1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC. 25 */ 26 27 #include <sys/spa.h> 28 #include <sys/spa_impl.h> 29 #include <sys/txg.h> 30 #include <sys/vdev_impl.h> 31 #include <sys/vdev_trim.h> 32 #include <sys/metaslab_impl.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/zap.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/arc_impl.h> 37 38 /* 39 * TRIM is a feature which is used to notify a SSD that some previously 40 * written space is no longer allocated by the pool. This is useful because 41 * writes to a SSD must be performed to blocks which have first been erased. 42 * Ensuring the SSD always has a supply of erased blocks for new writes 43 * helps prevent the performance from deteriorating. 44 * 45 * There are two supported TRIM methods; manual and automatic. 46 * 47 * Manual TRIM: 48 * 49 * A manual TRIM is initiated by running the 'zpool trim' command. A single 50 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for 51 * managing that vdev TRIM process. This involves iterating over all the 52 * metaslabs, calculating the unallocated space ranges, and then issuing the 53 * required TRIM I/Os. 54 * 55 * While a metaslab is being actively trimmed it is not eligible to perform 56 * new allocations. After traversing all of the metaslabs the thread is 57 * terminated. Finally, both the requested options and current progress of 58 * the TRIM are regularly written to the pool. This allows the TRIM to be 59 * suspended and resumed as needed. 60 * 61 * Automatic TRIM: 62 * 63 * An automatic TRIM is enabled by setting the 'autotrim' pool property 64 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each 65 * top-level (not leaf) vdev in the pool. These threads perform the same 66 * core TRIM process as a manual TRIM, but with a few key differences. 67 * 68 * 1) Automatic TRIM happens continuously in the background and operates 69 * solely on recently freed blocks (ms_trim not ms_allocatable). 70 * 71 * 2) Each thread is associated with a top-level (not leaf) vdev. This has 72 * the benefit of simplifying the threading model, it makes it easier 73 * to coordinate administrative commands, and it ensures only a single 74 * metaslab is disabled at a time. Unlike manual TRIM, this means each 75 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its 76 * children. 77 * 78 * 3) There is no automatic TRIM progress information stored on disk, nor 79 * is it reported by 'zpool status'. 80 * 81 * While the automatic TRIM process is highly effective it is more likely 82 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to 83 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently 84 * TRIM and are skipped. This means small amounts of freed space may not 85 * be automatically trimmed. 86 * 87 * Furthermore, devices with attached hot spares and devices being actively 88 * replaced are skipped. This is done to avoid adding additional stress to 89 * a potentially unhealthy device and to minimize the required rebuild time. 90 * 91 * For this reason it may be beneficial to occasionally manually TRIM a pool 92 * even when automatic TRIM is enabled. 93 */ 94 95 /* 96 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths. 97 */ 98 unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024; 99 100 /* 101 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped. 102 */ 103 unsigned int zfs_trim_extent_bytes_min = 32 * 1024; 104 105 /* 106 * Skip uninitialized metaslabs during the TRIM process. This option is 107 * useful for pools constructed from large thinly-provisioned devices where 108 * TRIM operations are slow. As a pool ages an increasing fraction of 109 * the pools metaslabs will be initialized progressively degrading the 110 * usefulness of this option. This setting is stored when starting a 111 * manual TRIM and will persist for the duration of the requested TRIM. 112 */ 113 unsigned int zfs_trim_metaslab_skip = 0; 114 115 /* 116 * Maximum number of queued TRIM I/Os per leaf vdev. The number of 117 * concurrent TRIM I/Os issued to the device is controlled by the 118 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options. 119 */ 120 unsigned int zfs_trim_queue_limit = 10; 121 122 /* 123 * The minimum number of transaction groups between automatic trims of a 124 * metaslab. This setting represents a trade-off between issuing more 125 * efficient TRIM operations, by allowing them to be aggregated longer, 126 * and issuing them promptly so the trimmed space is available. Note 127 * that this value is a minimum; metaslabs can be trimmed less frequently 128 * when there are a large number of ranges which need to be trimmed. 129 * 130 * Increasing this value will allow frees to be aggregated for a longer 131 * time. This can result is larger TRIM operations, and increased memory 132 * usage in order to track the ranges to be trimmed. Decreasing this value 133 * has the opposite effect. The default value of 32 was determined though 134 * testing to be a reasonable compromise. 135 */ 136 unsigned int zfs_trim_txg_batch = 32; 137 138 /* 139 * The trim_args are a control structure which describe how a leaf vdev 140 * should be trimmed. The core elements are the vdev, the metaslab being 141 * trimmed and a range tree containing the extents to TRIM. All provided 142 * ranges must be within the metaslab. 143 */ 144 typedef struct trim_args { 145 /* 146 * These fields are set by the caller of vdev_trim_ranges(). 147 */ 148 vdev_t *trim_vdev; /* Leaf vdev to TRIM */ 149 metaslab_t *trim_msp; /* Disabled metaslab */ 150 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */ 151 trim_type_t trim_type; /* Manual or auto TRIM */ 152 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */ 153 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */ 154 enum trim_flag trim_flags; /* TRIM flags (secure) */ 155 156 /* 157 * These fields are updated by vdev_trim_ranges(). 158 */ 159 hrtime_t trim_start_time; /* Start time */ 160 uint64_t trim_bytes_done; /* Bytes trimmed */ 161 } trim_args_t; 162 163 /* 164 * Determines whether a vdev_trim_thread() should be stopped. 165 */ 166 static boolean_t 167 vdev_trim_should_stop(vdev_t *vd) 168 { 169 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) || 170 vd->vdev_detached || vd->vdev_top->vdev_removing); 171 } 172 173 /* 174 * Determines whether a vdev_autotrim_thread() should be stopped. 175 */ 176 static boolean_t 177 vdev_autotrim_should_stop(vdev_t *tvd) 178 { 179 return (tvd->vdev_autotrim_exit_wanted || 180 !vdev_writeable(tvd) || tvd->vdev_removing || 181 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF); 182 } 183 184 /* 185 * The sync task for updating the on-disk state of a manual TRIM. This 186 * is scheduled by vdev_trim_change_state(). 187 */ 188 static void 189 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx) 190 { 191 /* 192 * We pass in the guid instead of the vdev_t since the vdev may 193 * have been freed prior to the sync task being processed. This 194 * happens when a vdev is detached as we call spa_config_vdev_exit(), 195 * stop the trimming thread, schedule the sync task, and free 196 * the vdev. Later when the scheduled sync task is invoked, it would 197 * find that the vdev has been freed. 198 */ 199 uint64_t guid = *(uint64_t *)arg; 200 uint64_t txg = dmu_tx_get_txg(tx); 201 kmem_free(arg, sizeof (uint64_t)); 202 203 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 204 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 205 return; 206 207 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK]; 208 vd->vdev_trim_offset[txg & TXG_MASK] = 0; 209 210 VERIFY3U(vd->vdev_leaf_zap, !=, 0); 211 212 objset_t *mos = vd->vdev_spa->spa_meta_objset; 213 214 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) { 215 216 if (vd->vdev_trim_last_offset == UINT64_MAX) 217 last_offset = 0; 218 219 vd->vdev_trim_last_offset = last_offset; 220 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 221 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 222 sizeof (last_offset), 1, &last_offset, tx)); 223 } 224 225 if (vd->vdev_trim_action_time > 0) { 226 uint64_t val = (uint64_t)vd->vdev_trim_action_time; 227 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 228 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val), 229 1, &val, tx)); 230 } 231 232 if (vd->vdev_trim_rate > 0) { 233 uint64_t rate = (uint64_t)vd->vdev_trim_rate; 234 235 if (rate == UINT64_MAX) 236 rate = 0; 237 238 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 239 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx)); 240 } 241 242 uint64_t partial = vd->vdev_trim_partial; 243 if (partial == UINT64_MAX) 244 partial = 0; 245 246 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 247 sizeof (partial), 1, &partial, tx)); 248 249 uint64_t secure = vd->vdev_trim_secure; 250 if (secure == UINT64_MAX) 251 secure = 0; 252 253 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 254 sizeof (secure), 1, &secure, tx)); 255 256 257 uint64_t trim_state = vd->vdev_trim_state; 258 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 259 sizeof (trim_state), 1, &trim_state, tx)); 260 } 261 262 /* 263 * Update the on-disk state of a manual TRIM. This is called to request 264 * that a TRIM be started/suspended/canceled, or to change one of the 265 * TRIM options (partial, secure, rate). 266 */ 267 static void 268 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state, 269 uint64_t rate, boolean_t partial, boolean_t secure) 270 { 271 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 272 spa_t *spa = vd->vdev_spa; 273 274 if (new_state == vd->vdev_trim_state) 275 return; 276 277 /* 278 * Copy the vd's guid, this will be freed by the sync task. 279 */ 280 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 281 *guid = vd->vdev_guid; 282 283 /* 284 * If we're suspending, then preserve the original start time. 285 */ 286 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) { 287 vd->vdev_trim_action_time = gethrestime_sec(); 288 } 289 290 /* 291 * If we're activating, then preserve the requested rate and trim 292 * method. Setting the last offset and rate to UINT64_MAX is used 293 * as a sentinel to indicate they should be reset to default values. 294 */ 295 if (new_state == VDEV_TRIM_ACTIVE) { 296 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE || 297 vd->vdev_trim_state == VDEV_TRIM_CANCELED) { 298 vd->vdev_trim_last_offset = UINT64_MAX; 299 vd->vdev_trim_rate = UINT64_MAX; 300 vd->vdev_trim_partial = UINT64_MAX; 301 vd->vdev_trim_secure = UINT64_MAX; 302 } 303 304 if (rate != 0) 305 vd->vdev_trim_rate = rate; 306 307 if (partial != 0) 308 vd->vdev_trim_partial = partial; 309 310 if (secure != 0) 311 vd->vdev_trim_secure = secure; 312 } 313 314 vdev_trim_state_t old_state = vd->vdev_trim_state; 315 boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED); 316 vd->vdev_trim_state = new_state; 317 318 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 319 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 320 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync, 321 guid, tx); 322 323 switch (new_state) { 324 case VDEV_TRIM_ACTIVE: 325 spa_event_notify(spa, vd, NULL, 326 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START); 327 spa_history_log_internal(spa, "trim", tx, 328 "vdev=%s activated", vd->vdev_path); 329 break; 330 case VDEV_TRIM_SUSPENDED: 331 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND); 332 spa_history_log_internal(spa, "trim", tx, 333 "vdev=%s suspended", vd->vdev_path); 334 break; 335 case VDEV_TRIM_CANCELED: 336 if (old_state == VDEV_TRIM_ACTIVE || 337 old_state == VDEV_TRIM_SUSPENDED) { 338 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL); 339 spa_history_log_internal(spa, "trim", tx, 340 "vdev=%s canceled", vd->vdev_path); 341 } 342 break; 343 case VDEV_TRIM_COMPLETE: 344 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH); 345 spa_history_log_internal(spa, "trim", tx, 346 "vdev=%s complete", vd->vdev_path); 347 break; 348 default: 349 panic("invalid state %llu", (unsigned long long)new_state); 350 } 351 352 dmu_tx_commit(tx); 353 354 if (new_state != VDEV_TRIM_ACTIVE) 355 spa_notify_waiters(spa); 356 } 357 358 /* 359 * The zio_done_func_t done callback for each manual TRIM issued. It is 360 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os, 361 * and limiting the number of in flight TRIM I/Os. 362 */ 363 static void 364 vdev_trim_cb(zio_t *zio) 365 { 366 vdev_t *vd = zio->io_vd; 367 368 mutex_enter(&vd->vdev_trim_io_lock); 369 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 370 /* 371 * The I/O failed because the vdev was unavailable; roll the 372 * last offset back. (This works because spa_sync waits on 373 * spa_txg_zio before it runs sync tasks.) 374 */ 375 uint64_t *offset = 376 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK]; 377 *offset = MIN(*offset, zio->io_offset); 378 } else { 379 if (zio->io_error != 0) { 380 vd->vdev_stat.vs_trim_errors++; 381 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 382 0, 0, 0, 0, 1, zio->io_orig_size); 383 } else { 384 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 385 1, zio->io_orig_size, 0, 0, 0, 0); 386 } 387 388 vd->vdev_trim_bytes_done += zio->io_orig_size; 389 } 390 391 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0); 392 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--; 393 cv_broadcast(&vd->vdev_trim_io_cv); 394 mutex_exit(&vd->vdev_trim_io_lock); 395 396 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 397 } 398 399 /* 400 * The zio_done_func_t done callback for each automatic TRIM issued. It 401 * is responsible for updating the TRIM stats and limiting the number of 402 * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are 403 * never reissued on failure. 404 */ 405 static void 406 vdev_autotrim_cb(zio_t *zio) 407 { 408 vdev_t *vd = zio->io_vd; 409 410 mutex_enter(&vd->vdev_trim_io_lock); 411 412 if (zio->io_error != 0) { 413 vd->vdev_stat.vs_trim_errors++; 414 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 415 0, 0, 0, 0, 1, zio->io_orig_size); 416 } else { 417 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 418 1, zio->io_orig_size, 0, 0, 0, 0); 419 } 420 421 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0); 422 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--; 423 cv_broadcast(&vd->vdev_trim_io_cv); 424 mutex_exit(&vd->vdev_trim_io_lock); 425 426 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 427 } 428 429 /* 430 * The zio_done_func_t done callback for each TRIM issued via 431 * vdev_trim_simple(). It is responsible for updating the TRIM stats and 432 * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best 433 * effort and are never reissued on failure. 434 */ 435 static void 436 vdev_trim_simple_cb(zio_t *zio) 437 { 438 vdev_t *vd = zio->io_vd; 439 440 mutex_enter(&vd->vdev_trim_io_lock); 441 442 if (zio->io_error != 0) { 443 vd->vdev_stat.vs_trim_errors++; 444 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 445 0, 0, 0, 0, 1, zio->io_orig_size); 446 } else { 447 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 448 1, zio->io_orig_size, 0, 0, 0, 0); 449 } 450 451 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0); 452 vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--; 453 cv_broadcast(&vd->vdev_trim_io_cv); 454 mutex_exit(&vd->vdev_trim_io_lock); 455 456 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 457 } 458 /* 459 * Returns the average trim rate in bytes/sec for the ta->trim_vdev. 460 */ 461 static uint64_t 462 vdev_trim_calculate_rate(trim_args_t *ta) 463 { 464 return (ta->trim_bytes_done * 1000 / 465 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1)); 466 } 467 468 /* 469 * Issues a physical TRIM and takes care of rate limiting (bytes/sec) 470 * and number of concurrent TRIM I/Os. 471 */ 472 static int 473 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size) 474 { 475 vdev_t *vd = ta->trim_vdev; 476 spa_t *spa = vd->vdev_spa; 477 void *cb; 478 479 mutex_enter(&vd->vdev_trim_io_lock); 480 481 /* 482 * Limit manual TRIM I/Os to the requested rate. This does not 483 * apply to automatic TRIM since no per vdev rate can be specified. 484 */ 485 if (ta->trim_type == TRIM_TYPE_MANUAL) { 486 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) && 487 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) { 488 cv_timedwait_idle(&vd->vdev_trim_io_cv, 489 &vd->vdev_trim_io_lock, ddi_get_lbolt() + 490 MSEC_TO_TICK(10)); 491 } 492 } 493 ta->trim_bytes_done += size; 494 495 /* Limit in flight trimming I/Os */ 496 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] + 497 vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) { 498 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 499 } 500 vd->vdev_trim_inflight[ta->trim_type]++; 501 mutex_exit(&vd->vdev_trim_io_lock); 502 503 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 504 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 505 uint64_t txg = dmu_tx_get_txg(tx); 506 507 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 508 mutex_enter(&vd->vdev_trim_lock); 509 510 if (ta->trim_type == TRIM_TYPE_MANUAL && 511 vd->vdev_trim_offset[txg & TXG_MASK] == 0) { 512 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 513 *guid = vd->vdev_guid; 514 515 /* This is the first write of this txg. */ 516 dsl_sync_task_nowait(spa_get_dsl(spa), 517 vdev_trim_zap_update_sync, guid, tx); 518 } 519 520 /* 521 * We know the vdev_t will still be around since all consumers of 522 * vdev_free must stop the trimming first. 523 */ 524 if ((ta->trim_type == TRIM_TYPE_MANUAL && 525 vdev_trim_should_stop(vd)) || 526 (ta->trim_type == TRIM_TYPE_AUTO && 527 vdev_autotrim_should_stop(vd->vdev_top))) { 528 mutex_enter(&vd->vdev_trim_io_lock); 529 vd->vdev_trim_inflight[ta->trim_type]--; 530 mutex_exit(&vd->vdev_trim_io_lock); 531 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 532 mutex_exit(&vd->vdev_trim_lock); 533 dmu_tx_commit(tx); 534 return (SET_ERROR(EINTR)); 535 } 536 mutex_exit(&vd->vdev_trim_lock); 537 538 if (ta->trim_type == TRIM_TYPE_MANUAL) 539 vd->vdev_trim_offset[txg & TXG_MASK] = start + size; 540 541 if (ta->trim_type == TRIM_TYPE_MANUAL) { 542 cb = vdev_trim_cb; 543 } else if (ta->trim_type == TRIM_TYPE_AUTO) { 544 cb = vdev_autotrim_cb; 545 } else { 546 cb = vdev_trim_simple_cb; 547 } 548 549 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd, 550 start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL, 551 ta->trim_flags)); 552 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */ 553 554 dmu_tx_commit(tx); 555 556 return (0); 557 } 558 559 /* 560 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree. 561 * Additional parameters describing how the TRIM should be performed must 562 * be set in the trim_args structure. See the trim_args definition for 563 * additional information. 564 */ 565 static int 566 vdev_trim_ranges(trim_args_t *ta) 567 { 568 vdev_t *vd = ta->trim_vdev; 569 zfs_btree_t *t = &ta->trim_tree->rt_root; 570 zfs_btree_index_t idx; 571 uint64_t extent_bytes_max = ta->trim_extent_bytes_max; 572 uint64_t extent_bytes_min = ta->trim_extent_bytes_min; 573 spa_t *spa = vd->vdev_spa; 574 575 ta->trim_start_time = gethrtime(); 576 ta->trim_bytes_done = 0; 577 578 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL; 579 rs = zfs_btree_next(t, &idx, &idx)) { 580 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs, 581 ta->trim_tree); 582 583 if (extent_bytes_min && size < extent_bytes_min) { 584 spa_iostats_trim_add(spa, ta->trim_type, 585 0, 0, 1, size, 0, 0); 586 continue; 587 } 588 589 /* Split range into legally-sized physical chunks */ 590 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1; 591 592 for (uint64_t w = 0; w < writes_required; w++) { 593 int error; 594 595 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE + 596 rs_get_start(rs, ta->trim_tree) + 597 (w *extent_bytes_max), MIN(size - 598 (w * extent_bytes_max), extent_bytes_max)); 599 if (error != 0) { 600 return (error); 601 } 602 } 603 } 604 605 return (0); 606 } 607 608 static void 609 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs) 610 { 611 uint64_t *last_rs_end = (uint64_t *)arg; 612 613 if (physical_rs->rs_end > *last_rs_end) 614 *last_rs_end = physical_rs->rs_end; 615 } 616 617 static void 618 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs) 619 { 620 vdev_t *vd = (vdev_t *)arg; 621 622 uint64_t size = physical_rs->rs_end - physical_rs->rs_start; 623 vd->vdev_trim_bytes_est += size; 624 625 if (vd->vdev_trim_last_offset >= physical_rs->rs_end) { 626 vd->vdev_trim_bytes_done += size; 627 } else if (vd->vdev_trim_last_offset > physical_rs->rs_start && 628 vd->vdev_trim_last_offset <= physical_rs->rs_end) { 629 vd->vdev_trim_bytes_done += 630 vd->vdev_trim_last_offset - physical_rs->rs_start; 631 } 632 } 633 634 /* 635 * Calculates the completion percentage of a manual TRIM. 636 */ 637 static void 638 vdev_trim_calculate_progress(vdev_t *vd) 639 { 640 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 641 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 642 ASSERT(vd->vdev_leaf_zap != 0); 643 644 vd->vdev_trim_bytes_est = 0; 645 vd->vdev_trim_bytes_done = 0; 646 647 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 648 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 649 mutex_enter(&msp->ms_lock); 650 651 uint64_t ms_free = (msp->ms_size - 652 metaslab_allocated_space(msp)) / 653 vdev_get_ndisks(vd->vdev_top); 654 655 /* 656 * Convert the metaslab range to a physical range 657 * on our vdev. We use this to determine if we are 658 * in the middle of this metaslab range. 659 */ 660 range_seg64_t logical_rs, physical_rs, remain_rs; 661 logical_rs.rs_start = msp->ms_start; 662 logical_rs.rs_end = msp->ms_start + msp->ms_size; 663 664 /* Metaslab space after this offset has not been trimmed. */ 665 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs); 666 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) { 667 vd->vdev_trim_bytes_est += ms_free; 668 mutex_exit(&msp->ms_lock); 669 continue; 670 } 671 672 /* Metaslab space before this offset has been trimmed */ 673 uint64_t last_rs_end = physical_rs.rs_end; 674 if (!vdev_xlate_is_empty(&remain_rs)) { 675 vdev_xlate_walk(vd, &remain_rs, 676 vdev_trim_xlate_last_rs_end, &last_rs_end); 677 } 678 679 if (vd->vdev_trim_last_offset > last_rs_end) { 680 vd->vdev_trim_bytes_done += ms_free; 681 vd->vdev_trim_bytes_est += ms_free; 682 mutex_exit(&msp->ms_lock); 683 continue; 684 } 685 686 /* 687 * If we get here, we're in the middle of trimming this 688 * metaslab. Load it and walk the free tree for more 689 * accurate progress estimation. 690 */ 691 VERIFY0(metaslab_load(msp)); 692 693 range_tree_t *rt = msp->ms_allocatable; 694 zfs_btree_t *bt = &rt->rt_root; 695 zfs_btree_index_t idx; 696 for (range_seg_t *rs = zfs_btree_first(bt, &idx); 697 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) { 698 logical_rs.rs_start = rs_get_start(rs, rt); 699 logical_rs.rs_end = rs_get_end(rs, rt); 700 701 vdev_xlate_walk(vd, &logical_rs, 702 vdev_trim_xlate_progress, vd); 703 } 704 mutex_exit(&msp->ms_lock); 705 } 706 } 707 708 /* 709 * Load from disk the vdev's manual TRIM information. This includes the 710 * state, progress, and options provided when initiating the manual TRIM. 711 */ 712 static int 713 vdev_trim_load(vdev_t *vd) 714 { 715 int err = 0; 716 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 717 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 718 ASSERT(vd->vdev_leaf_zap != 0); 719 720 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE || 721 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) { 722 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 723 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 724 sizeof (vd->vdev_trim_last_offset), 1, 725 &vd->vdev_trim_last_offset); 726 if (err == ENOENT) { 727 vd->vdev_trim_last_offset = 0; 728 err = 0; 729 } 730 731 if (err == 0) { 732 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 733 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE, 734 sizeof (vd->vdev_trim_rate), 1, 735 &vd->vdev_trim_rate); 736 if (err == ENOENT) { 737 vd->vdev_trim_rate = 0; 738 err = 0; 739 } 740 } 741 742 if (err == 0) { 743 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 744 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 745 sizeof (vd->vdev_trim_partial), 1, 746 &vd->vdev_trim_partial); 747 if (err == ENOENT) { 748 vd->vdev_trim_partial = 0; 749 err = 0; 750 } 751 } 752 753 if (err == 0) { 754 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 755 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 756 sizeof (vd->vdev_trim_secure), 1, 757 &vd->vdev_trim_secure); 758 if (err == ENOENT) { 759 vd->vdev_trim_secure = 0; 760 err = 0; 761 } 762 } 763 } 764 765 vdev_trim_calculate_progress(vd); 766 767 return (err); 768 } 769 770 static void 771 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs) 772 { 773 trim_args_t *ta = arg; 774 vdev_t *vd = ta->trim_vdev; 775 776 /* 777 * Only a manual trim will be traversing the vdev sequentially. 778 * For an auto trim all valid ranges should be added. 779 */ 780 if (ta->trim_type == TRIM_TYPE_MANUAL) { 781 782 /* Only add segments that we have not visited yet */ 783 if (physical_rs->rs_end <= vd->vdev_trim_last_offset) 784 return; 785 786 /* Pick up where we left off mid-range. */ 787 if (vd->vdev_trim_last_offset > physical_rs->rs_start) { 788 ASSERT3U(physical_rs->rs_end, >, 789 vd->vdev_trim_last_offset); 790 physical_rs->rs_start = vd->vdev_trim_last_offset; 791 } 792 } 793 794 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start); 795 796 range_tree_add(ta->trim_tree, physical_rs->rs_start, 797 physical_rs->rs_end - physical_rs->rs_start); 798 } 799 800 /* 801 * Convert the logical range into physical ranges and add them to the 802 * range tree passed in the trim_args_t. 803 */ 804 static void 805 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size) 806 { 807 trim_args_t *ta = arg; 808 vdev_t *vd = ta->trim_vdev; 809 range_seg64_t logical_rs; 810 logical_rs.rs_start = start; 811 logical_rs.rs_end = start + size; 812 813 /* 814 * Every range to be trimmed must be part of ms_allocatable. 815 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this 816 * is always the case. 817 */ 818 if (zfs_flags & ZFS_DEBUG_TRIM) { 819 metaslab_t *msp = ta->trim_msp; 820 VERIFY0(metaslab_load(msp)); 821 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 822 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 823 } 824 825 ASSERT(vd->vdev_ops->vdev_op_leaf); 826 vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg); 827 } 828 829 /* 830 * Each manual TRIM thread is responsible for trimming the unallocated 831 * space for each leaf vdev. This is accomplished by sequentially iterating 832 * over its top-level metaslabs and issuing TRIM I/O for the space described 833 * by its ms_allocatable. While a metaslab is undergoing trimming it is 834 * not eligible for new allocations. 835 */ 836 static void 837 vdev_trim_thread(void *arg) 838 { 839 vdev_t *vd = arg; 840 spa_t *spa = vd->vdev_spa; 841 trim_args_t ta; 842 int error = 0; 843 844 /* 845 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by 846 * vdev_trim(). Wait for the updated values to be reflected 847 * in the zap in order to start with the requested settings. 848 */ 849 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 850 851 ASSERT(vdev_is_concrete(vd)); 852 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 853 854 vd->vdev_trim_last_offset = 0; 855 vd->vdev_trim_rate = 0; 856 vd->vdev_trim_partial = 0; 857 vd->vdev_trim_secure = 0; 858 859 VERIFY0(vdev_trim_load(vd)); 860 861 ta.trim_vdev = vd; 862 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 863 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min; 864 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 865 ta.trim_type = TRIM_TYPE_MANUAL; 866 ta.trim_flags = 0; 867 868 /* 869 * When a secure TRIM has been requested infer that the intent 870 * is that everything must be trimmed. Override the default 871 * minimum TRIM size to prevent ranges from being skipped. 872 */ 873 if (vd->vdev_trim_secure) { 874 ta.trim_flags |= ZIO_TRIM_SECURE; 875 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 876 } 877 878 uint64_t ms_count = 0; 879 for (uint64_t i = 0; !vd->vdev_detached && 880 i < vd->vdev_top->vdev_ms_count; i++) { 881 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 882 883 /* 884 * If we've expanded the top-level vdev or it's our 885 * first pass, calculate our progress. 886 */ 887 if (vd->vdev_top->vdev_ms_count != ms_count) { 888 vdev_trim_calculate_progress(vd); 889 ms_count = vd->vdev_top->vdev_ms_count; 890 } 891 892 spa_config_exit(spa, SCL_CONFIG, FTAG); 893 metaslab_disable(msp); 894 mutex_enter(&msp->ms_lock); 895 VERIFY0(metaslab_load(msp)); 896 897 /* 898 * If a partial TRIM was requested skip metaslabs which have 899 * never been initialized and thus have never been written. 900 */ 901 if (msp->ms_sm == NULL && vd->vdev_trim_partial) { 902 mutex_exit(&msp->ms_lock); 903 metaslab_enable(msp, B_FALSE, B_FALSE); 904 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 905 vdev_trim_calculate_progress(vd); 906 continue; 907 } 908 909 ta.trim_msp = msp; 910 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta); 911 range_tree_vacate(msp->ms_trim, NULL, NULL); 912 mutex_exit(&msp->ms_lock); 913 914 error = vdev_trim_ranges(&ta); 915 metaslab_enable(msp, B_TRUE, B_FALSE); 916 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 917 918 range_tree_vacate(ta.trim_tree, NULL, NULL); 919 if (error != 0) 920 break; 921 } 922 923 spa_config_exit(spa, SCL_CONFIG, FTAG); 924 mutex_enter(&vd->vdev_trim_io_lock); 925 while (vd->vdev_trim_inflight[0] > 0) { 926 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 927 } 928 mutex_exit(&vd->vdev_trim_io_lock); 929 930 range_tree_destroy(ta.trim_tree); 931 932 mutex_enter(&vd->vdev_trim_lock); 933 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { 934 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 935 vd->vdev_trim_rate, vd->vdev_trim_partial, 936 vd->vdev_trim_secure); 937 } 938 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0); 939 940 /* 941 * Drop the vdev_trim_lock while we sync out the txg since it's 942 * possible that a device might be trying to come online and must 943 * check to see if it needs to restart a trim. That thread will be 944 * holding the spa_config_lock which would prevent the txg_wait_synced 945 * from completing. 946 */ 947 mutex_exit(&vd->vdev_trim_lock); 948 txg_wait_synced(spa_get_dsl(spa), 0); 949 mutex_enter(&vd->vdev_trim_lock); 950 951 vd->vdev_trim_thread = NULL; 952 cv_broadcast(&vd->vdev_trim_cv); 953 mutex_exit(&vd->vdev_trim_lock); 954 955 thread_exit(); 956 } 957 958 /* 959 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock, 960 * the vdev_t must be a leaf and cannot already be manually trimming. 961 */ 962 void 963 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure) 964 { 965 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 966 ASSERT(vd->vdev_ops->vdev_op_leaf); 967 ASSERT(vdev_is_concrete(vd)); 968 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 969 ASSERT(!vd->vdev_detached); 970 ASSERT(!vd->vdev_trim_exit_wanted); 971 ASSERT(!vd->vdev_top->vdev_removing); 972 973 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure); 974 vd->vdev_trim_thread = thread_create(NULL, 0, 975 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 976 } 977 978 /* 979 * Wait for the trimming thread to be terminated (canceled or stopped). 980 */ 981 static void 982 vdev_trim_stop_wait_impl(vdev_t *vd) 983 { 984 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 985 986 while (vd->vdev_trim_thread != NULL) 987 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock); 988 989 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 990 vd->vdev_trim_exit_wanted = B_FALSE; 991 } 992 993 /* 994 * Wait for vdev trim threads which were listed to cleanly exit. 995 */ 996 void 997 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list) 998 { 999 vdev_t *vd; 1000 1001 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1002 1003 while ((vd = list_remove_head(vd_list)) != NULL) { 1004 mutex_enter(&vd->vdev_trim_lock); 1005 vdev_trim_stop_wait_impl(vd); 1006 mutex_exit(&vd->vdev_trim_lock); 1007 } 1008 } 1009 1010 /* 1011 * Stop trimming a device, with the resultant trimming state being tgt_state. 1012 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is 1013 * provided the stopping vdev is inserted in to the list. Callers are then 1014 * required to call vdev_trim_stop_wait() to block for all the trim threads 1015 * to exit. The caller must hold vdev_trim_lock and must not be writing to 1016 * the spa config, as the trimming thread may try to enter the config as a 1017 * reader before exiting. 1018 */ 1019 void 1020 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list) 1021 { 1022 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 1023 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1024 ASSERT(vd->vdev_ops->vdev_op_leaf); 1025 ASSERT(vdev_is_concrete(vd)); 1026 1027 /* 1028 * Allow cancel requests to proceed even if the trim thread has 1029 * stopped. 1030 */ 1031 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED) 1032 return; 1033 1034 vdev_trim_change_state(vd, tgt_state, 0, 0, 0); 1035 vd->vdev_trim_exit_wanted = B_TRUE; 1036 1037 if (vd_list == NULL) { 1038 vdev_trim_stop_wait_impl(vd); 1039 } else { 1040 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1041 list_insert_tail(vd_list, vd); 1042 } 1043 } 1044 1045 /* 1046 * Requests that all listed vdevs stop trimming. 1047 */ 1048 static void 1049 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state, 1050 list_t *vd_list) 1051 { 1052 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 1053 mutex_enter(&vd->vdev_trim_lock); 1054 vdev_trim_stop(vd, tgt_state, vd_list); 1055 mutex_exit(&vd->vdev_trim_lock); 1056 return; 1057 } 1058 1059 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1060 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state, 1061 vd_list); 1062 } 1063 } 1064 1065 /* 1066 * Convenience function to stop trimming of a vdev tree and set all trim 1067 * thread pointers to NULL. 1068 */ 1069 void 1070 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state) 1071 { 1072 spa_t *spa = vd->vdev_spa; 1073 list_t vd_list; 1074 vdev_t *vd_l2cache; 1075 1076 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1077 1078 list_create(&vd_list, sizeof (vdev_t), 1079 offsetof(vdev_t, vdev_trim_node)); 1080 1081 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list); 1082 1083 /* 1084 * Iterate over cache devices and request stop trimming the 1085 * whole device in case we export the pool or remove the cache 1086 * device prematurely. 1087 */ 1088 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1089 vd_l2cache = spa->spa_l2cache.sav_vdevs[i]; 1090 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list); 1091 } 1092 1093 vdev_trim_stop_wait(spa, &vd_list); 1094 1095 if (vd->vdev_spa->spa_sync_on) { 1096 /* Make sure that our state has been synced to disk */ 1097 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1098 } 1099 1100 list_destroy(&vd_list); 1101 } 1102 1103 /* 1104 * Conditionally restarts a manual TRIM given its on-disk state. 1105 */ 1106 void 1107 vdev_trim_restart(vdev_t *vd) 1108 { 1109 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1110 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 1111 1112 if (vd->vdev_leaf_zap != 0) { 1113 mutex_enter(&vd->vdev_trim_lock); 1114 uint64_t trim_state = VDEV_TRIM_NONE; 1115 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1116 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 1117 sizeof (trim_state), 1, &trim_state); 1118 ASSERT(err == 0 || err == ENOENT); 1119 vd->vdev_trim_state = trim_state; 1120 1121 uint64_t timestamp = 0; 1122 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1123 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME, 1124 sizeof (timestamp), 1, ×tamp); 1125 ASSERT(err == 0 || err == ENOENT); 1126 vd->vdev_trim_action_time = timestamp; 1127 1128 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED || 1129 vd->vdev_offline) { 1130 /* load progress for reporting, but don't resume */ 1131 VERIFY0(vdev_trim_load(vd)); 1132 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE && 1133 vdev_writeable(vd) && !vd->vdev_top->vdev_removing && 1134 vd->vdev_trim_thread == NULL) { 1135 VERIFY0(vdev_trim_load(vd)); 1136 vdev_trim(vd, vd->vdev_trim_rate, 1137 vd->vdev_trim_partial, vd->vdev_trim_secure); 1138 } 1139 1140 mutex_exit(&vd->vdev_trim_lock); 1141 } 1142 1143 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1144 vdev_trim_restart(vd->vdev_child[i]); 1145 } 1146 } 1147 1148 /* 1149 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that 1150 * every TRIM range is contained within ms_allocatable. 1151 */ 1152 static void 1153 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size) 1154 { 1155 trim_args_t *ta = arg; 1156 metaslab_t *msp = ta->trim_msp; 1157 1158 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 1159 VERIFY3U(msp->ms_disabled, >, 0); 1160 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 1161 } 1162 1163 /* 1164 * Each automatic TRIM thread is responsible for managing the trimming of a 1165 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk. 1166 * 1167 * N.B. This behavior is different from a manual TRIM where a thread 1168 * is created for each leaf vdev, instead of each top-level vdev. 1169 */ 1170 static void 1171 vdev_autotrim_thread(void *arg) 1172 { 1173 vdev_t *vd = arg; 1174 spa_t *spa = vd->vdev_spa; 1175 int shift = 0; 1176 1177 mutex_enter(&vd->vdev_autotrim_lock); 1178 ASSERT3P(vd->vdev_top, ==, vd); 1179 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL); 1180 mutex_exit(&vd->vdev_autotrim_lock); 1181 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1182 1183 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max; 1184 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min; 1185 1186 while (!vdev_autotrim_should_stop(vd)) { 1187 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1); 1188 boolean_t issued_trim = B_FALSE; 1189 1190 /* 1191 * All of the metaslabs are divided in to groups of size 1192 * num_metaslabs / zfs_trim_txg_batch. Each of these groups 1193 * is composed of metaslabs which are spread evenly over the 1194 * device. 1195 * 1196 * For example, when zfs_trim_txg_batch = 32 (default) then 1197 * group 0 will contain metaslabs 0, 32, 64, ...; 1198 * group 1 will contain metaslabs 1, 33, 65, ...; 1199 * group 2 will contain metaslabs 2, 34, 66, ...; and so on. 1200 * 1201 * On each pass through the while() loop one of these groups 1202 * is selected. This is accomplished by using a shift value 1203 * to select the starting metaslab, then striding over the 1204 * metaslabs using the zfs_trim_txg_batch size. This is 1205 * done to accomplish two things. 1206 * 1207 * 1) By dividing the metaslabs in to groups, and making sure 1208 * that each group takes a minimum of one txg to process. 1209 * Then zfs_trim_txg_batch controls the minimum number of 1210 * txgs which must occur before a metaslab is revisited. 1211 * 1212 * 2) Selecting non-consecutive metaslabs distributes the 1213 * TRIM commands for a group evenly over the entire device. 1214 * This can be advantageous for certain types of devices. 1215 */ 1216 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count; 1217 i += txgs_per_trim) { 1218 metaslab_t *msp = vd->vdev_ms[i]; 1219 range_tree_t *trim_tree; 1220 1221 spa_config_exit(spa, SCL_CONFIG, FTAG); 1222 metaslab_disable(msp); 1223 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1224 1225 mutex_enter(&msp->ms_lock); 1226 1227 /* 1228 * Skip the metaslab when it has never been allocated 1229 * or when there are no recent frees to trim. 1230 */ 1231 if (msp->ms_sm == NULL || 1232 range_tree_is_empty(msp->ms_trim)) { 1233 mutex_exit(&msp->ms_lock); 1234 metaslab_enable(msp, B_FALSE, B_FALSE); 1235 continue; 1236 } 1237 1238 /* 1239 * Skip the metaslab when it has already been disabled. 1240 * This may happen when a manual TRIM or initialize 1241 * operation is running concurrently. In the case 1242 * of a manual TRIM, the ms_trim tree will have been 1243 * vacated. Only ranges added after the manual TRIM 1244 * disabled the metaslab will be included in the tree. 1245 * These will be processed when the automatic TRIM 1246 * next revisits this metaslab. 1247 */ 1248 if (msp->ms_disabled > 1) { 1249 mutex_exit(&msp->ms_lock); 1250 metaslab_enable(msp, B_FALSE, B_FALSE); 1251 continue; 1252 } 1253 1254 /* 1255 * Allocate an empty range tree which is swapped in 1256 * for the existing ms_trim tree while it is processed. 1257 */ 1258 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 1259 0, 0); 1260 range_tree_swap(&msp->ms_trim, &trim_tree); 1261 ASSERT(range_tree_is_empty(msp->ms_trim)); 1262 1263 /* 1264 * There are two cases when constructing the per-vdev 1265 * trim trees for a metaslab. If the top-level vdev 1266 * has no children then it is also a leaf and should 1267 * be trimmed. Otherwise our children are the leaves 1268 * and a trim tree should be constructed for each. 1269 */ 1270 trim_args_t *tap; 1271 uint64_t children = vd->vdev_children; 1272 if (children == 0) { 1273 children = 1; 1274 tap = kmem_zalloc(sizeof (trim_args_t) * 1275 children, KM_SLEEP); 1276 tap[0].trim_vdev = vd; 1277 } else { 1278 tap = kmem_zalloc(sizeof (trim_args_t) * 1279 children, KM_SLEEP); 1280 1281 for (uint64_t c = 0; c < children; c++) { 1282 tap[c].trim_vdev = vd->vdev_child[c]; 1283 } 1284 } 1285 1286 for (uint64_t c = 0; c < children; c++) { 1287 trim_args_t *ta = &tap[c]; 1288 vdev_t *cvd = ta->trim_vdev; 1289 1290 ta->trim_msp = msp; 1291 ta->trim_extent_bytes_max = extent_bytes_max; 1292 ta->trim_extent_bytes_min = extent_bytes_min; 1293 ta->trim_type = TRIM_TYPE_AUTO; 1294 ta->trim_flags = 0; 1295 1296 if (cvd->vdev_detached || 1297 !vdev_writeable(cvd) || 1298 !cvd->vdev_has_trim || 1299 cvd->vdev_trim_thread != NULL) { 1300 continue; 1301 } 1302 1303 /* 1304 * When a device has an attached hot spare, or 1305 * is being replaced it will not be trimmed. 1306 * This is done to avoid adding additional 1307 * stress to a potentially unhealthy device, 1308 * and to minimize the required rebuild time. 1309 */ 1310 if (!cvd->vdev_ops->vdev_op_leaf) 1311 continue; 1312 1313 ta->trim_tree = range_tree_create(NULL, 1314 RANGE_SEG64, NULL, 0, 0); 1315 range_tree_walk(trim_tree, 1316 vdev_trim_range_add, ta); 1317 } 1318 1319 mutex_exit(&msp->ms_lock); 1320 spa_config_exit(spa, SCL_CONFIG, FTAG); 1321 1322 /* 1323 * Issue the TRIM I/Os for all ranges covered by the 1324 * TRIM trees. These ranges are safe to TRIM because 1325 * no new allocations will be performed until the call 1326 * to metaslab_enabled() below. 1327 */ 1328 for (uint64_t c = 0; c < children; c++) { 1329 trim_args_t *ta = &tap[c]; 1330 1331 /* 1332 * Always yield to a manual TRIM if one has 1333 * been started for the child vdev. 1334 */ 1335 if (ta->trim_tree == NULL || 1336 ta->trim_vdev->vdev_trim_thread != NULL) { 1337 continue; 1338 } 1339 1340 /* 1341 * After this point metaslab_enable() must be 1342 * called with the sync flag set. This is done 1343 * here because vdev_trim_ranges() is allowed 1344 * to be interrupted (EINTR) before issuing all 1345 * of the required TRIM I/Os. 1346 */ 1347 issued_trim = B_TRUE; 1348 1349 int error = vdev_trim_ranges(ta); 1350 if (error) 1351 break; 1352 } 1353 1354 /* 1355 * Verify every range which was trimmed is still 1356 * contained within the ms_allocatable tree. 1357 */ 1358 if (zfs_flags & ZFS_DEBUG_TRIM) { 1359 mutex_enter(&msp->ms_lock); 1360 VERIFY0(metaslab_load(msp)); 1361 VERIFY3P(tap[0].trim_msp, ==, msp); 1362 range_tree_walk(trim_tree, 1363 vdev_trim_range_verify, &tap[0]); 1364 mutex_exit(&msp->ms_lock); 1365 } 1366 1367 range_tree_vacate(trim_tree, NULL, NULL); 1368 range_tree_destroy(trim_tree); 1369 1370 metaslab_enable(msp, issued_trim, B_FALSE); 1371 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1372 1373 for (uint64_t c = 0; c < children; c++) { 1374 trim_args_t *ta = &tap[c]; 1375 1376 if (ta->trim_tree == NULL) 1377 continue; 1378 1379 range_tree_vacate(ta->trim_tree, NULL, NULL); 1380 range_tree_destroy(ta->trim_tree); 1381 } 1382 1383 kmem_free(tap, sizeof (trim_args_t) * children); 1384 } 1385 1386 spa_config_exit(spa, SCL_CONFIG, FTAG); 1387 1388 /* 1389 * After completing the group of metaslabs wait for the next 1390 * open txg. This is done to make sure that a minimum of 1391 * zfs_trim_txg_batch txgs will occur before these metaslabs 1392 * are trimmed again. 1393 */ 1394 txg_wait_open(spa_get_dsl(spa), 0, issued_trim); 1395 1396 shift++; 1397 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1398 } 1399 1400 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1401 vdev_t *cvd = vd->vdev_child[c]; 1402 mutex_enter(&cvd->vdev_trim_io_lock); 1403 1404 while (cvd->vdev_trim_inflight[1] > 0) { 1405 cv_wait(&cvd->vdev_trim_io_cv, 1406 &cvd->vdev_trim_io_lock); 1407 } 1408 mutex_exit(&cvd->vdev_trim_io_lock); 1409 } 1410 1411 spa_config_exit(spa, SCL_CONFIG, FTAG); 1412 1413 /* 1414 * When exiting because the autotrim property was set to off, then 1415 * abandon any unprocessed ms_trim ranges to reclaim the memory. 1416 */ 1417 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) { 1418 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 1419 metaslab_t *msp = vd->vdev_ms[i]; 1420 1421 mutex_enter(&msp->ms_lock); 1422 range_tree_vacate(msp->ms_trim, NULL, NULL); 1423 mutex_exit(&msp->ms_lock); 1424 } 1425 } 1426 1427 mutex_enter(&vd->vdev_autotrim_lock); 1428 ASSERT(vd->vdev_autotrim_thread != NULL); 1429 vd->vdev_autotrim_thread = NULL; 1430 cv_broadcast(&vd->vdev_autotrim_cv); 1431 mutex_exit(&vd->vdev_autotrim_lock); 1432 1433 thread_exit(); 1434 } 1435 1436 /* 1437 * Starts an autotrim thread, if needed, for each top-level vdev which can be 1438 * trimmed. A top-level vdev which has been evacuated will never be trimmed. 1439 */ 1440 void 1441 vdev_autotrim(spa_t *spa) 1442 { 1443 vdev_t *root_vd = spa->spa_root_vdev; 1444 1445 for (uint64_t i = 0; i < root_vd->vdev_children; i++) { 1446 vdev_t *tvd = root_vd->vdev_child[i]; 1447 1448 mutex_enter(&tvd->vdev_autotrim_lock); 1449 if (vdev_writeable(tvd) && !tvd->vdev_removing && 1450 tvd->vdev_autotrim_thread == NULL) { 1451 ASSERT3P(tvd->vdev_top, ==, tvd); 1452 1453 tvd->vdev_autotrim_thread = thread_create(NULL, 0, 1454 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN, 1455 maxclsyspri); 1456 ASSERT(tvd->vdev_autotrim_thread != NULL); 1457 } 1458 mutex_exit(&tvd->vdev_autotrim_lock); 1459 } 1460 } 1461 1462 /* 1463 * Wait for the vdev_autotrim_thread associated with the passed top-level 1464 * vdev to be terminated (canceled or stopped). 1465 */ 1466 void 1467 vdev_autotrim_stop_wait(vdev_t *tvd) 1468 { 1469 mutex_enter(&tvd->vdev_autotrim_lock); 1470 if (tvd->vdev_autotrim_thread != NULL) { 1471 tvd->vdev_autotrim_exit_wanted = B_TRUE; 1472 1473 while (tvd->vdev_autotrim_thread != NULL) { 1474 cv_wait(&tvd->vdev_autotrim_cv, 1475 &tvd->vdev_autotrim_lock); 1476 } 1477 1478 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL); 1479 tvd->vdev_autotrim_exit_wanted = B_FALSE; 1480 } 1481 mutex_exit(&tvd->vdev_autotrim_lock); 1482 } 1483 1484 /* 1485 * Wait for all of the vdev_autotrim_thread associated with the pool to 1486 * be terminated (canceled or stopped). 1487 */ 1488 void 1489 vdev_autotrim_stop_all(spa_t *spa) 1490 { 1491 vdev_t *root_vd = spa->spa_root_vdev; 1492 1493 for (uint64_t i = 0; i < root_vd->vdev_children; i++) 1494 vdev_autotrim_stop_wait(root_vd->vdev_child[i]); 1495 } 1496 1497 /* 1498 * Conditionally restart all of the vdev_autotrim_thread's for the pool. 1499 */ 1500 void 1501 vdev_autotrim_restart(spa_t *spa) 1502 { 1503 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1504 1505 if (spa->spa_autotrim) 1506 vdev_autotrim(spa); 1507 } 1508 1509 static void 1510 vdev_trim_l2arc_thread(void *arg) 1511 { 1512 vdev_t *vd = arg; 1513 spa_t *spa = vd->vdev_spa; 1514 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1515 trim_args_t ta; 1516 range_seg64_t physical_rs; 1517 1518 ASSERT(vdev_is_concrete(vd)); 1519 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1520 1521 vd->vdev_trim_last_offset = 0; 1522 vd->vdev_trim_rate = 0; 1523 vd->vdev_trim_partial = 0; 1524 vd->vdev_trim_secure = 0; 1525 1526 bzero(&ta, sizeof (ta)); 1527 ta.trim_vdev = vd; 1528 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1529 ta.trim_type = TRIM_TYPE_MANUAL; 1530 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1531 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1532 ta.trim_flags = 0; 1533 1534 physical_rs.rs_start = vd->vdev_trim_bytes_done = 0; 1535 physical_rs.rs_end = vd->vdev_trim_bytes_est = 1536 vdev_get_min_asize(vd); 1537 1538 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1539 physical_rs.rs_end - physical_rs.rs_start); 1540 1541 mutex_enter(&vd->vdev_trim_lock); 1542 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1543 mutex_exit(&vd->vdev_trim_lock); 1544 1545 (void) vdev_trim_ranges(&ta); 1546 1547 spa_config_exit(spa, SCL_CONFIG, FTAG); 1548 mutex_enter(&vd->vdev_trim_io_lock); 1549 while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) { 1550 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1551 } 1552 mutex_exit(&vd->vdev_trim_io_lock); 1553 1554 range_tree_vacate(ta.trim_tree, NULL, NULL); 1555 range_tree_destroy(ta.trim_tree); 1556 1557 mutex_enter(&vd->vdev_trim_lock); 1558 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { 1559 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 1560 vd->vdev_trim_rate, vd->vdev_trim_partial, 1561 vd->vdev_trim_secure); 1562 } 1563 ASSERT(vd->vdev_trim_thread != NULL || 1564 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0); 1565 1566 /* 1567 * Drop the vdev_trim_lock while we sync out the txg since it's 1568 * possible that a device might be trying to come online and 1569 * must check to see if it needs to restart a trim. That thread 1570 * will be holding the spa_config_lock which would prevent the 1571 * txg_wait_synced from completing. Same strategy as in 1572 * vdev_trim_thread(). 1573 */ 1574 mutex_exit(&vd->vdev_trim_lock); 1575 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1576 mutex_enter(&vd->vdev_trim_lock); 1577 1578 /* 1579 * Update the header of the cache device here, before 1580 * broadcasting vdev_trim_cv which may lead to the removal 1581 * of the device. The same applies for setting l2ad_trim_all to 1582 * false. 1583 */ 1584 spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd, 1585 RW_READER); 1586 bzero(dev->l2ad_dev_hdr, dev->l2ad_dev_hdr_asize); 1587 l2arc_dev_hdr_update(dev); 1588 spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd); 1589 1590 vd->vdev_trim_thread = NULL; 1591 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE) 1592 dev->l2ad_trim_all = B_FALSE; 1593 1594 cv_broadcast(&vd->vdev_trim_cv); 1595 mutex_exit(&vd->vdev_trim_lock); 1596 1597 thread_exit(); 1598 } 1599 1600 /* 1601 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them 1602 * to vd->vdev_trim_thread variable. This facilitates the management of 1603 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition 1604 * to a pool or pool creation or when the header of the device is invalid. 1605 */ 1606 void 1607 vdev_trim_l2arc(spa_t *spa) 1608 { 1609 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1610 1611 /* 1612 * Locate the spa's l2arc devices and kick off TRIM threads. 1613 */ 1614 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1615 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i]; 1616 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1617 1618 if (dev == NULL || !dev->l2ad_trim_all) { 1619 /* 1620 * Don't attempt TRIM if the vdev is UNAVAIL or if the 1621 * cache device was not marked for whole device TRIM 1622 * (ie l2arc_trim_ahead = 0, or the L2ARC device header 1623 * is valid with trim_state = VDEV_TRIM_COMPLETE and 1624 * l2ad_log_entries > 0). 1625 */ 1626 continue; 1627 } 1628 1629 mutex_enter(&vd->vdev_trim_lock); 1630 ASSERT(vd->vdev_ops->vdev_op_leaf); 1631 ASSERT(vdev_is_concrete(vd)); 1632 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1633 ASSERT(!vd->vdev_detached); 1634 ASSERT(!vd->vdev_trim_exit_wanted); 1635 ASSERT(!vd->vdev_top->vdev_removing); 1636 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1637 vd->vdev_trim_thread = thread_create(NULL, 0, 1638 vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 1639 mutex_exit(&vd->vdev_trim_lock); 1640 } 1641 } 1642 1643 /* 1644 * A wrapper which calls vdev_trim_ranges(). It is intended to be called 1645 * on leaf vdevs. 1646 */ 1647 int 1648 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size) 1649 { 1650 trim_args_t ta; 1651 range_seg64_t physical_rs; 1652 int error; 1653 physical_rs.rs_start = start; 1654 physical_rs.rs_end = start + size; 1655 1656 ASSERT(vdev_is_concrete(vd)); 1657 ASSERT(vd->vdev_ops->vdev_op_leaf); 1658 ASSERT(!vd->vdev_detached); 1659 ASSERT(!vd->vdev_top->vdev_removing); 1660 1661 bzero(&ta, sizeof (ta)); 1662 ta.trim_vdev = vd; 1663 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1664 ta.trim_type = TRIM_TYPE_SIMPLE; 1665 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1666 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1667 ta.trim_flags = 0; 1668 1669 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 1670 1671 if (physical_rs.rs_end > physical_rs.rs_start) { 1672 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1673 physical_rs.rs_end - physical_rs.rs_start); 1674 } else { 1675 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 1676 } 1677 1678 error = vdev_trim_ranges(&ta); 1679 1680 mutex_enter(&vd->vdev_trim_io_lock); 1681 while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) { 1682 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1683 } 1684 mutex_exit(&vd->vdev_trim_io_lock); 1685 1686 range_tree_vacate(ta.trim_tree, NULL, NULL); 1687 range_tree_destroy(ta.trim_tree); 1688 1689 return (error); 1690 } 1691 1692 EXPORT_SYMBOL(vdev_trim); 1693 EXPORT_SYMBOL(vdev_trim_stop); 1694 EXPORT_SYMBOL(vdev_trim_stop_all); 1695 EXPORT_SYMBOL(vdev_trim_stop_wait); 1696 EXPORT_SYMBOL(vdev_trim_restart); 1697 EXPORT_SYMBOL(vdev_autotrim); 1698 EXPORT_SYMBOL(vdev_autotrim_stop_all); 1699 EXPORT_SYMBOL(vdev_autotrim_stop_wait); 1700 EXPORT_SYMBOL(vdev_autotrim_restart); 1701 EXPORT_SYMBOL(vdev_trim_l2arc); 1702 EXPORT_SYMBOL(vdev_trim_simple); 1703 1704 /* BEGIN CSTYLED */ 1705 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW, 1706 "Max size of TRIM commands, larger will be split"); 1707 1708 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW, 1709 "Min size of TRIM commands, smaller will be skipped"); 1710 1711 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW, 1712 "Skip metaslabs which have never been initialized"); 1713 1714 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW, 1715 "Min number of txgs to aggregate frees before issuing TRIM"); 1716 1717 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW, 1718 "Max queued TRIMs outstanding per leaf vdev"); 1719 /* END CSTYLED */ 1720