1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016, 2024 by Delphix. All rights reserved. 24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC. 25 * Copyright (c) 2021 Hewlett Packard Enterprise Development LP 26 * Copyright 2023 RackTop Systems, Inc. 27 */ 28 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/txg.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/vdev_trim.h> 34 #include <sys/metaslab_impl.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/zap.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/arc_impl.h> 39 40 /* 41 * TRIM is a feature which is used to notify a SSD that some previously 42 * written space is no longer allocated by the pool. This is useful because 43 * writes to a SSD must be performed to blocks which have first been erased. 44 * Ensuring the SSD always has a supply of erased blocks for new writes 45 * helps prevent the performance from deteriorating. 46 * 47 * There are two supported TRIM methods; manual and automatic. 48 * 49 * Manual TRIM: 50 * 51 * A manual TRIM is initiated by running the 'zpool trim' command. A single 52 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for 53 * managing that vdev TRIM process. This involves iterating over all the 54 * metaslabs, calculating the unallocated space ranges, and then issuing the 55 * required TRIM I/Os. 56 * 57 * While a metaslab is being actively trimmed it is not eligible to perform 58 * new allocations. After traversing all of the metaslabs the thread is 59 * terminated. Finally, both the requested options and current progress of 60 * the TRIM are regularly written to the pool. This allows the TRIM to be 61 * suspended and resumed as needed. 62 * 63 * Automatic TRIM: 64 * 65 * An automatic TRIM is enabled by setting the 'autotrim' pool property 66 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each 67 * top-level (not leaf) vdev in the pool. These threads perform the same 68 * core TRIM process as a manual TRIM, but with a few key differences. 69 * 70 * 1) Automatic TRIM happens continuously in the background and operates 71 * solely on recently freed blocks (ms_trim not ms_allocatable). 72 * 73 * 2) Each thread is associated with a top-level (not leaf) vdev. This has 74 * the benefit of simplifying the threading model, it makes it easier 75 * to coordinate administrative commands, and it ensures only a single 76 * metaslab is disabled at a time. Unlike manual TRIM, this means each 77 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its 78 * children. 79 * 80 * 3) There is no automatic TRIM progress information stored on disk, nor 81 * is it reported by 'zpool status'. 82 * 83 * While the automatic TRIM process is highly effective it is more likely 84 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to 85 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently 86 * TRIM and are skipped. This means small amounts of freed space may not 87 * be automatically trimmed. 88 * 89 * Furthermore, devices with attached hot spares and devices being actively 90 * replaced are skipped. This is done to avoid adding additional stress to 91 * a potentially unhealthy device and to minimize the required rebuild time. 92 * 93 * For this reason it may be beneficial to occasionally manually TRIM a pool 94 * even when automatic TRIM is enabled. 95 */ 96 97 /* 98 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths. 99 */ 100 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024; 101 102 /* 103 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped. 104 */ 105 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024; 106 107 /* 108 * Skip uninitialized metaslabs during the TRIM process. This option is 109 * useful for pools constructed from large thinly-provisioned devices where 110 * TRIM operations are slow. As a pool ages an increasing fraction of 111 * the pools metaslabs will be initialized progressively degrading the 112 * usefulness of this option. This setting is stored when starting a 113 * manual TRIM and will persist for the duration of the requested TRIM. 114 */ 115 unsigned int zfs_trim_metaslab_skip = 0; 116 117 /* 118 * Maximum number of queued TRIM I/Os per leaf vdev. The number of 119 * concurrent TRIM I/Os issued to the device is controlled by the 120 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options. 121 */ 122 static unsigned int zfs_trim_queue_limit = 10; 123 124 /* 125 * The minimum number of transaction groups between automatic trims of a 126 * metaslab. This setting represents a trade-off between issuing more 127 * efficient TRIM operations, by allowing them to be aggregated longer, 128 * and issuing them promptly so the trimmed space is available. Note 129 * that this value is a minimum; metaslabs can be trimmed less frequently 130 * when there are a large number of ranges which need to be trimmed. 131 * 132 * Increasing this value will allow frees to be aggregated for a longer 133 * time. This can result is larger TRIM operations, and increased memory 134 * usage in order to track the ranges to be trimmed. Decreasing this value 135 * has the opposite effect. The default value of 32 was determined though 136 * testing to be a reasonable compromise. 137 */ 138 static unsigned int zfs_trim_txg_batch = 32; 139 140 /* 141 * The trim_args are a control structure which describe how a leaf vdev 142 * should be trimmed. The core elements are the vdev, the metaslab being 143 * trimmed and a range tree containing the extents to TRIM. All provided 144 * ranges must be within the metaslab. 145 */ 146 typedef struct trim_args { 147 /* 148 * These fields are set by the caller of vdev_trim_ranges(). 149 */ 150 vdev_t *trim_vdev; /* Leaf vdev to TRIM */ 151 metaslab_t *trim_msp; /* Disabled metaslab */ 152 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */ 153 trim_type_t trim_type; /* Manual or auto TRIM */ 154 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */ 155 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */ 156 enum trim_flag trim_flags; /* TRIM flags (secure) */ 157 158 /* 159 * These fields are updated by vdev_trim_ranges(). 160 */ 161 hrtime_t trim_start_time; /* Start time */ 162 uint64_t trim_bytes_done; /* Bytes trimmed */ 163 } trim_args_t; 164 165 /* 166 * Determines whether a vdev_trim_thread() should be stopped. 167 */ 168 static boolean_t 169 vdev_trim_should_stop(vdev_t *vd) 170 { 171 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) || 172 vd->vdev_detached || vd->vdev_top->vdev_removing || 173 vd->vdev_top->vdev_rz_expanding); 174 } 175 176 /* 177 * Determines whether a vdev_autotrim_thread() should be stopped. 178 */ 179 static boolean_t 180 vdev_autotrim_should_stop(vdev_t *tvd) 181 { 182 return (tvd->vdev_autotrim_exit_wanted || 183 !vdev_writeable(tvd) || tvd->vdev_removing || 184 tvd->vdev_rz_expanding || 185 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF); 186 } 187 188 /* 189 * Wait for given number of kicks, return true if the wait is aborted due to 190 * vdev_autotrim_exit_wanted. 191 */ 192 static boolean_t 193 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick) 194 { 195 mutex_enter(&vd->vdev_autotrim_lock); 196 for (int i = 0; i < num_of_kick; i++) { 197 if (vd->vdev_autotrim_exit_wanted) 198 break; 199 cv_wait_idle(&vd->vdev_autotrim_kick_cv, 200 &vd->vdev_autotrim_lock); 201 } 202 boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted; 203 mutex_exit(&vd->vdev_autotrim_lock); 204 205 return (exit_wanted); 206 } 207 208 /* 209 * The sync task for updating the on-disk state of a manual TRIM. This 210 * is scheduled by vdev_trim_change_state(). 211 */ 212 static void 213 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx) 214 { 215 /* 216 * We pass in the guid instead of the vdev_t since the vdev may 217 * have been freed prior to the sync task being processed. This 218 * happens when a vdev is detached as we call spa_config_vdev_exit(), 219 * stop the trimming thread, schedule the sync task, and free 220 * the vdev. Later when the scheduled sync task is invoked, it would 221 * find that the vdev has been freed. 222 */ 223 uint64_t guid = *(uint64_t *)arg; 224 uint64_t txg = dmu_tx_get_txg(tx); 225 kmem_free(arg, sizeof (uint64_t)); 226 227 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 228 if (vd == NULL || vd->vdev_top->vdev_removing || 229 !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding) 230 return; 231 232 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK]; 233 vd->vdev_trim_offset[txg & TXG_MASK] = 0; 234 235 VERIFY3U(vd->vdev_leaf_zap, !=, 0); 236 237 objset_t *mos = vd->vdev_spa->spa_meta_objset; 238 239 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) { 240 241 if (vd->vdev_trim_last_offset == UINT64_MAX) 242 last_offset = 0; 243 244 vd->vdev_trim_last_offset = last_offset; 245 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 246 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 247 sizeof (last_offset), 1, &last_offset, tx)); 248 } 249 250 if (vd->vdev_trim_action_time > 0) { 251 uint64_t val = (uint64_t)vd->vdev_trim_action_time; 252 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 253 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val), 254 1, &val, tx)); 255 } 256 257 if (vd->vdev_trim_rate > 0) { 258 uint64_t rate = (uint64_t)vd->vdev_trim_rate; 259 260 if (rate == UINT64_MAX) 261 rate = 0; 262 263 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 264 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx)); 265 } 266 267 uint64_t partial = vd->vdev_trim_partial; 268 if (partial == UINT64_MAX) 269 partial = 0; 270 271 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 272 sizeof (partial), 1, &partial, tx)); 273 274 uint64_t secure = vd->vdev_trim_secure; 275 if (secure == UINT64_MAX) 276 secure = 0; 277 278 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 279 sizeof (secure), 1, &secure, tx)); 280 281 282 uint64_t trim_state = vd->vdev_trim_state; 283 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 284 sizeof (trim_state), 1, &trim_state, tx)); 285 } 286 287 /* 288 * Update the on-disk state of a manual TRIM. This is called to request 289 * that a TRIM be started/suspended/canceled, or to change one of the 290 * TRIM options (partial, secure, rate). 291 */ 292 static void 293 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state, 294 uint64_t rate, boolean_t partial, boolean_t secure) 295 { 296 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 297 spa_t *spa = vd->vdev_spa; 298 299 if (new_state == vd->vdev_trim_state) 300 return; 301 302 /* 303 * Copy the vd's guid, this will be freed by the sync task. 304 */ 305 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 306 *guid = vd->vdev_guid; 307 308 /* 309 * If we're suspending, then preserve the original start time. 310 */ 311 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) { 312 vd->vdev_trim_action_time = gethrestime_sec(); 313 } 314 315 /* 316 * If we're activating, then preserve the requested rate and trim 317 * method. Setting the last offset and rate to UINT64_MAX is used 318 * as a sentinel to indicate they should be reset to default values. 319 */ 320 if (new_state == VDEV_TRIM_ACTIVE) { 321 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE || 322 vd->vdev_trim_state == VDEV_TRIM_CANCELED) { 323 vd->vdev_trim_last_offset = UINT64_MAX; 324 vd->vdev_trim_rate = UINT64_MAX; 325 vd->vdev_trim_partial = UINT64_MAX; 326 vd->vdev_trim_secure = UINT64_MAX; 327 } 328 329 if (rate != 0) 330 vd->vdev_trim_rate = rate; 331 332 if (partial != 0) 333 vd->vdev_trim_partial = partial; 334 335 if (secure != 0) 336 vd->vdev_trim_secure = secure; 337 } 338 339 vdev_trim_state_t old_state = vd->vdev_trim_state; 340 boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED); 341 vd->vdev_trim_state = new_state; 342 343 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 344 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 345 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync, 346 guid, tx); 347 348 switch (new_state) { 349 case VDEV_TRIM_ACTIVE: 350 spa_event_notify(spa, vd, NULL, 351 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START); 352 spa_history_log_internal(spa, "trim", tx, 353 "vdev=%s activated", vd->vdev_path); 354 break; 355 case VDEV_TRIM_SUSPENDED: 356 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND); 357 spa_history_log_internal(spa, "trim", tx, 358 "vdev=%s suspended", vd->vdev_path); 359 break; 360 case VDEV_TRIM_CANCELED: 361 if (old_state == VDEV_TRIM_ACTIVE || 362 old_state == VDEV_TRIM_SUSPENDED) { 363 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL); 364 spa_history_log_internal(spa, "trim", tx, 365 "vdev=%s canceled", vd->vdev_path); 366 } 367 break; 368 case VDEV_TRIM_COMPLETE: 369 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH); 370 spa_history_log_internal(spa, "trim", tx, 371 "vdev=%s complete", vd->vdev_path); 372 break; 373 default: 374 panic("invalid state %llu", (unsigned long long)new_state); 375 } 376 377 dmu_tx_commit(tx); 378 379 if (new_state != VDEV_TRIM_ACTIVE) 380 spa_notify_waiters(spa); 381 } 382 383 /* 384 * The zio_done_func_t done callback for each manual TRIM issued. It is 385 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os, 386 * and limiting the number of in flight TRIM I/Os. 387 */ 388 static void 389 vdev_trim_cb(zio_t *zio) 390 { 391 vdev_t *vd = zio->io_vd; 392 393 mutex_enter(&vd->vdev_trim_io_lock); 394 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 395 /* 396 * The I/O failed because the vdev was unavailable; roll the 397 * last offset back. (This works because spa_sync waits on 398 * spa_txg_zio before it runs sync tasks.) 399 */ 400 uint64_t *offset = 401 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK]; 402 *offset = MIN(*offset, zio->io_offset); 403 } else { 404 if (zio->io_error != 0) { 405 vd->vdev_stat.vs_trim_errors++; 406 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 407 0, 0, 0, 0, 1, zio->io_orig_size); 408 } else { 409 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 410 1, zio->io_orig_size, 0, 0, 0, 0); 411 } 412 413 vd->vdev_trim_bytes_done += zio->io_orig_size; 414 } 415 416 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0); 417 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--; 418 cv_broadcast(&vd->vdev_trim_io_cv); 419 mutex_exit(&vd->vdev_trim_io_lock); 420 421 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 422 } 423 424 /* 425 * The zio_done_func_t done callback for each automatic TRIM issued. It 426 * is responsible for updating the TRIM stats and limiting the number of 427 * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are 428 * never reissued on failure. 429 */ 430 static void 431 vdev_autotrim_cb(zio_t *zio) 432 { 433 vdev_t *vd = zio->io_vd; 434 435 mutex_enter(&vd->vdev_trim_io_lock); 436 437 if (zio->io_error != 0) { 438 vd->vdev_stat.vs_trim_errors++; 439 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 440 0, 0, 0, 0, 1, zio->io_orig_size); 441 } else { 442 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 443 1, zio->io_orig_size, 0, 0, 0, 0); 444 } 445 446 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0); 447 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--; 448 cv_broadcast(&vd->vdev_trim_io_cv); 449 mutex_exit(&vd->vdev_trim_io_lock); 450 451 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 452 } 453 454 /* 455 * The zio_done_func_t done callback for each TRIM issued via 456 * vdev_trim_simple(). It is responsible for updating the TRIM stats and 457 * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best 458 * effort and are never reissued on failure. 459 */ 460 static void 461 vdev_trim_simple_cb(zio_t *zio) 462 { 463 vdev_t *vd = zio->io_vd; 464 465 mutex_enter(&vd->vdev_trim_io_lock); 466 467 if (zio->io_error != 0) { 468 vd->vdev_stat.vs_trim_errors++; 469 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 470 0, 0, 0, 0, 1, zio->io_orig_size); 471 } else { 472 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 473 1, zio->io_orig_size, 0, 0, 0, 0); 474 } 475 476 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0); 477 vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--; 478 cv_broadcast(&vd->vdev_trim_io_cv); 479 mutex_exit(&vd->vdev_trim_io_lock); 480 481 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 482 } 483 /* 484 * Returns the average trim rate in bytes/sec for the ta->trim_vdev. 485 */ 486 static uint64_t 487 vdev_trim_calculate_rate(trim_args_t *ta) 488 { 489 return (ta->trim_bytes_done * 1000 / 490 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1)); 491 } 492 493 /* 494 * Issues a physical TRIM and takes care of rate limiting (bytes/sec) 495 * and number of concurrent TRIM I/Os. 496 */ 497 static int 498 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size) 499 { 500 vdev_t *vd = ta->trim_vdev; 501 spa_t *spa = vd->vdev_spa; 502 void *cb; 503 504 mutex_enter(&vd->vdev_trim_io_lock); 505 506 /* 507 * Limit manual TRIM I/Os to the requested rate. This does not 508 * apply to automatic TRIM since no per vdev rate can be specified. 509 */ 510 if (ta->trim_type == TRIM_TYPE_MANUAL) { 511 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) && 512 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) { 513 cv_timedwait_idle(&vd->vdev_trim_io_cv, 514 &vd->vdev_trim_io_lock, ddi_get_lbolt() + 515 MSEC_TO_TICK(10)); 516 } 517 } 518 ta->trim_bytes_done += size; 519 520 /* Limit in flight trimming I/Os */ 521 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] + 522 vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) { 523 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 524 } 525 vd->vdev_trim_inflight[ta->trim_type]++; 526 mutex_exit(&vd->vdev_trim_io_lock); 527 528 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 529 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 530 uint64_t txg = dmu_tx_get_txg(tx); 531 532 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 533 mutex_enter(&vd->vdev_trim_lock); 534 535 if (ta->trim_type == TRIM_TYPE_MANUAL && 536 vd->vdev_trim_offset[txg & TXG_MASK] == 0) { 537 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 538 *guid = vd->vdev_guid; 539 540 /* This is the first write of this txg. */ 541 dsl_sync_task_nowait(spa_get_dsl(spa), 542 vdev_trim_zap_update_sync, guid, tx); 543 } 544 545 /* 546 * We know the vdev_t will still be around since all consumers of 547 * vdev_free must stop the trimming first. 548 */ 549 if ((ta->trim_type == TRIM_TYPE_MANUAL && 550 vdev_trim_should_stop(vd)) || 551 (ta->trim_type == TRIM_TYPE_AUTO && 552 vdev_autotrim_should_stop(vd->vdev_top))) { 553 mutex_enter(&vd->vdev_trim_io_lock); 554 vd->vdev_trim_inflight[ta->trim_type]--; 555 mutex_exit(&vd->vdev_trim_io_lock); 556 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 557 mutex_exit(&vd->vdev_trim_lock); 558 dmu_tx_commit(tx); 559 return (SET_ERROR(EINTR)); 560 } 561 mutex_exit(&vd->vdev_trim_lock); 562 563 if (ta->trim_type == TRIM_TYPE_MANUAL) 564 vd->vdev_trim_offset[txg & TXG_MASK] = start + size; 565 566 if (ta->trim_type == TRIM_TYPE_MANUAL) { 567 cb = vdev_trim_cb; 568 } else if (ta->trim_type == TRIM_TYPE_AUTO) { 569 cb = vdev_autotrim_cb; 570 } else { 571 cb = vdev_trim_simple_cb; 572 } 573 574 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd, 575 start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL, 576 ta->trim_flags)); 577 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */ 578 579 dmu_tx_commit(tx); 580 581 return (0); 582 } 583 584 /* 585 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree. 586 * Additional parameters describing how the TRIM should be performed must 587 * be set in the trim_args structure. See the trim_args definition for 588 * additional information. 589 */ 590 static int 591 vdev_trim_ranges(trim_args_t *ta) 592 { 593 vdev_t *vd = ta->trim_vdev; 594 zfs_btree_t *t = &ta->trim_tree->rt_root; 595 zfs_btree_index_t idx; 596 uint64_t extent_bytes_max = ta->trim_extent_bytes_max; 597 uint64_t extent_bytes_min = ta->trim_extent_bytes_min; 598 spa_t *spa = vd->vdev_spa; 599 int error = 0; 600 601 ta->trim_start_time = gethrtime(); 602 ta->trim_bytes_done = 0; 603 604 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL; 605 rs = zfs_btree_next(t, &idx, &idx)) { 606 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs, 607 ta->trim_tree); 608 609 if (extent_bytes_min && size < extent_bytes_min) { 610 spa_iostats_trim_add(spa, ta->trim_type, 611 0, 0, 1, size, 0, 0); 612 continue; 613 } 614 615 /* Split range into legally-sized physical chunks */ 616 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1; 617 618 for (uint64_t w = 0; w < writes_required; w++) { 619 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE + 620 rs_get_start(rs, ta->trim_tree) + 621 (w *extent_bytes_max), MIN(size - 622 (w * extent_bytes_max), extent_bytes_max)); 623 if (error != 0) { 624 goto done; 625 } 626 } 627 } 628 629 done: 630 /* 631 * Make sure all TRIMs for this metaslab have completed before 632 * returning. TRIM zios have lower priority over regular or syncing 633 * zios, so all TRIM zios for this metaslab must complete before the 634 * metaslab is re-enabled. Otherwise it's possible write zios to 635 * this metaslab could cut ahead of still queued TRIM zios for this 636 * metaslab causing corruption if the ranges overlap. 637 */ 638 mutex_enter(&vd->vdev_trim_io_lock); 639 while (vd->vdev_trim_inflight[0] > 0) { 640 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 641 } 642 mutex_exit(&vd->vdev_trim_io_lock); 643 644 return (error); 645 } 646 647 static void 648 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs) 649 { 650 uint64_t *last_rs_end = (uint64_t *)arg; 651 652 if (physical_rs->rs_end > *last_rs_end) 653 *last_rs_end = physical_rs->rs_end; 654 } 655 656 static void 657 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs) 658 { 659 vdev_t *vd = (vdev_t *)arg; 660 661 uint64_t size = physical_rs->rs_end - physical_rs->rs_start; 662 vd->vdev_trim_bytes_est += size; 663 664 if (vd->vdev_trim_last_offset >= physical_rs->rs_end) { 665 vd->vdev_trim_bytes_done += size; 666 } else if (vd->vdev_trim_last_offset > physical_rs->rs_start && 667 vd->vdev_trim_last_offset <= physical_rs->rs_end) { 668 vd->vdev_trim_bytes_done += 669 vd->vdev_trim_last_offset - physical_rs->rs_start; 670 } 671 } 672 673 /* 674 * Calculates the completion percentage of a manual TRIM. 675 */ 676 static void 677 vdev_trim_calculate_progress(vdev_t *vd) 678 { 679 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 680 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 681 ASSERT(vd->vdev_leaf_zap != 0); 682 683 vd->vdev_trim_bytes_est = 0; 684 vd->vdev_trim_bytes_done = 0; 685 686 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 687 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 688 mutex_enter(&msp->ms_lock); 689 690 uint64_t ms_free = (msp->ms_size - 691 metaslab_allocated_space(msp)) / 692 vdev_get_ndisks(vd->vdev_top); 693 694 /* 695 * Convert the metaslab range to a physical range 696 * on our vdev. We use this to determine if we are 697 * in the middle of this metaslab range. 698 */ 699 range_seg64_t logical_rs, physical_rs, remain_rs; 700 logical_rs.rs_start = msp->ms_start; 701 logical_rs.rs_end = msp->ms_start + msp->ms_size; 702 703 /* Metaslab space after this offset has not been trimmed. */ 704 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs); 705 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) { 706 vd->vdev_trim_bytes_est += ms_free; 707 mutex_exit(&msp->ms_lock); 708 continue; 709 } 710 711 /* Metaslab space before this offset has been trimmed */ 712 uint64_t last_rs_end = physical_rs.rs_end; 713 if (!vdev_xlate_is_empty(&remain_rs)) { 714 vdev_xlate_walk(vd, &remain_rs, 715 vdev_trim_xlate_last_rs_end, &last_rs_end); 716 } 717 718 if (vd->vdev_trim_last_offset > last_rs_end) { 719 vd->vdev_trim_bytes_done += ms_free; 720 vd->vdev_trim_bytes_est += ms_free; 721 mutex_exit(&msp->ms_lock); 722 continue; 723 } 724 725 /* 726 * If we get here, we're in the middle of trimming this 727 * metaslab. Load it and walk the free tree for more 728 * accurate progress estimation. 729 */ 730 VERIFY0(metaslab_load(msp)); 731 732 range_tree_t *rt = msp->ms_allocatable; 733 zfs_btree_t *bt = &rt->rt_root; 734 zfs_btree_index_t idx; 735 for (range_seg_t *rs = zfs_btree_first(bt, &idx); 736 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) { 737 logical_rs.rs_start = rs_get_start(rs, rt); 738 logical_rs.rs_end = rs_get_end(rs, rt); 739 740 vdev_xlate_walk(vd, &logical_rs, 741 vdev_trim_xlate_progress, vd); 742 } 743 mutex_exit(&msp->ms_lock); 744 } 745 } 746 747 /* 748 * Load from disk the vdev's manual TRIM information. This includes the 749 * state, progress, and options provided when initiating the manual TRIM. 750 */ 751 static int 752 vdev_trim_load(vdev_t *vd) 753 { 754 int err = 0; 755 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 756 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 757 ASSERT(vd->vdev_leaf_zap != 0); 758 759 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE || 760 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) { 761 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 762 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 763 sizeof (vd->vdev_trim_last_offset), 1, 764 &vd->vdev_trim_last_offset); 765 if (err == ENOENT) { 766 vd->vdev_trim_last_offset = 0; 767 err = 0; 768 } 769 770 if (err == 0) { 771 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 772 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE, 773 sizeof (vd->vdev_trim_rate), 1, 774 &vd->vdev_trim_rate); 775 if (err == ENOENT) { 776 vd->vdev_trim_rate = 0; 777 err = 0; 778 } 779 } 780 781 if (err == 0) { 782 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 783 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 784 sizeof (vd->vdev_trim_partial), 1, 785 &vd->vdev_trim_partial); 786 if (err == ENOENT) { 787 vd->vdev_trim_partial = 0; 788 err = 0; 789 } 790 } 791 792 if (err == 0) { 793 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 794 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 795 sizeof (vd->vdev_trim_secure), 1, 796 &vd->vdev_trim_secure); 797 if (err == ENOENT) { 798 vd->vdev_trim_secure = 0; 799 err = 0; 800 } 801 } 802 } 803 804 vdev_trim_calculate_progress(vd); 805 806 return (err); 807 } 808 809 static void 810 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs) 811 { 812 trim_args_t *ta = arg; 813 vdev_t *vd = ta->trim_vdev; 814 815 /* 816 * Only a manual trim will be traversing the vdev sequentially. 817 * For an auto trim all valid ranges should be added. 818 */ 819 if (ta->trim_type == TRIM_TYPE_MANUAL) { 820 821 /* Only add segments that we have not visited yet */ 822 if (physical_rs->rs_end <= vd->vdev_trim_last_offset) 823 return; 824 825 /* Pick up where we left off mid-range. */ 826 if (vd->vdev_trim_last_offset > physical_rs->rs_start) { 827 ASSERT3U(physical_rs->rs_end, >, 828 vd->vdev_trim_last_offset); 829 physical_rs->rs_start = vd->vdev_trim_last_offset; 830 } 831 } 832 833 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start); 834 835 range_tree_add(ta->trim_tree, physical_rs->rs_start, 836 physical_rs->rs_end - physical_rs->rs_start); 837 } 838 839 /* 840 * Convert the logical range into physical ranges and add them to the 841 * range tree passed in the trim_args_t. 842 */ 843 static void 844 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size) 845 { 846 trim_args_t *ta = arg; 847 vdev_t *vd = ta->trim_vdev; 848 range_seg64_t logical_rs; 849 logical_rs.rs_start = start; 850 logical_rs.rs_end = start + size; 851 852 /* 853 * Every range to be trimmed must be part of ms_allocatable. 854 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this 855 * is always the case. 856 */ 857 if (zfs_flags & ZFS_DEBUG_TRIM) { 858 metaslab_t *msp = ta->trim_msp; 859 VERIFY0(metaslab_load(msp)); 860 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 861 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 862 } 863 864 ASSERT(vd->vdev_ops->vdev_op_leaf); 865 vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg); 866 } 867 868 /* 869 * Each manual TRIM thread is responsible for trimming the unallocated 870 * space for each leaf vdev. This is accomplished by sequentially iterating 871 * over its top-level metaslabs and issuing TRIM I/O for the space described 872 * by its ms_allocatable. While a metaslab is undergoing trimming it is 873 * not eligible for new allocations. 874 */ 875 static __attribute__((noreturn)) void 876 vdev_trim_thread(void *arg) 877 { 878 vdev_t *vd = arg; 879 spa_t *spa = vd->vdev_spa; 880 trim_args_t ta; 881 int error = 0; 882 883 /* 884 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by 885 * vdev_trim(). Wait for the updated values to be reflected 886 * in the zap in order to start with the requested settings. 887 */ 888 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 889 890 ASSERT(vdev_is_concrete(vd)); 891 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 892 893 vd->vdev_trim_last_offset = 0; 894 vd->vdev_trim_rate = 0; 895 vd->vdev_trim_partial = 0; 896 vd->vdev_trim_secure = 0; 897 898 VERIFY0(vdev_trim_load(vd)); 899 900 ta.trim_vdev = vd; 901 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 902 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min; 903 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 904 ta.trim_type = TRIM_TYPE_MANUAL; 905 ta.trim_flags = 0; 906 907 /* 908 * When a secure TRIM has been requested infer that the intent 909 * is that everything must be trimmed. Override the default 910 * minimum TRIM size to prevent ranges from being skipped. 911 */ 912 if (vd->vdev_trim_secure) { 913 ta.trim_flags |= ZIO_TRIM_SECURE; 914 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 915 } 916 917 uint64_t ms_count = 0; 918 for (uint64_t i = 0; !vd->vdev_detached && 919 i < vd->vdev_top->vdev_ms_count; i++) { 920 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 921 922 /* 923 * If we've expanded the top-level vdev or it's our 924 * first pass, calculate our progress. 925 */ 926 if (vd->vdev_top->vdev_ms_count != ms_count) { 927 vdev_trim_calculate_progress(vd); 928 ms_count = vd->vdev_top->vdev_ms_count; 929 } 930 931 spa_config_exit(spa, SCL_CONFIG, FTAG); 932 metaslab_disable(msp); 933 mutex_enter(&msp->ms_lock); 934 VERIFY0(metaslab_load(msp)); 935 936 /* 937 * If a partial TRIM was requested skip metaslabs which have 938 * never been initialized and thus have never been written. 939 */ 940 if (msp->ms_sm == NULL && vd->vdev_trim_partial) { 941 mutex_exit(&msp->ms_lock); 942 metaslab_enable(msp, B_FALSE, B_FALSE); 943 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 944 vdev_trim_calculate_progress(vd); 945 continue; 946 } 947 948 ta.trim_msp = msp; 949 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta); 950 range_tree_vacate(msp->ms_trim, NULL, NULL); 951 mutex_exit(&msp->ms_lock); 952 953 error = vdev_trim_ranges(&ta); 954 metaslab_enable(msp, B_TRUE, B_FALSE); 955 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 956 957 range_tree_vacate(ta.trim_tree, NULL, NULL); 958 if (error != 0) 959 break; 960 } 961 962 spa_config_exit(spa, SCL_CONFIG, FTAG); 963 964 range_tree_destroy(ta.trim_tree); 965 966 mutex_enter(&vd->vdev_trim_lock); 967 if (!vd->vdev_trim_exit_wanted) { 968 if (vdev_writeable(vd)) { 969 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 970 vd->vdev_trim_rate, vd->vdev_trim_partial, 971 vd->vdev_trim_secure); 972 } else if (vd->vdev_faulted) { 973 vdev_trim_change_state(vd, VDEV_TRIM_CANCELED, 974 vd->vdev_trim_rate, vd->vdev_trim_partial, 975 vd->vdev_trim_secure); 976 } 977 } 978 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0); 979 980 /* 981 * Drop the vdev_trim_lock while we sync out the txg since it's 982 * possible that a device might be trying to come online and must 983 * check to see if it needs to restart a trim. That thread will be 984 * holding the spa_config_lock which would prevent the txg_wait_synced 985 * from completing. 986 */ 987 mutex_exit(&vd->vdev_trim_lock); 988 txg_wait_synced(spa_get_dsl(spa), 0); 989 mutex_enter(&vd->vdev_trim_lock); 990 991 vd->vdev_trim_thread = NULL; 992 cv_broadcast(&vd->vdev_trim_cv); 993 mutex_exit(&vd->vdev_trim_lock); 994 995 thread_exit(); 996 } 997 998 /* 999 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock, 1000 * the vdev_t must be a leaf and cannot already be manually trimming. 1001 */ 1002 void 1003 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure) 1004 { 1005 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1006 ASSERT(vd->vdev_ops->vdev_op_leaf); 1007 ASSERT(vdev_is_concrete(vd)); 1008 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1009 ASSERT(!vd->vdev_detached); 1010 ASSERT(!vd->vdev_trim_exit_wanted); 1011 ASSERT(!vd->vdev_top->vdev_removing); 1012 ASSERT(!vd->vdev_rz_expanding); 1013 1014 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure); 1015 vd->vdev_trim_thread = thread_create(NULL, 0, 1016 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 1017 } 1018 1019 /* 1020 * Wait for the trimming thread to be terminated (canceled or stopped). 1021 */ 1022 static void 1023 vdev_trim_stop_wait_impl(vdev_t *vd) 1024 { 1025 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1026 1027 while (vd->vdev_trim_thread != NULL) 1028 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock); 1029 1030 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1031 vd->vdev_trim_exit_wanted = B_FALSE; 1032 } 1033 1034 /* 1035 * Wait for vdev trim threads which were listed to cleanly exit. 1036 */ 1037 void 1038 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list) 1039 { 1040 (void) spa; 1041 vdev_t *vd; 1042 1043 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1044 1045 while ((vd = list_remove_head(vd_list)) != NULL) { 1046 mutex_enter(&vd->vdev_trim_lock); 1047 vdev_trim_stop_wait_impl(vd); 1048 mutex_exit(&vd->vdev_trim_lock); 1049 } 1050 } 1051 1052 /* 1053 * Stop trimming a device, with the resultant trimming state being tgt_state. 1054 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is 1055 * provided the stopping vdev is inserted in to the list. Callers are then 1056 * required to call vdev_trim_stop_wait() to block for all the trim threads 1057 * to exit. The caller must hold vdev_trim_lock and must not be writing to 1058 * the spa config, as the trimming thread may try to enter the config as a 1059 * reader before exiting. 1060 */ 1061 void 1062 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list) 1063 { 1064 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 1065 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1066 ASSERT(vd->vdev_ops->vdev_op_leaf); 1067 ASSERT(vdev_is_concrete(vd)); 1068 1069 /* 1070 * Allow cancel requests to proceed even if the trim thread has 1071 * stopped. 1072 */ 1073 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED) 1074 return; 1075 1076 vdev_trim_change_state(vd, tgt_state, 0, 0, 0); 1077 vd->vdev_trim_exit_wanted = B_TRUE; 1078 1079 if (vd_list == NULL) { 1080 vdev_trim_stop_wait_impl(vd); 1081 } else { 1082 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1083 list_insert_tail(vd_list, vd); 1084 } 1085 } 1086 1087 /* 1088 * Requests that all listed vdevs stop trimming. 1089 */ 1090 static void 1091 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state, 1092 list_t *vd_list) 1093 { 1094 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 1095 mutex_enter(&vd->vdev_trim_lock); 1096 vdev_trim_stop(vd, tgt_state, vd_list); 1097 mutex_exit(&vd->vdev_trim_lock); 1098 return; 1099 } 1100 1101 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1102 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state, 1103 vd_list); 1104 } 1105 } 1106 1107 /* 1108 * Convenience function to stop trimming of a vdev tree and set all trim 1109 * thread pointers to NULL. 1110 */ 1111 void 1112 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state) 1113 { 1114 spa_t *spa = vd->vdev_spa; 1115 list_t vd_list; 1116 vdev_t *vd_l2cache; 1117 1118 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1119 1120 list_create(&vd_list, sizeof (vdev_t), 1121 offsetof(vdev_t, vdev_trim_node)); 1122 1123 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list); 1124 1125 /* 1126 * Iterate over cache devices and request stop trimming the 1127 * whole device in case we export the pool or remove the cache 1128 * device prematurely. 1129 */ 1130 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1131 vd_l2cache = spa->spa_l2cache.sav_vdevs[i]; 1132 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list); 1133 } 1134 1135 vdev_trim_stop_wait(spa, &vd_list); 1136 1137 if (vd->vdev_spa->spa_sync_on) { 1138 /* Make sure that our state has been synced to disk */ 1139 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1140 } 1141 1142 list_destroy(&vd_list); 1143 } 1144 1145 /* 1146 * Conditionally restarts a manual TRIM given its on-disk state. 1147 */ 1148 void 1149 vdev_trim_restart(vdev_t *vd) 1150 { 1151 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 1152 vd->vdev_spa->spa_load_thread == curthread); 1153 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 1154 1155 if (vd->vdev_leaf_zap != 0) { 1156 mutex_enter(&vd->vdev_trim_lock); 1157 uint64_t trim_state = VDEV_TRIM_NONE; 1158 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1159 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 1160 sizeof (trim_state), 1, &trim_state); 1161 ASSERT(err == 0 || err == ENOENT); 1162 vd->vdev_trim_state = trim_state; 1163 1164 uint64_t timestamp = 0; 1165 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1166 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME, 1167 sizeof (timestamp), 1, ×tamp); 1168 ASSERT(err == 0 || err == ENOENT); 1169 vd->vdev_trim_action_time = timestamp; 1170 1171 if ((vd->vdev_trim_state == VDEV_TRIM_SUSPENDED || 1172 vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) { 1173 /* load progress for reporting, but don't resume */ 1174 VERIFY0(vdev_trim_load(vd)); 1175 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE && 1176 vdev_writeable(vd) && !vd->vdev_top->vdev_removing && 1177 !vd->vdev_top->vdev_rz_expanding && 1178 vd->vdev_trim_thread == NULL) { 1179 VERIFY0(vdev_trim_load(vd)); 1180 vdev_trim(vd, vd->vdev_trim_rate, 1181 vd->vdev_trim_partial, vd->vdev_trim_secure); 1182 } 1183 1184 mutex_exit(&vd->vdev_trim_lock); 1185 } 1186 1187 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1188 vdev_trim_restart(vd->vdev_child[i]); 1189 } 1190 } 1191 1192 /* 1193 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that 1194 * every TRIM range is contained within ms_allocatable. 1195 */ 1196 static void 1197 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size) 1198 { 1199 trim_args_t *ta = arg; 1200 metaslab_t *msp = ta->trim_msp; 1201 1202 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 1203 VERIFY3U(msp->ms_disabled, >, 0); 1204 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 1205 } 1206 1207 /* 1208 * Each automatic TRIM thread is responsible for managing the trimming of a 1209 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk. 1210 * 1211 * N.B. This behavior is different from a manual TRIM where a thread 1212 * is created for each leaf vdev, instead of each top-level vdev. 1213 */ 1214 static __attribute__((noreturn)) void 1215 vdev_autotrim_thread(void *arg) 1216 { 1217 vdev_t *vd = arg; 1218 spa_t *spa = vd->vdev_spa; 1219 int shift = 0; 1220 1221 mutex_enter(&vd->vdev_autotrim_lock); 1222 ASSERT3P(vd->vdev_top, ==, vd); 1223 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL); 1224 mutex_exit(&vd->vdev_autotrim_lock); 1225 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1226 1227 while (!vdev_autotrim_should_stop(vd)) { 1228 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1); 1229 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max; 1230 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min; 1231 1232 /* 1233 * All of the metaslabs are divided in to groups of size 1234 * num_metaslabs / zfs_trim_txg_batch. Each of these groups 1235 * is composed of metaslabs which are spread evenly over the 1236 * device. 1237 * 1238 * For example, when zfs_trim_txg_batch = 32 (default) then 1239 * group 0 will contain metaslabs 0, 32, 64, ...; 1240 * group 1 will contain metaslabs 1, 33, 65, ...; 1241 * group 2 will contain metaslabs 2, 34, 66, ...; and so on. 1242 * 1243 * On each pass through the while() loop one of these groups 1244 * is selected. This is accomplished by using a shift value 1245 * to select the starting metaslab, then striding over the 1246 * metaslabs using the zfs_trim_txg_batch size. This is 1247 * done to accomplish two things. 1248 * 1249 * 1) By dividing the metaslabs in to groups, and making sure 1250 * that each group takes a minimum of one txg to process. 1251 * Then zfs_trim_txg_batch controls the minimum number of 1252 * txgs which must occur before a metaslab is revisited. 1253 * 1254 * 2) Selecting non-consecutive metaslabs distributes the 1255 * TRIM commands for a group evenly over the entire device. 1256 * This can be advantageous for certain types of devices. 1257 */ 1258 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count; 1259 i += txgs_per_trim) { 1260 metaslab_t *msp = vd->vdev_ms[i]; 1261 range_tree_t *trim_tree; 1262 boolean_t issued_trim = B_FALSE; 1263 boolean_t wait_aborted = B_FALSE; 1264 1265 spa_config_exit(spa, SCL_CONFIG, FTAG); 1266 metaslab_disable(msp); 1267 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1268 1269 mutex_enter(&msp->ms_lock); 1270 1271 /* 1272 * Skip the metaslab when it has never been allocated 1273 * or when there are no recent frees to trim. 1274 */ 1275 if (msp->ms_sm == NULL || 1276 range_tree_is_empty(msp->ms_trim)) { 1277 mutex_exit(&msp->ms_lock); 1278 metaslab_enable(msp, B_FALSE, B_FALSE); 1279 continue; 1280 } 1281 1282 /* 1283 * Skip the metaslab when it has already been disabled. 1284 * This may happen when a manual TRIM or initialize 1285 * operation is running concurrently. In the case 1286 * of a manual TRIM, the ms_trim tree will have been 1287 * vacated. Only ranges added after the manual TRIM 1288 * disabled the metaslab will be included in the tree. 1289 * These will be processed when the automatic TRIM 1290 * next revisits this metaslab. 1291 */ 1292 if (msp->ms_disabled > 1) { 1293 mutex_exit(&msp->ms_lock); 1294 metaslab_enable(msp, B_FALSE, B_FALSE); 1295 continue; 1296 } 1297 1298 /* 1299 * Allocate an empty range tree which is swapped in 1300 * for the existing ms_trim tree while it is processed. 1301 */ 1302 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 1303 0, 0); 1304 range_tree_swap(&msp->ms_trim, &trim_tree); 1305 ASSERT(range_tree_is_empty(msp->ms_trim)); 1306 1307 /* 1308 * There are two cases when constructing the per-vdev 1309 * trim trees for a metaslab. If the top-level vdev 1310 * has no children then it is also a leaf and should 1311 * be trimmed. Otherwise our children are the leaves 1312 * and a trim tree should be constructed for each. 1313 */ 1314 trim_args_t *tap; 1315 uint64_t children = vd->vdev_children; 1316 if (children == 0) { 1317 children = 1; 1318 tap = kmem_zalloc(sizeof (trim_args_t) * 1319 children, KM_SLEEP); 1320 tap[0].trim_vdev = vd; 1321 } else { 1322 tap = kmem_zalloc(sizeof (trim_args_t) * 1323 children, KM_SLEEP); 1324 1325 for (uint64_t c = 0; c < children; c++) { 1326 tap[c].trim_vdev = vd->vdev_child[c]; 1327 } 1328 } 1329 1330 for (uint64_t c = 0; c < children; c++) { 1331 trim_args_t *ta = &tap[c]; 1332 vdev_t *cvd = ta->trim_vdev; 1333 1334 ta->trim_msp = msp; 1335 ta->trim_extent_bytes_max = extent_bytes_max; 1336 ta->trim_extent_bytes_min = extent_bytes_min; 1337 ta->trim_type = TRIM_TYPE_AUTO; 1338 ta->trim_flags = 0; 1339 1340 if (cvd->vdev_detached || 1341 !vdev_writeable(cvd) || 1342 !cvd->vdev_has_trim || 1343 cvd->vdev_trim_thread != NULL) { 1344 continue; 1345 } 1346 1347 /* 1348 * When a device has an attached hot spare, or 1349 * is being replaced it will not be trimmed. 1350 * This is done to avoid adding additional 1351 * stress to a potentially unhealthy device, 1352 * and to minimize the required rebuild time. 1353 */ 1354 if (!cvd->vdev_ops->vdev_op_leaf) 1355 continue; 1356 1357 ta->trim_tree = range_tree_create(NULL, 1358 RANGE_SEG64, NULL, 0, 0); 1359 range_tree_walk(trim_tree, 1360 vdev_trim_range_add, ta); 1361 } 1362 1363 mutex_exit(&msp->ms_lock); 1364 spa_config_exit(spa, SCL_CONFIG, FTAG); 1365 1366 /* 1367 * Issue the TRIM I/Os for all ranges covered by the 1368 * TRIM trees. These ranges are safe to TRIM because 1369 * no new allocations will be performed until the call 1370 * to metaslab_enabled() below. 1371 */ 1372 for (uint64_t c = 0; c < children; c++) { 1373 trim_args_t *ta = &tap[c]; 1374 1375 /* 1376 * Always yield to a manual TRIM if one has 1377 * been started for the child vdev. 1378 */ 1379 if (ta->trim_tree == NULL || 1380 ta->trim_vdev->vdev_trim_thread != NULL) { 1381 continue; 1382 } 1383 1384 /* 1385 * After this point metaslab_enable() must be 1386 * called with the sync flag set. This is done 1387 * here because vdev_trim_ranges() is allowed 1388 * to be interrupted (EINTR) before issuing all 1389 * of the required TRIM I/Os. 1390 */ 1391 issued_trim = B_TRUE; 1392 1393 int error = vdev_trim_ranges(ta); 1394 if (error) 1395 break; 1396 } 1397 1398 /* 1399 * Verify every range which was trimmed is still 1400 * contained within the ms_allocatable tree. 1401 */ 1402 if (zfs_flags & ZFS_DEBUG_TRIM) { 1403 mutex_enter(&msp->ms_lock); 1404 VERIFY0(metaslab_load(msp)); 1405 VERIFY3P(tap[0].trim_msp, ==, msp); 1406 range_tree_walk(trim_tree, 1407 vdev_trim_range_verify, &tap[0]); 1408 mutex_exit(&msp->ms_lock); 1409 } 1410 1411 range_tree_vacate(trim_tree, NULL, NULL); 1412 range_tree_destroy(trim_tree); 1413 1414 /* 1415 * Wait for couples of kicks, to ensure the trim io is 1416 * synced. If the wait is aborted due to 1417 * vdev_autotrim_exit_wanted, we need to signal 1418 * metaslab_enable() to wait for sync. 1419 */ 1420 if (issued_trim) { 1421 wait_aborted = vdev_autotrim_wait_kick(vd, 1422 TXG_CONCURRENT_STATES + TXG_DEFER_SIZE); 1423 } 1424 1425 metaslab_enable(msp, wait_aborted, B_FALSE); 1426 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1427 1428 for (uint64_t c = 0; c < children; c++) { 1429 trim_args_t *ta = &tap[c]; 1430 1431 if (ta->trim_tree == NULL) 1432 continue; 1433 1434 range_tree_vacate(ta->trim_tree, NULL, NULL); 1435 range_tree_destroy(ta->trim_tree); 1436 } 1437 1438 kmem_free(tap, sizeof (trim_args_t) * children); 1439 1440 if (vdev_autotrim_should_stop(vd)) 1441 break; 1442 } 1443 1444 spa_config_exit(spa, SCL_CONFIG, FTAG); 1445 1446 vdev_autotrim_wait_kick(vd, 1); 1447 1448 shift++; 1449 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1450 } 1451 1452 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1453 vdev_t *cvd = vd->vdev_child[c]; 1454 mutex_enter(&cvd->vdev_trim_io_lock); 1455 1456 while (cvd->vdev_trim_inflight[1] > 0) { 1457 cv_wait(&cvd->vdev_trim_io_cv, 1458 &cvd->vdev_trim_io_lock); 1459 } 1460 mutex_exit(&cvd->vdev_trim_io_lock); 1461 } 1462 1463 spa_config_exit(spa, SCL_CONFIG, FTAG); 1464 1465 /* 1466 * When exiting because the autotrim property was set to off, then 1467 * abandon any unprocessed ms_trim ranges to reclaim the memory. 1468 */ 1469 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) { 1470 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 1471 metaslab_t *msp = vd->vdev_ms[i]; 1472 1473 mutex_enter(&msp->ms_lock); 1474 range_tree_vacate(msp->ms_trim, NULL, NULL); 1475 mutex_exit(&msp->ms_lock); 1476 } 1477 } 1478 1479 mutex_enter(&vd->vdev_autotrim_lock); 1480 ASSERT(vd->vdev_autotrim_thread != NULL); 1481 vd->vdev_autotrim_thread = NULL; 1482 cv_broadcast(&vd->vdev_autotrim_cv); 1483 mutex_exit(&vd->vdev_autotrim_lock); 1484 1485 thread_exit(); 1486 } 1487 1488 /* 1489 * Starts an autotrim thread, if needed, for each top-level vdev which can be 1490 * trimmed. A top-level vdev which has been evacuated will never be trimmed. 1491 */ 1492 void 1493 vdev_autotrim(spa_t *spa) 1494 { 1495 vdev_t *root_vd = spa->spa_root_vdev; 1496 1497 for (uint64_t i = 0; i < root_vd->vdev_children; i++) { 1498 vdev_t *tvd = root_vd->vdev_child[i]; 1499 1500 mutex_enter(&tvd->vdev_autotrim_lock); 1501 if (vdev_writeable(tvd) && !tvd->vdev_removing && 1502 tvd->vdev_autotrim_thread == NULL && 1503 !tvd->vdev_rz_expanding) { 1504 ASSERT3P(tvd->vdev_top, ==, tvd); 1505 1506 tvd->vdev_autotrim_thread = thread_create(NULL, 0, 1507 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN, 1508 maxclsyspri); 1509 ASSERT(tvd->vdev_autotrim_thread != NULL); 1510 } 1511 mutex_exit(&tvd->vdev_autotrim_lock); 1512 } 1513 } 1514 1515 /* 1516 * Wait for the vdev_autotrim_thread associated with the passed top-level 1517 * vdev to be terminated (canceled or stopped). 1518 */ 1519 void 1520 vdev_autotrim_stop_wait(vdev_t *tvd) 1521 { 1522 mutex_enter(&tvd->vdev_autotrim_lock); 1523 if (tvd->vdev_autotrim_thread != NULL) { 1524 tvd->vdev_autotrim_exit_wanted = B_TRUE; 1525 cv_broadcast(&tvd->vdev_autotrim_kick_cv); 1526 cv_wait(&tvd->vdev_autotrim_cv, 1527 &tvd->vdev_autotrim_lock); 1528 1529 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL); 1530 tvd->vdev_autotrim_exit_wanted = B_FALSE; 1531 } 1532 mutex_exit(&tvd->vdev_autotrim_lock); 1533 } 1534 1535 void 1536 vdev_autotrim_kick(spa_t *spa) 1537 { 1538 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 1539 1540 vdev_t *root_vd = spa->spa_root_vdev; 1541 vdev_t *tvd; 1542 1543 for (uint64_t i = 0; i < root_vd->vdev_children; i++) { 1544 tvd = root_vd->vdev_child[i]; 1545 1546 mutex_enter(&tvd->vdev_autotrim_lock); 1547 if (tvd->vdev_autotrim_thread != NULL) 1548 cv_broadcast(&tvd->vdev_autotrim_kick_cv); 1549 mutex_exit(&tvd->vdev_autotrim_lock); 1550 } 1551 } 1552 1553 /* 1554 * Wait for all of the vdev_autotrim_thread associated with the pool to 1555 * be terminated (canceled or stopped). 1556 */ 1557 void 1558 vdev_autotrim_stop_all(spa_t *spa) 1559 { 1560 vdev_t *root_vd = spa->spa_root_vdev; 1561 1562 for (uint64_t i = 0; i < root_vd->vdev_children; i++) 1563 vdev_autotrim_stop_wait(root_vd->vdev_child[i]); 1564 } 1565 1566 /* 1567 * Conditionally restart all of the vdev_autotrim_thread's for the pool. 1568 */ 1569 void 1570 vdev_autotrim_restart(spa_t *spa) 1571 { 1572 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 1573 spa->spa_load_thread == curthread); 1574 if (spa->spa_autotrim) 1575 vdev_autotrim(spa); 1576 } 1577 1578 static __attribute__((noreturn)) void 1579 vdev_trim_l2arc_thread(void *arg) 1580 { 1581 vdev_t *vd = arg; 1582 spa_t *spa = vd->vdev_spa; 1583 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1584 trim_args_t ta = {0}; 1585 range_seg64_t physical_rs; 1586 1587 ASSERT(vdev_is_concrete(vd)); 1588 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1589 1590 vd->vdev_trim_last_offset = 0; 1591 vd->vdev_trim_rate = 0; 1592 vd->vdev_trim_partial = 0; 1593 vd->vdev_trim_secure = 0; 1594 1595 ta.trim_vdev = vd; 1596 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1597 ta.trim_type = TRIM_TYPE_MANUAL; 1598 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1599 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1600 ta.trim_flags = 0; 1601 1602 physical_rs.rs_start = vd->vdev_trim_bytes_done = 0; 1603 physical_rs.rs_end = vd->vdev_trim_bytes_est = 1604 vdev_get_min_asize(vd); 1605 1606 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1607 physical_rs.rs_end - physical_rs.rs_start); 1608 1609 mutex_enter(&vd->vdev_trim_lock); 1610 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1611 mutex_exit(&vd->vdev_trim_lock); 1612 1613 (void) vdev_trim_ranges(&ta); 1614 1615 spa_config_exit(spa, SCL_CONFIG, FTAG); 1616 mutex_enter(&vd->vdev_trim_io_lock); 1617 while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) { 1618 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1619 } 1620 mutex_exit(&vd->vdev_trim_io_lock); 1621 1622 range_tree_vacate(ta.trim_tree, NULL, NULL); 1623 range_tree_destroy(ta.trim_tree); 1624 1625 mutex_enter(&vd->vdev_trim_lock); 1626 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { 1627 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 1628 vd->vdev_trim_rate, vd->vdev_trim_partial, 1629 vd->vdev_trim_secure); 1630 } 1631 ASSERT(vd->vdev_trim_thread != NULL || 1632 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0); 1633 1634 /* 1635 * Drop the vdev_trim_lock while we sync out the txg since it's 1636 * possible that a device might be trying to come online and 1637 * must check to see if it needs to restart a trim. That thread 1638 * will be holding the spa_config_lock which would prevent the 1639 * txg_wait_synced from completing. Same strategy as in 1640 * vdev_trim_thread(). 1641 */ 1642 mutex_exit(&vd->vdev_trim_lock); 1643 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1644 mutex_enter(&vd->vdev_trim_lock); 1645 1646 /* 1647 * Update the header of the cache device here, before 1648 * broadcasting vdev_trim_cv which may lead to the removal 1649 * of the device. The same applies for setting l2ad_trim_all to 1650 * false. 1651 */ 1652 spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd, 1653 RW_READER); 1654 memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize); 1655 l2arc_dev_hdr_update(dev); 1656 spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd); 1657 1658 vd->vdev_trim_thread = NULL; 1659 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE) 1660 dev->l2ad_trim_all = B_FALSE; 1661 1662 cv_broadcast(&vd->vdev_trim_cv); 1663 mutex_exit(&vd->vdev_trim_lock); 1664 1665 thread_exit(); 1666 } 1667 1668 /* 1669 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them 1670 * to vd->vdev_trim_thread variable. This facilitates the management of 1671 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition 1672 * to a pool or pool creation or when the header of the device is invalid. 1673 */ 1674 void 1675 vdev_trim_l2arc(spa_t *spa) 1676 { 1677 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1678 1679 /* 1680 * Locate the spa's l2arc devices and kick off TRIM threads. 1681 */ 1682 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1683 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i]; 1684 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1685 1686 if (dev == NULL || !dev->l2ad_trim_all) { 1687 /* 1688 * Don't attempt TRIM if the vdev is UNAVAIL or if the 1689 * cache device was not marked for whole device TRIM 1690 * (ie l2arc_trim_ahead = 0, or the L2ARC device header 1691 * is valid with trim_state = VDEV_TRIM_COMPLETE and 1692 * l2ad_log_entries > 0). 1693 */ 1694 continue; 1695 } 1696 1697 mutex_enter(&vd->vdev_trim_lock); 1698 ASSERT(vd->vdev_ops->vdev_op_leaf); 1699 ASSERT(vdev_is_concrete(vd)); 1700 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1701 ASSERT(!vd->vdev_detached); 1702 ASSERT(!vd->vdev_trim_exit_wanted); 1703 ASSERT(!vd->vdev_top->vdev_removing); 1704 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1705 vd->vdev_trim_thread = thread_create(NULL, 0, 1706 vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 1707 mutex_exit(&vd->vdev_trim_lock); 1708 } 1709 } 1710 1711 /* 1712 * A wrapper which calls vdev_trim_ranges(). It is intended to be called 1713 * on leaf vdevs. 1714 */ 1715 int 1716 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size) 1717 { 1718 trim_args_t ta = {0}; 1719 range_seg64_t physical_rs; 1720 int error; 1721 physical_rs.rs_start = start; 1722 physical_rs.rs_end = start + size; 1723 1724 ASSERT(vdev_is_concrete(vd)); 1725 ASSERT(vd->vdev_ops->vdev_op_leaf); 1726 ASSERT(!vd->vdev_detached); 1727 ASSERT(!vd->vdev_top->vdev_removing); 1728 ASSERT(!vd->vdev_top->vdev_rz_expanding); 1729 1730 ta.trim_vdev = vd; 1731 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1732 ta.trim_type = TRIM_TYPE_SIMPLE; 1733 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1734 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1735 ta.trim_flags = 0; 1736 1737 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 1738 1739 if (physical_rs.rs_end > physical_rs.rs_start) { 1740 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1741 physical_rs.rs_end - physical_rs.rs_start); 1742 } else { 1743 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 1744 } 1745 1746 error = vdev_trim_ranges(&ta); 1747 1748 mutex_enter(&vd->vdev_trim_io_lock); 1749 while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) { 1750 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1751 } 1752 mutex_exit(&vd->vdev_trim_io_lock); 1753 1754 range_tree_vacate(ta.trim_tree, NULL, NULL); 1755 range_tree_destroy(ta.trim_tree); 1756 1757 return (error); 1758 } 1759 1760 EXPORT_SYMBOL(vdev_trim); 1761 EXPORT_SYMBOL(vdev_trim_stop); 1762 EXPORT_SYMBOL(vdev_trim_stop_all); 1763 EXPORT_SYMBOL(vdev_trim_stop_wait); 1764 EXPORT_SYMBOL(vdev_trim_restart); 1765 EXPORT_SYMBOL(vdev_autotrim); 1766 EXPORT_SYMBOL(vdev_autotrim_stop_all); 1767 EXPORT_SYMBOL(vdev_autotrim_stop_wait); 1768 EXPORT_SYMBOL(vdev_autotrim_restart); 1769 EXPORT_SYMBOL(vdev_trim_l2arc); 1770 EXPORT_SYMBOL(vdev_trim_simple); 1771 1772 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW, 1773 "Max size of TRIM commands, larger will be split"); 1774 1775 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW, 1776 "Min size of TRIM commands, smaller will be skipped"); 1777 1778 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW, 1779 "Skip metaslabs which have never been initialized"); 1780 1781 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW, 1782 "Min number of txgs to aggregate frees before issuing TRIM"); 1783 1784 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW, 1785 "Max queued TRIMs outstanding per leaf vdev"); 1786