xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_trim.c (revision afdb42987ca82869eeaecf6dc25c2b6fb7b8370e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26  */
27 
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/txg.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/vdev_trim.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/zap.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc_impl.h>
38 
39 /*
40  * TRIM is a feature which is used to notify a SSD that some previously
41  * written space is no longer allocated by the pool.  This is useful because
42  * writes to a SSD must be performed to blocks which have first been erased.
43  * Ensuring the SSD always has a supply of erased blocks for new writes
44  * helps prevent the performance from deteriorating.
45  *
46  * There are two supported TRIM methods; manual and automatic.
47  *
48  * Manual TRIM:
49  *
50  * A manual TRIM is initiated by running the 'zpool trim' command.  A single
51  * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
52  * managing that vdev TRIM process.  This involves iterating over all the
53  * metaslabs, calculating the unallocated space ranges, and then issuing the
54  * required TRIM I/Os.
55  *
56  * While a metaslab is being actively trimmed it is not eligible to perform
57  * new allocations.  After traversing all of the metaslabs the thread is
58  * terminated.  Finally, both the requested options and current progress of
59  * the TRIM are regularly written to the pool.  This allows the TRIM to be
60  * suspended and resumed as needed.
61  *
62  * Automatic TRIM:
63  *
64  * An automatic TRIM is enabled by setting the 'autotrim' pool property
65  * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
66  * top-level (not leaf) vdev in the pool.  These threads perform the same
67  * core TRIM process as a manual TRIM, but with a few key differences.
68  *
69  * 1) Automatic TRIM happens continuously in the background and operates
70  *    solely on recently freed blocks (ms_trim not ms_allocatable).
71  *
72  * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
73  *    the benefit of simplifying the threading model, it makes it easier
74  *    to coordinate administrative commands, and it ensures only a single
75  *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
76  *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
77  *    children.
78  *
79  * 3) There is no automatic TRIM progress information stored on disk, nor
80  *    is it reported by 'zpool status'.
81  *
82  * While the automatic TRIM process is highly effective it is more likely
83  * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
84  * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
85  * TRIM and are skipped.  This means small amounts of freed space may not
86  * be automatically trimmed.
87  *
88  * Furthermore, devices with attached hot spares and devices being actively
89  * replaced are skipped.  This is done to avoid adding additional stress to
90  * a potentially unhealthy device and to minimize the required rebuild time.
91  *
92  * For this reason it may be beneficial to occasionally manually TRIM a pool
93  * even when automatic TRIM is enabled.
94  */
95 
96 /*
97  * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
98  */
99 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
100 
101 /*
102  * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
103  */
104 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
105 
106 /*
107  * Skip uninitialized metaslabs during the TRIM process.  This option is
108  * useful for pools constructed from large thinly-provisioned devices where
109  * TRIM operations are slow.  As a pool ages an increasing fraction of
110  * the pools metaslabs will be initialized progressively degrading the
111  * usefulness of this option.  This setting is stored when starting a
112  * manual TRIM and will persist for the duration of the requested TRIM.
113  */
114 unsigned int zfs_trim_metaslab_skip = 0;
115 
116 /*
117  * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
118  * concurrent TRIM I/Os issued to the device is controlled by the
119  * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
120  */
121 static unsigned int zfs_trim_queue_limit = 10;
122 
123 /*
124  * The minimum number of transaction groups between automatic trims of a
125  * metaslab.  This setting represents a trade-off between issuing more
126  * efficient TRIM operations, by allowing them to be aggregated longer,
127  * and issuing them promptly so the trimmed space is available.  Note
128  * that this value is a minimum; metaslabs can be trimmed less frequently
129  * when there are a large number of ranges which need to be trimmed.
130  *
131  * Increasing this value will allow frees to be aggregated for a longer
132  * time.  This can result is larger TRIM operations, and increased memory
133  * usage in order to track the ranges to be trimmed.  Decreasing this value
134  * has the opposite effect.  The default value of 32 was determined though
135  * testing to be a reasonable compromise.
136  */
137 static unsigned int zfs_trim_txg_batch = 32;
138 
139 /*
140  * The trim_args are a control structure which describe how a leaf vdev
141  * should be trimmed.  The core elements are the vdev, the metaslab being
142  * trimmed and a range tree containing the extents to TRIM.  All provided
143  * ranges must be within the metaslab.
144  */
145 typedef struct trim_args {
146 	/*
147 	 * These fields are set by the caller of vdev_trim_ranges().
148 	 */
149 	vdev_t		*trim_vdev;		/* Leaf vdev to TRIM */
150 	metaslab_t	*trim_msp;		/* Disabled metaslab */
151 	range_tree_t	*trim_tree;		/* TRIM ranges (in metaslab) */
152 	trim_type_t	trim_type;		/* Manual or auto TRIM */
153 	uint64_t	trim_extent_bytes_max;	/* Maximum TRIM I/O size */
154 	uint64_t	trim_extent_bytes_min;	/* Minimum TRIM I/O size */
155 	enum trim_flag	trim_flags;		/* TRIM flags (secure) */
156 
157 	/*
158 	 * These fields are updated by vdev_trim_ranges().
159 	 */
160 	hrtime_t	trim_start_time;	/* Start time */
161 	uint64_t	trim_bytes_done;	/* Bytes trimmed */
162 } trim_args_t;
163 
164 /*
165  * Determines whether a vdev_trim_thread() should be stopped.
166  */
167 static boolean_t
168 vdev_trim_should_stop(vdev_t *vd)
169 {
170 	return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
171 	    vd->vdev_detached || vd->vdev_top->vdev_removing);
172 }
173 
174 /*
175  * Determines whether a vdev_autotrim_thread() should be stopped.
176  */
177 static boolean_t
178 vdev_autotrim_should_stop(vdev_t *tvd)
179 {
180 	return (tvd->vdev_autotrim_exit_wanted ||
181 	    !vdev_writeable(tvd) || tvd->vdev_removing ||
182 	    spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
183 }
184 
185 /*
186  * Wait for given number of kicks, return true if the wait is aborted due to
187  * vdev_autotrim_exit_wanted.
188  */
189 static boolean_t
190 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick)
191 {
192 	mutex_enter(&vd->vdev_autotrim_lock);
193 	for (int i = 0; i < num_of_kick; i++) {
194 		if (vd->vdev_autotrim_exit_wanted)
195 			break;
196 		cv_wait(&vd->vdev_autotrim_kick_cv, &vd->vdev_autotrim_lock);
197 	}
198 	boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted;
199 	mutex_exit(&vd->vdev_autotrim_lock);
200 
201 	return (exit_wanted);
202 }
203 
204 /*
205  * The sync task for updating the on-disk state of a manual TRIM.  This
206  * is scheduled by vdev_trim_change_state().
207  */
208 static void
209 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
210 {
211 	/*
212 	 * We pass in the guid instead of the vdev_t since the vdev may
213 	 * have been freed prior to the sync task being processed.  This
214 	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
215 	 * stop the trimming thread, schedule the sync task, and free
216 	 * the vdev. Later when the scheduled sync task is invoked, it would
217 	 * find that the vdev has been freed.
218 	 */
219 	uint64_t guid = *(uint64_t *)arg;
220 	uint64_t txg = dmu_tx_get_txg(tx);
221 	kmem_free(arg, sizeof (uint64_t));
222 
223 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
224 	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
225 		return;
226 
227 	uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
228 	vd->vdev_trim_offset[txg & TXG_MASK] = 0;
229 
230 	VERIFY3U(vd->vdev_leaf_zap, !=, 0);
231 
232 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
233 
234 	if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
235 
236 		if (vd->vdev_trim_last_offset == UINT64_MAX)
237 			last_offset = 0;
238 
239 		vd->vdev_trim_last_offset = last_offset;
240 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
241 		    VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
242 		    sizeof (last_offset), 1, &last_offset, tx));
243 	}
244 
245 	if (vd->vdev_trim_action_time > 0) {
246 		uint64_t val = (uint64_t)vd->vdev_trim_action_time;
247 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
248 		    VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
249 		    1, &val, tx));
250 	}
251 
252 	if (vd->vdev_trim_rate > 0) {
253 		uint64_t rate = (uint64_t)vd->vdev_trim_rate;
254 
255 		if (rate == UINT64_MAX)
256 			rate = 0;
257 
258 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
259 		    VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
260 	}
261 
262 	uint64_t partial = vd->vdev_trim_partial;
263 	if (partial == UINT64_MAX)
264 		partial = 0;
265 
266 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
267 	    sizeof (partial), 1, &partial, tx));
268 
269 	uint64_t secure = vd->vdev_trim_secure;
270 	if (secure == UINT64_MAX)
271 		secure = 0;
272 
273 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
274 	    sizeof (secure), 1, &secure, tx));
275 
276 
277 	uint64_t trim_state = vd->vdev_trim_state;
278 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
279 	    sizeof (trim_state), 1, &trim_state, tx));
280 }
281 
282 /*
283  * Update the on-disk state of a manual TRIM.  This is called to request
284  * that a TRIM be started/suspended/canceled, or to change one of the
285  * TRIM options (partial, secure, rate).
286  */
287 static void
288 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
289     uint64_t rate, boolean_t partial, boolean_t secure)
290 {
291 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
292 	spa_t *spa = vd->vdev_spa;
293 
294 	if (new_state == vd->vdev_trim_state)
295 		return;
296 
297 	/*
298 	 * Copy the vd's guid, this will be freed by the sync task.
299 	 */
300 	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
301 	*guid = vd->vdev_guid;
302 
303 	/*
304 	 * If we're suspending, then preserve the original start time.
305 	 */
306 	if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
307 		vd->vdev_trim_action_time = gethrestime_sec();
308 	}
309 
310 	/*
311 	 * If we're activating, then preserve the requested rate and trim
312 	 * method.  Setting the last offset and rate to UINT64_MAX is used
313 	 * as a sentinel to indicate they should be reset to default values.
314 	 */
315 	if (new_state == VDEV_TRIM_ACTIVE) {
316 		if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
317 		    vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
318 			vd->vdev_trim_last_offset = UINT64_MAX;
319 			vd->vdev_trim_rate = UINT64_MAX;
320 			vd->vdev_trim_partial = UINT64_MAX;
321 			vd->vdev_trim_secure = UINT64_MAX;
322 		}
323 
324 		if (rate != 0)
325 			vd->vdev_trim_rate = rate;
326 
327 		if (partial != 0)
328 			vd->vdev_trim_partial = partial;
329 
330 		if (secure != 0)
331 			vd->vdev_trim_secure = secure;
332 	}
333 
334 	vdev_trim_state_t old_state = vd->vdev_trim_state;
335 	boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
336 	vd->vdev_trim_state = new_state;
337 
338 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
339 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
340 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
341 	    guid, tx);
342 
343 	switch (new_state) {
344 	case VDEV_TRIM_ACTIVE:
345 		spa_event_notify(spa, vd, NULL,
346 		    resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
347 		spa_history_log_internal(spa, "trim", tx,
348 		    "vdev=%s activated", vd->vdev_path);
349 		break;
350 	case VDEV_TRIM_SUSPENDED:
351 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
352 		spa_history_log_internal(spa, "trim", tx,
353 		    "vdev=%s suspended", vd->vdev_path);
354 		break;
355 	case VDEV_TRIM_CANCELED:
356 		if (old_state == VDEV_TRIM_ACTIVE ||
357 		    old_state == VDEV_TRIM_SUSPENDED) {
358 			spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
359 			spa_history_log_internal(spa, "trim", tx,
360 			    "vdev=%s canceled", vd->vdev_path);
361 		}
362 		break;
363 	case VDEV_TRIM_COMPLETE:
364 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
365 		spa_history_log_internal(spa, "trim", tx,
366 		    "vdev=%s complete", vd->vdev_path);
367 		break;
368 	default:
369 		panic("invalid state %llu", (unsigned long long)new_state);
370 	}
371 
372 	dmu_tx_commit(tx);
373 
374 	if (new_state != VDEV_TRIM_ACTIVE)
375 		spa_notify_waiters(spa);
376 }
377 
378 /*
379  * The zio_done_func_t done callback for each manual TRIM issued.  It is
380  * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
381  * and limiting the number of in flight TRIM I/Os.
382  */
383 static void
384 vdev_trim_cb(zio_t *zio)
385 {
386 	vdev_t *vd = zio->io_vd;
387 
388 	mutex_enter(&vd->vdev_trim_io_lock);
389 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
390 		/*
391 		 * The I/O failed because the vdev was unavailable; roll the
392 		 * last offset back. (This works because spa_sync waits on
393 		 * spa_txg_zio before it runs sync tasks.)
394 		 */
395 		uint64_t *offset =
396 		    &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
397 		*offset = MIN(*offset, zio->io_offset);
398 	} else {
399 		if (zio->io_error != 0) {
400 			vd->vdev_stat.vs_trim_errors++;
401 			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
402 			    0, 0, 0, 0, 1, zio->io_orig_size);
403 		} else {
404 			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
405 			    1, zio->io_orig_size, 0, 0, 0, 0);
406 		}
407 
408 		vd->vdev_trim_bytes_done += zio->io_orig_size;
409 	}
410 
411 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
412 	vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
413 	cv_broadcast(&vd->vdev_trim_io_cv);
414 	mutex_exit(&vd->vdev_trim_io_lock);
415 
416 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
417 }
418 
419 /*
420  * The zio_done_func_t done callback for each automatic TRIM issued.  It
421  * is responsible for updating the TRIM stats and limiting the number of
422  * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
423  * never reissued on failure.
424  */
425 static void
426 vdev_autotrim_cb(zio_t *zio)
427 {
428 	vdev_t *vd = zio->io_vd;
429 
430 	mutex_enter(&vd->vdev_trim_io_lock);
431 
432 	if (zio->io_error != 0) {
433 		vd->vdev_stat.vs_trim_errors++;
434 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
435 		    0, 0, 0, 0, 1, zio->io_orig_size);
436 	} else {
437 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
438 		    1, zio->io_orig_size, 0, 0, 0, 0);
439 	}
440 
441 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
442 	vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
443 	cv_broadcast(&vd->vdev_trim_io_cv);
444 	mutex_exit(&vd->vdev_trim_io_lock);
445 
446 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
447 }
448 
449 /*
450  * The zio_done_func_t done callback for each TRIM issued via
451  * vdev_trim_simple(). It is responsible for updating the TRIM stats and
452  * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
453  * effort and are never reissued on failure.
454  */
455 static void
456 vdev_trim_simple_cb(zio_t *zio)
457 {
458 	vdev_t *vd = zio->io_vd;
459 
460 	mutex_enter(&vd->vdev_trim_io_lock);
461 
462 	if (zio->io_error != 0) {
463 		vd->vdev_stat.vs_trim_errors++;
464 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
465 		    0, 0, 0, 0, 1, zio->io_orig_size);
466 	} else {
467 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
468 		    1, zio->io_orig_size, 0, 0, 0, 0);
469 	}
470 
471 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
472 	vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
473 	cv_broadcast(&vd->vdev_trim_io_cv);
474 	mutex_exit(&vd->vdev_trim_io_lock);
475 
476 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
477 }
478 /*
479  * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
480  */
481 static uint64_t
482 vdev_trim_calculate_rate(trim_args_t *ta)
483 {
484 	return (ta->trim_bytes_done * 1000 /
485 	    (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
486 }
487 
488 /*
489  * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
490  * and number of concurrent TRIM I/Os.
491  */
492 static int
493 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
494 {
495 	vdev_t *vd = ta->trim_vdev;
496 	spa_t *spa = vd->vdev_spa;
497 	void *cb;
498 
499 	mutex_enter(&vd->vdev_trim_io_lock);
500 
501 	/*
502 	 * Limit manual TRIM I/Os to the requested rate.  This does not
503 	 * apply to automatic TRIM since no per vdev rate can be specified.
504 	 */
505 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
506 		while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
507 		    vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
508 			cv_timedwait_idle(&vd->vdev_trim_io_cv,
509 			    &vd->vdev_trim_io_lock, ddi_get_lbolt() +
510 			    MSEC_TO_TICK(10));
511 		}
512 	}
513 	ta->trim_bytes_done += size;
514 
515 	/* Limit in flight trimming I/Os */
516 	while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
517 	    vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
518 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
519 	}
520 	vd->vdev_trim_inflight[ta->trim_type]++;
521 	mutex_exit(&vd->vdev_trim_io_lock);
522 
523 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
524 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
525 	uint64_t txg = dmu_tx_get_txg(tx);
526 
527 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
528 	mutex_enter(&vd->vdev_trim_lock);
529 
530 	if (ta->trim_type == TRIM_TYPE_MANUAL &&
531 	    vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
532 		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
533 		*guid = vd->vdev_guid;
534 
535 		/* This is the first write of this txg. */
536 		dsl_sync_task_nowait(spa_get_dsl(spa),
537 		    vdev_trim_zap_update_sync, guid, tx);
538 	}
539 
540 	/*
541 	 * We know the vdev_t will still be around since all consumers of
542 	 * vdev_free must stop the trimming first.
543 	 */
544 	if ((ta->trim_type == TRIM_TYPE_MANUAL &&
545 	    vdev_trim_should_stop(vd)) ||
546 	    (ta->trim_type == TRIM_TYPE_AUTO &&
547 	    vdev_autotrim_should_stop(vd->vdev_top))) {
548 		mutex_enter(&vd->vdev_trim_io_lock);
549 		vd->vdev_trim_inflight[ta->trim_type]--;
550 		mutex_exit(&vd->vdev_trim_io_lock);
551 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
552 		mutex_exit(&vd->vdev_trim_lock);
553 		dmu_tx_commit(tx);
554 		return (SET_ERROR(EINTR));
555 	}
556 	mutex_exit(&vd->vdev_trim_lock);
557 
558 	if (ta->trim_type == TRIM_TYPE_MANUAL)
559 		vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
560 
561 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
562 		cb = vdev_trim_cb;
563 	} else if (ta->trim_type == TRIM_TYPE_AUTO) {
564 		cb = vdev_autotrim_cb;
565 	} else {
566 		cb = vdev_trim_simple_cb;
567 	}
568 
569 	zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
570 	    start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
571 	    ta->trim_flags));
572 	/* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
573 
574 	dmu_tx_commit(tx);
575 
576 	return (0);
577 }
578 
579 /*
580  * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
581  * Additional parameters describing how the TRIM should be performed must
582  * be set in the trim_args structure.  See the trim_args definition for
583  * additional information.
584  */
585 static int
586 vdev_trim_ranges(trim_args_t *ta)
587 {
588 	vdev_t *vd = ta->trim_vdev;
589 	zfs_btree_t *t = &ta->trim_tree->rt_root;
590 	zfs_btree_index_t idx;
591 	uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
592 	uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
593 	spa_t *spa = vd->vdev_spa;
594 
595 	ta->trim_start_time = gethrtime();
596 	ta->trim_bytes_done = 0;
597 
598 	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
599 	    rs = zfs_btree_next(t, &idx, &idx)) {
600 		uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
601 		    ta->trim_tree);
602 
603 		if (extent_bytes_min && size < extent_bytes_min) {
604 			spa_iostats_trim_add(spa, ta->trim_type,
605 			    0, 0, 1, size, 0, 0);
606 			continue;
607 		}
608 
609 		/* Split range into legally-sized physical chunks */
610 		uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
611 
612 		for (uint64_t w = 0; w < writes_required; w++) {
613 			int error;
614 
615 			error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
616 			    rs_get_start(rs, ta->trim_tree) +
617 			    (w *extent_bytes_max), MIN(size -
618 			    (w * extent_bytes_max), extent_bytes_max));
619 			if (error != 0) {
620 				return (error);
621 			}
622 		}
623 	}
624 
625 	return (0);
626 }
627 
628 static void
629 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
630 {
631 	uint64_t *last_rs_end = (uint64_t *)arg;
632 
633 	if (physical_rs->rs_end > *last_rs_end)
634 		*last_rs_end = physical_rs->rs_end;
635 }
636 
637 static void
638 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
639 {
640 	vdev_t *vd = (vdev_t *)arg;
641 
642 	uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
643 	vd->vdev_trim_bytes_est += size;
644 
645 	if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
646 		vd->vdev_trim_bytes_done += size;
647 	} else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
648 	    vd->vdev_trim_last_offset <= physical_rs->rs_end) {
649 		vd->vdev_trim_bytes_done +=
650 		    vd->vdev_trim_last_offset - physical_rs->rs_start;
651 	}
652 }
653 
654 /*
655  * Calculates the completion percentage of a manual TRIM.
656  */
657 static void
658 vdev_trim_calculate_progress(vdev_t *vd)
659 {
660 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
661 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
662 	ASSERT(vd->vdev_leaf_zap != 0);
663 
664 	vd->vdev_trim_bytes_est = 0;
665 	vd->vdev_trim_bytes_done = 0;
666 
667 	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
668 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
669 		mutex_enter(&msp->ms_lock);
670 
671 		uint64_t ms_free = (msp->ms_size -
672 		    metaslab_allocated_space(msp)) /
673 		    vdev_get_ndisks(vd->vdev_top);
674 
675 		/*
676 		 * Convert the metaslab range to a physical range
677 		 * on our vdev. We use this to determine if we are
678 		 * in the middle of this metaslab range.
679 		 */
680 		range_seg64_t logical_rs, physical_rs, remain_rs;
681 		logical_rs.rs_start = msp->ms_start;
682 		logical_rs.rs_end = msp->ms_start + msp->ms_size;
683 
684 		/* Metaslab space after this offset has not been trimmed. */
685 		vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
686 		if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
687 			vd->vdev_trim_bytes_est += ms_free;
688 			mutex_exit(&msp->ms_lock);
689 			continue;
690 		}
691 
692 		/* Metaslab space before this offset has been trimmed */
693 		uint64_t last_rs_end = physical_rs.rs_end;
694 		if (!vdev_xlate_is_empty(&remain_rs)) {
695 			vdev_xlate_walk(vd, &remain_rs,
696 			    vdev_trim_xlate_last_rs_end, &last_rs_end);
697 		}
698 
699 		if (vd->vdev_trim_last_offset > last_rs_end) {
700 			vd->vdev_trim_bytes_done += ms_free;
701 			vd->vdev_trim_bytes_est += ms_free;
702 			mutex_exit(&msp->ms_lock);
703 			continue;
704 		}
705 
706 		/*
707 		 * If we get here, we're in the middle of trimming this
708 		 * metaslab.  Load it and walk the free tree for more
709 		 * accurate progress estimation.
710 		 */
711 		VERIFY0(metaslab_load(msp));
712 
713 		range_tree_t *rt = msp->ms_allocatable;
714 		zfs_btree_t *bt = &rt->rt_root;
715 		zfs_btree_index_t idx;
716 		for (range_seg_t *rs = zfs_btree_first(bt, &idx);
717 		    rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
718 			logical_rs.rs_start = rs_get_start(rs, rt);
719 			logical_rs.rs_end = rs_get_end(rs, rt);
720 
721 			vdev_xlate_walk(vd, &logical_rs,
722 			    vdev_trim_xlate_progress, vd);
723 		}
724 		mutex_exit(&msp->ms_lock);
725 	}
726 }
727 
728 /*
729  * Load from disk the vdev's manual TRIM information.  This includes the
730  * state, progress, and options provided when initiating the manual TRIM.
731  */
732 static int
733 vdev_trim_load(vdev_t *vd)
734 {
735 	int err = 0;
736 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
737 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
738 	ASSERT(vd->vdev_leaf_zap != 0);
739 
740 	if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
741 	    vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
742 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
743 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
744 		    sizeof (vd->vdev_trim_last_offset), 1,
745 		    &vd->vdev_trim_last_offset);
746 		if (err == ENOENT) {
747 			vd->vdev_trim_last_offset = 0;
748 			err = 0;
749 		}
750 
751 		if (err == 0) {
752 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
753 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
754 			    sizeof (vd->vdev_trim_rate), 1,
755 			    &vd->vdev_trim_rate);
756 			if (err == ENOENT) {
757 				vd->vdev_trim_rate = 0;
758 				err = 0;
759 			}
760 		}
761 
762 		if (err == 0) {
763 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
764 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
765 			    sizeof (vd->vdev_trim_partial), 1,
766 			    &vd->vdev_trim_partial);
767 			if (err == ENOENT) {
768 				vd->vdev_trim_partial = 0;
769 				err = 0;
770 			}
771 		}
772 
773 		if (err == 0) {
774 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
775 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
776 			    sizeof (vd->vdev_trim_secure), 1,
777 			    &vd->vdev_trim_secure);
778 			if (err == ENOENT) {
779 				vd->vdev_trim_secure = 0;
780 				err = 0;
781 			}
782 		}
783 	}
784 
785 	vdev_trim_calculate_progress(vd);
786 
787 	return (err);
788 }
789 
790 static void
791 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
792 {
793 	trim_args_t *ta = arg;
794 	vdev_t *vd = ta->trim_vdev;
795 
796 	/*
797 	 * Only a manual trim will be traversing the vdev sequentially.
798 	 * For an auto trim all valid ranges should be added.
799 	 */
800 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
801 
802 		/* Only add segments that we have not visited yet */
803 		if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
804 			return;
805 
806 		/* Pick up where we left off mid-range. */
807 		if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
808 			ASSERT3U(physical_rs->rs_end, >,
809 			    vd->vdev_trim_last_offset);
810 			physical_rs->rs_start = vd->vdev_trim_last_offset;
811 		}
812 	}
813 
814 	ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
815 
816 	range_tree_add(ta->trim_tree, physical_rs->rs_start,
817 	    physical_rs->rs_end - physical_rs->rs_start);
818 }
819 
820 /*
821  * Convert the logical range into physical ranges and add them to the
822  * range tree passed in the trim_args_t.
823  */
824 static void
825 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
826 {
827 	trim_args_t *ta = arg;
828 	vdev_t *vd = ta->trim_vdev;
829 	range_seg64_t logical_rs;
830 	logical_rs.rs_start = start;
831 	logical_rs.rs_end = start + size;
832 
833 	/*
834 	 * Every range to be trimmed must be part of ms_allocatable.
835 	 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
836 	 * is always the case.
837 	 */
838 	if (zfs_flags & ZFS_DEBUG_TRIM) {
839 		metaslab_t *msp = ta->trim_msp;
840 		VERIFY0(metaslab_load(msp));
841 		VERIFY3B(msp->ms_loaded, ==, B_TRUE);
842 		VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
843 	}
844 
845 	ASSERT(vd->vdev_ops->vdev_op_leaf);
846 	vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
847 }
848 
849 /*
850  * Each manual TRIM thread is responsible for trimming the unallocated
851  * space for each leaf vdev.  This is accomplished by sequentially iterating
852  * over its top-level metaslabs and issuing TRIM I/O for the space described
853  * by its ms_allocatable.  While a metaslab is undergoing trimming it is
854  * not eligible for new allocations.
855  */
856 static __attribute__((noreturn)) void
857 vdev_trim_thread(void *arg)
858 {
859 	vdev_t *vd = arg;
860 	spa_t *spa = vd->vdev_spa;
861 	trim_args_t ta;
862 	int error = 0;
863 
864 	/*
865 	 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
866 	 * vdev_trim().  Wait for the updated values to be reflected
867 	 * in the zap in order to start with the requested settings.
868 	 */
869 	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
870 
871 	ASSERT(vdev_is_concrete(vd));
872 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
873 
874 	vd->vdev_trim_last_offset = 0;
875 	vd->vdev_trim_rate = 0;
876 	vd->vdev_trim_partial = 0;
877 	vd->vdev_trim_secure = 0;
878 
879 	VERIFY0(vdev_trim_load(vd));
880 
881 	ta.trim_vdev = vd;
882 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
883 	ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
884 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
885 	ta.trim_type = TRIM_TYPE_MANUAL;
886 	ta.trim_flags = 0;
887 
888 	/*
889 	 * When a secure TRIM has been requested infer that the intent
890 	 * is that everything must be trimmed.  Override the default
891 	 * minimum TRIM size to prevent ranges from being skipped.
892 	 */
893 	if (vd->vdev_trim_secure) {
894 		ta.trim_flags |= ZIO_TRIM_SECURE;
895 		ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
896 	}
897 
898 	uint64_t ms_count = 0;
899 	for (uint64_t i = 0; !vd->vdev_detached &&
900 	    i < vd->vdev_top->vdev_ms_count; i++) {
901 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
902 
903 		/*
904 		 * If we've expanded the top-level vdev or it's our
905 		 * first pass, calculate our progress.
906 		 */
907 		if (vd->vdev_top->vdev_ms_count != ms_count) {
908 			vdev_trim_calculate_progress(vd);
909 			ms_count = vd->vdev_top->vdev_ms_count;
910 		}
911 
912 		spa_config_exit(spa, SCL_CONFIG, FTAG);
913 		metaslab_disable(msp);
914 		mutex_enter(&msp->ms_lock);
915 		VERIFY0(metaslab_load(msp));
916 
917 		/*
918 		 * If a partial TRIM was requested skip metaslabs which have
919 		 * never been initialized and thus have never been written.
920 		 */
921 		if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
922 			mutex_exit(&msp->ms_lock);
923 			metaslab_enable(msp, B_FALSE, B_FALSE);
924 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
925 			vdev_trim_calculate_progress(vd);
926 			continue;
927 		}
928 
929 		ta.trim_msp = msp;
930 		range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
931 		range_tree_vacate(msp->ms_trim, NULL, NULL);
932 		mutex_exit(&msp->ms_lock);
933 
934 		error = vdev_trim_ranges(&ta);
935 		metaslab_enable(msp, B_TRUE, B_FALSE);
936 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
937 
938 		range_tree_vacate(ta.trim_tree, NULL, NULL);
939 		if (error != 0)
940 			break;
941 	}
942 
943 	spa_config_exit(spa, SCL_CONFIG, FTAG);
944 	mutex_enter(&vd->vdev_trim_io_lock);
945 	while (vd->vdev_trim_inflight[0] > 0) {
946 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
947 	}
948 	mutex_exit(&vd->vdev_trim_io_lock);
949 
950 	range_tree_destroy(ta.trim_tree);
951 
952 	mutex_enter(&vd->vdev_trim_lock);
953 	if (!vd->vdev_trim_exit_wanted) {
954 		if (vdev_writeable(vd)) {
955 			vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
956 			    vd->vdev_trim_rate, vd->vdev_trim_partial,
957 			    vd->vdev_trim_secure);
958 		} else if (vd->vdev_faulted) {
959 			vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
960 			    vd->vdev_trim_rate, vd->vdev_trim_partial,
961 			    vd->vdev_trim_secure);
962 		}
963 	}
964 	ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
965 
966 	/*
967 	 * Drop the vdev_trim_lock while we sync out the txg since it's
968 	 * possible that a device might be trying to come online and must
969 	 * check to see if it needs to restart a trim. That thread will be
970 	 * holding the spa_config_lock which would prevent the txg_wait_synced
971 	 * from completing.
972 	 */
973 	mutex_exit(&vd->vdev_trim_lock);
974 	txg_wait_synced(spa_get_dsl(spa), 0);
975 	mutex_enter(&vd->vdev_trim_lock);
976 
977 	vd->vdev_trim_thread = NULL;
978 	cv_broadcast(&vd->vdev_trim_cv);
979 	mutex_exit(&vd->vdev_trim_lock);
980 
981 	thread_exit();
982 }
983 
984 /*
985  * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
986  * the vdev_t must be a leaf and cannot already be manually trimming.
987  */
988 void
989 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
990 {
991 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
992 	ASSERT(vd->vdev_ops->vdev_op_leaf);
993 	ASSERT(vdev_is_concrete(vd));
994 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
995 	ASSERT(!vd->vdev_detached);
996 	ASSERT(!vd->vdev_trim_exit_wanted);
997 	ASSERT(!vd->vdev_top->vdev_removing);
998 
999 	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
1000 	vd->vdev_trim_thread = thread_create(NULL, 0,
1001 	    vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1002 }
1003 
1004 /*
1005  * Wait for the trimming thread to be terminated (canceled or stopped).
1006  */
1007 static void
1008 vdev_trim_stop_wait_impl(vdev_t *vd)
1009 {
1010 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1011 
1012 	while (vd->vdev_trim_thread != NULL)
1013 		cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
1014 
1015 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1016 	vd->vdev_trim_exit_wanted = B_FALSE;
1017 }
1018 
1019 /*
1020  * Wait for vdev trim threads which were listed to cleanly exit.
1021  */
1022 void
1023 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1024 {
1025 	(void) spa;
1026 	vdev_t *vd;
1027 
1028 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1029 
1030 	while ((vd = list_remove_head(vd_list)) != NULL) {
1031 		mutex_enter(&vd->vdev_trim_lock);
1032 		vdev_trim_stop_wait_impl(vd);
1033 		mutex_exit(&vd->vdev_trim_lock);
1034 	}
1035 }
1036 
1037 /*
1038  * Stop trimming a device, with the resultant trimming state being tgt_state.
1039  * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
1040  * provided the stopping vdev is inserted in to the list.  Callers are then
1041  * required to call vdev_trim_stop_wait() to block for all the trim threads
1042  * to exit.  The caller must hold vdev_trim_lock and must not be writing to
1043  * the spa config, as the trimming thread may try to enter the config as a
1044  * reader before exiting.
1045  */
1046 void
1047 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1048 {
1049 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1050 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1051 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1052 	ASSERT(vdev_is_concrete(vd));
1053 
1054 	/*
1055 	 * Allow cancel requests to proceed even if the trim thread has
1056 	 * stopped.
1057 	 */
1058 	if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1059 		return;
1060 
1061 	vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1062 	vd->vdev_trim_exit_wanted = B_TRUE;
1063 
1064 	if (vd_list == NULL) {
1065 		vdev_trim_stop_wait_impl(vd);
1066 	} else {
1067 		ASSERT(MUTEX_HELD(&spa_namespace_lock));
1068 		list_insert_tail(vd_list, vd);
1069 	}
1070 }
1071 
1072 /*
1073  * Requests that all listed vdevs stop trimming.
1074  */
1075 static void
1076 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1077     list_t *vd_list)
1078 {
1079 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1080 		mutex_enter(&vd->vdev_trim_lock);
1081 		vdev_trim_stop(vd, tgt_state, vd_list);
1082 		mutex_exit(&vd->vdev_trim_lock);
1083 		return;
1084 	}
1085 
1086 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1087 		vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1088 		    vd_list);
1089 	}
1090 }
1091 
1092 /*
1093  * Convenience function to stop trimming of a vdev tree and set all trim
1094  * thread pointers to NULL.
1095  */
1096 void
1097 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1098 {
1099 	spa_t *spa = vd->vdev_spa;
1100 	list_t vd_list;
1101 	vdev_t *vd_l2cache;
1102 
1103 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1104 
1105 	list_create(&vd_list, sizeof (vdev_t),
1106 	    offsetof(vdev_t, vdev_trim_node));
1107 
1108 	vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1109 
1110 	/*
1111 	 * Iterate over cache devices and request stop trimming the
1112 	 * whole device in case we export the pool or remove the cache
1113 	 * device prematurely.
1114 	 */
1115 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1116 		vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1117 		vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1118 	}
1119 
1120 	vdev_trim_stop_wait(spa, &vd_list);
1121 
1122 	if (vd->vdev_spa->spa_sync_on) {
1123 		/* Make sure that our state has been synced to disk */
1124 		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1125 	}
1126 
1127 	list_destroy(&vd_list);
1128 }
1129 
1130 /*
1131  * Conditionally restarts a manual TRIM given its on-disk state.
1132  */
1133 void
1134 vdev_trim_restart(vdev_t *vd)
1135 {
1136 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1137 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1138 
1139 	if (vd->vdev_leaf_zap != 0) {
1140 		mutex_enter(&vd->vdev_trim_lock);
1141 		uint64_t trim_state = VDEV_TRIM_NONE;
1142 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1143 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1144 		    sizeof (trim_state), 1, &trim_state);
1145 		ASSERT(err == 0 || err == ENOENT);
1146 		vd->vdev_trim_state = trim_state;
1147 
1148 		uint64_t timestamp = 0;
1149 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1150 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1151 		    sizeof (timestamp), 1, &timestamp);
1152 		ASSERT(err == 0 || err == ENOENT);
1153 		vd->vdev_trim_action_time = timestamp;
1154 
1155 		if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1156 		    vd->vdev_offline) {
1157 			/* load progress for reporting, but don't resume */
1158 			VERIFY0(vdev_trim_load(vd));
1159 		} else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1160 		    vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1161 		    vd->vdev_trim_thread == NULL) {
1162 			VERIFY0(vdev_trim_load(vd));
1163 			vdev_trim(vd, vd->vdev_trim_rate,
1164 			    vd->vdev_trim_partial, vd->vdev_trim_secure);
1165 		}
1166 
1167 		mutex_exit(&vd->vdev_trim_lock);
1168 	}
1169 
1170 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1171 		vdev_trim_restart(vd->vdev_child[i]);
1172 	}
1173 }
1174 
1175 /*
1176  * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1177  * every TRIM range is contained within ms_allocatable.
1178  */
1179 static void
1180 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1181 {
1182 	trim_args_t *ta = arg;
1183 	metaslab_t *msp = ta->trim_msp;
1184 
1185 	VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1186 	VERIFY3U(msp->ms_disabled, >, 0);
1187 	VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1188 }
1189 
1190 /*
1191  * Each automatic TRIM thread is responsible for managing the trimming of a
1192  * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1193  *
1194  * N.B. This behavior is different from a manual TRIM where a thread
1195  * is created for each leaf vdev, instead of each top-level vdev.
1196  */
1197 static __attribute__((noreturn)) void
1198 vdev_autotrim_thread(void *arg)
1199 {
1200 	vdev_t *vd = arg;
1201 	spa_t *spa = vd->vdev_spa;
1202 	int shift = 0;
1203 
1204 	mutex_enter(&vd->vdev_autotrim_lock);
1205 	ASSERT3P(vd->vdev_top, ==, vd);
1206 	ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1207 	mutex_exit(&vd->vdev_autotrim_lock);
1208 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1209 
1210 	while (!vdev_autotrim_should_stop(vd)) {
1211 		int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1212 		uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1213 		uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1214 
1215 		/*
1216 		 * All of the metaslabs are divided in to groups of size
1217 		 * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1218 		 * is composed of metaslabs which are spread evenly over the
1219 		 * device.
1220 		 *
1221 		 * For example, when zfs_trim_txg_batch = 32 (default) then
1222 		 * group 0 will contain metaslabs 0, 32, 64, ...;
1223 		 * group 1 will contain metaslabs 1, 33, 65, ...;
1224 		 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1225 		 *
1226 		 * On each pass through the while() loop one of these groups
1227 		 * is selected.  This is accomplished by using a shift value
1228 		 * to select the starting metaslab, then striding over the
1229 		 * metaslabs using the zfs_trim_txg_batch size.  This is
1230 		 * done to accomplish two things.
1231 		 *
1232 		 * 1) By dividing the metaslabs in to groups, and making sure
1233 		 *    that each group takes a minimum of one txg to process.
1234 		 *    Then zfs_trim_txg_batch controls the minimum number of
1235 		 *    txgs which must occur before a metaslab is revisited.
1236 		 *
1237 		 * 2) Selecting non-consecutive metaslabs distributes the
1238 		 *    TRIM commands for a group evenly over the entire device.
1239 		 *    This can be advantageous for certain types of devices.
1240 		 */
1241 		for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1242 		    i += txgs_per_trim) {
1243 			metaslab_t *msp = vd->vdev_ms[i];
1244 			range_tree_t *trim_tree;
1245 			boolean_t issued_trim = B_FALSE;
1246 			boolean_t wait_aborted = B_FALSE;
1247 
1248 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1249 			metaslab_disable(msp);
1250 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1251 
1252 			mutex_enter(&msp->ms_lock);
1253 
1254 			/*
1255 			 * Skip the metaslab when it has never been allocated
1256 			 * or when there are no recent frees to trim.
1257 			 */
1258 			if (msp->ms_sm == NULL ||
1259 			    range_tree_is_empty(msp->ms_trim)) {
1260 				mutex_exit(&msp->ms_lock);
1261 				metaslab_enable(msp, B_FALSE, B_FALSE);
1262 				continue;
1263 			}
1264 
1265 			/*
1266 			 * Skip the metaslab when it has already been disabled.
1267 			 * This may happen when a manual TRIM or initialize
1268 			 * operation is running concurrently.  In the case
1269 			 * of a manual TRIM, the ms_trim tree will have been
1270 			 * vacated.  Only ranges added after the manual TRIM
1271 			 * disabled the metaslab will be included in the tree.
1272 			 * These will be processed when the automatic TRIM
1273 			 * next revisits this metaslab.
1274 			 */
1275 			if (msp->ms_disabled > 1) {
1276 				mutex_exit(&msp->ms_lock);
1277 				metaslab_enable(msp, B_FALSE, B_FALSE);
1278 				continue;
1279 			}
1280 
1281 			/*
1282 			 * Allocate an empty range tree which is swapped in
1283 			 * for the existing ms_trim tree while it is processed.
1284 			 */
1285 			trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1286 			    0, 0);
1287 			range_tree_swap(&msp->ms_trim, &trim_tree);
1288 			ASSERT(range_tree_is_empty(msp->ms_trim));
1289 
1290 			/*
1291 			 * There are two cases when constructing the per-vdev
1292 			 * trim trees for a metaslab.  If the top-level vdev
1293 			 * has no children then it is also a leaf and should
1294 			 * be trimmed.  Otherwise our children are the leaves
1295 			 * and a trim tree should be constructed for each.
1296 			 */
1297 			trim_args_t *tap;
1298 			uint64_t children = vd->vdev_children;
1299 			if (children == 0) {
1300 				children = 1;
1301 				tap = kmem_zalloc(sizeof (trim_args_t) *
1302 				    children, KM_SLEEP);
1303 				tap[0].trim_vdev = vd;
1304 			} else {
1305 				tap = kmem_zalloc(sizeof (trim_args_t) *
1306 				    children, KM_SLEEP);
1307 
1308 				for (uint64_t c = 0; c < children; c++) {
1309 					tap[c].trim_vdev = vd->vdev_child[c];
1310 				}
1311 			}
1312 
1313 			for (uint64_t c = 0; c < children; c++) {
1314 				trim_args_t *ta = &tap[c];
1315 				vdev_t *cvd = ta->trim_vdev;
1316 
1317 				ta->trim_msp = msp;
1318 				ta->trim_extent_bytes_max = extent_bytes_max;
1319 				ta->trim_extent_bytes_min = extent_bytes_min;
1320 				ta->trim_type = TRIM_TYPE_AUTO;
1321 				ta->trim_flags = 0;
1322 
1323 				if (cvd->vdev_detached ||
1324 				    !vdev_writeable(cvd) ||
1325 				    !cvd->vdev_has_trim ||
1326 				    cvd->vdev_trim_thread != NULL) {
1327 					continue;
1328 				}
1329 
1330 				/*
1331 				 * When a device has an attached hot spare, or
1332 				 * is being replaced it will not be trimmed.
1333 				 * This is done to avoid adding additional
1334 				 * stress to a potentially unhealthy device,
1335 				 * and to minimize the required rebuild time.
1336 				 */
1337 				if (!cvd->vdev_ops->vdev_op_leaf)
1338 					continue;
1339 
1340 				ta->trim_tree = range_tree_create(NULL,
1341 				    RANGE_SEG64, NULL, 0, 0);
1342 				range_tree_walk(trim_tree,
1343 				    vdev_trim_range_add, ta);
1344 			}
1345 
1346 			mutex_exit(&msp->ms_lock);
1347 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1348 
1349 			/*
1350 			 * Issue the TRIM I/Os for all ranges covered by the
1351 			 * TRIM trees.  These ranges are safe to TRIM because
1352 			 * no new allocations will be performed until the call
1353 			 * to metaslab_enabled() below.
1354 			 */
1355 			for (uint64_t c = 0; c < children; c++) {
1356 				trim_args_t *ta = &tap[c];
1357 
1358 				/*
1359 				 * Always yield to a manual TRIM if one has
1360 				 * been started for the child vdev.
1361 				 */
1362 				if (ta->trim_tree == NULL ||
1363 				    ta->trim_vdev->vdev_trim_thread != NULL) {
1364 					continue;
1365 				}
1366 
1367 				/*
1368 				 * After this point metaslab_enable() must be
1369 				 * called with the sync flag set.  This is done
1370 				 * here because vdev_trim_ranges() is allowed
1371 				 * to be interrupted (EINTR) before issuing all
1372 				 * of the required TRIM I/Os.
1373 				 */
1374 				issued_trim = B_TRUE;
1375 
1376 				int error = vdev_trim_ranges(ta);
1377 				if (error)
1378 					break;
1379 			}
1380 
1381 			/*
1382 			 * Verify every range which was trimmed is still
1383 			 * contained within the ms_allocatable tree.
1384 			 */
1385 			if (zfs_flags & ZFS_DEBUG_TRIM) {
1386 				mutex_enter(&msp->ms_lock);
1387 				VERIFY0(metaslab_load(msp));
1388 				VERIFY3P(tap[0].trim_msp, ==, msp);
1389 				range_tree_walk(trim_tree,
1390 				    vdev_trim_range_verify, &tap[0]);
1391 				mutex_exit(&msp->ms_lock);
1392 			}
1393 
1394 			range_tree_vacate(trim_tree, NULL, NULL);
1395 			range_tree_destroy(trim_tree);
1396 
1397 			/*
1398 			 * Wait for couples of kicks, to ensure the trim io is
1399 			 * synced. If the wait is aborted due to
1400 			 * vdev_autotrim_exit_wanted, we need to signal
1401 			 * metaslab_enable() to wait for sync.
1402 			 */
1403 			if (issued_trim) {
1404 				wait_aborted = vdev_autotrim_wait_kick(vd,
1405 				    TXG_CONCURRENT_STATES + TXG_DEFER_SIZE);
1406 			}
1407 
1408 			metaslab_enable(msp, wait_aborted, B_FALSE);
1409 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1410 
1411 			for (uint64_t c = 0; c < children; c++) {
1412 				trim_args_t *ta = &tap[c];
1413 
1414 				if (ta->trim_tree == NULL)
1415 					continue;
1416 
1417 				range_tree_vacate(ta->trim_tree, NULL, NULL);
1418 				range_tree_destroy(ta->trim_tree);
1419 			}
1420 
1421 			kmem_free(tap, sizeof (trim_args_t) * children);
1422 
1423 			if (vdev_autotrim_should_stop(vd))
1424 				break;
1425 		}
1426 
1427 		spa_config_exit(spa, SCL_CONFIG, FTAG);
1428 
1429 		vdev_autotrim_wait_kick(vd, 1);
1430 
1431 		shift++;
1432 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1433 	}
1434 
1435 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1436 		vdev_t *cvd = vd->vdev_child[c];
1437 		mutex_enter(&cvd->vdev_trim_io_lock);
1438 
1439 		while (cvd->vdev_trim_inflight[1] > 0) {
1440 			cv_wait(&cvd->vdev_trim_io_cv,
1441 			    &cvd->vdev_trim_io_lock);
1442 		}
1443 		mutex_exit(&cvd->vdev_trim_io_lock);
1444 	}
1445 
1446 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1447 
1448 	/*
1449 	 * When exiting because the autotrim property was set to off, then
1450 	 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1451 	 */
1452 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1453 		for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1454 			metaslab_t *msp = vd->vdev_ms[i];
1455 
1456 			mutex_enter(&msp->ms_lock);
1457 			range_tree_vacate(msp->ms_trim, NULL, NULL);
1458 			mutex_exit(&msp->ms_lock);
1459 		}
1460 	}
1461 
1462 	mutex_enter(&vd->vdev_autotrim_lock);
1463 	ASSERT(vd->vdev_autotrim_thread != NULL);
1464 	vd->vdev_autotrim_thread = NULL;
1465 	cv_broadcast(&vd->vdev_autotrim_cv);
1466 	mutex_exit(&vd->vdev_autotrim_lock);
1467 
1468 	thread_exit();
1469 }
1470 
1471 /*
1472  * Starts an autotrim thread, if needed, for each top-level vdev which can be
1473  * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1474  */
1475 void
1476 vdev_autotrim(spa_t *spa)
1477 {
1478 	vdev_t *root_vd = spa->spa_root_vdev;
1479 
1480 	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1481 		vdev_t *tvd = root_vd->vdev_child[i];
1482 
1483 		mutex_enter(&tvd->vdev_autotrim_lock);
1484 		if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1485 		    tvd->vdev_autotrim_thread == NULL) {
1486 			ASSERT3P(tvd->vdev_top, ==, tvd);
1487 
1488 			tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1489 			    vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1490 			    maxclsyspri);
1491 			ASSERT(tvd->vdev_autotrim_thread != NULL);
1492 		}
1493 		mutex_exit(&tvd->vdev_autotrim_lock);
1494 	}
1495 }
1496 
1497 /*
1498  * Wait for the vdev_autotrim_thread associated with the passed top-level
1499  * vdev to be terminated (canceled or stopped).
1500  */
1501 void
1502 vdev_autotrim_stop_wait(vdev_t *tvd)
1503 {
1504 	mutex_enter(&tvd->vdev_autotrim_lock);
1505 	if (tvd->vdev_autotrim_thread != NULL) {
1506 		tvd->vdev_autotrim_exit_wanted = B_TRUE;
1507 		cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1508 		cv_wait(&tvd->vdev_autotrim_cv,
1509 		    &tvd->vdev_autotrim_lock);
1510 
1511 		ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1512 		tvd->vdev_autotrim_exit_wanted = B_FALSE;
1513 	}
1514 	mutex_exit(&tvd->vdev_autotrim_lock);
1515 }
1516 
1517 void
1518 vdev_autotrim_kick(spa_t *spa)
1519 {
1520 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1521 
1522 	vdev_t *root_vd = spa->spa_root_vdev;
1523 	vdev_t *tvd;
1524 
1525 	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1526 		tvd = root_vd->vdev_child[i];
1527 
1528 		mutex_enter(&tvd->vdev_autotrim_lock);
1529 		if (tvd->vdev_autotrim_thread != NULL)
1530 			cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1531 		mutex_exit(&tvd->vdev_autotrim_lock);
1532 	}
1533 }
1534 
1535 /*
1536  * Wait for all of the vdev_autotrim_thread associated with the pool to
1537  * be terminated (canceled or stopped).
1538  */
1539 void
1540 vdev_autotrim_stop_all(spa_t *spa)
1541 {
1542 	vdev_t *root_vd = spa->spa_root_vdev;
1543 
1544 	for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1545 		vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1546 }
1547 
1548 /*
1549  * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1550  */
1551 void
1552 vdev_autotrim_restart(spa_t *spa)
1553 {
1554 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1555 
1556 	if (spa->spa_autotrim)
1557 		vdev_autotrim(spa);
1558 }
1559 
1560 static __attribute__((noreturn)) void
1561 vdev_trim_l2arc_thread(void *arg)
1562 {
1563 	vdev_t		*vd = arg;
1564 	spa_t		*spa = vd->vdev_spa;
1565 	l2arc_dev_t	*dev = l2arc_vdev_get(vd);
1566 	trim_args_t	ta = {0};
1567 	range_seg64_t 	physical_rs;
1568 
1569 	ASSERT(vdev_is_concrete(vd));
1570 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1571 
1572 	vd->vdev_trim_last_offset = 0;
1573 	vd->vdev_trim_rate = 0;
1574 	vd->vdev_trim_partial = 0;
1575 	vd->vdev_trim_secure = 0;
1576 
1577 	ta.trim_vdev = vd;
1578 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1579 	ta.trim_type = TRIM_TYPE_MANUAL;
1580 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1581 	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1582 	ta.trim_flags = 0;
1583 
1584 	physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1585 	physical_rs.rs_end = vd->vdev_trim_bytes_est =
1586 	    vdev_get_min_asize(vd);
1587 
1588 	range_tree_add(ta.trim_tree, physical_rs.rs_start,
1589 	    physical_rs.rs_end - physical_rs.rs_start);
1590 
1591 	mutex_enter(&vd->vdev_trim_lock);
1592 	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1593 	mutex_exit(&vd->vdev_trim_lock);
1594 
1595 	(void) vdev_trim_ranges(&ta);
1596 
1597 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1598 	mutex_enter(&vd->vdev_trim_io_lock);
1599 	while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1600 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1601 	}
1602 	mutex_exit(&vd->vdev_trim_io_lock);
1603 
1604 	range_tree_vacate(ta.trim_tree, NULL, NULL);
1605 	range_tree_destroy(ta.trim_tree);
1606 
1607 	mutex_enter(&vd->vdev_trim_lock);
1608 	if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1609 		vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1610 		    vd->vdev_trim_rate, vd->vdev_trim_partial,
1611 		    vd->vdev_trim_secure);
1612 	}
1613 	ASSERT(vd->vdev_trim_thread != NULL ||
1614 	    vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1615 
1616 	/*
1617 	 * Drop the vdev_trim_lock while we sync out the txg since it's
1618 	 * possible that a device might be trying to come online and
1619 	 * must check to see if it needs to restart a trim. That thread
1620 	 * will be holding the spa_config_lock which would prevent the
1621 	 * txg_wait_synced from completing. Same strategy as in
1622 	 * vdev_trim_thread().
1623 	 */
1624 	mutex_exit(&vd->vdev_trim_lock);
1625 	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1626 	mutex_enter(&vd->vdev_trim_lock);
1627 
1628 	/*
1629 	 * Update the header of the cache device here, before
1630 	 * broadcasting vdev_trim_cv which may lead to the removal
1631 	 * of the device. The same applies for setting l2ad_trim_all to
1632 	 * false.
1633 	 */
1634 	spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1635 	    RW_READER);
1636 	memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
1637 	l2arc_dev_hdr_update(dev);
1638 	spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1639 
1640 	vd->vdev_trim_thread = NULL;
1641 	if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1642 		dev->l2ad_trim_all = B_FALSE;
1643 
1644 	cv_broadcast(&vd->vdev_trim_cv);
1645 	mutex_exit(&vd->vdev_trim_lock);
1646 
1647 	thread_exit();
1648 }
1649 
1650 /*
1651  * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1652  * to vd->vdev_trim_thread variable. This facilitates the management of
1653  * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1654  * to a pool or pool creation or when the header of the device is invalid.
1655  */
1656 void
1657 vdev_trim_l2arc(spa_t *spa)
1658 {
1659 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1660 
1661 	/*
1662 	 * Locate the spa's l2arc devices and kick off TRIM threads.
1663 	 */
1664 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1665 		vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1666 		l2arc_dev_t *dev = l2arc_vdev_get(vd);
1667 
1668 		if (dev == NULL || !dev->l2ad_trim_all) {
1669 			/*
1670 			 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1671 			 * cache device was not marked for whole device TRIM
1672 			 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1673 			 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1674 			 * l2ad_log_entries > 0).
1675 			 */
1676 			continue;
1677 		}
1678 
1679 		mutex_enter(&vd->vdev_trim_lock);
1680 		ASSERT(vd->vdev_ops->vdev_op_leaf);
1681 		ASSERT(vdev_is_concrete(vd));
1682 		ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1683 		ASSERT(!vd->vdev_detached);
1684 		ASSERT(!vd->vdev_trim_exit_wanted);
1685 		ASSERT(!vd->vdev_top->vdev_removing);
1686 		vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1687 		vd->vdev_trim_thread = thread_create(NULL, 0,
1688 		    vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1689 		mutex_exit(&vd->vdev_trim_lock);
1690 	}
1691 }
1692 
1693 /*
1694  * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1695  * on leaf vdevs.
1696  */
1697 int
1698 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1699 {
1700 	trim_args_t ta = {0};
1701 	range_seg64_t physical_rs;
1702 	int error;
1703 	physical_rs.rs_start = start;
1704 	physical_rs.rs_end = start + size;
1705 
1706 	ASSERT(vdev_is_concrete(vd));
1707 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1708 	ASSERT(!vd->vdev_detached);
1709 	ASSERT(!vd->vdev_top->vdev_removing);
1710 
1711 	ta.trim_vdev = vd;
1712 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1713 	ta.trim_type = TRIM_TYPE_SIMPLE;
1714 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1715 	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1716 	ta.trim_flags = 0;
1717 
1718 	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1719 
1720 	if (physical_rs.rs_end > physical_rs.rs_start) {
1721 		range_tree_add(ta.trim_tree, physical_rs.rs_start,
1722 		    physical_rs.rs_end - physical_rs.rs_start);
1723 	} else {
1724 		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1725 	}
1726 
1727 	error = vdev_trim_ranges(&ta);
1728 
1729 	mutex_enter(&vd->vdev_trim_io_lock);
1730 	while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1731 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1732 	}
1733 	mutex_exit(&vd->vdev_trim_io_lock);
1734 
1735 	range_tree_vacate(ta.trim_tree, NULL, NULL);
1736 	range_tree_destroy(ta.trim_tree);
1737 
1738 	return (error);
1739 }
1740 
1741 EXPORT_SYMBOL(vdev_trim);
1742 EXPORT_SYMBOL(vdev_trim_stop);
1743 EXPORT_SYMBOL(vdev_trim_stop_all);
1744 EXPORT_SYMBOL(vdev_trim_stop_wait);
1745 EXPORT_SYMBOL(vdev_trim_restart);
1746 EXPORT_SYMBOL(vdev_autotrim);
1747 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1748 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1749 EXPORT_SYMBOL(vdev_autotrim_restart);
1750 EXPORT_SYMBOL(vdev_trim_l2arc);
1751 EXPORT_SYMBOL(vdev_trim_simple);
1752 
1753 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1754 	"Max size of TRIM commands, larger will be split");
1755 
1756 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1757 	"Min size of TRIM commands, smaller will be skipped");
1758 
1759 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1760 	"Skip metaslabs which have never been initialized");
1761 
1762 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1763 	"Min number of txgs to aggregate frees before issuing TRIM");
1764 
1765 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1766 	"Max queued TRIMs outstanding per leaf vdev");
1767