1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC. 25 */ 26 27 #include <sys/spa.h> 28 #include <sys/spa_impl.h> 29 #include <sys/txg.h> 30 #include <sys/vdev_impl.h> 31 #include <sys/vdev_trim.h> 32 #include <sys/metaslab_impl.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/zap.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/arc_impl.h> 37 38 /* 39 * TRIM is a feature which is used to notify a SSD that some previously 40 * written space is no longer allocated by the pool. This is useful because 41 * writes to a SSD must be performed to blocks which have first been erased. 42 * Ensuring the SSD always has a supply of erased blocks for new writes 43 * helps prevent the performance from deteriorating. 44 * 45 * There are two supported TRIM methods; manual and automatic. 46 * 47 * Manual TRIM: 48 * 49 * A manual TRIM is initiated by running the 'zpool trim' command. A single 50 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for 51 * managing that vdev TRIM process. This involves iterating over all the 52 * metaslabs, calculating the unallocated space ranges, and then issuing the 53 * required TRIM I/Os. 54 * 55 * While a metaslab is being actively trimmed it is not eligible to perform 56 * new allocations. After traversing all of the metaslabs the thread is 57 * terminated. Finally, both the requested options and current progress of 58 * the TRIM are regularly written to the pool. This allows the TRIM to be 59 * suspended and resumed as needed. 60 * 61 * Automatic TRIM: 62 * 63 * An automatic TRIM is enabled by setting the 'autotrim' pool property 64 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each 65 * top-level (not leaf) vdev in the pool. These threads perform the same 66 * core TRIM process as a manual TRIM, but with a few key differences. 67 * 68 * 1) Automatic TRIM happens continuously in the background and operates 69 * solely on recently freed blocks (ms_trim not ms_allocatable). 70 * 71 * 2) Each thread is associated with a top-level (not leaf) vdev. This has 72 * the benefit of simplifying the threading model, it makes it easier 73 * to coordinate administrative commands, and it ensures only a single 74 * metaslab is disabled at a time. Unlike manual TRIM, this means each 75 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its 76 * children. 77 * 78 * 3) There is no automatic TRIM progress information stored on disk, nor 79 * is it reported by 'zpool status'. 80 * 81 * While the automatic TRIM process is highly effective it is more likely 82 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to 83 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently 84 * TRIM and are skipped. This means small amounts of freed space may not 85 * be automatically trimmed. 86 * 87 * Furthermore, devices with attached hot spares and devices being actively 88 * replaced are skipped. This is done to avoid adding additional stress to 89 * a potentially unhealthy device and to minimize the required rebuild time. 90 * 91 * For this reason it may be beneficial to occasionally manually TRIM a pool 92 * even when automatic TRIM is enabled. 93 */ 94 95 /* 96 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths. 97 */ 98 unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024; 99 100 /* 101 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped. 102 */ 103 unsigned int zfs_trim_extent_bytes_min = 32 * 1024; 104 105 /* 106 * Skip uninitialized metaslabs during the TRIM process. This option is 107 * useful for pools constructed from large thinly-provisioned devices where 108 * TRIM operations are slow. As a pool ages an increasing fraction of 109 * the pools metaslabs will be initialized progressively degrading the 110 * usefulness of this option. This setting is stored when starting a 111 * manual TRIM and will persist for the duration of the requested TRIM. 112 */ 113 unsigned int zfs_trim_metaslab_skip = 0; 114 115 /* 116 * Maximum number of queued TRIM I/Os per leaf vdev. The number of 117 * concurrent TRIM I/Os issued to the device is controlled by the 118 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options. 119 */ 120 unsigned int zfs_trim_queue_limit = 10; 121 122 /* 123 * The minimum number of transaction groups between automatic trims of a 124 * metaslab. This setting represents a trade-off between issuing more 125 * efficient TRIM operations, by allowing them to be aggregated longer, 126 * and issuing them promptly so the trimmed space is available. Note 127 * that this value is a minimum; metaslabs can be trimmed less frequently 128 * when there are a large number of ranges which need to be trimmed. 129 * 130 * Increasing this value will allow frees to be aggregated for a longer 131 * time. This can result is larger TRIM operations, and increased memory 132 * usage in order to track the ranges to be trimmed. Decreasing this value 133 * has the opposite effect. The default value of 32 was determined though 134 * testing to be a reasonable compromise. 135 */ 136 unsigned int zfs_trim_txg_batch = 32; 137 138 /* 139 * The trim_args are a control structure which describe how a leaf vdev 140 * should be trimmed. The core elements are the vdev, the metaslab being 141 * trimmed and a range tree containing the extents to TRIM. All provided 142 * ranges must be within the metaslab. 143 */ 144 typedef struct trim_args { 145 /* 146 * These fields are set by the caller of vdev_trim_ranges(). 147 */ 148 vdev_t *trim_vdev; /* Leaf vdev to TRIM */ 149 metaslab_t *trim_msp; /* Disabled metaslab */ 150 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */ 151 trim_type_t trim_type; /* Manual or auto TRIM */ 152 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */ 153 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */ 154 enum trim_flag trim_flags; /* TRIM flags (secure) */ 155 156 /* 157 * These fields are updated by vdev_trim_ranges(). 158 */ 159 hrtime_t trim_start_time; /* Start time */ 160 uint64_t trim_bytes_done; /* Bytes trimmed */ 161 } trim_args_t; 162 163 /* 164 * Determines whether a vdev_trim_thread() should be stopped. 165 */ 166 static boolean_t 167 vdev_trim_should_stop(vdev_t *vd) 168 { 169 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) || 170 vd->vdev_detached || vd->vdev_top->vdev_removing); 171 } 172 173 /* 174 * Determines whether a vdev_autotrim_thread() should be stopped. 175 */ 176 static boolean_t 177 vdev_autotrim_should_stop(vdev_t *tvd) 178 { 179 return (tvd->vdev_autotrim_exit_wanted || 180 !vdev_writeable(tvd) || tvd->vdev_removing || 181 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF); 182 } 183 184 /* 185 * The sync task for updating the on-disk state of a manual TRIM. This 186 * is scheduled by vdev_trim_change_state(). 187 */ 188 static void 189 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx) 190 { 191 /* 192 * We pass in the guid instead of the vdev_t since the vdev may 193 * have been freed prior to the sync task being processed. This 194 * happens when a vdev is detached as we call spa_config_vdev_exit(), 195 * stop the trimming thread, schedule the sync task, and free 196 * the vdev. Later when the scheduled sync task is invoked, it would 197 * find that the vdev has been freed. 198 */ 199 uint64_t guid = *(uint64_t *)arg; 200 uint64_t txg = dmu_tx_get_txg(tx); 201 kmem_free(arg, sizeof (uint64_t)); 202 203 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 204 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 205 return; 206 207 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK]; 208 vd->vdev_trim_offset[txg & TXG_MASK] = 0; 209 210 VERIFY3U(vd->vdev_leaf_zap, !=, 0); 211 212 objset_t *mos = vd->vdev_spa->spa_meta_objset; 213 214 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) { 215 216 if (vd->vdev_trim_last_offset == UINT64_MAX) 217 last_offset = 0; 218 219 vd->vdev_trim_last_offset = last_offset; 220 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 221 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 222 sizeof (last_offset), 1, &last_offset, tx)); 223 } 224 225 if (vd->vdev_trim_action_time > 0) { 226 uint64_t val = (uint64_t)vd->vdev_trim_action_time; 227 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 228 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val), 229 1, &val, tx)); 230 } 231 232 if (vd->vdev_trim_rate > 0) { 233 uint64_t rate = (uint64_t)vd->vdev_trim_rate; 234 235 if (rate == UINT64_MAX) 236 rate = 0; 237 238 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 239 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx)); 240 } 241 242 uint64_t partial = vd->vdev_trim_partial; 243 if (partial == UINT64_MAX) 244 partial = 0; 245 246 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 247 sizeof (partial), 1, &partial, tx)); 248 249 uint64_t secure = vd->vdev_trim_secure; 250 if (secure == UINT64_MAX) 251 secure = 0; 252 253 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 254 sizeof (secure), 1, &secure, tx)); 255 256 257 uint64_t trim_state = vd->vdev_trim_state; 258 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 259 sizeof (trim_state), 1, &trim_state, tx)); 260 } 261 262 /* 263 * Update the on-disk state of a manual TRIM. This is called to request 264 * that a TRIM be started/suspended/canceled, or to change one of the 265 * TRIM options (partial, secure, rate). 266 */ 267 static void 268 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state, 269 uint64_t rate, boolean_t partial, boolean_t secure) 270 { 271 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 272 spa_t *spa = vd->vdev_spa; 273 274 if (new_state == vd->vdev_trim_state) 275 return; 276 277 /* 278 * Copy the vd's guid, this will be freed by the sync task. 279 */ 280 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 281 *guid = vd->vdev_guid; 282 283 /* 284 * If we're suspending, then preserve the original start time. 285 */ 286 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) { 287 vd->vdev_trim_action_time = gethrestime_sec(); 288 } 289 290 /* 291 * If we're activating, then preserve the requested rate and trim 292 * method. Setting the last offset and rate to UINT64_MAX is used 293 * as a sentinel to indicate they should be reset to default values. 294 */ 295 if (new_state == VDEV_TRIM_ACTIVE) { 296 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE || 297 vd->vdev_trim_state == VDEV_TRIM_CANCELED) { 298 vd->vdev_trim_last_offset = UINT64_MAX; 299 vd->vdev_trim_rate = UINT64_MAX; 300 vd->vdev_trim_partial = UINT64_MAX; 301 vd->vdev_trim_secure = UINT64_MAX; 302 } 303 304 if (rate != 0) 305 vd->vdev_trim_rate = rate; 306 307 if (partial != 0) 308 vd->vdev_trim_partial = partial; 309 310 if (secure != 0) 311 vd->vdev_trim_secure = secure; 312 } 313 314 boolean_t resumed = !!(vd->vdev_trim_state == VDEV_TRIM_SUSPENDED); 315 vd->vdev_trim_state = new_state; 316 317 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 318 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 319 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync, 320 guid, tx); 321 322 switch (new_state) { 323 case VDEV_TRIM_ACTIVE: 324 spa_event_notify(spa, vd, NULL, 325 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START); 326 spa_history_log_internal(spa, "trim", tx, 327 "vdev=%s activated", vd->vdev_path); 328 break; 329 case VDEV_TRIM_SUSPENDED: 330 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND); 331 spa_history_log_internal(spa, "trim", tx, 332 "vdev=%s suspended", vd->vdev_path); 333 break; 334 case VDEV_TRIM_CANCELED: 335 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL); 336 spa_history_log_internal(spa, "trim", tx, 337 "vdev=%s canceled", vd->vdev_path); 338 break; 339 case VDEV_TRIM_COMPLETE: 340 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH); 341 spa_history_log_internal(spa, "trim", tx, 342 "vdev=%s complete", vd->vdev_path); 343 break; 344 default: 345 panic("invalid state %llu", (unsigned long long)new_state); 346 } 347 348 dmu_tx_commit(tx); 349 350 if (new_state != VDEV_TRIM_ACTIVE) 351 spa_notify_waiters(spa); 352 } 353 354 /* 355 * The zio_done_func_t done callback for each manual TRIM issued. It is 356 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os, 357 * and limiting the number of in flight TRIM I/Os. 358 */ 359 static void 360 vdev_trim_cb(zio_t *zio) 361 { 362 vdev_t *vd = zio->io_vd; 363 364 mutex_enter(&vd->vdev_trim_io_lock); 365 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 366 /* 367 * The I/O failed because the vdev was unavailable; roll the 368 * last offset back. (This works because spa_sync waits on 369 * spa_txg_zio before it runs sync tasks.) 370 */ 371 uint64_t *offset = 372 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK]; 373 *offset = MIN(*offset, zio->io_offset); 374 } else { 375 if (zio->io_error != 0) { 376 vd->vdev_stat.vs_trim_errors++; 377 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 378 0, 0, 0, 0, 1, zio->io_orig_size); 379 } else { 380 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 381 1, zio->io_orig_size, 0, 0, 0, 0); 382 } 383 384 vd->vdev_trim_bytes_done += zio->io_orig_size; 385 } 386 387 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0); 388 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--; 389 cv_broadcast(&vd->vdev_trim_io_cv); 390 mutex_exit(&vd->vdev_trim_io_lock); 391 392 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 393 } 394 395 /* 396 * The zio_done_func_t done callback for each automatic TRIM issued. It 397 * is responsible for updating the TRIM stats and limiting the number of 398 * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are 399 * never reissued on failure. 400 */ 401 static void 402 vdev_autotrim_cb(zio_t *zio) 403 { 404 vdev_t *vd = zio->io_vd; 405 406 mutex_enter(&vd->vdev_trim_io_lock); 407 408 if (zio->io_error != 0) { 409 vd->vdev_stat.vs_trim_errors++; 410 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 411 0, 0, 0, 0, 1, zio->io_orig_size); 412 } else { 413 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 414 1, zio->io_orig_size, 0, 0, 0, 0); 415 } 416 417 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0); 418 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--; 419 cv_broadcast(&vd->vdev_trim_io_cv); 420 mutex_exit(&vd->vdev_trim_io_lock); 421 422 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 423 } 424 425 /* 426 * The zio_done_func_t done callback for each TRIM issued via 427 * vdev_trim_simple(). It is responsible for updating the TRIM stats and 428 * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best 429 * effort and are never reissued on failure. 430 */ 431 static void 432 vdev_trim_simple_cb(zio_t *zio) 433 { 434 vdev_t *vd = zio->io_vd; 435 436 mutex_enter(&vd->vdev_trim_io_lock); 437 438 if (zio->io_error != 0) { 439 vd->vdev_stat.vs_trim_errors++; 440 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 441 0, 0, 0, 0, 1, zio->io_orig_size); 442 } else { 443 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 444 1, zio->io_orig_size, 0, 0, 0, 0); 445 } 446 447 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0); 448 vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--; 449 cv_broadcast(&vd->vdev_trim_io_cv); 450 mutex_exit(&vd->vdev_trim_io_lock); 451 452 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 453 } 454 /* 455 * Returns the average trim rate in bytes/sec for the ta->trim_vdev. 456 */ 457 static uint64_t 458 vdev_trim_calculate_rate(trim_args_t *ta) 459 { 460 return (ta->trim_bytes_done * 1000 / 461 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1)); 462 } 463 464 /* 465 * Issues a physical TRIM and takes care of rate limiting (bytes/sec) 466 * and number of concurrent TRIM I/Os. 467 */ 468 static int 469 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size) 470 { 471 vdev_t *vd = ta->trim_vdev; 472 spa_t *spa = vd->vdev_spa; 473 void *cb; 474 475 mutex_enter(&vd->vdev_trim_io_lock); 476 477 /* 478 * Limit manual TRIM I/Os to the requested rate. This does not 479 * apply to automatic TRIM since no per vdev rate can be specified. 480 */ 481 if (ta->trim_type == TRIM_TYPE_MANUAL) { 482 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) && 483 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) { 484 cv_timedwait_idle(&vd->vdev_trim_io_cv, 485 &vd->vdev_trim_io_lock, ddi_get_lbolt() + 486 MSEC_TO_TICK(10)); 487 } 488 } 489 ta->trim_bytes_done += size; 490 491 /* Limit in flight trimming I/Os */ 492 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] + 493 vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) { 494 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 495 } 496 vd->vdev_trim_inflight[ta->trim_type]++; 497 mutex_exit(&vd->vdev_trim_io_lock); 498 499 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 500 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 501 uint64_t txg = dmu_tx_get_txg(tx); 502 503 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 504 mutex_enter(&vd->vdev_trim_lock); 505 506 if (ta->trim_type == TRIM_TYPE_MANUAL && 507 vd->vdev_trim_offset[txg & TXG_MASK] == 0) { 508 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 509 *guid = vd->vdev_guid; 510 511 /* This is the first write of this txg. */ 512 dsl_sync_task_nowait(spa_get_dsl(spa), 513 vdev_trim_zap_update_sync, guid, tx); 514 } 515 516 /* 517 * We know the vdev_t will still be around since all consumers of 518 * vdev_free must stop the trimming first. 519 */ 520 if ((ta->trim_type == TRIM_TYPE_MANUAL && 521 vdev_trim_should_stop(vd)) || 522 (ta->trim_type == TRIM_TYPE_AUTO && 523 vdev_autotrim_should_stop(vd->vdev_top))) { 524 mutex_enter(&vd->vdev_trim_io_lock); 525 vd->vdev_trim_inflight[ta->trim_type]--; 526 mutex_exit(&vd->vdev_trim_io_lock); 527 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 528 mutex_exit(&vd->vdev_trim_lock); 529 dmu_tx_commit(tx); 530 return (SET_ERROR(EINTR)); 531 } 532 mutex_exit(&vd->vdev_trim_lock); 533 534 if (ta->trim_type == TRIM_TYPE_MANUAL) 535 vd->vdev_trim_offset[txg & TXG_MASK] = start + size; 536 537 if (ta->trim_type == TRIM_TYPE_MANUAL) { 538 cb = vdev_trim_cb; 539 } else if (ta->trim_type == TRIM_TYPE_AUTO) { 540 cb = vdev_autotrim_cb; 541 } else { 542 cb = vdev_trim_simple_cb; 543 } 544 545 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd, 546 start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL, 547 ta->trim_flags)); 548 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */ 549 550 dmu_tx_commit(tx); 551 552 return (0); 553 } 554 555 /* 556 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree. 557 * Additional parameters describing how the TRIM should be performed must 558 * be set in the trim_args structure. See the trim_args definition for 559 * additional information. 560 */ 561 static int 562 vdev_trim_ranges(trim_args_t *ta) 563 { 564 vdev_t *vd = ta->trim_vdev; 565 zfs_btree_t *t = &ta->trim_tree->rt_root; 566 zfs_btree_index_t idx; 567 uint64_t extent_bytes_max = ta->trim_extent_bytes_max; 568 uint64_t extent_bytes_min = ta->trim_extent_bytes_min; 569 spa_t *spa = vd->vdev_spa; 570 571 ta->trim_start_time = gethrtime(); 572 ta->trim_bytes_done = 0; 573 574 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL; 575 rs = zfs_btree_next(t, &idx, &idx)) { 576 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs, 577 ta->trim_tree); 578 579 if (extent_bytes_min && size < extent_bytes_min) { 580 spa_iostats_trim_add(spa, ta->trim_type, 581 0, 0, 1, size, 0, 0); 582 continue; 583 } 584 585 /* Split range into legally-sized physical chunks */ 586 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1; 587 588 for (uint64_t w = 0; w < writes_required; w++) { 589 int error; 590 591 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE + 592 rs_get_start(rs, ta->trim_tree) + 593 (w *extent_bytes_max), MIN(size - 594 (w * extent_bytes_max), extent_bytes_max)); 595 if (error != 0) { 596 return (error); 597 } 598 } 599 } 600 601 return (0); 602 } 603 604 /* 605 * Calculates the completion percentage of a manual TRIM. 606 */ 607 static void 608 vdev_trim_calculate_progress(vdev_t *vd) 609 { 610 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 611 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 612 ASSERT(vd->vdev_leaf_zap != 0); 613 614 vd->vdev_trim_bytes_est = 0; 615 vd->vdev_trim_bytes_done = 0; 616 617 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 618 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 619 mutex_enter(&msp->ms_lock); 620 621 uint64_t ms_free = msp->ms_size - 622 metaslab_allocated_space(msp); 623 624 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) 625 ms_free /= vd->vdev_top->vdev_children; 626 627 /* 628 * Convert the metaslab range to a physical range 629 * on our vdev. We use this to determine if we are 630 * in the middle of this metaslab range. 631 */ 632 range_seg64_t logical_rs, physical_rs; 633 logical_rs.rs_start = msp->ms_start; 634 logical_rs.rs_end = msp->ms_start + msp->ms_size; 635 vdev_xlate(vd, &logical_rs, &physical_rs); 636 637 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) { 638 vd->vdev_trim_bytes_est += ms_free; 639 mutex_exit(&msp->ms_lock); 640 continue; 641 } else if (vd->vdev_trim_last_offset > physical_rs.rs_end) { 642 vd->vdev_trim_bytes_done += ms_free; 643 vd->vdev_trim_bytes_est += ms_free; 644 mutex_exit(&msp->ms_lock); 645 continue; 646 } 647 648 /* 649 * If we get here, we're in the middle of trimming this 650 * metaslab. Load it and walk the free tree for more 651 * accurate progress estimation. 652 */ 653 VERIFY0(metaslab_load(msp)); 654 655 range_tree_t *rt = msp->ms_allocatable; 656 zfs_btree_t *bt = &rt->rt_root; 657 zfs_btree_index_t idx; 658 for (range_seg_t *rs = zfs_btree_first(bt, &idx); 659 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) { 660 logical_rs.rs_start = rs_get_start(rs, rt); 661 logical_rs.rs_end = rs_get_end(rs, rt); 662 vdev_xlate(vd, &logical_rs, &physical_rs); 663 664 uint64_t size = physical_rs.rs_end - 665 physical_rs.rs_start; 666 vd->vdev_trim_bytes_est += size; 667 if (vd->vdev_trim_last_offset >= physical_rs.rs_end) { 668 vd->vdev_trim_bytes_done += size; 669 } else if (vd->vdev_trim_last_offset > 670 physical_rs.rs_start && 671 vd->vdev_trim_last_offset <= 672 physical_rs.rs_end) { 673 vd->vdev_trim_bytes_done += 674 vd->vdev_trim_last_offset - 675 physical_rs.rs_start; 676 } 677 } 678 mutex_exit(&msp->ms_lock); 679 } 680 } 681 682 /* 683 * Load from disk the vdev's manual TRIM information. This includes the 684 * state, progress, and options provided when initiating the manual TRIM. 685 */ 686 static int 687 vdev_trim_load(vdev_t *vd) 688 { 689 int err = 0; 690 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 691 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 692 ASSERT(vd->vdev_leaf_zap != 0); 693 694 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE || 695 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) { 696 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 697 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 698 sizeof (vd->vdev_trim_last_offset), 1, 699 &vd->vdev_trim_last_offset); 700 if (err == ENOENT) { 701 vd->vdev_trim_last_offset = 0; 702 err = 0; 703 } 704 705 if (err == 0) { 706 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 707 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE, 708 sizeof (vd->vdev_trim_rate), 1, 709 &vd->vdev_trim_rate); 710 if (err == ENOENT) { 711 vd->vdev_trim_rate = 0; 712 err = 0; 713 } 714 } 715 716 if (err == 0) { 717 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 718 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 719 sizeof (vd->vdev_trim_partial), 1, 720 &vd->vdev_trim_partial); 721 if (err == ENOENT) { 722 vd->vdev_trim_partial = 0; 723 err = 0; 724 } 725 } 726 727 if (err == 0) { 728 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 729 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 730 sizeof (vd->vdev_trim_secure), 1, 731 &vd->vdev_trim_secure); 732 if (err == ENOENT) { 733 vd->vdev_trim_secure = 0; 734 err = 0; 735 } 736 } 737 } 738 739 vdev_trim_calculate_progress(vd); 740 741 return (err); 742 } 743 744 /* 745 * Convert the logical range into a physical range and add it to the 746 * range tree passed in the trim_args_t. 747 */ 748 static void 749 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size) 750 { 751 trim_args_t *ta = arg; 752 vdev_t *vd = ta->trim_vdev; 753 range_seg64_t logical_rs, physical_rs; 754 logical_rs.rs_start = start; 755 logical_rs.rs_end = start + size; 756 757 /* 758 * Every range to be trimmed must be part of ms_allocatable. 759 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this 760 * is always the case. 761 */ 762 if (zfs_flags & ZFS_DEBUG_TRIM) { 763 metaslab_t *msp = ta->trim_msp; 764 VERIFY0(metaslab_load(msp)); 765 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 766 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 767 } 768 769 ASSERT(vd->vdev_ops->vdev_op_leaf); 770 vdev_xlate(vd, &logical_rs, &physical_rs); 771 772 IMPLY(vd->vdev_top == vd, 773 logical_rs.rs_start == physical_rs.rs_start); 774 IMPLY(vd->vdev_top == vd, 775 logical_rs.rs_end == physical_rs.rs_end); 776 777 /* 778 * Only a manual trim will be traversing the vdev sequentially. 779 * For an auto trim all valid ranges should be added. 780 */ 781 if (ta->trim_type == TRIM_TYPE_MANUAL) { 782 783 /* Only add segments that we have not visited yet */ 784 if (physical_rs.rs_end <= vd->vdev_trim_last_offset) 785 return; 786 787 /* Pick up where we left off mid-range. */ 788 if (vd->vdev_trim_last_offset > physical_rs.rs_start) { 789 ASSERT3U(physical_rs.rs_end, >, 790 vd->vdev_trim_last_offset); 791 physical_rs.rs_start = vd->vdev_trim_last_offset; 792 } 793 } 794 795 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 796 797 /* 798 * With raidz, it's possible that the logical range does not live on 799 * this leaf vdev. We only add the physical range to this vdev's if it 800 * has a length greater than 0. 801 */ 802 if (physical_rs.rs_end > physical_rs.rs_start) { 803 range_tree_add(ta->trim_tree, physical_rs.rs_start, 804 physical_rs.rs_end - physical_rs.rs_start); 805 } else { 806 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 807 } 808 } 809 810 /* 811 * Each manual TRIM thread is responsible for trimming the unallocated 812 * space for each leaf vdev. This is accomplished by sequentially iterating 813 * over its top-level metaslabs and issuing TRIM I/O for the space described 814 * by its ms_allocatable. While a metaslab is undergoing trimming it is 815 * not eligible for new allocations. 816 */ 817 static void 818 vdev_trim_thread(void *arg) 819 { 820 vdev_t *vd = arg; 821 spa_t *spa = vd->vdev_spa; 822 trim_args_t ta; 823 int error = 0; 824 825 /* 826 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by 827 * vdev_trim(). Wait for the updated values to be reflected 828 * in the zap in order to start with the requested settings. 829 */ 830 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 831 832 ASSERT(vdev_is_concrete(vd)); 833 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 834 835 vd->vdev_trim_last_offset = 0; 836 vd->vdev_trim_rate = 0; 837 vd->vdev_trim_partial = 0; 838 vd->vdev_trim_secure = 0; 839 840 VERIFY0(vdev_trim_load(vd)); 841 842 ta.trim_vdev = vd; 843 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 844 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min; 845 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 846 ta.trim_type = TRIM_TYPE_MANUAL; 847 ta.trim_flags = 0; 848 849 /* 850 * When a secure TRIM has been requested infer that the intent 851 * is that everything must be trimmed. Override the default 852 * minimum TRIM size to prevent ranges from being skipped. 853 */ 854 if (vd->vdev_trim_secure) { 855 ta.trim_flags |= ZIO_TRIM_SECURE; 856 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 857 } 858 859 uint64_t ms_count = 0; 860 for (uint64_t i = 0; !vd->vdev_detached && 861 i < vd->vdev_top->vdev_ms_count; i++) { 862 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 863 864 /* 865 * If we've expanded the top-level vdev or it's our 866 * first pass, calculate our progress. 867 */ 868 if (vd->vdev_top->vdev_ms_count != ms_count) { 869 vdev_trim_calculate_progress(vd); 870 ms_count = vd->vdev_top->vdev_ms_count; 871 } 872 873 spa_config_exit(spa, SCL_CONFIG, FTAG); 874 metaslab_disable(msp); 875 mutex_enter(&msp->ms_lock); 876 VERIFY0(metaslab_load(msp)); 877 878 /* 879 * If a partial TRIM was requested skip metaslabs which have 880 * never been initialized and thus have never been written. 881 */ 882 if (msp->ms_sm == NULL && vd->vdev_trim_partial) { 883 mutex_exit(&msp->ms_lock); 884 metaslab_enable(msp, B_FALSE, B_FALSE); 885 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 886 vdev_trim_calculate_progress(vd); 887 continue; 888 } 889 890 ta.trim_msp = msp; 891 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta); 892 range_tree_vacate(msp->ms_trim, NULL, NULL); 893 mutex_exit(&msp->ms_lock); 894 895 error = vdev_trim_ranges(&ta); 896 metaslab_enable(msp, B_TRUE, B_FALSE); 897 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 898 899 range_tree_vacate(ta.trim_tree, NULL, NULL); 900 if (error != 0) 901 break; 902 } 903 904 spa_config_exit(spa, SCL_CONFIG, FTAG); 905 mutex_enter(&vd->vdev_trim_io_lock); 906 while (vd->vdev_trim_inflight[0] > 0) { 907 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 908 } 909 mutex_exit(&vd->vdev_trim_io_lock); 910 911 range_tree_destroy(ta.trim_tree); 912 913 mutex_enter(&vd->vdev_trim_lock); 914 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { 915 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 916 vd->vdev_trim_rate, vd->vdev_trim_partial, 917 vd->vdev_trim_secure); 918 } 919 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0); 920 921 /* 922 * Drop the vdev_trim_lock while we sync out the txg since it's 923 * possible that a device might be trying to come online and must 924 * check to see if it needs to restart a trim. That thread will be 925 * holding the spa_config_lock which would prevent the txg_wait_synced 926 * from completing. 927 */ 928 mutex_exit(&vd->vdev_trim_lock); 929 txg_wait_synced(spa_get_dsl(spa), 0); 930 mutex_enter(&vd->vdev_trim_lock); 931 932 vd->vdev_trim_thread = NULL; 933 cv_broadcast(&vd->vdev_trim_cv); 934 mutex_exit(&vd->vdev_trim_lock); 935 936 thread_exit(); 937 } 938 939 /* 940 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock, 941 * the vdev_t must be a leaf and cannot already be manually trimming. 942 */ 943 void 944 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure) 945 { 946 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 947 ASSERT(vd->vdev_ops->vdev_op_leaf); 948 ASSERT(vdev_is_concrete(vd)); 949 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 950 ASSERT(!vd->vdev_detached); 951 ASSERT(!vd->vdev_trim_exit_wanted); 952 ASSERT(!vd->vdev_top->vdev_removing); 953 954 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure); 955 vd->vdev_trim_thread = thread_create(NULL, 0, 956 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 957 } 958 959 /* 960 * Wait for the trimming thread to be terminated (canceled or stopped). 961 */ 962 static void 963 vdev_trim_stop_wait_impl(vdev_t *vd) 964 { 965 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 966 967 while (vd->vdev_trim_thread != NULL) 968 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock); 969 970 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 971 vd->vdev_trim_exit_wanted = B_FALSE; 972 } 973 974 /* 975 * Wait for vdev trim threads which were listed to cleanly exit. 976 */ 977 void 978 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list) 979 { 980 vdev_t *vd; 981 982 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 983 984 while ((vd = list_remove_head(vd_list)) != NULL) { 985 mutex_enter(&vd->vdev_trim_lock); 986 vdev_trim_stop_wait_impl(vd); 987 mutex_exit(&vd->vdev_trim_lock); 988 } 989 } 990 991 /* 992 * Stop trimming a device, with the resultant trimming state being tgt_state. 993 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is 994 * provided the stopping vdev is inserted in to the list. Callers are then 995 * required to call vdev_trim_stop_wait() to block for all the trim threads 996 * to exit. The caller must hold vdev_trim_lock and must not be writing to 997 * the spa config, as the trimming thread may try to enter the config as a 998 * reader before exiting. 999 */ 1000 void 1001 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list) 1002 { 1003 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 1004 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1005 ASSERT(vd->vdev_ops->vdev_op_leaf); 1006 ASSERT(vdev_is_concrete(vd)); 1007 1008 /* 1009 * Allow cancel requests to proceed even if the trim thread has 1010 * stopped. 1011 */ 1012 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED) 1013 return; 1014 1015 vdev_trim_change_state(vd, tgt_state, 0, 0, 0); 1016 vd->vdev_trim_exit_wanted = B_TRUE; 1017 1018 if (vd_list == NULL) { 1019 vdev_trim_stop_wait_impl(vd); 1020 } else { 1021 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1022 list_insert_tail(vd_list, vd); 1023 } 1024 } 1025 1026 /* 1027 * Requests that all listed vdevs stop trimming. 1028 */ 1029 static void 1030 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state, 1031 list_t *vd_list) 1032 { 1033 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 1034 mutex_enter(&vd->vdev_trim_lock); 1035 vdev_trim_stop(vd, tgt_state, vd_list); 1036 mutex_exit(&vd->vdev_trim_lock); 1037 return; 1038 } 1039 1040 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1041 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state, 1042 vd_list); 1043 } 1044 } 1045 1046 /* 1047 * Convenience function to stop trimming of a vdev tree and set all trim 1048 * thread pointers to NULL. 1049 */ 1050 void 1051 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state) 1052 { 1053 spa_t *spa = vd->vdev_spa; 1054 list_t vd_list; 1055 vdev_t *vd_l2cache; 1056 1057 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1058 1059 list_create(&vd_list, sizeof (vdev_t), 1060 offsetof(vdev_t, vdev_trim_node)); 1061 1062 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list); 1063 1064 /* 1065 * Iterate over cache devices and request stop trimming the 1066 * whole device in case we export the pool or remove the cache 1067 * device prematurely. 1068 */ 1069 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1070 vd_l2cache = spa->spa_l2cache.sav_vdevs[i]; 1071 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list); 1072 } 1073 1074 vdev_trim_stop_wait(spa, &vd_list); 1075 1076 if (vd->vdev_spa->spa_sync_on) { 1077 /* Make sure that our state has been synced to disk */ 1078 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1079 } 1080 1081 list_destroy(&vd_list); 1082 } 1083 1084 /* 1085 * Conditionally restarts a manual TRIM given its on-disk state. 1086 */ 1087 void 1088 vdev_trim_restart(vdev_t *vd) 1089 { 1090 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1091 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 1092 1093 if (vd->vdev_leaf_zap != 0) { 1094 mutex_enter(&vd->vdev_trim_lock); 1095 uint64_t trim_state = VDEV_TRIM_NONE; 1096 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1097 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 1098 sizeof (trim_state), 1, &trim_state); 1099 ASSERT(err == 0 || err == ENOENT); 1100 vd->vdev_trim_state = trim_state; 1101 1102 uint64_t timestamp = 0; 1103 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1104 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME, 1105 sizeof (timestamp), 1, ×tamp); 1106 ASSERT(err == 0 || err == ENOENT); 1107 vd->vdev_trim_action_time = timestamp; 1108 1109 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED || 1110 vd->vdev_offline) { 1111 /* load progress for reporting, but don't resume */ 1112 VERIFY0(vdev_trim_load(vd)); 1113 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE && 1114 vdev_writeable(vd) && !vd->vdev_top->vdev_removing && 1115 vd->vdev_trim_thread == NULL) { 1116 VERIFY0(vdev_trim_load(vd)); 1117 vdev_trim(vd, vd->vdev_trim_rate, 1118 vd->vdev_trim_partial, vd->vdev_trim_secure); 1119 } 1120 1121 mutex_exit(&vd->vdev_trim_lock); 1122 } 1123 1124 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1125 vdev_trim_restart(vd->vdev_child[i]); 1126 } 1127 } 1128 1129 /* 1130 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that 1131 * every TRIM range is contained within ms_allocatable. 1132 */ 1133 static void 1134 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size) 1135 { 1136 trim_args_t *ta = arg; 1137 metaslab_t *msp = ta->trim_msp; 1138 1139 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 1140 VERIFY3U(msp->ms_disabled, >, 0); 1141 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 1142 } 1143 1144 /* 1145 * Each automatic TRIM thread is responsible for managing the trimming of a 1146 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk. 1147 * 1148 * N.B. This behavior is different from a manual TRIM where a thread 1149 * is created for each leaf vdev, instead of each top-level vdev. 1150 */ 1151 static void 1152 vdev_autotrim_thread(void *arg) 1153 { 1154 vdev_t *vd = arg; 1155 spa_t *spa = vd->vdev_spa; 1156 int shift = 0; 1157 1158 mutex_enter(&vd->vdev_autotrim_lock); 1159 ASSERT3P(vd->vdev_top, ==, vd); 1160 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL); 1161 mutex_exit(&vd->vdev_autotrim_lock); 1162 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1163 1164 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max; 1165 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min; 1166 1167 while (!vdev_autotrim_should_stop(vd)) { 1168 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1); 1169 boolean_t issued_trim = B_FALSE; 1170 1171 /* 1172 * All of the metaslabs are divided in to groups of size 1173 * num_metaslabs / zfs_trim_txg_batch. Each of these groups 1174 * is composed of metaslabs which are spread evenly over the 1175 * device. 1176 * 1177 * For example, when zfs_trim_txg_batch = 32 (default) then 1178 * group 0 will contain metaslabs 0, 32, 64, ...; 1179 * group 1 will contain metaslabs 1, 33, 65, ...; 1180 * group 2 will contain metaslabs 2, 34, 66, ...; and so on. 1181 * 1182 * On each pass through the while() loop one of these groups 1183 * is selected. This is accomplished by using a shift value 1184 * to select the starting metaslab, then striding over the 1185 * metaslabs using the zfs_trim_txg_batch size. This is 1186 * done to accomplish two things. 1187 * 1188 * 1) By dividing the metaslabs in to groups, and making sure 1189 * that each group takes a minimum of one txg to process. 1190 * Then zfs_trim_txg_batch controls the minimum number of 1191 * txgs which must occur before a metaslab is revisited. 1192 * 1193 * 2) Selecting non-consecutive metaslabs distributes the 1194 * TRIM commands for a group evenly over the entire device. 1195 * This can be advantageous for certain types of devices. 1196 */ 1197 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count; 1198 i += txgs_per_trim) { 1199 metaslab_t *msp = vd->vdev_ms[i]; 1200 range_tree_t *trim_tree; 1201 1202 spa_config_exit(spa, SCL_CONFIG, FTAG); 1203 metaslab_disable(msp); 1204 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1205 1206 mutex_enter(&msp->ms_lock); 1207 1208 /* 1209 * Skip the metaslab when it has never been allocated 1210 * or when there are no recent frees to trim. 1211 */ 1212 if (msp->ms_sm == NULL || 1213 range_tree_is_empty(msp->ms_trim)) { 1214 mutex_exit(&msp->ms_lock); 1215 metaslab_enable(msp, B_FALSE, B_FALSE); 1216 continue; 1217 } 1218 1219 /* 1220 * Skip the metaslab when it has already been disabled. 1221 * This may happen when a manual TRIM or initialize 1222 * operation is running concurrently. In the case 1223 * of a manual TRIM, the ms_trim tree will have been 1224 * vacated. Only ranges added after the manual TRIM 1225 * disabled the metaslab will be included in the tree. 1226 * These will be processed when the automatic TRIM 1227 * next revisits this metaslab. 1228 */ 1229 if (msp->ms_disabled > 1) { 1230 mutex_exit(&msp->ms_lock); 1231 metaslab_enable(msp, B_FALSE, B_FALSE); 1232 continue; 1233 } 1234 1235 /* 1236 * Allocate an empty range tree which is swapped in 1237 * for the existing ms_trim tree while it is processed. 1238 */ 1239 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 1240 0, 0); 1241 range_tree_swap(&msp->ms_trim, &trim_tree); 1242 ASSERT(range_tree_is_empty(msp->ms_trim)); 1243 1244 /* 1245 * There are two cases when constructing the per-vdev 1246 * trim trees for a metaslab. If the top-level vdev 1247 * has no children then it is also a leaf and should 1248 * be trimmed. Otherwise our children are the leaves 1249 * and a trim tree should be constructed for each. 1250 */ 1251 trim_args_t *tap; 1252 uint64_t children = vd->vdev_children; 1253 if (children == 0) { 1254 children = 1; 1255 tap = kmem_zalloc(sizeof (trim_args_t) * 1256 children, KM_SLEEP); 1257 tap[0].trim_vdev = vd; 1258 } else { 1259 tap = kmem_zalloc(sizeof (trim_args_t) * 1260 children, KM_SLEEP); 1261 1262 for (uint64_t c = 0; c < children; c++) { 1263 tap[c].trim_vdev = vd->vdev_child[c]; 1264 } 1265 } 1266 1267 for (uint64_t c = 0; c < children; c++) { 1268 trim_args_t *ta = &tap[c]; 1269 vdev_t *cvd = ta->trim_vdev; 1270 1271 ta->trim_msp = msp; 1272 ta->trim_extent_bytes_max = extent_bytes_max; 1273 ta->trim_extent_bytes_min = extent_bytes_min; 1274 ta->trim_type = TRIM_TYPE_AUTO; 1275 ta->trim_flags = 0; 1276 1277 if (cvd->vdev_detached || 1278 !vdev_writeable(cvd) || 1279 !cvd->vdev_has_trim || 1280 cvd->vdev_trim_thread != NULL) { 1281 continue; 1282 } 1283 1284 /* 1285 * When a device has an attached hot spare, or 1286 * is being replaced it will not be trimmed. 1287 * This is done to avoid adding additional 1288 * stress to a potentially unhealthy device, 1289 * and to minimize the required rebuild time. 1290 */ 1291 if (!cvd->vdev_ops->vdev_op_leaf) 1292 continue; 1293 1294 ta->trim_tree = range_tree_create(NULL, 1295 RANGE_SEG64, NULL, 0, 0); 1296 range_tree_walk(trim_tree, 1297 vdev_trim_range_add, ta); 1298 } 1299 1300 mutex_exit(&msp->ms_lock); 1301 spa_config_exit(spa, SCL_CONFIG, FTAG); 1302 1303 /* 1304 * Issue the TRIM I/Os for all ranges covered by the 1305 * TRIM trees. These ranges are safe to TRIM because 1306 * no new allocations will be performed until the call 1307 * to metaslab_enabled() below. 1308 */ 1309 for (uint64_t c = 0; c < children; c++) { 1310 trim_args_t *ta = &tap[c]; 1311 1312 /* 1313 * Always yield to a manual TRIM if one has 1314 * been started for the child vdev. 1315 */ 1316 if (ta->trim_tree == NULL || 1317 ta->trim_vdev->vdev_trim_thread != NULL) { 1318 continue; 1319 } 1320 1321 /* 1322 * After this point metaslab_enable() must be 1323 * called with the sync flag set. This is done 1324 * here because vdev_trim_ranges() is allowed 1325 * to be interrupted (EINTR) before issuing all 1326 * of the required TRIM I/Os. 1327 */ 1328 issued_trim = B_TRUE; 1329 1330 int error = vdev_trim_ranges(ta); 1331 if (error) 1332 break; 1333 } 1334 1335 /* 1336 * Verify every range which was trimmed is still 1337 * contained within the ms_allocatable tree. 1338 */ 1339 if (zfs_flags & ZFS_DEBUG_TRIM) { 1340 mutex_enter(&msp->ms_lock); 1341 VERIFY0(metaslab_load(msp)); 1342 VERIFY3P(tap[0].trim_msp, ==, msp); 1343 range_tree_walk(trim_tree, 1344 vdev_trim_range_verify, &tap[0]); 1345 mutex_exit(&msp->ms_lock); 1346 } 1347 1348 range_tree_vacate(trim_tree, NULL, NULL); 1349 range_tree_destroy(trim_tree); 1350 1351 metaslab_enable(msp, issued_trim, B_FALSE); 1352 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1353 1354 for (uint64_t c = 0; c < children; c++) { 1355 trim_args_t *ta = &tap[c]; 1356 1357 if (ta->trim_tree == NULL) 1358 continue; 1359 1360 range_tree_vacate(ta->trim_tree, NULL, NULL); 1361 range_tree_destroy(ta->trim_tree); 1362 } 1363 1364 kmem_free(tap, sizeof (trim_args_t) * children); 1365 } 1366 1367 spa_config_exit(spa, SCL_CONFIG, FTAG); 1368 1369 /* 1370 * After completing the group of metaslabs wait for the next 1371 * open txg. This is done to make sure that a minimum of 1372 * zfs_trim_txg_batch txgs will occur before these metaslabs 1373 * are trimmed again. 1374 */ 1375 txg_wait_open(spa_get_dsl(spa), 0, issued_trim); 1376 1377 shift++; 1378 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1379 } 1380 1381 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1382 vdev_t *cvd = vd->vdev_child[c]; 1383 mutex_enter(&cvd->vdev_trim_io_lock); 1384 1385 while (cvd->vdev_trim_inflight[1] > 0) { 1386 cv_wait(&cvd->vdev_trim_io_cv, 1387 &cvd->vdev_trim_io_lock); 1388 } 1389 mutex_exit(&cvd->vdev_trim_io_lock); 1390 } 1391 1392 spa_config_exit(spa, SCL_CONFIG, FTAG); 1393 1394 /* 1395 * When exiting because the autotrim property was set to off, then 1396 * abandon any unprocessed ms_trim ranges to reclaim the memory. 1397 */ 1398 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) { 1399 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 1400 metaslab_t *msp = vd->vdev_ms[i]; 1401 1402 mutex_enter(&msp->ms_lock); 1403 range_tree_vacate(msp->ms_trim, NULL, NULL); 1404 mutex_exit(&msp->ms_lock); 1405 } 1406 } 1407 1408 mutex_enter(&vd->vdev_autotrim_lock); 1409 ASSERT(vd->vdev_autotrim_thread != NULL); 1410 vd->vdev_autotrim_thread = NULL; 1411 cv_broadcast(&vd->vdev_autotrim_cv); 1412 mutex_exit(&vd->vdev_autotrim_lock); 1413 1414 thread_exit(); 1415 } 1416 1417 /* 1418 * Starts an autotrim thread, if needed, for each top-level vdev which can be 1419 * trimmed. A top-level vdev which has been evacuated will never be trimmed. 1420 */ 1421 void 1422 vdev_autotrim(spa_t *spa) 1423 { 1424 vdev_t *root_vd = spa->spa_root_vdev; 1425 1426 for (uint64_t i = 0; i < root_vd->vdev_children; i++) { 1427 vdev_t *tvd = root_vd->vdev_child[i]; 1428 1429 mutex_enter(&tvd->vdev_autotrim_lock); 1430 if (vdev_writeable(tvd) && !tvd->vdev_removing && 1431 tvd->vdev_autotrim_thread == NULL) { 1432 ASSERT3P(tvd->vdev_top, ==, tvd); 1433 1434 tvd->vdev_autotrim_thread = thread_create(NULL, 0, 1435 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN, 1436 maxclsyspri); 1437 ASSERT(tvd->vdev_autotrim_thread != NULL); 1438 } 1439 mutex_exit(&tvd->vdev_autotrim_lock); 1440 } 1441 } 1442 1443 /* 1444 * Wait for the vdev_autotrim_thread associated with the passed top-level 1445 * vdev to be terminated (canceled or stopped). 1446 */ 1447 void 1448 vdev_autotrim_stop_wait(vdev_t *tvd) 1449 { 1450 mutex_enter(&tvd->vdev_autotrim_lock); 1451 if (tvd->vdev_autotrim_thread != NULL) { 1452 tvd->vdev_autotrim_exit_wanted = B_TRUE; 1453 1454 while (tvd->vdev_autotrim_thread != NULL) { 1455 cv_wait(&tvd->vdev_autotrim_cv, 1456 &tvd->vdev_autotrim_lock); 1457 } 1458 1459 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL); 1460 tvd->vdev_autotrim_exit_wanted = B_FALSE; 1461 } 1462 mutex_exit(&tvd->vdev_autotrim_lock); 1463 } 1464 1465 /* 1466 * Wait for all of the vdev_autotrim_thread associated with the pool to 1467 * be terminated (canceled or stopped). 1468 */ 1469 void 1470 vdev_autotrim_stop_all(spa_t *spa) 1471 { 1472 vdev_t *root_vd = spa->spa_root_vdev; 1473 1474 for (uint64_t i = 0; i < root_vd->vdev_children; i++) 1475 vdev_autotrim_stop_wait(root_vd->vdev_child[i]); 1476 } 1477 1478 /* 1479 * Conditionally restart all of the vdev_autotrim_thread's for the pool. 1480 */ 1481 void 1482 vdev_autotrim_restart(spa_t *spa) 1483 { 1484 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1485 1486 if (spa->spa_autotrim) 1487 vdev_autotrim(spa); 1488 } 1489 1490 static void 1491 vdev_trim_l2arc_thread(void *arg) 1492 { 1493 vdev_t *vd = arg; 1494 spa_t *spa = vd->vdev_spa; 1495 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1496 trim_args_t ta; 1497 range_seg64_t physical_rs; 1498 1499 ASSERT(vdev_is_concrete(vd)); 1500 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1501 1502 vd->vdev_trim_last_offset = 0; 1503 vd->vdev_trim_rate = 0; 1504 vd->vdev_trim_partial = 0; 1505 vd->vdev_trim_secure = 0; 1506 1507 bzero(&ta, sizeof (ta)); 1508 ta.trim_vdev = vd; 1509 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1510 ta.trim_type = TRIM_TYPE_MANUAL; 1511 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1512 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1513 ta.trim_flags = 0; 1514 1515 physical_rs.rs_start = vd->vdev_trim_bytes_done = 0; 1516 physical_rs.rs_end = vd->vdev_trim_bytes_est = 1517 vdev_get_min_asize(vd); 1518 1519 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1520 physical_rs.rs_end - physical_rs.rs_start); 1521 1522 mutex_enter(&vd->vdev_trim_lock); 1523 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1524 mutex_exit(&vd->vdev_trim_lock); 1525 1526 (void) vdev_trim_ranges(&ta); 1527 1528 spa_config_exit(spa, SCL_CONFIG, FTAG); 1529 mutex_enter(&vd->vdev_trim_io_lock); 1530 while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) { 1531 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1532 } 1533 mutex_exit(&vd->vdev_trim_io_lock); 1534 1535 range_tree_vacate(ta.trim_tree, NULL, NULL); 1536 range_tree_destroy(ta.trim_tree); 1537 1538 mutex_enter(&vd->vdev_trim_lock); 1539 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { 1540 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 1541 vd->vdev_trim_rate, vd->vdev_trim_partial, 1542 vd->vdev_trim_secure); 1543 } 1544 ASSERT(vd->vdev_trim_thread != NULL || 1545 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0); 1546 1547 /* 1548 * Drop the vdev_trim_lock while we sync out the txg since it's 1549 * possible that a device might be trying to come online and 1550 * must check to see if it needs to restart a trim. That thread 1551 * will be holding the spa_config_lock which would prevent the 1552 * txg_wait_synced from completing. Same strategy as in 1553 * vdev_trim_thread(). 1554 */ 1555 mutex_exit(&vd->vdev_trim_lock); 1556 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1557 mutex_enter(&vd->vdev_trim_lock); 1558 1559 /* 1560 * Update the header of the cache device here, before 1561 * broadcasting vdev_trim_cv which may lead to the removal 1562 * of the device. The same applies for setting l2ad_trim_all to 1563 * false. 1564 */ 1565 spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd, 1566 RW_READER); 1567 bzero(dev->l2ad_dev_hdr, dev->l2ad_dev_hdr_asize); 1568 l2arc_dev_hdr_update(dev); 1569 spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd); 1570 1571 vd->vdev_trim_thread = NULL; 1572 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE) 1573 dev->l2ad_trim_all = B_FALSE; 1574 1575 cv_broadcast(&vd->vdev_trim_cv); 1576 mutex_exit(&vd->vdev_trim_lock); 1577 1578 thread_exit(); 1579 } 1580 1581 /* 1582 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them 1583 * to vd->vdev_trim_thread variable. This facilitates the management of 1584 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition 1585 * to a pool or pool creation or when the header of the device is invalid. 1586 */ 1587 void 1588 vdev_trim_l2arc(spa_t *spa) 1589 { 1590 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1591 1592 /* 1593 * Locate the spa's l2arc devices and kick off TRIM threads. 1594 */ 1595 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1596 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i]; 1597 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1598 1599 if (dev == NULL || !dev->l2ad_trim_all) { 1600 /* 1601 * Don't attempt TRIM if the vdev is UNAVAIL or if the 1602 * cache device was not marked for whole device TRIM 1603 * (ie l2arc_trim_ahead = 0, or the L2ARC device header 1604 * is valid with trim_state = VDEV_TRIM_COMPLETE and 1605 * l2ad_log_entries > 0). 1606 */ 1607 continue; 1608 } 1609 1610 mutex_enter(&vd->vdev_trim_lock); 1611 ASSERT(vd->vdev_ops->vdev_op_leaf); 1612 ASSERT(vdev_is_concrete(vd)); 1613 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1614 ASSERT(!vd->vdev_detached); 1615 ASSERT(!vd->vdev_trim_exit_wanted); 1616 ASSERT(!vd->vdev_top->vdev_removing); 1617 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1618 vd->vdev_trim_thread = thread_create(NULL, 0, 1619 vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 1620 mutex_exit(&vd->vdev_trim_lock); 1621 } 1622 } 1623 1624 /* 1625 * A wrapper which calls vdev_trim_ranges(). It is intended to be called 1626 * on leaf vdevs. 1627 */ 1628 int 1629 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size) 1630 { 1631 trim_args_t ta; 1632 range_seg64_t physical_rs; 1633 int error; 1634 physical_rs.rs_start = start; 1635 physical_rs.rs_end = start + size; 1636 1637 ASSERT(vdev_is_concrete(vd)); 1638 ASSERT(vd->vdev_ops->vdev_op_leaf); 1639 ASSERT(!vd->vdev_detached); 1640 ASSERT(!vd->vdev_top->vdev_removing); 1641 1642 bzero(&ta, sizeof (ta)); 1643 ta.trim_vdev = vd; 1644 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1645 ta.trim_type = TRIM_TYPE_SIMPLE; 1646 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1647 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1648 ta.trim_flags = 0; 1649 1650 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 1651 1652 if (physical_rs.rs_end > physical_rs.rs_start) { 1653 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1654 physical_rs.rs_end - physical_rs.rs_start); 1655 } else { 1656 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 1657 } 1658 1659 error = vdev_trim_ranges(&ta); 1660 1661 mutex_enter(&vd->vdev_trim_io_lock); 1662 while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) { 1663 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1664 } 1665 mutex_exit(&vd->vdev_trim_io_lock); 1666 1667 range_tree_vacate(ta.trim_tree, NULL, NULL); 1668 range_tree_destroy(ta.trim_tree); 1669 1670 return (error); 1671 } 1672 1673 EXPORT_SYMBOL(vdev_trim); 1674 EXPORT_SYMBOL(vdev_trim_stop); 1675 EXPORT_SYMBOL(vdev_trim_stop_all); 1676 EXPORT_SYMBOL(vdev_trim_stop_wait); 1677 EXPORT_SYMBOL(vdev_trim_restart); 1678 EXPORT_SYMBOL(vdev_autotrim); 1679 EXPORT_SYMBOL(vdev_autotrim_stop_all); 1680 EXPORT_SYMBOL(vdev_autotrim_stop_wait); 1681 EXPORT_SYMBOL(vdev_autotrim_restart); 1682 EXPORT_SYMBOL(vdev_trim_l2arc); 1683 EXPORT_SYMBOL(vdev_trim_simple); 1684 1685 /* BEGIN CSTYLED */ 1686 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW, 1687 "Max size of TRIM commands, larger will be split"); 1688 1689 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW, 1690 "Min size of TRIM commands, smaller will be skipped"); 1691 1692 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW, 1693 "Skip metaslabs which have never been initialized"); 1694 1695 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW, 1696 "Min number of txgs to aggregate frees before issuing TRIM"); 1697 1698 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW, 1699 "Max queued TRIMs outstanding per leaf vdev"); 1700 /* END CSTYLED */ 1701