1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC. 25 */ 26 27 #include <sys/spa.h> 28 #include <sys/spa_impl.h> 29 #include <sys/txg.h> 30 #include <sys/vdev_impl.h> 31 #include <sys/vdev_trim.h> 32 #include <sys/metaslab_impl.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/zap.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/arc_impl.h> 37 38 /* 39 * TRIM is a feature which is used to notify a SSD that some previously 40 * written space is no longer allocated by the pool. This is useful because 41 * writes to a SSD must be performed to blocks which have first been erased. 42 * Ensuring the SSD always has a supply of erased blocks for new writes 43 * helps prevent the performance from deteriorating. 44 * 45 * There are two supported TRIM methods; manual and automatic. 46 * 47 * Manual TRIM: 48 * 49 * A manual TRIM is initiated by running the 'zpool trim' command. A single 50 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for 51 * managing that vdev TRIM process. This involves iterating over all the 52 * metaslabs, calculating the unallocated space ranges, and then issuing the 53 * required TRIM I/Os. 54 * 55 * While a metaslab is being actively trimmed it is not eligible to perform 56 * new allocations. After traversing all of the metaslabs the thread is 57 * terminated. Finally, both the requested options and current progress of 58 * the TRIM are regularly written to the pool. This allows the TRIM to be 59 * suspended and resumed as needed. 60 * 61 * Automatic TRIM: 62 * 63 * An automatic TRIM is enabled by setting the 'autotrim' pool property 64 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each 65 * top-level (not leaf) vdev in the pool. These threads perform the same 66 * core TRIM process as a manual TRIM, but with a few key differences. 67 * 68 * 1) Automatic TRIM happens continuously in the background and operates 69 * solely on recently freed blocks (ms_trim not ms_allocatable). 70 * 71 * 2) Each thread is associated with a top-level (not leaf) vdev. This has 72 * the benefit of simplifying the threading model, it makes it easier 73 * to coordinate administrative commands, and it ensures only a single 74 * metaslab is disabled at a time. Unlike manual TRIM, this means each 75 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its 76 * children. 77 * 78 * 3) There is no automatic TRIM progress information stored on disk, nor 79 * is it reported by 'zpool status'. 80 * 81 * While the automatic TRIM process is highly effective it is more likely 82 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to 83 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently 84 * TRIM and are skipped. This means small amounts of freed space may not 85 * be automatically trimmed. 86 * 87 * Furthermore, devices with attached hot spares and devices being actively 88 * replaced are skipped. This is done to avoid adding additional stress to 89 * a potentially unhealthy device and to minimize the required rebuild time. 90 * 91 * For this reason it may be beneficial to occasionally manually TRIM a pool 92 * even when automatic TRIM is enabled. 93 */ 94 95 /* 96 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths. 97 */ 98 unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024; 99 100 /* 101 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped. 102 */ 103 unsigned int zfs_trim_extent_bytes_min = 32 * 1024; 104 105 /* 106 * Skip uninitialized metaslabs during the TRIM process. This option is 107 * useful for pools constructed from large thinly-provisioned devices where 108 * TRIM operations are slow. As a pool ages an increasing fraction of 109 * the pools metaslabs will be initialized progressively degrading the 110 * usefulness of this option. This setting is stored when starting a 111 * manual TRIM and will persist for the duration of the requested TRIM. 112 */ 113 unsigned int zfs_trim_metaslab_skip = 0; 114 115 /* 116 * Maximum number of queued TRIM I/Os per leaf vdev. The number of 117 * concurrent TRIM I/Os issued to the device is controlled by the 118 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options. 119 */ 120 unsigned int zfs_trim_queue_limit = 10; 121 122 /* 123 * The minimum number of transaction groups between automatic trims of a 124 * metaslab. This setting represents a trade-off between issuing more 125 * efficient TRIM operations, by allowing them to be aggregated longer, 126 * and issuing them promptly so the trimmed space is available. Note 127 * that this value is a minimum; metaslabs can be trimmed less frequently 128 * when there are a large number of ranges which need to be trimmed. 129 * 130 * Increasing this value will allow frees to be aggregated for a longer 131 * time. This can result is larger TRIM operations, and increased memory 132 * usage in order to track the ranges to be trimmed. Decreasing this value 133 * has the opposite effect. The default value of 32 was determined though 134 * testing to be a reasonable compromise. 135 */ 136 unsigned int zfs_trim_txg_batch = 32; 137 138 /* 139 * The trim_args are a control structure which describe how a leaf vdev 140 * should be trimmed. The core elements are the vdev, the metaslab being 141 * trimmed and a range tree containing the extents to TRIM. All provided 142 * ranges must be within the metaslab. 143 */ 144 typedef struct trim_args { 145 /* 146 * These fields are set by the caller of vdev_trim_ranges(). 147 */ 148 vdev_t *trim_vdev; /* Leaf vdev to TRIM */ 149 metaslab_t *trim_msp; /* Disabled metaslab */ 150 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */ 151 trim_type_t trim_type; /* Manual or auto TRIM */ 152 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */ 153 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */ 154 enum trim_flag trim_flags; /* TRIM flags (secure) */ 155 156 /* 157 * These fields are updated by vdev_trim_ranges(). 158 */ 159 hrtime_t trim_start_time; /* Start time */ 160 uint64_t trim_bytes_done; /* Bytes trimmed */ 161 } trim_args_t; 162 163 /* 164 * Determines whether a vdev_trim_thread() should be stopped. 165 */ 166 static boolean_t 167 vdev_trim_should_stop(vdev_t *vd) 168 { 169 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) || 170 vd->vdev_detached || vd->vdev_top->vdev_removing); 171 } 172 173 /* 174 * Determines whether a vdev_autotrim_thread() should be stopped. 175 */ 176 static boolean_t 177 vdev_autotrim_should_stop(vdev_t *tvd) 178 { 179 return (tvd->vdev_autotrim_exit_wanted || 180 !vdev_writeable(tvd) || tvd->vdev_removing || 181 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF); 182 } 183 184 /* 185 * The sync task for updating the on-disk state of a manual TRIM. This 186 * is scheduled by vdev_trim_change_state(). 187 */ 188 static void 189 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx) 190 { 191 /* 192 * We pass in the guid instead of the vdev_t since the vdev may 193 * have been freed prior to the sync task being processed. This 194 * happens when a vdev is detached as we call spa_config_vdev_exit(), 195 * stop the trimming thread, schedule the sync task, and free 196 * the vdev. Later when the scheduled sync task is invoked, it would 197 * find that the vdev has been freed. 198 */ 199 uint64_t guid = *(uint64_t *)arg; 200 uint64_t txg = dmu_tx_get_txg(tx); 201 kmem_free(arg, sizeof (uint64_t)); 202 203 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 204 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 205 return; 206 207 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK]; 208 vd->vdev_trim_offset[txg & TXG_MASK] = 0; 209 210 VERIFY3U(vd->vdev_leaf_zap, !=, 0); 211 212 objset_t *mos = vd->vdev_spa->spa_meta_objset; 213 214 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) { 215 216 if (vd->vdev_trim_last_offset == UINT64_MAX) 217 last_offset = 0; 218 219 vd->vdev_trim_last_offset = last_offset; 220 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 221 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 222 sizeof (last_offset), 1, &last_offset, tx)); 223 } 224 225 if (vd->vdev_trim_action_time > 0) { 226 uint64_t val = (uint64_t)vd->vdev_trim_action_time; 227 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 228 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val), 229 1, &val, tx)); 230 } 231 232 if (vd->vdev_trim_rate > 0) { 233 uint64_t rate = (uint64_t)vd->vdev_trim_rate; 234 235 if (rate == UINT64_MAX) 236 rate = 0; 237 238 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 239 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx)); 240 } 241 242 uint64_t partial = vd->vdev_trim_partial; 243 if (partial == UINT64_MAX) 244 partial = 0; 245 246 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 247 sizeof (partial), 1, &partial, tx)); 248 249 uint64_t secure = vd->vdev_trim_secure; 250 if (secure == UINT64_MAX) 251 secure = 0; 252 253 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 254 sizeof (secure), 1, &secure, tx)); 255 256 257 uint64_t trim_state = vd->vdev_trim_state; 258 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 259 sizeof (trim_state), 1, &trim_state, tx)); 260 } 261 262 /* 263 * Update the on-disk state of a manual TRIM. This is called to request 264 * that a TRIM be started/suspended/canceled, or to change one of the 265 * TRIM options (partial, secure, rate). 266 */ 267 static void 268 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state, 269 uint64_t rate, boolean_t partial, boolean_t secure) 270 { 271 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 272 spa_t *spa = vd->vdev_spa; 273 274 if (new_state == vd->vdev_trim_state) 275 return; 276 277 /* 278 * Copy the vd's guid, this will be freed by the sync task. 279 */ 280 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 281 *guid = vd->vdev_guid; 282 283 /* 284 * If we're suspending, then preserve the original start time. 285 */ 286 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) { 287 vd->vdev_trim_action_time = gethrestime_sec(); 288 } 289 290 /* 291 * If we're activating, then preserve the requested rate and trim 292 * method. Setting the last offset and rate to UINT64_MAX is used 293 * as a sentinel to indicate they should be reset to default values. 294 */ 295 if (new_state == VDEV_TRIM_ACTIVE) { 296 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE || 297 vd->vdev_trim_state == VDEV_TRIM_CANCELED) { 298 vd->vdev_trim_last_offset = UINT64_MAX; 299 vd->vdev_trim_rate = UINT64_MAX; 300 vd->vdev_trim_partial = UINT64_MAX; 301 vd->vdev_trim_secure = UINT64_MAX; 302 } 303 304 if (rate != 0) 305 vd->vdev_trim_rate = rate; 306 307 if (partial != 0) 308 vd->vdev_trim_partial = partial; 309 310 if (secure != 0) 311 vd->vdev_trim_secure = secure; 312 } 313 314 boolean_t resumed = !!(vd->vdev_trim_state == VDEV_TRIM_SUSPENDED); 315 vd->vdev_trim_state = new_state; 316 317 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 318 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 319 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync, 320 guid, 2, ZFS_SPACE_CHECK_NONE, tx); 321 322 switch (new_state) { 323 case VDEV_TRIM_ACTIVE: 324 spa_event_notify(spa, vd, NULL, 325 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START); 326 spa_history_log_internal(spa, "trim", tx, 327 "vdev=%s activated", vd->vdev_path); 328 break; 329 case VDEV_TRIM_SUSPENDED: 330 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND); 331 spa_history_log_internal(spa, "trim", tx, 332 "vdev=%s suspended", vd->vdev_path); 333 break; 334 case VDEV_TRIM_CANCELED: 335 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL); 336 spa_history_log_internal(spa, "trim", tx, 337 "vdev=%s canceled", vd->vdev_path); 338 break; 339 case VDEV_TRIM_COMPLETE: 340 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH); 341 spa_history_log_internal(spa, "trim", tx, 342 "vdev=%s complete", vd->vdev_path); 343 break; 344 default: 345 panic("invalid state %llu", (unsigned long long)new_state); 346 } 347 348 dmu_tx_commit(tx); 349 350 if (new_state != VDEV_TRIM_ACTIVE) 351 spa_notify_waiters(spa); 352 } 353 354 /* 355 * The zio_done_func_t done callback for each manual TRIM issued. It is 356 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os, 357 * and limiting the number of in flight TRIM I/Os. 358 */ 359 static void 360 vdev_trim_cb(zio_t *zio) 361 { 362 vdev_t *vd = zio->io_vd; 363 364 mutex_enter(&vd->vdev_trim_io_lock); 365 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 366 /* 367 * The I/O failed because the vdev was unavailable; roll the 368 * last offset back. (This works because spa_sync waits on 369 * spa_txg_zio before it runs sync tasks.) 370 */ 371 uint64_t *offset = 372 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK]; 373 *offset = MIN(*offset, zio->io_offset); 374 } else { 375 if (zio->io_error != 0) { 376 vd->vdev_stat.vs_trim_errors++; 377 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 378 0, 0, 0, 0, 1, zio->io_orig_size); 379 } else { 380 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 381 1, zio->io_orig_size, 0, 0, 0, 0); 382 } 383 384 vd->vdev_trim_bytes_done += zio->io_orig_size; 385 } 386 387 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0); 388 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--; 389 cv_broadcast(&vd->vdev_trim_io_cv); 390 mutex_exit(&vd->vdev_trim_io_lock); 391 392 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 393 } 394 395 /* 396 * The zio_done_func_t done callback for each automatic TRIM issued. It 397 * is responsible for updating the TRIM stats and limiting the number of 398 * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are 399 * never reissued on failure. 400 */ 401 static void 402 vdev_autotrim_cb(zio_t *zio) 403 { 404 vdev_t *vd = zio->io_vd; 405 406 mutex_enter(&vd->vdev_trim_io_lock); 407 408 if (zio->io_error != 0) { 409 vd->vdev_stat.vs_trim_errors++; 410 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 411 0, 0, 0, 0, 1, zio->io_orig_size); 412 } else { 413 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 414 1, zio->io_orig_size, 0, 0, 0, 0); 415 } 416 417 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0); 418 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--; 419 cv_broadcast(&vd->vdev_trim_io_cv); 420 mutex_exit(&vd->vdev_trim_io_lock); 421 422 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 423 } 424 425 /* 426 * The zio_done_func_t done callback for each TRIM issued via 427 * vdev_trim_simple(). It is responsible for updating the TRIM stats and 428 * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best 429 * effort and are never reissued on failure. 430 */ 431 static void 432 vdev_trim_simple_cb(zio_t *zio) 433 { 434 vdev_t *vd = zio->io_vd; 435 436 mutex_enter(&vd->vdev_trim_io_lock); 437 438 if (zio->io_error != 0) { 439 vd->vdev_stat.vs_trim_errors++; 440 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 441 0, 0, 0, 0, 1, zio->io_orig_size); 442 } else { 443 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 444 1, zio->io_orig_size, 0, 0, 0, 0); 445 } 446 447 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0); 448 vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--; 449 cv_broadcast(&vd->vdev_trim_io_cv); 450 mutex_exit(&vd->vdev_trim_io_lock); 451 452 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 453 } 454 /* 455 * Returns the average trim rate in bytes/sec for the ta->trim_vdev. 456 */ 457 static uint64_t 458 vdev_trim_calculate_rate(trim_args_t *ta) 459 { 460 return (ta->trim_bytes_done * 1000 / 461 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1)); 462 } 463 464 /* 465 * Issues a physical TRIM and takes care of rate limiting (bytes/sec) 466 * and number of concurrent TRIM I/Os. 467 */ 468 static int 469 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size) 470 { 471 vdev_t *vd = ta->trim_vdev; 472 spa_t *spa = vd->vdev_spa; 473 void *cb; 474 475 mutex_enter(&vd->vdev_trim_io_lock); 476 477 /* 478 * Limit manual TRIM I/Os to the requested rate. This does not 479 * apply to automatic TRIM since no per vdev rate can be specified. 480 */ 481 if (ta->trim_type == TRIM_TYPE_MANUAL) { 482 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) && 483 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) { 484 cv_timedwait_sig(&vd->vdev_trim_io_cv, 485 &vd->vdev_trim_io_lock, ddi_get_lbolt() + 486 MSEC_TO_TICK(10)); 487 } 488 } 489 ta->trim_bytes_done += size; 490 491 /* Limit in flight trimming I/Os */ 492 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] + 493 vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) { 494 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 495 } 496 vd->vdev_trim_inflight[ta->trim_type]++; 497 mutex_exit(&vd->vdev_trim_io_lock); 498 499 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 500 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 501 uint64_t txg = dmu_tx_get_txg(tx); 502 503 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 504 mutex_enter(&vd->vdev_trim_lock); 505 506 if (ta->trim_type == TRIM_TYPE_MANUAL && 507 vd->vdev_trim_offset[txg & TXG_MASK] == 0) { 508 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 509 *guid = vd->vdev_guid; 510 511 /* This is the first write of this txg. */ 512 dsl_sync_task_nowait(spa_get_dsl(spa), 513 vdev_trim_zap_update_sync, guid, 2, 514 ZFS_SPACE_CHECK_RESERVED, tx); 515 } 516 517 /* 518 * We know the vdev_t will still be around since all consumers of 519 * vdev_free must stop the trimming first. 520 */ 521 if ((ta->trim_type == TRIM_TYPE_MANUAL && 522 vdev_trim_should_stop(vd)) || 523 (ta->trim_type == TRIM_TYPE_AUTO && 524 vdev_autotrim_should_stop(vd->vdev_top))) { 525 mutex_enter(&vd->vdev_trim_io_lock); 526 vd->vdev_trim_inflight[ta->trim_type]--; 527 mutex_exit(&vd->vdev_trim_io_lock); 528 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 529 mutex_exit(&vd->vdev_trim_lock); 530 dmu_tx_commit(tx); 531 return (SET_ERROR(EINTR)); 532 } 533 mutex_exit(&vd->vdev_trim_lock); 534 535 if (ta->trim_type == TRIM_TYPE_MANUAL) 536 vd->vdev_trim_offset[txg & TXG_MASK] = start + size; 537 538 if (ta->trim_type == TRIM_TYPE_MANUAL) { 539 cb = vdev_trim_cb; 540 } else if (ta->trim_type == TRIM_TYPE_AUTO) { 541 cb = vdev_autotrim_cb; 542 } else { 543 cb = vdev_trim_simple_cb; 544 } 545 546 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd, 547 start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL, 548 ta->trim_flags)); 549 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */ 550 551 dmu_tx_commit(tx); 552 553 return (0); 554 } 555 556 /* 557 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree. 558 * Additional parameters describing how the TRIM should be performed must 559 * be set in the trim_args structure. See the trim_args definition for 560 * additional information. 561 */ 562 static int 563 vdev_trim_ranges(trim_args_t *ta) 564 { 565 vdev_t *vd = ta->trim_vdev; 566 zfs_btree_t *t = &ta->trim_tree->rt_root; 567 zfs_btree_index_t idx; 568 uint64_t extent_bytes_max = ta->trim_extent_bytes_max; 569 uint64_t extent_bytes_min = ta->trim_extent_bytes_min; 570 spa_t *spa = vd->vdev_spa; 571 572 ta->trim_start_time = gethrtime(); 573 ta->trim_bytes_done = 0; 574 575 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL; 576 rs = zfs_btree_next(t, &idx, &idx)) { 577 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs, 578 ta->trim_tree); 579 580 if (extent_bytes_min && size < extent_bytes_min) { 581 spa_iostats_trim_add(spa, ta->trim_type, 582 0, 0, 1, size, 0, 0); 583 continue; 584 } 585 586 /* Split range into legally-sized physical chunks */ 587 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1; 588 589 for (uint64_t w = 0; w < writes_required; w++) { 590 int error; 591 592 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE + 593 rs_get_start(rs, ta->trim_tree) + 594 (w *extent_bytes_max), MIN(size - 595 (w * extent_bytes_max), extent_bytes_max)); 596 if (error != 0) { 597 return (error); 598 } 599 } 600 } 601 602 return (0); 603 } 604 605 /* 606 * Calculates the completion percentage of a manual TRIM. 607 */ 608 static void 609 vdev_trim_calculate_progress(vdev_t *vd) 610 { 611 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 612 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 613 ASSERT(vd->vdev_leaf_zap != 0); 614 615 vd->vdev_trim_bytes_est = 0; 616 vd->vdev_trim_bytes_done = 0; 617 618 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 619 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 620 mutex_enter(&msp->ms_lock); 621 622 uint64_t ms_free = msp->ms_size - 623 metaslab_allocated_space(msp); 624 625 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) 626 ms_free /= vd->vdev_top->vdev_children; 627 628 /* 629 * Convert the metaslab range to a physical range 630 * on our vdev. We use this to determine if we are 631 * in the middle of this metaslab range. 632 */ 633 range_seg64_t logical_rs, physical_rs; 634 logical_rs.rs_start = msp->ms_start; 635 logical_rs.rs_end = msp->ms_start + msp->ms_size; 636 vdev_xlate(vd, &logical_rs, &physical_rs); 637 638 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) { 639 vd->vdev_trim_bytes_est += ms_free; 640 mutex_exit(&msp->ms_lock); 641 continue; 642 } else if (vd->vdev_trim_last_offset > physical_rs.rs_end) { 643 vd->vdev_trim_bytes_done += ms_free; 644 vd->vdev_trim_bytes_est += ms_free; 645 mutex_exit(&msp->ms_lock); 646 continue; 647 } 648 649 /* 650 * If we get here, we're in the middle of trimming this 651 * metaslab. Load it and walk the free tree for more 652 * accurate progress estimation. 653 */ 654 VERIFY0(metaslab_load(msp)); 655 656 range_tree_t *rt = msp->ms_allocatable; 657 zfs_btree_t *bt = &rt->rt_root; 658 zfs_btree_index_t idx; 659 for (range_seg_t *rs = zfs_btree_first(bt, &idx); 660 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) { 661 logical_rs.rs_start = rs_get_start(rs, rt); 662 logical_rs.rs_end = rs_get_end(rs, rt); 663 vdev_xlate(vd, &logical_rs, &physical_rs); 664 665 uint64_t size = physical_rs.rs_end - 666 physical_rs.rs_start; 667 vd->vdev_trim_bytes_est += size; 668 if (vd->vdev_trim_last_offset >= physical_rs.rs_end) { 669 vd->vdev_trim_bytes_done += size; 670 } else if (vd->vdev_trim_last_offset > 671 physical_rs.rs_start && 672 vd->vdev_trim_last_offset <= 673 physical_rs.rs_end) { 674 vd->vdev_trim_bytes_done += 675 vd->vdev_trim_last_offset - 676 physical_rs.rs_start; 677 } 678 } 679 mutex_exit(&msp->ms_lock); 680 } 681 } 682 683 /* 684 * Load from disk the vdev's manual TRIM information. This includes the 685 * state, progress, and options provided when initiating the manual TRIM. 686 */ 687 static int 688 vdev_trim_load(vdev_t *vd) 689 { 690 int err = 0; 691 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 692 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 693 ASSERT(vd->vdev_leaf_zap != 0); 694 695 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE || 696 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) { 697 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 698 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 699 sizeof (vd->vdev_trim_last_offset), 1, 700 &vd->vdev_trim_last_offset); 701 if (err == ENOENT) { 702 vd->vdev_trim_last_offset = 0; 703 err = 0; 704 } 705 706 if (err == 0) { 707 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 708 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE, 709 sizeof (vd->vdev_trim_rate), 1, 710 &vd->vdev_trim_rate); 711 if (err == ENOENT) { 712 vd->vdev_trim_rate = 0; 713 err = 0; 714 } 715 } 716 717 if (err == 0) { 718 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 719 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 720 sizeof (vd->vdev_trim_partial), 1, 721 &vd->vdev_trim_partial); 722 if (err == ENOENT) { 723 vd->vdev_trim_partial = 0; 724 err = 0; 725 } 726 } 727 728 if (err == 0) { 729 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 730 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 731 sizeof (vd->vdev_trim_secure), 1, 732 &vd->vdev_trim_secure); 733 if (err == ENOENT) { 734 vd->vdev_trim_secure = 0; 735 err = 0; 736 } 737 } 738 } 739 740 vdev_trim_calculate_progress(vd); 741 742 return (err); 743 } 744 745 /* 746 * Convert the logical range into a physical range and add it to the 747 * range tree passed in the trim_args_t. 748 */ 749 static void 750 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size) 751 { 752 trim_args_t *ta = arg; 753 vdev_t *vd = ta->trim_vdev; 754 range_seg64_t logical_rs, physical_rs; 755 logical_rs.rs_start = start; 756 logical_rs.rs_end = start + size; 757 758 /* 759 * Every range to be trimmed must be part of ms_allocatable. 760 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this 761 * is always the case. 762 */ 763 if (zfs_flags & ZFS_DEBUG_TRIM) { 764 metaslab_t *msp = ta->trim_msp; 765 VERIFY0(metaslab_load(msp)); 766 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 767 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 768 } 769 770 ASSERT(vd->vdev_ops->vdev_op_leaf); 771 vdev_xlate(vd, &logical_rs, &physical_rs); 772 773 IMPLY(vd->vdev_top == vd, 774 logical_rs.rs_start == physical_rs.rs_start); 775 IMPLY(vd->vdev_top == vd, 776 logical_rs.rs_end == physical_rs.rs_end); 777 778 /* 779 * Only a manual trim will be traversing the vdev sequentially. 780 * For an auto trim all valid ranges should be added. 781 */ 782 if (ta->trim_type == TRIM_TYPE_MANUAL) { 783 784 /* Only add segments that we have not visited yet */ 785 if (physical_rs.rs_end <= vd->vdev_trim_last_offset) 786 return; 787 788 /* Pick up where we left off mid-range. */ 789 if (vd->vdev_trim_last_offset > physical_rs.rs_start) { 790 ASSERT3U(physical_rs.rs_end, >, 791 vd->vdev_trim_last_offset); 792 physical_rs.rs_start = vd->vdev_trim_last_offset; 793 } 794 } 795 796 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 797 798 /* 799 * With raidz, it's possible that the logical range does not live on 800 * this leaf vdev. We only add the physical range to this vdev's if it 801 * has a length greater than 0. 802 */ 803 if (physical_rs.rs_end > physical_rs.rs_start) { 804 range_tree_add(ta->trim_tree, physical_rs.rs_start, 805 physical_rs.rs_end - physical_rs.rs_start); 806 } else { 807 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 808 } 809 } 810 811 /* 812 * Each manual TRIM thread is responsible for trimming the unallocated 813 * space for each leaf vdev. This is accomplished by sequentially iterating 814 * over its top-level metaslabs and issuing TRIM I/O for the space described 815 * by its ms_allocatable. While a metaslab is undergoing trimming it is 816 * not eligible for new allocations. 817 */ 818 static void 819 vdev_trim_thread(void *arg) 820 { 821 vdev_t *vd = arg; 822 spa_t *spa = vd->vdev_spa; 823 trim_args_t ta; 824 int error = 0; 825 826 /* 827 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by 828 * vdev_trim(). Wait for the updated values to be reflected 829 * in the zap in order to start with the requested settings. 830 */ 831 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 832 833 ASSERT(vdev_is_concrete(vd)); 834 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 835 836 vd->vdev_trim_last_offset = 0; 837 vd->vdev_trim_rate = 0; 838 vd->vdev_trim_partial = 0; 839 vd->vdev_trim_secure = 0; 840 841 VERIFY0(vdev_trim_load(vd)); 842 843 ta.trim_vdev = vd; 844 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 845 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min; 846 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 847 ta.trim_type = TRIM_TYPE_MANUAL; 848 ta.trim_flags = 0; 849 850 /* 851 * When a secure TRIM has been requested infer that the intent 852 * is that everything must be trimmed. Override the default 853 * minimum TRIM size to prevent ranges from being skipped. 854 */ 855 if (vd->vdev_trim_secure) { 856 ta.trim_flags |= ZIO_TRIM_SECURE; 857 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 858 } 859 860 uint64_t ms_count = 0; 861 for (uint64_t i = 0; !vd->vdev_detached && 862 i < vd->vdev_top->vdev_ms_count; i++) { 863 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 864 865 /* 866 * If we've expanded the top-level vdev or it's our 867 * first pass, calculate our progress. 868 */ 869 if (vd->vdev_top->vdev_ms_count != ms_count) { 870 vdev_trim_calculate_progress(vd); 871 ms_count = vd->vdev_top->vdev_ms_count; 872 } 873 874 spa_config_exit(spa, SCL_CONFIG, FTAG); 875 metaslab_disable(msp); 876 mutex_enter(&msp->ms_lock); 877 VERIFY0(metaslab_load(msp)); 878 879 /* 880 * If a partial TRIM was requested skip metaslabs which have 881 * never been initialized and thus have never been written. 882 */ 883 if (msp->ms_sm == NULL && vd->vdev_trim_partial) { 884 mutex_exit(&msp->ms_lock); 885 metaslab_enable(msp, B_FALSE, B_FALSE); 886 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 887 vdev_trim_calculate_progress(vd); 888 continue; 889 } 890 891 ta.trim_msp = msp; 892 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta); 893 range_tree_vacate(msp->ms_trim, NULL, NULL); 894 mutex_exit(&msp->ms_lock); 895 896 error = vdev_trim_ranges(&ta); 897 metaslab_enable(msp, B_TRUE, B_FALSE); 898 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 899 900 range_tree_vacate(ta.trim_tree, NULL, NULL); 901 if (error != 0) 902 break; 903 } 904 905 spa_config_exit(spa, SCL_CONFIG, FTAG); 906 mutex_enter(&vd->vdev_trim_io_lock); 907 while (vd->vdev_trim_inflight[0] > 0) { 908 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 909 } 910 mutex_exit(&vd->vdev_trim_io_lock); 911 912 range_tree_destroy(ta.trim_tree); 913 914 mutex_enter(&vd->vdev_trim_lock); 915 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { 916 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 917 vd->vdev_trim_rate, vd->vdev_trim_partial, 918 vd->vdev_trim_secure); 919 } 920 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0); 921 922 /* 923 * Drop the vdev_trim_lock while we sync out the txg since it's 924 * possible that a device might be trying to come online and must 925 * check to see if it needs to restart a trim. That thread will be 926 * holding the spa_config_lock which would prevent the txg_wait_synced 927 * from completing. 928 */ 929 mutex_exit(&vd->vdev_trim_lock); 930 txg_wait_synced(spa_get_dsl(spa), 0); 931 mutex_enter(&vd->vdev_trim_lock); 932 933 vd->vdev_trim_thread = NULL; 934 cv_broadcast(&vd->vdev_trim_cv); 935 mutex_exit(&vd->vdev_trim_lock); 936 937 thread_exit(); 938 } 939 940 /* 941 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock, 942 * the vdev_t must be a leaf and cannot already be manually trimming. 943 */ 944 void 945 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure) 946 { 947 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 948 ASSERT(vd->vdev_ops->vdev_op_leaf); 949 ASSERT(vdev_is_concrete(vd)); 950 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 951 ASSERT(!vd->vdev_detached); 952 ASSERT(!vd->vdev_trim_exit_wanted); 953 ASSERT(!vd->vdev_top->vdev_removing); 954 955 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure); 956 vd->vdev_trim_thread = thread_create(NULL, 0, 957 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 958 } 959 960 /* 961 * Wait for the trimming thread to be terminated (canceled or stopped). 962 */ 963 static void 964 vdev_trim_stop_wait_impl(vdev_t *vd) 965 { 966 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 967 968 while (vd->vdev_trim_thread != NULL) 969 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock); 970 971 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 972 vd->vdev_trim_exit_wanted = B_FALSE; 973 } 974 975 /* 976 * Wait for vdev trim threads which were listed to cleanly exit. 977 */ 978 void 979 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list) 980 { 981 vdev_t *vd; 982 983 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 984 985 while ((vd = list_remove_head(vd_list)) != NULL) { 986 mutex_enter(&vd->vdev_trim_lock); 987 vdev_trim_stop_wait_impl(vd); 988 mutex_exit(&vd->vdev_trim_lock); 989 } 990 } 991 992 /* 993 * Stop trimming a device, with the resultant trimming state being tgt_state. 994 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is 995 * provided the stopping vdev is inserted in to the list. Callers are then 996 * required to call vdev_trim_stop_wait() to block for all the trim threads 997 * to exit. The caller must hold vdev_trim_lock and must not be writing to 998 * the spa config, as the trimming thread may try to enter the config as a 999 * reader before exiting. 1000 */ 1001 void 1002 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list) 1003 { 1004 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 1005 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1006 ASSERT(vd->vdev_ops->vdev_op_leaf); 1007 ASSERT(vdev_is_concrete(vd)); 1008 1009 /* 1010 * Allow cancel requests to proceed even if the trim thread has 1011 * stopped. 1012 */ 1013 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED) 1014 return; 1015 1016 vdev_trim_change_state(vd, tgt_state, 0, 0, 0); 1017 vd->vdev_trim_exit_wanted = B_TRUE; 1018 1019 if (vd_list == NULL) { 1020 vdev_trim_stop_wait_impl(vd); 1021 } else { 1022 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1023 list_insert_tail(vd_list, vd); 1024 } 1025 } 1026 1027 /* 1028 * Requests that all listed vdevs stop trimming. 1029 */ 1030 static void 1031 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state, 1032 list_t *vd_list) 1033 { 1034 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 1035 mutex_enter(&vd->vdev_trim_lock); 1036 vdev_trim_stop(vd, tgt_state, vd_list); 1037 mutex_exit(&vd->vdev_trim_lock); 1038 return; 1039 } 1040 1041 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1042 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state, 1043 vd_list); 1044 } 1045 } 1046 1047 /* 1048 * Convenience function to stop trimming of a vdev tree and set all trim 1049 * thread pointers to NULL. 1050 */ 1051 void 1052 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state) 1053 { 1054 spa_t *spa = vd->vdev_spa; 1055 list_t vd_list; 1056 vdev_t *vd_l2cache; 1057 1058 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1059 1060 list_create(&vd_list, sizeof (vdev_t), 1061 offsetof(vdev_t, vdev_trim_node)); 1062 1063 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list); 1064 1065 /* 1066 * Iterate over cache devices and request stop trimming the 1067 * whole device in case we export the pool or remove the cache 1068 * device prematurely. 1069 */ 1070 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1071 vd_l2cache = spa->spa_l2cache.sav_vdevs[i]; 1072 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list); 1073 } 1074 1075 vdev_trim_stop_wait(spa, &vd_list); 1076 1077 if (vd->vdev_spa->spa_sync_on) { 1078 /* Make sure that our state has been synced to disk */ 1079 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1080 } 1081 1082 list_destroy(&vd_list); 1083 } 1084 1085 /* 1086 * Conditionally restarts a manual TRIM given its on-disk state. 1087 */ 1088 void 1089 vdev_trim_restart(vdev_t *vd) 1090 { 1091 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1092 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 1093 1094 if (vd->vdev_leaf_zap != 0) { 1095 mutex_enter(&vd->vdev_trim_lock); 1096 uint64_t trim_state = VDEV_TRIM_NONE; 1097 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1098 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 1099 sizeof (trim_state), 1, &trim_state); 1100 ASSERT(err == 0 || err == ENOENT); 1101 vd->vdev_trim_state = trim_state; 1102 1103 uint64_t timestamp = 0; 1104 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1105 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME, 1106 sizeof (timestamp), 1, ×tamp); 1107 ASSERT(err == 0 || err == ENOENT); 1108 vd->vdev_trim_action_time = timestamp; 1109 1110 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED || 1111 vd->vdev_offline) { 1112 /* load progress for reporting, but don't resume */ 1113 VERIFY0(vdev_trim_load(vd)); 1114 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE && 1115 vdev_writeable(vd) && !vd->vdev_top->vdev_removing && 1116 vd->vdev_trim_thread == NULL) { 1117 VERIFY0(vdev_trim_load(vd)); 1118 vdev_trim(vd, vd->vdev_trim_rate, 1119 vd->vdev_trim_partial, vd->vdev_trim_secure); 1120 } 1121 1122 mutex_exit(&vd->vdev_trim_lock); 1123 } 1124 1125 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1126 vdev_trim_restart(vd->vdev_child[i]); 1127 } 1128 } 1129 1130 /* 1131 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that 1132 * every TRIM range is contained within ms_allocatable. 1133 */ 1134 static void 1135 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size) 1136 { 1137 trim_args_t *ta = arg; 1138 metaslab_t *msp = ta->trim_msp; 1139 1140 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 1141 VERIFY3U(msp->ms_disabled, >, 0); 1142 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 1143 } 1144 1145 /* 1146 * Each automatic TRIM thread is responsible for managing the trimming of a 1147 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk. 1148 * 1149 * N.B. This behavior is different from a manual TRIM where a thread 1150 * is created for each leaf vdev, instead of each top-level vdev. 1151 */ 1152 static void 1153 vdev_autotrim_thread(void *arg) 1154 { 1155 vdev_t *vd = arg; 1156 spa_t *spa = vd->vdev_spa; 1157 int shift = 0; 1158 1159 mutex_enter(&vd->vdev_autotrim_lock); 1160 ASSERT3P(vd->vdev_top, ==, vd); 1161 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL); 1162 mutex_exit(&vd->vdev_autotrim_lock); 1163 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1164 1165 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max; 1166 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min; 1167 1168 while (!vdev_autotrim_should_stop(vd)) { 1169 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1); 1170 boolean_t issued_trim = B_FALSE; 1171 1172 /* 1173 * All of the metaslabs are divided in to groups of size 1174 * num_metaslabs / zfs_trim_txg_batch. Each of these groups 1175 * is composed of metaslabs which are spread evenly over the 1176 * device. 1177 * 1178 * For example, when zfs_trim_txg_batch = 32 (default) then 1179 * group 0 will contain metaslabs 0, 32, 64, ...; 1180 * group 1 will contain metaslabs 1, 33, 65, ...; 1181 * group 2 will contain metaslabs 2, 34, 66, ...; and so on. 1182 * 1183 * On each pass through the while() loop one of these groups 1184 * is selected. This is accomplished by using a shift value 1185 * to select the starting metaslab, then striding over the 1186 * metaslabs using the zfs_trim_txg_batch size. This is 1187 * done to accomplish two things. 1188 * 1189 * 1) By dividing the metaslabs in to groups, and making sure 1190 * that each group takes a minimum of one txg to process. 1191 * Then zfs_trim_txg_batch controls the minimum number of 1192 * txgs which must occur before a metaslab is revisited. 1193 * 1194 * 2) Selecting non-consecutive metaslabs distributes the 1195 * TRIM commands for a group evenly over the entire device. 1196 * This can be advantageous for certain types of devices. 1197 */ 1198 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count; 1199 i += txgs_per_trim) { 1200 metaslab_t *msp = vd->vdev_ms[i]; 1201 range_tree_t *trim_tree; 1202 1203 spa_config_exit(spa, SCL_CONFIG, FTAG); 1204 metaslab_disable(msp); 1205 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1206 1207 mutex_enter(&msp->ms_lock); 1208 1209 /* 1210 * Skip the metaslab when it has never been allocated 1211 * or when there are no recent frees to trim. 1212 */ 1213 if (msp->ms_sm == NULL || 1214 range_tree_is_empty(msp->ms_trim)) { 1215 mutex_exit(&msp->ms_lock); 1216 metaslab_enable(msp, B_FALSE, B_FALSE); 1217 continue; 1218 } 1219 1220 /* 1221 * Skip the metaslab when it has already been disabled. 1222 * This may happen when a manual TRIM or initialize 1223 * operation is running concurrently. In the case 1224 * of a manual TRIM, the ms_trim tree will have been 1225 * vacated. Only ranges added after the manual TRIM 1226 * disabled the metaslab will be included in the tree. 1227 * These will be processed when the automatic TRIM 1228 * next revisits this metaslab. 1229 */ 1230 if (msp->ms_disabled > 1) { 1231 mutex_exit(&msp->ms_lock); 1232 metaslab_enable(msp, B_FALSE, B_FALSE); 1233 continue; 1234 } 1235 1236 /* 1237 * Allocate an empty range tree which is swapped in 1238 * for the existing ms_trim tree while it is processed. 1239 */ 1240 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 1241 0, 0); 1242 range_tree_swap(&msp->ms_trim, &trim_tree); 1243 ASSERT(range_tree_is_empty(msp->ms_trim)); 1244 1245 /* 1246 * There are two cases when constructing the per-vdev 1247 * trim trees for a metaslab. If the top-level vdev 1248 * has no children then it is also a leaf and should 1249 * be trimmed. Otherwise our children are the leaves 1250 * and a trim tree should be constructed for each. 1251 */ 1252 trim_args_t *tap; 1253 uint64_t children = vd->vdev_children; 1254 if (children == 0) { 1255 children = 1; 1256 tap = kmem_zalloc(sizeof (trim_args_t) * 1257 children, KM_SLEEP); 1258 tap[0].trim_vdev = vd; 1259 } else { 1260 tap = kmem_zalloc(sizeof (trim_args_t) * 1261 children, KM_SLEEP); 1262 1263 for (uint64_t c = 0; c < children; c++) { 1264 tap[c].trim_vdev = vd->vdev_child[c]; 1265 } 1266 } 1267 1268 for (uint64_t c = 0; c < children; c++) { 1269 trim_args_t *ta = &tap[c]; 1270 vdev_t *cvd = ta->trim_vdev; 1271 1272 ta->trim_msp = msp; 1273 ta->trim_extent_bytes_max = extent_bytes_max; 1274 ta->trim_extent_bytes_min = extent_bytes_min; 1275 ta->trim_type = TRIM_TYPE_AUTO; 1276 ta->trim_flags = 0; 1277 1278 if (cvd->vdev_detached || 1279 !vdev_writeable(cvd) || 1280 !cvd->vdev_has_trim || 1281 cvd->vdev_trim_thread != NULL) { 1282 continue; 1283 } 1284 1285 /* 1286 * When a device has an attached hot spare, or 1287 * is being replaced it will not be trimmed. 1288 * This is done to avoid adding additional 1289 * stress to a potentially unhealthy device, 1290 * and to minimize the required rebuild time. 1291 */ 1292 if (!cvd->vdev_ops->vdev_op_leaf) 1293 continue; 1294 1295 ta->trim_tree = range_tree_create(NULL, 1296 RANGE_SEG64, NULL, 0, 0); 1297 range_tree_walk(trim_tree, 1298 vdev_trim_range_add, ta); 1299 } 1300 1301 mutex_exit(&msp->ms_lock); 1302 spa_config_exit(spa, SCL_CONFIG, FTAG); 1303 1304 /* 1305 * Issue the TRIM I/Os for all ranges covered by the 1306 * TRIM trees. These ranges are safe to TRIM because 1307 * no new allocations will be performed until the call 1308 * to metaslab_enabled() below. 1309 */ 1310 for (uint64_t c = 0; c < children; c++) { 1311 trim_args_t *ta = &tap[c]; 1312 1313 /* 1314 * Always yield to a manual TRIM if one has 1315 * been started for the child vdev. 1316 */ 1317 if (ta->trim_tree == NULL || 1318 ta->trim_vdev->vdev_trim_thread != NULL) { 1319 continue; 1320 } 1321 1322 /* 1323 * After this point metaslab_enable() must be 1324 * called with the sync flag set. This is done 1325 * here because vdev_trim_ranges() is allowed 1326 * to be interrupted (EINTR) before issuing all 1327 * of the required TRIM I/Os. 1328 */ 1329 issued_trim = B_TRUE; 1330 1331 int error = vdev_trim_ranges(ta); 1332 if (error) 1333 break; 1334 } 1335 1336 /* 1337 * Verify every range which was trimmed is still 1338 * contained within the ms_allocatable tree. 1339 */ 1340 if (zfs_flags & ZFS_DEBUG_TRIM) { 1341 mutex_enter(&msp->ms_lock); 1342 VERIFY0(metaslab_load(msp)); 1343 VERIFY3P(tap[0].trim_msp, ==, msp); 1344 range_tree_walk(trim_tree, 1345 vdev_trim_range_verify, &tap[0]); 1346 mutex_exit(&msp->ms_lock); 1347 } 1348 1349 range_tree_vacate(trim_tree, NULL, NULL); 1350 range_tree_destroy(trim_tree); 1351 1352 metaslab_enable(msp, issued_trim, B_FALSE); 1353 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1354 1355 for (uint64_t c = 0; c < children; c++) { 1356 trim_args_t *ta = &tap[c]; 1357 1358 if (ta->trim_tree == NULL) 1359 continue; 1360 1361 range_tree_vacate(ta->trim_tree, NULL, NULL); 1362 range_tree_destroy(ta->trim_tree); 1363 } 1364 1365 kmem_free(tap, sizeof (trim_args_t) * children); 1366 } 1367 1368 spa_config_exit(spa, SCL_CONFIG, FTAG); 1369 1370 /* 1371 * After completing the group of metaslabs wait for the next 1372 * open txg. This is done to make sure that a minimum of 1373 * zfs_trim_txg_batch txgs will occur before these metaslabs 1374 * are trimmed again. 1375 */ 1376 txg_wait_open(spa_get_dsl(spa), 0, issued_trim); 1377 1378 shift++; 1379 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1380 } 1381 1382 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1383 vdev_t *cvd = vd->vdev_child[c]; 1384 mutex_enter(&cvd->vdev_trim_io_lock); 1385 1386 while (cvd->vdev_trim_inflight[1] > 0) { 1387 cv_wait(&cvd->vdev_trim_io_cv, 1388 &cvd->vdev_trim_io_lock); 1389 } 1390 mutex_exit(&cvd->vdev_trim_io_lock); 1391 } 1392 1393 spa_config_exit(spa, SCL_CONFIG, FTAG); 1394 1395 /* 1396 * When exiting because the autotrim property was set to off, then 1397 * abandon any unprocessed ms_trim ranges to reclaim the memory. 1398 */ 1399 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) { 1400 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 1401 metaslab_t *msp = vd->vdev_ms[i]; 1402 1403 mutex_enter(&msp->ms_lock); 1404 range_tree_vacate(msp->ms_trim, NULL, NULL); 1405 mutex_exit(&msp->ms_lock); 1406 } 1407 } 1408 1409 mutex_enter(&vd->vdev_autotrim_lock); 1410 ASSERT(vd->vdev_autotrim_thread != NULL); 1411 vd->vdev_autotrim_thread = NULL; 1412 cv_broadcast(&vd->vdev_autotrim_cv); 1413 mutex_exit(&vd->vdev_autotrim_lock); 1414 1415 thread_exit(); 1416 } 1417 1418 /* 1419 * Starts an autotrim thread, if needed, for each top-level vdev which can be 1420 * trimmed. A top-level vdev which has been evacuated will never be trimmed. 1421 */ 1422 void 1423 vdev_autotrim(spa_t *spa) 1424 { 1425 vdev_t *root_vd = spa->spa_root_vdev; 1426 1427 for (uint64_t i = 0; i < root_vd->vdev_children; i++) { 1428 vdev_t *tvd = root_vd->vdev_child[i]; 1429 1430 mutex_enter(&tvd->vdev_autotrim_lock); 1431 if (vdev_writeable(tvd) && !tvd->vdev_removing && 1432 tvd->vdev_autotrim_thread == NULL) { 1433 ASSERT3P(tvd->vdev_top, ==, tvd); 1434 1435 tvd->vdev_autotrim_thread = thread_create(NULL, 0, 1436 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN, 1437 maxclsyspri); 1438 ASSERT(tvd->vdev_autotrim_thread != NULL); 1439 } 1440 mutex_exit(&tvd->vdev_autotrim_lock); 1441 } 1442 } 1443 1444 /* 1445 * Wait for the vdev_autotrim_thread associated with the passed top-level 1446 * vdev to be terminated (canceled or stopped). 1447 */ 1448 void 1449 vdev_autotrim_stop_wait(vdev_t *tvd) 1450 { 1451 mutex_enter(&tvd->vdev_autotrim_lock); 1452 if (tvd->vdev_autotrim_thread != NULL) { 1453 tvd->vdev_autotrim_exit_wanted = B_TRUE; 1454 1455 while (tvd->vdev_autotrim_thread != NULL) { 1456 cv_wait(&tvd->vdev_autotrim_cv, 1457 &tvd->vdev_autotrim_lock); 1458 } 1459 1460 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL); 1461 tvd->vdev_autotrim_exit_wanted = B_FALSE; 1462 } 1463 mutex_exit(&tvd->vdev_autotrim_lock); 1464 } 1465 1466 /* 1467 * Wait for all of the vdev_autotrim_thread associated with the pool to 1468 * be terminated (canceled or stopped). 1469 */ 1470 void 1471 vdev_autotrim_stop_all(spa_t *spa) 1472 { 1473 vdev_t *root_vd = spa->spa_root_vdev; 1474 1475 for (uint64_t i = 0; i < root_vd->vdev_children; i++) 1476 vdev_autotrim_stop_wait(root_vd->vdev_child[i]); 1477 } 1478 1479 /* 1480 * Conditionally restart all of the vdev_autotrim_thread's for the pool. 1481 */ 1482 void 1483 vdev_autotrim_restart(spa_t *spa) 1484 { 1485 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1486 1487 if (spa->spa_autotrim) 1488 vdev_autotrim(spa); 1489 } 1490 1491 static void 1492 vdev_trim_l2arc_thread(void *arg) 1493 { 1494 vdev_t *vd = arg; 1495 spa_t *spa = vd->vdev_spa; 1496 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1497 trim_args_t ta; 1498 range_seg64_t physical_rs; 1499 1500 ASSERT(vdev_is_concrete(vd)); 1501 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1502 1503 vd->vdev_trim_last_offset = 0; 1504 vd->vdev_trim_rate = 0; 1505 vd->vdev_trim_partial = 0; 1506 vd->vdev_trim_secure = 0; 1507 1508 bzero(&ta, sizeof (ta)); 1509 ta.trim_vdev = vd; 1510 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1511 ta.trim_type = TRIM_TYPE_MANUAL; 1512 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1513 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1514 ta.trim_flags = 0; 1515 1516 physical_rs.rs_start = vd->vdev_trim_bytes_done = 0; 1517 physical_rs.rs_end = vd->vdev_trim_bytes_est = 1518 vdev_get_min_asize(vd); 1519 1520 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1521 physical_rs.rs_end - physical_rs.rs_start); 1522 1523 mutex_enter(&vd->vdev_trim_lock); 1524 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1525 mutex_exit(&vd->vdev_trim_lock); 1526 1527 (void) vdev_trim_ranges(&ta); 1528 1529 spa_config_exit(spa, SCL_CONFIG, FTAG); 1530 mutex_enter(&vd->vdev_trim_io_lock); 1531 while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) { 1532 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1533 } 1534 mutex_exit(&vd->vdev_trim_io_lock); 1535 1536 range_tree_vacate(ta.trim_tree, NULL, NULL); 1537 range_tree_destroy(ta.trim_tree); 1538 1539 mutex_enter(&vd->vdev_trim_lock); 1540 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { 1541 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 1542 vd->vdev_trim_rate, vd->vdev_trim_partial, 1543 vd->vdev_trim_secure); 1544 } 1545 ASSERT(vd->vdev_trim_thread != NULL || 1546 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0); 1547 1548 /* 1549 * Drop the vdev_trim_lock while we sync out the txg since it's 1550 * possible that a device might be trying to come online and 1551 * must check to see if it needs to restart a trim. That thread 1552 * will be holding the spa_config_lock which would prevent the 1553 * txg_wait_synced from completing. Same strategy as in 1554 * vdev_trim_thread(). 1555 */ 1556 mutex_exit(&vd->vdev_trim_lock); 1557 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1558 mutex_enter(&vd->vdev_trim_lock); 1559 1560 /* 1561 * Update the header of the cache device here, before 1562 * broadcasting vdev_trim_cv which may lead to the removal 1563 * of the device. The same applies for setting l2ad_trim_all to 1564 * false. 1565 */ 1566 spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd, 1567 RW_READER); 1568 bzero(dev->l2ad_dev_hdr, dev->l2ad_dev_hdr_asize); 1569 l2arc_dev_hdr_update(dev); 1570 spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd); 1571 1572 vd->vdev_trim_thread = NULL; 1573 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE) 1574 dev->l2ad_trim_all = B_FALSE; 1575 1576 cv_broadcast(&vd->vdev_trim_cv); 1577 mutex_exit(&vd->vdev_trim_lock); 1578 1579 thread_exit(); 1580 } 1581 1582 /* 1583 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them 1584 * to vd->vdev_trim_thread variable. This facilitates the management of 1585 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition 1586 * to a pool or pool creation or when the header of the device is invalid. 1587 */ 1588 void 1589 vdev_trim_l2arc(spa_t *spa) 1590 { 1591 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1592 1593 /* 1594 * Locate the spa's l2arc devices and kick off TRIM threads. 1595 */ 1596 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1597 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i]; 1598 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1599 1600 if (dev == NULL || !dev->l2ad_trim_all) { 1601 /* 1602 * Don't attempt TRIM if the vdev is UNAVAIL or if the 1603 * cache device was not marked for whole device TRIM 1604 * (ie l2arc_trim_ahead = 0, or the L2ARC device header 1605 * is valid with trim_state = VDEV_TRIM_COMPLETE and 1606 * l2ad_log_entries > 0). 1607 */ 1608 continue; 1609 } 1610 1611 mutex_enter(&vd->vdev_trim_lock); 1612 ASSERT(vd->vdev_ops->vdev_op_leaf); 1613 ASSERT(vdev_is_concrete(vd)); 1614 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1615 ASSERT(!vd->vdev_detached); 1616 ASSERT(!vd->vdev_trim_exit_wanted); 1617 ASSERT(!vd->vdev_top->vdev_removing); 1618 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1619 vd->vdev_trim_thread = thread_create(NULL, 0, 1620 vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 1621 mutex_exit(&vd->vdev_trim_lock); 1622 } 1623 } 1624 1625 /* 1626 * A wrapper which calls vdev_trim_ranges(). It is intended to be called 1627 * on leaf vdevs. 1628 */ 1629 int 1630 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size) 1631 { 1632 trim_args_t ta; 1633 range_seg64_t physical_rs; 1634 int error; 1635 physical_rs.rs_start = start; 1636 physical_rs.rs_end = start + size; 1637 1638 ASSERT(vdev_is_concrete(vd)); 1639 ASSERT(vd->vdev_ops->vdev_op_leaf); 1640 ASSERT(!vd->vdev_detached); 1641 ASSERT(!vd->vdev_top->vdev_removing); 1642 1643 bzero(&ta, sizeof (ta)); 1644 ta.trim_vdev = vd; 1645 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1646 ta.trim_type = TRIM_TYPE_SIMPLE; 1647 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1648 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1649 ta.trim_flags = 0; 1650 1651 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 1652 1653 if (physical_rs.rs_end > physical_rs.rs_start) { 1654 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1655 physical_rs.rs_end - physical_rs.rs_start); 1656 } else { 1657 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 1658 } 1659 1660 error = vdev_trim_ranges(&ta); 1661 1662 mutex_enter(&vd->vdev_trim_io_lock); 1663 while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) { 1664 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1665 } 1666 mutex_exit(&vd->vdev_trim_io_lock); 1667 1668 range_tree_vacate(ta.trim_tree, NULL, NULL); 1669 range_tree_destroy(ta.trim_tree); 1670 1671 return (error); 1672 } 1673 1674 EXPORT_SYMBOL(vdev_trim); 1675 EXPORT_SYMBOL(vdev_trim_stop); 1676 EXPORT_SYMBOL(vdev_trim_stop_all); 1677 EXPORT_SYMBOL(vdev_trim_stop_wait); 1678 EXPORT_SYMBOL(vdev_trim_restart); 1679 EXPORT_SYMBOL(vdev_autotrim); 1680 EXPORT_SYMBOL(vdev_autotrim_stop_all); 1681 EXPORT_SYMBOL(vdev_autotrim_stop_wait); 1682 EXPORT_SYMBOL(vdev_autotrim_restart); 1683 EXPORT_SYMBOL(vdev_trim_l2arc); 1684 EXPORT_SYMBOL(vdev_trim_simple); 1685 1686 /* BEGIN CSTYLED */ 1687 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW, 1688 "Max size of TRIM commands, larger will be split"); 1689 1690 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW, 1691 "Min size of TRIM commands, smaller will be skipped"); 1692 1693 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW, 1694 "Skip metaslabs which have never been initialized"); 1695 1696 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW, 1697 "Min number of txgs to aggregate frees before issuing TRIM"); 1698 1699 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW, 1700 "Max queued TRIMs outstanding per leaf vdev"); 1701 /* END CSTYLED */ 1702