xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_trim.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25  */
26 
27 #include <sys/spa.h>
28 #include <sys/spa_impl.h>
29 #include <sys/txg.h>
30 #include <sys/vdev_impl.h>
31 #include <sys/vdev_trim.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/zap.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/arc_impl.h>
37 
38 /*
39  * TRIM is a feature which is used to notify a SSD that some previously
40  * written space is no longer allocated by the pool.  This is useful because
41  * writes to a SSD must be performed to blocks which have first been erased.
42  * Ensuring the SSD always has a supply of erased blocks for new writes
43  * helps prevent the performance from deteriorating.
44  *
45  * There are two supported TRIM methods; manual and automatic.
46  *
47  * Manual TRIM:
48  *
49  * A manual TRIM is initiated by running the 'zpool trim' command.  A single
50  * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
51  * managing that vdev TRIM process.  This involves iterating over all the
52  * metaslabs, calculating the unallocated space ranges, and then issuing the
53  * required TRIM I/Os.
54  *
55  * While a metaslab is being actively trimmed it is not eligible to perform
56  * new allocations.  After traversing all of the metaslabs the thread is
57  * terminated.  Finally, both the requested options and current progress of
58  * the TRIM are regularly written to the pool.  This allows the TRIM to be
59  * suspended and resumed as needed.
60  *
61  * Automatic TRIM:
62  *
63  * An automatic TRIM is enabled by setting the 'autotrim' pool property
64  * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
65  * top-level (not leaf) vdev in the pool.  These threads perform the same
66  * core TRIM process as a manual TRIM, but with a few key differences.
67  *
68  * 1) Automatic TRIM happens continuously in the background and operates
69  *    solely on recently freed blocks (ms_trim not ms_allocatable).
70  *
71  * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
72  *    the benefit of simplifying the threading model, it makes it easier
73  *    to coordinate administrative commands, and it ensures only a single
74  *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
75  *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
76  *    children.
77  *
78  * 3) There is no automatic TRIM progress information stored on disk, nor
79  *    is it reported by 'zpool status'.
80  *
81  * While the automatic TRIM process is highly effective it is more likely
82  * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
83  * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
84  * TRIM and are skipped.  This means small amounts of freed space may not
85  * be automatically trimmed.
86  *
87  * Furthermore, devices with attached hot spares and devices being actively
88  * replaced are skipped.  This is done to avoid adding additional stress to
89  * a potentially unhealthy device and to minimize the required rebuild time.
90  *
91  * For this reason it may be beneficial to occasionally manually TRIM a pool
92  * even when automatic TRIM is enabled.
93  */
94 
95 /*
96  * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
97  */
98 unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
99 
100 /*
101  * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
102  */
103 unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
104 
105 /*
106  * Skip uninitialized metaslabs during the TRIM process.  This option is
107  * useful for pools constructed from large thinly-provisioned devices where
108  * TRIM operations are slow.  As a pool ages an increasing fraction of
109  * the pools metaslabs will be initialized progressively degrading the
110  * usefulness of this option.  This setting is stored when starting a
111  * manual TRIM and will persist for the duration of the requested TRIM.
112  */
113 unsigned int zfs_trim_metaslab_skip = 0;
114 
115 /*
116  * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
117  * concurrent TRIM I/Os issued to the device is controlled by the
118  * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
119  */
120 unsigned int zfs_trim_queue_limit = 10;
121 
122 /*
123  * The minimum number of transaction groups between automatic trims of a
124  * metaslab.  This setting represents a trade-off between issuing more
125  * efficient TRIM operations, by allowing them to be aggregated longer,
126  * and issuing them promptly so the trimmed space is available.  Note
127  * that this value is a minimum; metaslabs can be trimmed less frequently
128  * when there are a large number of ranges which need to be trimmed.
129  *
130  * Increasing this value will allow frees to be aggregated for a longer
131  * time.  This can result is larger TRIM operations, and increased memory
132  * usage in order to track the ranges to be trimmed.  Decreasing this value
133  * has the opposite effect.  The default value of 32 was determined though
134  * testing to be a reasonable compromise.
135  */
136 unsigned int zfs_trim_txg_batch = 32;
137 
138 /*
139  * The trim_args are a control structure which describe how a leaf vdev
140  * should be trimmed.  The core elements are the vdev, the metaslab being
141  * trimmed and a range tree containing the extents to TRIM.  All provided
142  * ranges must be within the metaslab.
143  */
144 typedef struct trim_args {
145 	/*
146 	 * These fields are set by the caller of vdev_trim_ranges().
147 	 */
148 	vdev_t		*trim_vdev;		/* Leaf vdev to TRIM */
149 	metaslab_t	*trim_msp;		/* Disabled metaslab */
150 	range_tree_t	*trim_tree;		/* TRIM ranges (in metaslab) */
151 	trim_type_t	trim_type;		/* Manual or auto TRIM */
152 	uint64_t	trim_extent_bytes_max;	/* Maximum TRIM I/O size */
153 	uint64_t	trim_extent_bytes_min;	/* Minimum TRIM I/O size */
154 	enum trim_flag	trim_flags;		/* TRIM flags (secure) */
155 
156 	/*
157 	 * These fields are updated by vdev_trim_ranges().
158 	 */
159 	hrtime_t	trim_start_time;	/* Start time */
160 	uint64_t	trim_bytes_done;	/* Bytes trimmed */
161 } trim_args_t;
162 
163 /*
164  * Determines whether a vdev_trim_thread() should be stopped.
165  */
166 static boolean_t
167 vdev_trim_should_stop(vdev_t *vd)
168 {
169 	return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
170 	    vd->vdev_detached || vd->vdev_top->vdev_removing);
171 }
172 
173 /*
174  * Determines whether a vdev_autotrim_thread() should be stopped.
175  */
176 static boolean_t
177 vdev_autotrim_should_stop(vdev_t *tvd)
178 {
179 	return (tvd->vdev_autotrim_exit_wanted ||
180 	    !vdev_writeable(tvd) || tvd->vdev_removing ||
181 	    spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
182 }
183 
184 /*
185  * The sync task for updating the on-disk state of a manual TRIM.  This
186  * is scheduled by vdev_trim_change_state().
187  */
188 static void
189 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
190 {
191 	/*
192 	 * We pass in the guid instead of the vdev_t since the vdev may
193 	 * have been freed prior to the sync task being processed.  This
194 	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
195 	 * stop the trimming thread, schedule the sync task, and free
196 	 * the vdev. Later when the scheduled sync task is invoked, it would
197 	 * find that the vdev has been freed.
198 	 */
199 	uint64_t guid = *(uint64_t *)arg;
200 	uint64_t txg = dmu_tx_get_txg(tx);
201 	kmem_free(arg, sizeof (uint64_t));
202 
203 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
204 	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
205 		return;
206 
207 	uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
208 	vd->vdev_trim_offset[txg & TXG_MASK] = 0;
209 
210 	VERIFY3U(vd->vdev_leaf_zap, !=, 0);
211 
212 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
213 
214 	if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
215 
216 		if (vd->vdev_trim_last_offset == UINT64_MAX)
217 			last_offset = 0;
218 
219 		vd->vdev_trim_last_offset = last_offset;
220 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
221 		    VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
222 		    sizeof (last_offset), 1, &last_offset, tx));
223 	}
224 
225 	if (vd->vdev_trim_action_time > 0) {
226 		uint64_t val = (uint64_t)vd->vdev_trim_action_time;
227 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
228 		    VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
229 		    1, &val, tx));
230 	}
231 
232 	if (vd->vdev_trim_rate > 0) {
233 		uint64_t rate = (uint64_t)vd->vdev_trim_rate;
234 
235 		if (rate == UINT64_MAX)
236 			rate = 0;
237 
238 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
239 		    VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
240 	}
241 
242 	uint64_t partial = vd->vdev_trim_partial;
243 	if (partial == UINT64_MAX)
244 		partial = 0;
245 
246 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
247 	    sizeof (partial), 1, &partial, tx));
248 
249 	uint64_t secure = vd->vdev_trim_secure;
250 	if (secure == UINT64_MAX)
251 		secure = 0;
252 
253 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
254 	    sizeof (secure), 1, &secure, tx));
255 
256 
257 	uint64_t trim_state = vd->vdev_trim_state;
258 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
259 	    sizeof (trim_state), 1, &trim_state, tx));
260 }
261 
262 /*
263  * Update the on-disk state of a manual TRIM.  This is called to request
264  * that a TRIM be started/suspended/canceled, or to change one of the
265  * TRIM options (partial, secure, rate).
266  */
267 static void
268 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
269     uint64_t rate, boolean_t partial, boolean_t secure)
270 {
271 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
272 	spa_t *spa = vd->vdev_spa;
273 
274 	if (new_state == vd->vdev_trim_state)
275 		return;
276 
277 	/*
278 	 * Copy the vd's guid, this will be freed by the sync task.
279 	 */
280 	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
281 	*guid = vd->vdev_guid;
282 
283 	/*
284 	 * If we're suspending, then preserve the original start time.
285 	 */
286 	if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
287 		vd->vdev_trim_action_time = gethrestime_sec();
288 	}
289 
290 	/*
291 	 * If we're activating, then preserve the requested rate and trim
292 	 * method.  Setting the last offset and rate to UINT64_MAX is used
293 	 * as a sentinel to indicate they should be reset to default values.
294 	 */
295 	if (new_state == VDEV_TRIM_ACTIVE) {
296 		if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
297 		    vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
298 			vd->vdev_trim_last_offset = UINT64_MAX;
299 			vd->vdev_trim_rate = UINT64_MAX;
300 			vd->vdev_trim_partial = UINT64_MAX;
301 			vd->vdev_trim_secure = UINT64_MAX;
302 		}
303 
304 		if (rate != 0)
305 			vd->vdev_trim_rate = rate;
306 
307 		if (partial != 0)
308 			vd->vdev_trim_partial = partial;
309 
310 		if (secure != 0)
311 			vd->vdev_trim_secure = secure;
312 	}
313 
314 	boolean_t resumed = !!(vd->vdev_trim_state == VDEV_TRIM_SUSPENDED);
315 	vd->vdev_trim_state = new_state;
316 
317 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
318 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
319 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
320 	    guid, tx);
321 
322 	switch (new_state) {
323 	case VDEV_TRIM_ACTIVE:
324 		spa_event_notify(spa, vd, NULL,
325 		    resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
326 		spa_history_log_internal(spa, "trim", tx,
327 		    "vdev=%s activated", vd->vdev_path);
328 		break;
329 	case VDEV_TRIM_SUSPENDED:
330 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
331 		spa_history_log_internal(spa, "trim", tx,
332 		    "vdev=%s suspended", vd->vdev_path);
333 		break;
334 	case VDEV_TRIM_CANCELED:
335 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
336 		spa_history_log_internal(spa, "trim", tx,
337 		    "vdev=%s canceled", vd->vdev_path);
338 		break;
339 	case VDEV_TRIM_COMPLETE:
340 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
341 		spa_history_log_internal(spa, "trim", tx,
342 		    "vdev=%s complete", vd->vdev_path);
343 		break;
344 	default:
345 		panic("invalid state %llu", (unsigned long long)new_state);
346 	}
347 
348 	dmu_tx_commit(tx);
349 
350 	if (new_state != VDEV_TRIM_ACTIVE)
351 		spa_notify_waiters(spa);
352 }
353 
354 /*
355  * The zio_done_func_t done callback for each manual TRIM issued.  It is
356  * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
357  * and limiting the number of in flight TRIM I/Os.
358  */
359 static void
360 vdev_trim_cb(zio_t *zio)
361 {
362 	vdev_t *vd = zio->io_vd;
363 
364 	mutex_enter(&vd->vdev_trim_io_lock);
365 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
366 		/*
367 		 * The I/O failed because the vdev was unavailable; roll the
368 		 * last offset back. (This works because spa_sync waits on
369 		 * spa_txg_zio before it runs sync tasks.)
370 		 */
371 		uint64_t *offset =
372 		    &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
373 		*offset = MIN(*offset, zio->io_offset);
374 	} else {
375 		if (zio->io_error != 0) {
376 			vd->vdev_stat.vs_trim_errors++;
377 			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
378 			    0, 0, 0, 0, 1, zio->io_orig_size);
379 		} else {
380 			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
381 			    1, zio->io_orig_size, 0, 0, 0, 0);
382 		}
383 
384 		vd->vdev_trim_bytes_done += zio->io_orig_size;
385 	}
386 
387 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
388 	vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
389 	cv_broadcast(&vd->vdev_trim_io_cv);
390 	mutex_exit(&vd->vdev_trim_io_lock);
391 
392 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
393 }
394 
395 /*
396  * The zio_done_func_t done callback for each automatic TRIM issued.  It
397  * is responsible for updating the TRIM stats and limiting the number of
398  * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
399  * never reissued on failure.
400  */
401 static void
402 vdev_autotrim_cb(zio_t *zio)
403 {
404 	vdev_t *vd = zio->io_vd;
405 
406 	mutex_enter(&vd->vdev_trim_io_lock);
407 
408 	if (zio->io_error != 0) {
409 		vd->vdev_stat.vs_trim_errors++;
410 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
411 		    0, 0, 0, 0, 1, zio->io_orig_size);
412 	} else {
413 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
414 		    1, zio->io_orig_size, 0, 0, 0, 0);
415 	}
416 
417 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
418 	vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
419 	cv_broadcast(&vd->vdev_trim_io_cv);
420 	mutex_exit(&vd->vdev_trim_io_lock);
421 
422 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
423 }
424 
425 /*
426  * The zio_done_func_t done callback for each TRIM issued via
427  * vdev_trim_simple(). It is responsible for updating the TRIM stats and
428  * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
429  * effort and are never reissued on failure.
430  */
431 static void
432 vdev_trim_simple_cb(zio_t *zio)
433 {
434 	vdev_t *vd = zio->io_vd;
435 
436 	mutex_enter(&vd->vdev_trim_io_lock);
437 
438 	if (zio->io_error != 0) {
439 		vd->vdev_stat.vs_trim_errors++;
440 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
441 		    0, 0, 0, 0, 1, zio->io_orig_size);
442 	} else {
443 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
444 		    1, zio->io_orig_size, 0, 0, 0, 0);
445 	}
446 
447 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
448 	vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
449 	cv_broadcast(&vd->vdev_trim_io_cv);
450 	mutex_exit(&vd->vdev_trim_io_lock);
451 
452 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
453 }
454 /*
455  * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
456  */
457 static uint64_t
458 vdev_trim_calculate_rate(trim_args_t *ta)
459 {
460 	return (ta->trim_bytes_done * 1000 /
461 	    (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
462 }
463 
464 /*
465  * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
466  * and number of concurrent TRIM I/Os.
467  */
468 static int
469 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
470 {
471 	vdev_t *vd = ta->trim_vdev;
472 	spa_t *spa = vd->vdev_spa;
473 	void *cb;
474 
475 	mutex_enter(&vd->vdev_trim_io_lock);
476 
477 	/*
478 	 * Limit manual TRIM I/Os to the requested rate.  This does not
479 	 * apply to automatic TRIM since no per vdev rate can be specified.
480 	 */
481 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
482 		while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
483 		    vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
484 			cv_timedwait_idle(&vd->vdev_trim_io_cv,
485 			    &vd->vdev_trim_io_lock, ddi_get_lbolt() +
486 			    MSEC_TO_TICK(10));
487 		}
488 	}
489 	ta->trim_bytes_done += size;
490 
491 	/* Limit in flight trimming I/Os */
492 	while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
493 	    vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
494 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
495 	}
496 	vd->vdev_trim_inflight[ta->trim_type]++;
497 	mutex_exit(&vd->vdev_trim_io_lock);
498 
499 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
500 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
501 	uint64_t txg = dmu_tx_get_txg(tx);
502 
503 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
504 	mutex_enter(&vd->vdev_trim_lock);
505 
506 	if (ta->trim_type == TRIM_TYPE_MANUAL &&
507 	    vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
508 		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
509 		*guid = vd->vdev_guid;
510 
511 		/* This is the first write of this txg. */
512 		dsl_sync_task_nowait(spa_get_dsl(spa),
513 		    vdev_trim_zap_update_sync, guid, tx);
514 	}
515 
516 	/*
517 	 * We know the vdev_t will still be around since all consumers of
518 	 * vdev_free must stop the trimming first.
519 	 */
520 	if ((ta->trim_type == TRIM_TYPE_MANUAL &&
521 	    vdev_trim_should_stop(vd)) ||
522 	    (ta->trim_type == TRIM_TYPE_AUTO &&
523 	    vdev_autotrim_should_stop(vd->vdev_top))) {
524 		mutex_enter(&vd->vdev_trim_io_lock);
525 		vd->vdev_trim_inflight[ta->trim_type]--;
526 		mutex_exit(&vd->vdev_trim_io_lock);
527 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
528 		mutex_exit(&vd->vdev_trim_lock);
529 		dmu_tx_commit(tx);
530 		return (SET_ERROR(EINTR));
531 	}
532 	mutex_exit(&vd->vdev_trim_lock);
533 
534 	if (ta->trim_type == TRIM_TYPE_MANUAL)
535 		vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
536 
537 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
538 		cb = vdev_trim_cb;
539 	} else if (ta->trim_type == TRIM_TYPE_AUTO) {
540 		cb = vdev_autotrim_cb;
541 	} else {
542 		cb = vdev_trim_simple_cb;
543 	}
544 
545 	zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
546 	    start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
547 	    ta->trim_flags));
548 	/* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
549 
550 	dmu_tx_commit(tx);
551 
552 	return (0);
553 }
554 
555 /*
556  * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
557  * Additional parameters describing how the TRIM should be performed must
558  * be set in the trim_args structure.  See the trim_args definition for
559  * additional information.
560  */
561 static int
562 vdev_trim_ranges(trim_args_t *ta)
563 {
564 	vdev_t *vd = ta->trim_vdev;
565 	zfs_btree_t *t = &ta->trim_tree->rt_root;
566 	zfs_btree_index_t idx;
567 	uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
568 	uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
569 	spa_t *spa = vd->vdev_spa;
570 
571 	ta->trim_start_time = gethrtime();
572 	ta->trim_bytes_done = 0;
573 
574 	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
575 	    rs = zfs_btree_next(t, &idx, &idx)) {
576 		uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
577 		    ta->trim_tree);
578 
579 		if (extent_bytes_min && size < extent_bytes_min) {
580 			spa_iostats_trim_add(spa, ta->trim_type,
581 			    0, 0, 1, size, 0, 0);
582 			continue;
583 		}
584 
585 		/* Split range into legally-sized physical chunks */
586 		uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
587 
588 		for (uint64_t w = 0; w < writes_required; w++) {
589 			int error;
590 
591 			error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
592 			    rs_get_start(rs, ta->trim_tree) +
593 			    (w *extent_bytes_max), MIN(size -
594 			    (w * extent_bytes_max), extent_bytes_max));
595 			if (error != 0) {
596 				return (error);
597 			}
598 		}
599 	}
600 
601 	return (0);
602 }
603 
604 /*
605  * Calculates the completion percentage of a manual TRIM.
606  */
607 static void
608 vdev_trim_calculate_progress(vdev_t *vd)
609 {
610 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
611 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
612 	ASSERT(vd->vdev_leaf_zap != 0);
613 
614 	vd->vdev_trim_bytes_est = 0;
615 	vd->vdev_trim_bytes_done = 0;
616 
617 	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
618 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
619 		mutex_enter(&msp->ms_lock);
620 
621 		uint64_t ms_free = msp->ms_size -
622 		    metaslab_allocated_space(msp);
623 
624 		if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
625 			ms_free /= vd->vdev_top->vdev_children;
626 
627 		/*
628 		 * Convert the metaslab range to a physical range
629 		 * on our vdev. We use this to determine if we are
630 		 * in the middle of this metaslab range.
631 		 */
632 		range_seg64_t logical_rs, physical_rs;
633 		logical_rs.rs_start = msp->ms_start;
634 		logical_rs.rs_end = msp->ms_start + msp->ms_size;
635 		vdev_xlate(vd, &logical_rs, &physical_rs);
636 
637 		if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
638 			vd->vdev_trim_bytes_est += ms_free;
639 			mutex_exit(&msp->ms_lock);
640 			continue;
641 		} else if (vd->vdev_trim_last_offset > physical_rs.rs_end) {
642 			vd->vdev_trim_bytes_done += ms_free;
643 			vd->vdev_trim_bytes_est += ms_free;
644 			mutex_exit(&msp->ms_lock);
645 			continue;
646 		}
647 
648 		/*
649 		 * If we get here, we're in the middle of trimming this
650 		 * metaslab.  Load it and walk the free tree for more
651 		 * accurate progress estimation.
652 		 */
653 		VERIFY0(metaslab_load(msp));
654 
655 		range_tree_t *rt = msp->ms_allocatable;
656 		zfs_btree_t *bt = &rt->rt_root;
657 		zfs_btree_index_t idx;
658 		for (range_seg_t *rs = zfs_btree_first(bt, &idx);
659 		    rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
660 			logical_rs.rs_start = rs_get_start(rs, rt);
661 			logical_rs.rs_end = rs_get_end(rs, rt);
662 			vdev_xlate(vd, &logical_rs, &physical_rs);
663 
664 			uint64_t size = physical_rs.rs_end -
665 			    physical_rs.rs_start;
666 			vd->vdev_trim_bytes_est += size;
667 			if (vd->vdev_trim_last_offset >= physical_rs.rs_end) {
668 				vd->vdev_trim_bytes_done += size;
669 			} else if (vd->vdev_trim_last_offset >
670 			    physical_rs.rs_start &&
671 			    vd->vdev_trim_last_offset <=
672 			    physical_rs.rs_end) {
673 				vd->vdev_trim_bytes_done +=
674 				    vd->vdev_trim_last_offset -
675 				    physical_rs.rs_start;
676 			}
677 		}
678 		mutex_exit(&msp->ms_lock);
679 	}
680 }
681 
682 /*
683  * Load from disk the vdev's manual TRIM information.  This includes the
684  * state, progress, and options provided when initiating the manual TRIM.
685  */
686 static int
687 vdev_trim_load(vdev_t *vd)
688 {
689 	int err = 0;
690 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
691 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
692 	ASSERT(vd->vdev_leaf_zap != 0);
693 
694 	if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
695 	    vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
696 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
697 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
698 		    sizeof (vd->vdev_trim_last_offset), 1,
699 		    &vd->vdev_trim_last_offset);
700 		if (err == ENOENT) {
701 			vd->vdev_trim_last_offset = 0;
702 			err = 0;
703 		}
704 
705 		if (err == 0) {
706 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
707 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
708 			    sizeof (vd->vdev_trim_rate), 1,
709 			    &vd->vdev_trim_rate);
710 			if (err == ENOENT) {
711 				vd->vdev_trim_rate = 0;
712 				err = 0;
713 			}
714 		}
715 
716 		if (err == 0) {
717 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
718 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
719 			    sizeof (vd->vdev_trim_partial), 1,
720 			    &vd->vdev_trim_partial);
721 			if (err == ENOENT) {
722 				vd->vdev_trim_partial = 0;
723 				err = 0;
724 			}
725 		}
726 
727 		if (err == 0) {
728 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
729 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
730 			    sizeof (vd->vdev_trim_secure), 1,
731 			    &vd->vdev_trim_secure);
732 			if (err == ENOENT) {
733 				vd->vdev_trim_secure = 0;
734 				err = 0;
735 			}
736 		}
737 	}
738 
739 	vdev_trim_calculate_progress(vd);
740 
741 	return (err);
742 }
743 
744 /*
745  * Convert the logical range into a physical range and add it to the
746  * range tree passed in the trim_args_t.
747  */
748 static void
749 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
750 {
751 	trim_args_t *ta = arg;
752 	vdev_t *vd = ta->trim_vdev;
753 	range_seg64_t logical_rs, physical_rs;
754 	logical_rs.rs_start = start;
755 	logical_rs.rs_end = start + size;
756 
757 	/*
758 	 * Every range to be trimmed must be part of ms_allocatable.
759 	 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
760 	 * is always the case.
761 	 */
762 	if (zfs_flags & ZFS_DEBUG_TRIM) {
763 		metaslab_t *msp = ta->trim_msp;
764 		VERIFY0(metaslab_load(msp));
765 		VERIFY3B(msp->ms_loaded, ==, B_TRUE);
766 		VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
767 	}
768 
769 	ASSERT(vd->vdev_ops->vdev_op_leaf);
770 	vdev_xlate(vd, &logical_rs, &physical_rs);
771 
772 	IMPLY(vd->vdev_top == vd,
773 	    logical_rs.rs_start == physical_rs.rs_start);
774 	IMPLY(vd->vdev_top == vd,
775 	    logical_rs.rs_end == physical_rs.rs_end);
776 
777 	/*
778 	 * Only a manual trim will be traversing the vdev sequentially.
779 	 * For an auto trim all valid ranges should be added.
780 	 */
781 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
782 
783 		/* Only add segments that we have not visited yet */
784 		if (physical_rs.rs_end <= vd->vdev_trim_last_offset)
785 			return;
786 
787 		/* Pick up where we left off mid-range. */
788 		if (vd->vdev_trim_last_offset > physical_rs.rs_start) {
789 			ASSERT3U(physical_rs.rs_end, >,
790 			    vd->vdev_trim_last_offset);
791 			physical_rs.rs_start = vd->vdev_trim_last_offset;
792 		}
793 	}
794 
795 	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
796 
797 	/*
798 	 * With raidz, it's possible that the logical range does not live on
799 	 * this leaf vdev. We only add the physical range to this vdev's if it
800 	 * has a length greater than 0.
801 	 */
802 	if (physical_rs.rs_end > physical_rs.rs_start) {
803 		range_tree_add(ta->trim_tree, physical_rs.rs_start,
804 		    physical_rs.rs_end - physical_rs.rs_start);
805 	} else {
806 		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
807 	}
808 }
809 
810 /*
811  * Each manual TRIM thread is responsible for trimming the unallocated
812  * space for each leaf vdev.  This is accomplished by sequentially iterating
813  * over its top-level metaslabs and issuing TRIM I/O for the space described
814  * by its ms_allocatable.  While a metaslab is undergoing trimming it is
815  * not eligible for new allocations.
816  */
817 static void
818 vdev_trim_thread(void *arg)
819 {
820 	vdev_t *vd = arg;
821 	spa_t *spa = vd->vdev_spa;
822 	trim_args_t ta;
823 	int error = 0;
824 
825 	/*
826 	 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
827 	 * vdev_trim().  Wait for the updated values to be reflected
828 	 * in the zap in order to start with the requested settings.
829 	 */
830 	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
831 
832 	ASSERT(vdev_is_concrete(vd));
833 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
834 
835 	vd->vdev_trim_last_offset = 0;
836 	vd->vdev_trim_rate = 0;
837 	vd->vdev_trim_partial = 0;
838 	vd->vdev_trim_secure = 0;
839 
840 	VERIFY0(vdev_trim_load(vd));
841 
842 	ta.trim_vdev = vd;
843 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
844 	ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
845 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
846 	ta.trim_type = TRIM_TYPE_MANUAL;
847 	ta.trim_flags = 0;
848 
849 	/*
850 	 * When a secure TRIM has been requested infer that the intent
851 	 * is that everything must be trimmed.  Override the default
852 	 * minimum TRIM size to prevent ranges from being skipped.
853 	 */
854 	if (vd->vdev_trim_secure) {
855 		ta.trim_flags |= ZIO_TRIM_SECURE;
856 		ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
857 	}
858 
859 	uint64_t ms_count = 0;
860 	for (uint64_t i = 0; !vd->vdev_detached &&
861 	    i < vd->vdev_top->vdev_ms_count; i++) {
862 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
863 
864 		/*
865 		 * If we've expanded the top-level vdev or it's our
866 		 * first pass, calculate our progress.
867 		 */
868 		if (vd->vdev_top->vdev_ms_count != ms_count) {
869 			vdev_trim_calculate_progress(vd);
870 			ms_count = vd->vdev_top->vdev_ms_count;
871 		}
872 
873 		spa_config_exit(spa, SCL_CONFIG, FTAG);
874 		metaslab_disable(msp);
875 		mutex_enter(&msp->ms_lock);
876 		VERIFY0(metaslab_load(msp));
877 
878 		/*
879 		 * If a partial TRIM was requested skip metaslabs which have
880 		 * never been initialized and thus have never been written.
881 		 */
882 		if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
883 			mutex_exit(&msp->ms_lock);
884 			metaslab_enable(msp, B_FALSE, B_FALSE);
885 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
886 			vdev_trim_calculate_progress(vd);
887 			continue;
888 		}
889 
890 		ta.trim_msp = msp;
891 		range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
892 		range_tree_vacate(msp->ms_trim, NULL, NULL);
893 		mutex_exit(&msp->ms_lock);
894 
895 		error = vdev_trim_ranges(&ta);
896 		metaslab_enable(msp, B_TRUE, B_FALSE);
897 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
898 
899 		range_tree_vacate(ta.trim_tree, NULL, NULL);
900 		if (error != 0)
901 			break;
902 	}
903 
904 	spa_config_exit(spa, SCL_CONFIG, FTAG);
905 	mutex_enter(&vd->vdev_trim_io_lock);
906 	while (vd->vdev_trim_inflight[0] > 0) {
907 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
908 	}
909 	mutex_exit(&vd->vdev_trim_io_lock);
910 
911 	range_tree_destroy(ta.trim_tree);
912 
913 	mutex_enter(&vd->vdev_trim_lock);
914 	if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
915 		vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
916 		    vd->vdev_trim_rate, vd->vdev_trim_partial,
917 		    vd->vdev_trim_secure);
918 	}
919 	ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
920 
921 	/*
922 	 * Drop the vdev_trim_lock while we sync out the txg since it's
923 	 * possible that a device might be trying to come online and must
924 	 * check to see if it needs to restart a trim. That thread will be
925 	 * holding the spa_config_lock which would prevent the txg_wait_synced
926 	 * from completing.
927 	 */
928 	mutex_exit(&vd->vdev_trim_lock);
929 	txg_wait_synced(spa_get_dsl(spa), 0);
930 	mutex_enter(&vd->vdev_trim_lock);
931 
932 	vd->vdev_trim_thread = NULL;
933 	cv_broadcast(&vd->vdev_trim_cv);
934 	mutex_exit(&vd->vdev_trim_lock);
935 
936 	thread_exit();
937 }
938 
939 /*
940  * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
941  * the vdev_t must be a leaf and cannot already be manually trimming.
942  */
943 void
944 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
945 {
946 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
947 	ASSERT(vd->vdev_ops->vdev_op_leaf);
948 	ASSERT(vdev_is_concrete(vd));
949 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
950 	ASSERT(!vd->vdev_detached);
951 	ASSERT(!vd->vdev_trim_exit_wanted);
952 	ASSERT(!vd->vdev_top->vdev_removing);
953 
954 	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
955 	vd->vdev_trim_thread = thread_create(NULL, 0,
956 	    vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
957 }
958 
959 /*
960  * Wait for the trimming thread to be terminated (canceled or stopped).
961  */
962 static void
963 vdev_trim_stop_wait_impl(vdev_t *vd)
964 {
965 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
966 
967 	while (vd->vdev_trim_thread != NULL)
968 		cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
969 
970 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
971 	vd->vdev_trim_exit_wanted = B_FALSE;
972 }
973 
974 /*
975  * Wait for vdev trim threads which were listed to cleanly exit.
976  */
977 void
978 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
979 {
980 	vdev_t *vd;
981 
982 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
983 
984 	while ((vd = list_remove_head(vd_list)) != NULL) {
985 		mutex_enter(&vd->vdev_trim_lock);
986 		vdev_trim_stop_wait_impl(vd);
987 		mutex_exit(&vd->vdev_trim_lock);
988 	}
989 }
990 
991 /*
992  * Stop trimming a device, with the resultant trimming state being tgt_state.
993  * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
994  * provided the stopping vdev is inserted in to the list.  Callers are then
995  * required to call vdev_trim_stop_wait() to block for all the trim threads
996  * to exit.  The caller must hold vdev_trim_lock and must not be writing to
997  * the spa config, as the trimming thread may try to enter the config as a
998  * reader before exiting.
999  */
1000 void
1001 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1002 {
1003 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1004 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1005 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1006 	ASSERT(vdev_is_concrete(vd));
1007 
1008 	/*
1009 	 * Allow cancel requests to proceed even if the trim thread has
1010 	 * stopped.
1011 	 */
1012 	if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1013 		return;
1014 
1015 	vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1016 	vd->vdev_trim_exit_wanted = B_TRUE;
1017 
1018 	if (vd_list == NULL) {
1019 		vdev_trim_stop_wait_impl(vd);
1020 	} else {
1021 		ASSERT(MUTEX_HELD(&spa_namespace_lock));
1022 		list_insert_tail(vd_list, vd);
1023 	}
1024 }
1025 
1026 /*
1027  * Requests that all listed vdevs stop trimming.
1028  */
1029 static void
1030 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1031     list_t *vd_list)
1032 {
1033 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1034 		mutex_enter(&vd->vdev_trim_lock);
1035 		vdev_trim_stop(vd, tgt_state, vd_list);
1036 		mutex_exit(&vd->vdev_trim_lock);
1037 		return;
1038 	}
1039 
1040 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1041 		vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1042 		    vd_list);
1043 	}
1044 }
1045 
1046 /*
1047  * Convenience function to stop trimming of a vdev tree and set all trim
1048  * thread pointers to NULL.
1049  */
1050 void
1051 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1052 {
1053 	spa_t *spa = vd->vdev_spa;
1054 	list_t vd_list;
1055 	vdev_t *vd_l2cache;
1056 
1057 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1058 
1059 	list_create(&vd_list, sizeof (vdev_t),
1060 	    offsetof(vdev_t, vdev_trim_node));
1061 
1062 	vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1063 
1064 	/*
1065 	 * Iterate over cache devices and request stop trimming the
1066 	 * whole device in case we export the pool or remove the cache
1067 	 * device prematurely.
1068 	 */
1069 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1070 		vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1071 		vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1072 	}
1073 
1074 	vdev_trim_stop_wait(spa, &vd_list);
1075 
1076 	if (vd->vdev_spa->spa_sync_on) {
1077 		/* Make sure that our state has been synced to disk */
1078 		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1079 	}
1080 
1081 	list_destroy(&vd_list);
1082 }
1083 
1084 /*
1085  * Conditionally restarts a manual TRIM given its on-disk state.
1086  */
1087 void
1088 vdev_trim_restart(vdev_t *vd)
1089 {
1090 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1091 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1092 
1093 	if (vd->vdev_leaf_zap != 0) {
1094 		mutex_enter(&vd->vdev_trim_lock);
1095 		uint64_t trim_state = VDEV_TRIM_NONE;
1096 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1097 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1098 		    sizeof (trim_state), 1, &trim_state);
1099 		ASSERT(err == 0 || err == ENOENT);
1100 		vd->vdev_trim_state = trim_state;
1101 
1102 		uint64_t timestamp = 0;
1103 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1104 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1105 		    sizeof (timestamp), 1, &timestamp);
1106 		ASSERT(err == 0 || err == ENOENT);
1107 		vd->vdev_trim_action_time = timestamp;
1108 
1109 		if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1110 		    vd->vdev_offline) {
1111 			/* load progress for reporting, but don't resume */
1112 			VERIFY0(vdev_trim_load(vd));
1113 		} else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1114 		    vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1115 		    vd->vdev_trim_thread == NULL) {
1116 			VERIFY0(vdev_trim_load(vd));
1117 			vdev_trim(vd, vd->vdev_trim_rate,
1118 			    vd->vdev_trim_partial, vd->vdev_trim_secure);
1119 		}
1120 
1121 		mutex_exit(&vd->vdev_trim_lock);
1122 	}
1123 
1124 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1125 		vdev_trim_restart(vd->vdev_child[i]);
1126 	}
1127 }
1128 
1129 /*
1130  * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1131  * every TRIM range is contained within ms_allocatable.
1132  */
1133 static void
1134 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1135 {
1136 	trim_args_t *ta = arg;
1137 	metaslab_t *msp = ta->trim_msp;
1138 
1139 	VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1140 	VERIFY3U(msp->ms_disabled, >, 0);
1141 	VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1142 }
1143 
1144 /*
1145  * Each automatic TRIM thread is responsible for managing the trimming of a
1146  * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1147  *
1148  * N.B. This behavior is different from a manual TRIM where a thread
1149  * is created for each leaf vdev, instead of each top-level vdev.
1150  */
1151 static void
1152 vdev_autotrim_thread(void *arg)
1153 {
1154 	vdev_t *vd = arg;
1155 	spa_t *spa = vd->vdev_spa;
1156 	int shift = 0;
1157 
1158 	mutex_enter(&vd->vdev_autotrim_lock);
1159 	ASSERT3P(vd->vdev_top, ==, vd);
1160 	ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1161 	mutex_exit(&vd->vdev_autotrim_lock);
1162 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1163 
1164 	uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1165 	uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1166 
1167 	while (!vdev_autotrim_should_stop(vd)) {
1168 		int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1169 		boolean_t issued_trim = B_FALSE;
1170 
1171 		/*
1172 		 * All of the metaslabs are divided in to groups of size
1173 		 * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1174 		 * is composed of metaslabs which are spread evenly over the
1175 		 * device.
1176 		 *
1177 		 * For example, when zfs_trim_txg_batch = 32 (default) then
1178 		 * group 0 will contain metaslabs 0, 32, 64, ...;
1179 		 * group 1 will contain metaslabs 1, 33, 65, ...;
1180 		 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1181 		 *
1182 		 * On each pass through the while() loop one of these groups
1183 		 * is selected.  This is accomplished by using a shift value
1184 		 * to select the starting metaslab, then striding over the
1185 		 * metaslabs using the zfs_trim_txg_batch size.  This is
1186 		 * done to accomplish two things.
1187 		 *
1188 		 * 1) By dividing the metaslabs in to groups, and making sure
1189 		 *    that each group takes a minimum of one txg to process.
1190 		 *    Then zfs_trim_txg_batch controls the minimum number of
1191 		 *    txgs which must occur before a metaslab is revisited.
1192 		 *
1193 		 * 2) Selecting non-consecutive metaslabs distributes the
1194 		 *    TRIM commands for a group evenly over the entire device.
1195 		 *    This can be advantageous for certain types of devices.
1196 		 */
1197 		for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1198 		    i += txgs_per_trim) {
1199 			metaslab_t *msp = vd->vdev_ms[i];
1200 			range_tree_t *trim_tree;
1201 
1202 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1203 			metaslab_disable(msp);
1204 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1205 
1206 			mutex_enter(&msp->ms_lock);
1207 
1208 			/*
1209 			 * Skip the metaslab when it has never been allocated
1210 			 * or when there are no recent frees to trim.
1211 			 */
1212 			if (msp->ms_sm == NULL ||
1213 			    range_tree_is_empty(msp->ms_trim)) {
1214 				mutex_exit(&msp->ms_lock);
1215 				metaslab_enable(msp, B_FALSE, B_FALSE);
1216 				continue;
1217 			}
1218 
1219 			/*
1220 			 * Skip the metaslab when it has already been disabled.
1221 			 * This may happen when a manual TRIM or initialize
1222 			 * operation is running concurrently.  In the case
1223 			 * of a manual TRIM, the ms_trim tree will have been
1224 			 * vacated.  Only ranges added after the manual TRIM
1225 			 * disabled the metaslab will be included in the tree.
1226 			 * These will be processed when the automatic TRIM
1227 			 * next revisits this metaslab.
1228 			 */
1229 			if (msp->ms_disabled > 1) {
1230 				mutex_exit(&msp->ms_lock);
1231 				metaslab_enable(msp, B_FALSE, B_FALSE);
1232 				continue;
1233 			}
1234 
1235 			/*
1236 			 * Allocate an empty range tree which is swapped in
1237 			 * for the existing ms_trim tree while it is processed.
1238 			 */
1239 			trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1240 			    0, 0);
1241 			range_tree_swap(&msp->ms_trim, &trim_tree);
1242 			ASSERT(range_tree_is_empty(msp->ms_trim));
1243 
1244 			/*
1245 			 * There are two cases when constructing the per-vdev
1246 			 * trim trees for a metaslab.  If the top-level vdev
1247 			 * has no children then it is also a leaf and should
1248 			 * be trimmed.  Otherwise our children are the leaves
1249 			 * and a trim tree should be constructed for each.
1250 			 */
1251 			trim_args_t *tap;
1252 			uint64_t children = vd->vdev_children;
1253 			if (children == 0) {
1254 				children = 1;
1255 				tap = kmem_zalloc(sizeof (trim_args_t) *
1256 				    children, KM_SLEEP);
1257 				tap[0].trim_vdev = vd;
1258 			} else {
1259 				tap = kmem_zalloc(sizeof (trim_args_t) *
1260 				    children, KM_SLEEP);
1261 
1262 				for (uint64_t c = 0; c < children; c++) {
1263 					tap[c].trim_vdev = vd->vdev_child[c];
1264 				}
1265 			}
1266 
1267 			for (uint64_t c = 0; c < children; c++) {
1268 				trim_args_t *ta = &tap[c];
1269 				vdev_t *cvd = ta->trim_vdev;
1270 
1271 				ta->trim_msp = msp;
1272 				ta->trim_extent_bytes_max = extent_bytes_max;
1273 				ta->trim_extent_bytes_min = extent_bytes_min;
1274 				ta->trim_type = TRIM_TYPE_AUTO;
1275 				ta->trim_flags = 0;
1276 
1277 				if (cvd->vdev_detached ||
1278 				    !vdev_writeable(cvd) ||
1279 				    !cvd->vdev_has_trim ||
1280 				    cvd->vdev_trim_thread != NULL) {
1281 					continue;
1282 				}
1283 
1284 				/*
1285 				 * When a device has an attached hot spare, or
1286 				 * is being replaced it will not be trimmed.
1287 				 * This is done to avoid adding additional
1288 				 * stress to a potentially unhealthy device,
1289 				 * and to minimize the required rebuild time.
1290 				 */
1291 				if (!cvd->vdev_ops->vdev_op_leaf)
1292 					continue;
1293 
1294 				ta->trim_tree = range_tree_create(NULL,
1295 				    RANGE_SEG64, NULL, 0, 0);
1296 				range_tree_walk(trim_tree,
1297 				    vdev_trim_range_add, ta);
1298 			}
1299 
1300 			mutex_exit(&msp->ms_lock);
1301 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1302 
1303 			/*
1304 			 * Issue the TRIM I/Os for all ranges covered by the
1305 			 * TRIM trees.  These ranges are safe to TRIM because
1306 			 * no new allocations will be performed until the call
1307 			 * to metaslab_enabled() below.
1308 			 */
1309 			for (uint64_t c = 0; c < children; c++) {
1310 				trim_args_t *ta = &tap[c];
1311 
1312 				/*
1313 				 * Always yield to a manual TRIM if one has
1314 				 * been started for the child vdev.
1315 				 */
1316 				if (ta->trim_tree == NULL ||
1317 				    ta->trim_vdev->vdev_trim_thread != NULL) {
1318 					continue;
1319 				}
1320 
1321 				/*
1322 				 * After this point metaslab_enable() must be
1323 				 * called with the sync flag set.  This is done
1324 				 * here because vdev_trim_ranges() is allowed
1325 				 * to be interrupted (EINTR) before issuing all
1326 				 * of the required TRIM I/Os.
1327 				 */
1328 				issued_trim = B_TRUE;
1329 
1330 				int error = vdev_trim_ranges(ta);
1331 				if (error)
1332 					break;
1333 			}
1334 
1335 			/*
1336 			 * Verify every range which was trimmed is still
1337 			 * contained within the ms_allocatable tree.
1338 			 */
1339 			if (zfs_flags & ZFS_DEBUG_TRIM) {
1340 				mutex_enter(&msp->ms_lock);
1341 				VERIFY0(metaslab_load(msp));
1342 				VERIFY3P(tap[0].trim_msp, ==, msp);
1343 				range_tree_walk(trim_tree,
1344 				    vdev_trim_range_verify, &tap[0]);
1345 				mutex_exit(&msp->ms_lock);
1346 			}
1347 
1348 			range_tree_vacate(trim_tree, NULL, NULL);
1349 			range_tree_destroy(trim_tree);
1350 
1351 			metaslab_enable(msp, issued_trim, B_FALSE);
1352 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1353 
1354 			for (uint64_t c = 0; c < children; c++) {
1355 				trim_args_t *ta = &tap[c];
1356 
1357 				if (ta->trim_tree == NULL)
1358 					continue;
1359 
1360 				range_tree_vacate(ta->trim_tree, NULL, NULL);
1361 				range_tree_destroy(ta->trim_tree);
1362 			}
1363 
1364 			kmem_free(tap, sizeof (trim_args_t) * children);
1365 		}
1366 
1367 		spa_config_exit(spa, SCL_CONFIG, FTAG);
1368 
1369 		/*
1370 		 * After completing the group of metaslabs wait for the next
1371 		 * open txg.  This is done to make sure that a minimum of
1372 		 * zfs_trim_txg_batch txgs will occur before these metaslabs
1373 		 * are trimmed again.
1374 		 */
1375 		txg_wait_open(spa_get_dsl(spa), 0, issued_trim);
1376 
1377 		shift++;
1378 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1379 	}
1380 
1381 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1382 		vdev_t *cvd = vd->vdev_child[c];
1383 		mutex_enter(&cvd->vdev_trim_io_lock);
1384 
1385 		while (cvd->vdev_trim_inflight[1] > 0) {
1386 			cv_wait(&cvd->vdev_trim_io_cv,
1387 			    &cvd->vdev_trim_io_lock);
1388 		}
1389 		mutex_exit(&cvd->vdev_trim_io_lock);
1390 	}
1391 
1392 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1393 
1394 	/*
1395 	 * When exiting because the autotrim property was set to off, then
1396 	 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1397 	 */
1398 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1399 		for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1400 			metaslab_t *msp = vd->vdev_ms[i];
1401 
1402 			mutex_enter(&msp->ms_lock);
1403 			range_tree_vacate(msp->ms_trim, NULL, NULL);
1404 			mutex_exit(&msp->ms_lock);
1405 		}
1406 	}
1407 
1408 	mutex_enter(&vd->vdev_autotrim_lock);
1409 	ASSERT(vd->vdev_autotrim_thread != NULL);
1410 	vd->vdev_autotrim_thread = NULL;
1411 	cv_broadcast(&vd->vdev_autotrim_cv);
1412 	mutex_exit(&vd->vdev_autotrim_lock);
1413 
1414 	thread_exit();
1415 }
1416 
1417 /*
1418  * Starts an autotrim thread, if needed, for each top-level vdev which can be
1419  * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1420  */
1421 void
1422 vdev_autotrim(spa_t *spa)
1423 {
1424 	vdev_t *root_vd = spa->spa_root_vdev;
1425 
1426 	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1427 		vdev_t *tvd = root_vd->vdev_child[i];
1428 
1429 		mutex_enter(&tvd->vdev_autotrim_lock);
1430 		if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1431 		    tvd->vdev_autotrim_thread == NULL) {
1432 			ASSERT3P(tvd->vdev_top, ==, tvd);
1433 
1434 			tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1435 			    vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1436 			    maxclsyspri);
1437 			ASSERT(tvd->vdev_autotrim_thread != NULL);
1438 		}
1439 		mutex_exit(&tvd->vdev_autotrim_lock);
1440 	}
1441 }
1442 
1443 /*
1444  * Wait for the vdev_autotrim_thread associated with the passed top-level
1445  * vdev to be terminated (canceled or stopped).
1446  */
1447 void
1448 vdev_autotrim_stop_wait(vdev_t *tvd)
1449 {
1450 	mutex_enter(&tvd->vdev_autotrim_lock);
1451 	if (tvd->vdev_autotrim_thread != NULL) {
1452 		tvd->vdev_autotrim_exit_wanted = B_TRUE;
1453 
1454 		while (tvd->vdev_autotrim_thread != NULL) {
1455 			cv_wait(&tvd->vdev_autotrim_cv,
1456 			    &tvd->vdev_autotrim_lock);
1457 		}
1458 
1459 		ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1460 		tvd->vdev_autotrim_exit_wanted = B_FALSE;
1461 	}
1462 	mutex_exit(&tvd->vdev_autotrim_lock);
1463 }
1464 
1465 /*
1466  * Wait for all of the vdev_autotrim_thread associated with the pool to
1467  * be terminated (canceled or stopped).
1468  */
1469 void
1470 vdev_autotrim_stop_all(spa_t *spa)
1471 {
1472 	vdev_t *root_vd = spa->spa_root_vdev;
1473 
1474 	for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1475 		vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1476 }
1477 
1478 /*
1479  * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1480  */
1481 void
1482 vdev_autotrim_restart(spa_t *spa)
1483 {
1484 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1485 
1486 	if (spa->spa_autotrim)
1487 		vdev_autotrim(spa);
1488 }
1489 
1490 static void
1491 vdev_trim_l2arc_thread(void *arg)
1492 {
1493 	vdev_t		*vd = arg;
1494 	spa_t		*spa = vd->vdev_spa;
1495 	l2arc_dev_t	*dev = l2arc_vdev_get(vd);
1496 	trim_args_t	ta;
1497 	range_seg64_t 	physical_rs;
1498 
1499 	ASSERT(vdev_is_concrete(vd));
1500 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1501 
1502 	vd->vdev_trim_last_offset = 0;
1503 	vd->vdev_trim_rate = 0;
1504 	vd->vdev_trim_partial = 0;
1505 	vd->vdev_trim_secure = 0;
1506 
1507 	bzero(&ta, sizeof (ta));
1508 	ta.trim_vdev = vd;
1509 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1510 	ta.trim_type = TRIM_TYPE_MANUAL;
1511 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1512 	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1513 	ta.trim_flags = 0;
1514 
1515 	physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1516 	physical_rs.rs_end = vd->vdev_trim_bytes_est =
1517 	    vdev_get_min_asize(vd);
1518 
1519 	range_tree_add(ta.trim_tree, physical_rs.rs_start,
1520 	    physical_rs.rs_end - physical_rs.rs_start);
1521 
1522 	mutex_enter(&vd->vdev_trim_lock);
1523 	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1524 	mutex_exit(&vd->vdev_trim_lock);
1525 
1526 	(void) vdev_trim_ranges(&ta);
1527 
1528 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1529 	mutex_enter(&vd->vdev_trim_io_lock);
1530 	while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1531 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1532 	}
1533 	mutex_exit(&vd->vdev_trim_io_lock);
1534 
1535 	range_tree_vacate(ta.trim_tree, NULL, NULL);
1536 	range_tree_destroy(ta.trim_tree);
1537 
1538 	mutex_enter(&vd->vdev_trim_lock);
1539 	if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1540 		vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1541 		    vd->vdev_trim_rate, vd->vdev_trim_partial,
1542 		    vd->vdev_trim_secure);
1543 	}
1544 	ASSERT(vd->vdev_trim_thread != NULL ||
1545 	    vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1546 
1547 	/*
1548 	 * Drop the vdev_trim_lock while we sync out the txg since it's
1549 	 * possible that a device might be trying to come online and
1550 	 * must check to see if it needs to restart a trim. That thread
1551 	 * will be holding the spa_config_lock which would prevent the
1552 	 * txg_wait_synced from completing. Same strategy as in
1553 	 * vdev_trim_thread().
1554 	 */
1555 	mutex_exit(&vd->vdev_trim_lock);
1556 	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1557 	mutex_enter(&vd->vdev_trim_lock);
1558 
1559 	/*
1560 	 * Update the header of the cache device here, before
1561 	 * broadcasting vdev_trim_cv which may lead to the removal
1562 	 * of the device. The same applies for setting l2ad_trim_all to
1563 	 * false.
1564 	 */
1565 	spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1566 	    RW_READER);
1567 	bzero(dev->l2ad_dev_hdr, dev->l2ad_dev_hdr_asize);
1568 	l2arc_dev_hdr_update(dev);
1569 	spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1570 
1571 	vd->vdev_trim_thread = NULL;
1572 	if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1573 		dev->l2ad_trim_all = B_FALSE;
1574 
1575 	cv_broadcast(&vd->vdev_trim_cv);
1576 	mutex_exit(&vd->vdev_trim_lock);
1577 
1578 	thread_exit();
1579 }
1580 
1581 /*
1582  * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1583  * to vd->vdev_trim_thread variable. This facilitates the management of
1584  * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1585  * to a pool or pool creation or when the header of the device is invalid.
1586  */
1587 void
1588 vdev_trim_l2arc(spa_t *spa)
1589 {
1590 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1591 
1592 	/*
1593 	 * Locate the spa's l2arc devices and kick off TRIM threads.
1594 	 */
1595 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1596 		vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1597 		l2arc_dev_t *dev = l2arc_vdev_get(vd);
1598 
1599 		if (dev == NULL || !dev->l2ad_trim_all) {
1600 			/*
1601 			 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1602 			 * cache device was not marked for whole device TRIM
1603 			 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1604 			 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1605 			 * l2ad_log_entries > 0).
1606 			 */
1607 			continue;
1608 		}
1609 
1610 		mutex_enter(&vd->vdev_trim_lock);
1611 		ASSERT(vd->vdev_ops->vdev_op_leaf);
1612 		ASSERT(vdev_is_concrete(vd));
1613 		ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1614 		ASSERT(!vd->vdev_detached);
1615 		ASSERT(!vd->vdev_trim_exit_wanted);
1616 		ASSERT(!vd->vdev_top->vdev_removing);
1617 		vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1618 		vd->vdev_trim_thread = thread_create(NULL, 0,
1619 		    vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1620 		mutex_exit(&vd->vdev_trim_lock);
1621 	}
1622 }
1623 
1624 /*
1625  * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1626  * on leaf vdevs.
1627  */
1628 int
1629 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1630 {
1631 	trim_args_t		ta;
1632 	range_seg64_t 		physical_rs;
1633 	int			error;
1634 	physical_rs.rs_start = start;
1635 	physical_rs.rs_end = start + size;
1636 
1637 	ASSERT(vdev_is_concrete(vd));
1638 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1639 	ASSERT(!vd->vdev_detached);
1640 	ASSERT(!vd->vdev_top->vdev_removing);
1641 
1642 	bzero(&ta, sizeof (ta));
1643 	ta.trim_vdev = vd;
1644 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1645 	ta.trim_type = TRIM_TYPE_SIMPLE;
1646 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1647 	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1648 	ta.trim_flags = 0;
1649 
1650 	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1651 
1652 	if (physical_rs.rs_end > physical_rs.rs_start) {
1653 		range_tree_add(ta.trim_tree, physical_rs.rs_start,
1654 		    physical_rs.rs_end - physical_rs.rs_start);
1655 	} else {
1656 		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1657 	}
1658 
1659 	error = vdev_trim_ranges(&ta);
1660 
1661 	mutex_enter(&vd->vdev_trim_io_lock);
1662 	while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1663 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1664 	}
1665 	mutex_exit(&vd->vdev_trim_io_lock);
1666 
1667 	range_tree_vacate(ta.trim_tree, NULL, NULL);
1668 	range_tree_destroy(ta.trim_tree);
1669 
1670 	return (error);
1671 }
1672 
1673 EXPORT_SYMBOL(vdev_trim);
1674 EXPORT_SYMBOL(vdev_trim_stop);
1675 EXPORT_SYMBOL(vdev_trim_stop_all);
1676 EXPORT_SYMBOL(vdev_trim_stop_wait);
1677 EXPORT_SYMBOL(vdev_trim_restart);
1678 EXPORT_SYMBOL(vdev_autotrim);
1679 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1680 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1681 EXPORT_SYMBOL(vdev_autotrim_restart);
1682 EXPORT_SYMBOL(vdev_trim_l2arc);
1683 EXPORT_SYMBOL(vdev_trim_simple);
1684 
1685 /* BEGIN CSTYLED */
1686 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1687     "Max size of TRIM commands, larger will be split");
1688 
1689 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1690     "Min size of TRIM commands, smaller will be skipped");
1691 
1692 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1693     "Skip metaslabs which have never been initialized");
1694 
1695 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1696     "Min number of txgs to aggregate frees before issuing TRIM");
1697 
1698 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1699     "Max queued TRIMs outstanding per leaf vdev");
1700 /* END CSTYLED */
1701