 switch (integer_size) { 752 case 1: 753 case 2: 754 case 4: 755 case 8: 756 break; 757 default: 758 return (SET_ERROR(EINVAL)); 759 } 760 761 if (integer_size * num_integers > ZAP_MAXVALUELEN) 762 return (SET_ERROR(E2BIG)); 763 764 return (0); 765 } 766 767 static int 768 fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers) 769 { 770 int err = fzap_checkname(zn); 771 if (err != 0) 772 return (err); 773 return (fzap_checksize(integer_size, num_integers)); 774 } 775 776 /* 777 * Routines for manipulating attributes. 778 */ 779 int 780 fzap_lookup(zap_name_t *zn, 781 uint64_t integer_size, uint64_t num_integers, void *buf, 782 char *realname, int rn_len, boolean_t *ncp) 783 { 784 zap_leaf_t *l; 785 zap_entry_handle_t zeh; 786 787 int err = fzap_checkname(zn); 788 if (err != 0) 789 return (err); 790 791 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 792 if (err != 0) 793 return (err); 794 err = zap_leaf_lookup(l, zn, &zeh); 795 if (err == 0) { 796 if ((err = fzap_checksize(integer_size, num_integers)) != 0) { 797 zap_put_leaf(l); 798 return (err); 799 } 800 801 err = zap_entry_read(&zeh, integer_size, num_integers, buf); 802 (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname); 803 if (ncp) { 804 *ncp = zap_entry_normalization_conflict(&zeh, 805 zn, NULL, zn->zn_zap); 806 } 807 } 808 809 zap_put_leaf(l); 810 return (err); 811 } 812 813 int 814 fzap_add_cd(zap_name_t *zn, 815 uint64_t integer_size, uint64_t num_integers, 816 const void *val, uint32_t cd, const void *tag, dmu_tx_t *tx) 817 { 818 zap_leaf_t *l; 819 int err; 820 zap_entry_handle_t zeh; 821 zap_t *zap = zn->zn_zap; 822 823 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 824 ASSERT(!zap->zap_ismicro); 825 ASSERT(fzap_check(zn, integer_size, num_integers) == 0); 826 827 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 828 if (err != 0) 829 return (err); 830 retry: 831 err = zap_leaf_lookup(l, zn, &zeh); 832 if (err == 0) { 833 err = SET_ERROR(EEXIST); 834 goto out; 835 } 836 if (err != ENOENT) 837 goto out; 838 839 err = zap_entry_create(l, zn, cd, 840 integer_size, num_integers, val, &zeh); 841 842 if (err == 0) { 843 zap_increment_num_entries(zap, 1, tx); 844 } else if (err == EAGAIN) { 845 err = zap_expand_leaf(zn, l, tag, tx, &l); 846 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 847 if (err == 0) { 848 goto retry; 849 } else if (err == ENOSPC) { 850 /* 851 * If we failed to expand the leaf, then bailout 852 * as there is no point trying 853 * zap_put_leaf_maybe_grow_ptrtbl(). 854 */ 855 return (err); 856 } 857 } 858 859 out: 860 if (zap != NULL) 861 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); 862 return (err); 863 } 864 865 int 866 fzap_add(zap_name_t *zn, 867 uint64_t integer_size, uint64_t num_integers, 868 const void *val, const void *tag, dmu_tx_t *tx) 869 { 870 int err = fzap_check(zn, integer_size, num_integers); 871 if (err != 0) 872 return (err); 873 874 return (fzap_add_cd(zn, integer_size, num_integers, 875 val, ZAP_NEED_CD, tag, tx)); 876 } 877 878 int 879 fzap_update(zap_name_t *zn, 880 int integer_size, uint64_t num_integers, const void *val, 881 const void *tag, dmu_tx_t *tx) 882 { 883 zap_leaf_t *l; 884 int err; 885 boolean_t create; 886 zap_entry_handle_t zeh; 887 zap_t *zap = zn->zn_zap; 888 889 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 890 err = fzap_check(zn, integer_size, num_integers); 891 if (err != 0) 892 return (err); 893 894 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 895 if (err != 0) 896 return (err); 897 retry: 898 err = zap_leaf_lookup(l, zn, &zeh); 899 create = (err == ENOENT); 900 ASSERT(err == 0 || err == ENOENT); 901 902 if (create) { 903 err = zap_entry_create(l, zn, ZAP_NEED_CD, 904 integer_size, num_integers, val, &zeh); 905 if (err == 0) 906 zap_increment_num_entries(zap, 1, tx); 907 } else { 908 err = zap_entry_update(&zeh, integer_size, num_integers, val); 909 } 910 911 if (err == EAGAIN) { 912 err = zap_expand_leaf(zn, l, tag, tx, &l); 913 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 914 if (err == 0) 915 goto retry; 916 } 917 918 if (zap != NULL) 919 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx); 920 return (err); 921 } 922 923 int 924 fzap_length(zap_name_t *zn, 925 uint64_t *integer_size, uint64_t *num_integers) 926 { 927 zap_leaf_t *l; 928 int err; 929 zap_entry_handle_t zeh; 930 931 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 932 if (err != 0) 933 return (err); 934 err = zap_leaf_lookup(l, zn, &zeh); 935 if (err != 0) 936 goto out; 937 938 if (integer_size != NULL) 939 *integer_size = zeh.zeh_integer_size; 940 if (num_integers != NULL) 941 *num_integers = zeh.zeh_num_integers; 942 out: 943 zap_put_leaf(l); 944 return (err); 945 } 946 947 int 948 fzap_remove(zap_name_t *zn, dmu_tx_t *tx) 949 { 950 zap_leaf_t *l; 951 int err; 952 zap_entry_handle_t zeh; 953 954 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l); 955 if (err != 0) 956 return (err); 957 err = zap_leaf_lookup(l, zn, &zeh); 958 if (err == 0) { 959 zap_entry_remove(&zeh); 960 zap_increment_num_entries(zn->zn_zap, -1, tx); 961 } 962 zap_put_leaf(l); 963 return (err); 964 } 965 966 void 967 fzap_prefetch(zap_name_t *zn) 968 { 969 uint64_t blk; 970 zap_t *zap = zn->zn_zap; 971 972 uint64_t idx = ZAP_HASH_IDX(zn->zn_hash, 973 zap_f_phys(zap)->zap_ptrtbl.zt_shift); 974 if (zap_idx_to_blk(zap, idx, &blk) != 0) 975 return; 976 int bs = FZAP_BLOCK_SHIFT(zap); 977 dmu_prefetch_by_dnode(zap->zap_dnode, 0, blk << bs, 1 << bs, 978 ZIO_PRIORITY_SYNC_READ); 979 } 980 981 /* 982 * Helper functions for consumers. 983 */ 984 985 uint64_t 986 zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, 987 const char *name, dmu_tx_t *tx) 988 { 989 return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx)); 990 } 991 992 uint64_t 993 zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, 994 const char *name, int dnodesize, dmu_tx_t *tx) 995 { 996 uint64_t new_obj; 997 998 new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx); 999 VERIFY(new_obj != 0); 1000 VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj, 1001 tx)); 1002 1003 return (new_obj); 1004 } 1005 1006 int 1007 zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, 1008 char *name) 1009 { 1010 zap_cursor_t zc; 1011 int err; 1012 1013 if (mask == 0) 1014 mask = -1ULL; 1015 1016 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 1017 for (zap_cursor_init(&zc, os, zapobj); 1018 (err = zap_cursor_retrieve(&zc, za)) == 0; 1019 zap_cursor_advance(&zc)) { 1020 if ((za->za_first_integer & mask) == (value & mask)) { 1021 (void) strlcpy(name, za->za_name, MAXNAMELEN); 1022 break; 1023 } 1024 } 1025 zap_cursor_fini(&zc); 1026 kmem_free(za, sizeof (*za)); 1027 return (err); 1028 } 1029 1030 int 1031 zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) 1032 { 1033 zap_cursor_t zc; 1034 int err = 0; 1035 1036 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 1037 for (zap_cursor_init(&zc, os, fromobj); 1038 zap_cursor_retrieve(&zc, za) == 0; 1039 (void) zap_cursor_advance(&zc)) { 1040 if (za->za_integer_length != 8 || za->za_num_integers != 1) { 1041 err = SET_ERROR(EINVAL); 1042 break; 1043 } 1044 err = zap_add(os, intoobj, za->za_name, 1045 8, 1, &za->za_first_integer, tx); 1046 if (err != 0) 1047 break; 1048 } 1049 zap_cursor_fini(&zc); 1050 kmem_free(za, sizeof (*za)); 1051 return (err); 1052 } 1053 1054 int 1055 zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1056 uint64_t value, dmu_tx_t *tx) 1057 { 1058 zap_cursor_t zc; 1059 int err = 0; 1060 1061 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 1062 for (zap_cursor_init(&zc, os, fromobj); 1063 zap_cursor_retrieve(&zc, za) == 0; 1064 (void) zap_cursor_advance(&zc)) { 1065 if (za->za_integer_length != 8 || za->za_num_integers != 1) { 1066 err = SET_ERROR(EINVAL); 1067 break; 1068 } 1069 err = zap_add(os, intoobj, za->za_name, 1070 8, 1, &value, tx); 1071 if (err != 0) 1072 break; 1073 } 1074 zap_cursor_fini(&zc); 1075 kmem_free(za, sizeof (*za)); 1076 return (err); 1077 } 1078 1079 int 1080 zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1081 dmu_tx_t *tx) 1082 { 1083 zap_cursor_t zc; 1084 int err = 0; 1085 1086 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP); 1087 for (zap_cursor_init(&zc, os, fromobj); 1088 zap_cursor_retrieve(&zc, za) == 0; 1089 (void) zap_cursor_advance(&zc)) { 1090 uint64_t delta = 0; 1091 1092 if (za->za_integer_length != 8 || za->za_num_integers != 1) { 1093 err = SET_ERROR(EINVAL); 1094 break; 1095 } 1096 1097 err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta); 1098 if (err != 0 && err != ENOENT) 1099 break; 1100 delta += za->za_first_integer; 1101 err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx); 1102 if (err != 0) 1103 break; 1104 } 1105 zap_cursor_fini(&zc); 1106 kmem_free(za, sizeof (*za)); 1107 return (err); 1108 } 1109 1110 int 1111 zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1112 { 1113 char name[20]; 1114 1115 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1116 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1117 } 1118 1119 int 1120 zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1121 { 1122 char name[20]; 1123 1124 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1125 return (zap_remove(os, obj, name, tx)); 1126 } 1127 1128 int 1129 zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value) 1130 { 1131 char name[20]; 1132 1133 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1134 return (zap_lookup(os, obj, name, 8, 1, &value)); 1135 } 1136 1137 int 1138 zap_add_int_key(objset_t *os, uint64_t obj, 1139 uint64_t key, uint64_t value, dmu_tx_t *tx) 1140 { 1141 char name[20]; 1142 1143 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1144 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1145 } 1146 1147 int 1148 zap_update_int_key(objset_t *os, uint64_t obj, 1149 uint64_t key, uint64_t value, dmu_tx_t *tx) 1150 { 1151 char name[20]; 1152 1153 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1154 return (zap_update(os, obj, name, 8, 1, &value, tx)); 1155 } 1156 1157 int 1158 zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep) 1159 { 1160 char name[20]; 1161 1162 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1163 return (zap_lookup(os, obj, name, 8, 1, valuep)); 1164 } 1165 1166 int 1167 zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, 1168 dmu_tx_t *tx) 1169 { 1170 uint64_t value = 0; 1171 1172 if (delta == 0) 1173 return (0); 1174 1175 int err = zap_lookup(os, obj, name, 8, 1, &value); 1176 if (err != 0 && err != ENOENT) 1177 return (err); 1178 value += delta; 1179 if (value == 0) 1180 err = zap_remove(os, obj, name, tx); 1181 else 1182 err = zap_update(os, obj, name, 8, 1, &value, tx); 1183 return (err); 1184 } 1185 1186 int 1187 zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, 1188 dmu_tx_t *tx) 1189 { 1190 char name[20]; 1191 1192 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1193 return (zap_increment(os, obj, name, delta, tx)); 1194 } 1195 1196 /* 1197 * Routines for iterating over the attributes. 1198 */ 1199 1200 int 1201 fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za) 1202 { 1203 int err = ENOENT; 1204 zap_entry_handle_t zeh; 1205 zap_leaf_t *l; 1206 1207 /* retrieve the next entry at or after zc_hash/zc_cd */ 1208 /* if no entry, return ENOENT */ 1209 1210 /* 1211 * If we are reading from the beginning, we're almost certain to 1212 * iterate over the entire ZAP object. If there are multiple leaf 1213 * blocks (freeblk > 2), prefetch the whole object (up to 1214 * dmu_prefetch_max bytes), so that we read the leaf blocks 1215 * concurrently. (Unless noprefetch was requested via 1216 * zap_cursor_init_noprefetch()). 1217 */ 1218 if (zc->zc_hash == 0 && zap_iterate_prefetch && 1219 zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) { 1220 dmu_prefetch_by_dnode(zap->zap_dnode, 0, 0, 1221 zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap), 1222 ZIO_PRIORITY_ASYNC_READ); 1223 } 1224 1225 if (zc->zc_leaf && 1226 (ZAP_HASH_IDX(zc->zc_hash, 1227 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) != 1228 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) { 1229 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1230 zap_put_leaf(zc->zc_leaf); 1231 zc->zc_leaf = NULL; 1232 } 1233 1234 again: 1235 if (zc->zc_leaf == NULL) { 1236 err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER, 1237 &zc->zc_leaf); 1238 if (err != 0) 1239 return (err); 1240 } else { 1241 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1242 } 1243 l = zc->zc_leaf; 1244 1245 err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh); 1246 1247 if (err == ENOENT) { 1248 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) { 1249 zc->zc_hash = -1ULL; 1250 zc->zc_cd = 0; 1251 } else { 1252 uint64_t nocare = (1ULL << 1253 (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1; 1254 1255 zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1; 1256 zc->zc_cd = 0; 1257 1258 if (zc->zc_hash == 0) { 1259 zc->zc_hash = -1ULL; 1260 } else { 1261 zap_put_leaf(zc->zc_leaf); 1262 zc->zc_leaf = NULL; 1263 goto again; 1264 } 1265 } 1266 } 1267 1268 if (err == 0) { 1269 zc->zc_hash = zeh.zeh_hash; 1270 zc->zc_cd = zeh.zeh_cd; 1271 za->za_integer_length = zeh.zeh_integer_size; 1272 za->za_num_integers = zeh.zeh_num_integers; 1273 if (zeh.zeh_num_integers == 0) { 1274 za->za_first_integer = 0; 1275 } else { 1276 err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer); 1277 ASSERT(err == 0 || err == EOVERFLOW); 1278 } 1279 err = zap_entry_read_name(zap, &zeh, 1280 sizeof (za->za_name), za->za_name); 1281 ASSERT(err == 0); 1282 1283 za->za_normalization_conflict = 1284 zap_entry_normalization_conflict(&zeh, 1285 NULL, za->za_name, zap); 1286 } 1287 rw_exit(&zc->zc_leaf->l_rwlock); 1288 return (err); 1289 } 1290 1291 static void 1292 zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs) 1293 { 1294 uint64_t lastblk = 0; 1295 1296 /* 1297 * NB: if a leaf has more pointers than an entire ptrtbl block 1298 * can hold, then it'll be accounted for more than once, since 1299 * we won't have lastblk. 1300 */ 1301 for (int i = 0; i < len; i++) { 1302 zap_leaf_t *l; 1303 1304 if (tbl[i] == lastblk) 1305 continue; 1306 lastblk = tbl[i]; 1307 1308 int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l); 1309 if (err == 0) { 1310 zap_leaf_stats(zap, l, zs); 1311 zap_put_leaf(l); 1312 } 1313 } 1314 } 1315 1316 void 1317 fzap_get_stats(zap_t *zap, zap_stats_t *zs) 1318 { 1319 int bs = FZAP_BLOCK_SHIFT(zap); 1320 zs->zs_blocksize = 1ULL << bs; 1321 1322 /* 1323 * Set zap_phys_t fields 1324 */ 1325 zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs; 1326 zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries; 1327 zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk; 1328 zs->zs_block_type = zap_f_phys(zap)->zap_block_type; 1329 zs->zs_magic = zap_f_phys(zap)->zap_magic; 1330 zs->zs_salt = zap_f_phys(zap)->zap_salt; 1331 1332 /* 1333 * Set zap_ptrtbl fields 1334 */ 1335 zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift; 1336 zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk; 1337 zs->zs_ptrtbl_blks_copied = 1338 zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied; 1339 zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk; 1340 zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks; 1341 zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift; 1342 1343 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) { 1344 /* the ptrtbl is entirely in the header block. */ 1345 zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 1346 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs); 1347 } else { 1348 dmu_prefetch_by_dnode(zap->zap_dnode, 0, 1349 zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs, 1350 zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs, 1351 ZIO_PRIORITY_SYNC_READ); 1352 1353 for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks; 1354 b++) { 1355 dmu_buf_t *db; 1356 int err; 1357 1358 err = dmu_buf_hold_by_dnode(zap->zap_dnode, 1359 (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs, 1360 FTAG, &db, DMU_READ_NO_PREFETCH); 1361 if (err == 0) { 1362 zap_stats_ptrtbl(zap, db->db_data, 1363 1<<(bs-3), zs); 1364 dmu_buf_rele(db, FTAG); 1365 } 1366 } 1367 } 1368 } 1369 1370 /* CSTYLED */ 1371 ZFS_MODULE_PARAM(zfs, , zap_iterate_prefetch, INT, ZMOD_RW, 1372 "When iterating ZAP object, prefetch it"); 1373