xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_trim.c (revision 77ceadee6d88cf4ce968b42503acfb12c668ffa5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25  */
26 
27 #include <sys/spa.h>
28 #include <sys/spa_impl.h>
29 #include <sys/txg.h>
30 #include <sys/vdev_impl.h>
31 #include <sys/vdev_trim.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/zap.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/arc_impl.h>
37 
38 /*
39  * TRIM is a feature which is used to notify a SSD that some previously
40  * written space is no longer allocated by the pool.  This is useful because
41  * writes to a SSD must be performed to blocks which have first been erased.
42  * Ensuring the SSD always has a supply of erased blocks for new writes
43  * helps prevent the performance from deteriorating.
44  *
45  * There are two supported TRIM methods; manual and automatic.
46  *
47  * Manual TRIM:
48  *
49  * A manual TRIM is initiated by running the 'zpool trim' command.  A single
50  * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
51  * managing that vdev TRIM process.  This involves iterating over all the
52  * metaslabs, calculating the unallocated space ranges, and then issuing the
53  * required TRIM I/Os.
54  *
55  * While a metaslab is being actively trimmed it is not eligible to perform
56  * new allocations.  After traversing all of the metaslabs the thread is
57  * terminated.  Finally, both the requested options and current progress of
58  * the TRIM are regularly written to the pool.  This allows the TRIM to be
59  * suspended and resumed as needed.
60  *
61  * Automatic TRIM:
62  *
63  * An automatic TRIM is enabled by setting the 'autotrim' pool property
64  * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
65  * top-level (not leaf) vdev in the pool.  These threads perform the same
66  * core TRIM process as a manual TRIM, but with a few key differences.
67  *
68  * 1) Automatic TRIM happens continuously in the background and operates
69  *    solely on recently freed blocks (ms_trim not ms_allocatable).
70  *
71  * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
72  *    the benefit of simplifying the threading model, it makes it easier
73  *    to coordinate administrative commands, and it ensures only a single
74  *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
75  *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
76  *    children.
77  *
78  * 3) There is no automatic TRIM progress information stored on disk, nor
79  *    is it reported by 'zpool status'.
80  *
81  * While the automatic TRIM process is highly effective it is more likely
82  * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
83  * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
84  * TRIM and are skipped.  This means small amounts of freed space may not
85  * be automatically trimmed.
86  *
87  * Furthermore, devices with attached hot spares and devices being actively
88  * replaced are skipped.  This is done to avoid adding additional stress to
89  * a potentially unhealthy device and to minimize the required rebuild time.
90  *
91  * For this reason it may be beneficial to occasionally manually TRIM a pool
92  * even when automatic TRIM is enabled.
93  */
94 
95 /*
96  * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
97  */
98 unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
99 
100 /*
101  * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
102  */
103 unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
104 
105 /*
106  * Skip uninitialized metaslabs during the TRIM process.  This option is
107  * useful for pools constructed from large thinly-provisioned devices where
108  * TRIM operations are slow.  As a pool ages an increasing fraction of
109  * the pools metaslabs will be initialized progressively degrading the
110  * usefulness of this option.  This setting is stored when starting a
111  * manual TRIM and will persist for the duration of the requested TRIM.
112  */
113 unsigned int zfs_trim_metaslab_skip = 0;
114 
115 /*
116  * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
117  * concurrent TRIM I/Os issued to the device is controlled by the
118  * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
119  */
120 unsigned int zfs_trim_queue_limit = 10;
121 
122 /*
123  * The minimum number of transaction groups between automatic trims of a
124  * metaslab.  This setting represents a trade-off between issuing more
125  * efficient TRIM operations, by allowing them to be aggregated longer,
126  * and issuing them promptly so the trimmed space is available.  Note
127  * that this value is a minimum; metaslabs can be trimmed less frequently
128  * when there are a large number of ranges which need to be trimmed.
129  *
130  * Increasing this value will allow frees to be aggregated for a longer
131  * time.  This can result is larger TRIM operations, and increased memory
132  * usage in order to track the ranges to be trimmed.  Decreasing this value
133  * has the opposite effect.  The default value of 32 was determined though
134  * testing to be a reasonable compromise.
135  */
136 unsigned int zfs_trim_txg_batch = 32;
137 
138 /*
139  * The trim_args are a control structure which describe how a leaf vdev
140  * should be trimmed.  The core elements are the vdev, the metaslab being
141  * trimmed and a range tree containing the extents to TRIM.  All provided
142  * ranges must be within the metaslab.
143  */
144 typedef struct trim_args {
145 	/*
146 	 * These fields are set by the caller of vdev_trim_ranges().
147 	 */
148 	vdev_t		*trim_vdev;		/* Leaf vdev to TRIM */
149 	metaslab_t	*trim_msp;		/* Disabled metaslab */
150 	range_tree_t	*trim_tree;		/* TRIM ranges (in metaslab) */
151 	trim_type_t	trim_type;		/* Manual or auto TRIM */
152 	uint64_t	trim_extent_bytes_max;	/* Maximum TRIM I/O size */
153 	uint64_t	trim_extent_bytes_min;	/* Minimum TRIM I/O size */
154 	enum trim_flag	trim_flags;		/* TRIM flags (secure) */
155 
156 	/*
157 	 * These fields are updated by vdev_trim_ranges().
158 	 */
159 	hrtime_t	trim_start_time;	/* Start time */
160 	uint64_t	trim_bytes_done;	/* Bytes trimmed */
161 } trim_args_t;
162 
163 /*
164  * Determines whether a vdev_trim_thread() should be stopped.
165  */
166 static boolean_t
167 vdev_trim_should_stop(vdev_t *vd)
168 {
169 	return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
170 	    vd->vdev_detached || vd->vdev_top->vdev_removing);
171 }
172 
173 /*
174  * Determines whether a vdev_autotrim_thread() should be stopped.
175  */
176 static boolean_t
177 vdev_autotrim_should_stop(vdev_t *tvd)
178 {
179 	return (tvd->vdev_autotrim_exit_wanted ||
180 	    !vdev_writeable(tvd) || tvd->vdev_removing ||
181 	    spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
182 }
183 
184 /*
185  * The sync task for updating the on-disk state of a manual TRIM.  This
186  * is scheduled by vdev_trim_change_state().
187  */
188 static void
189 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
190 {
191 	/*
192 	 * We pass in the guid instead of the vdev_t since the vdev may
193 	 * have been freed prior to the sync task being processed.  This
194 	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
195 	 * stop the trimming thread, schedule the sync task, and free
196 	 * the vdev. Later when the scheduled sync task is invoked, it would
197 	 * find that the vdev has been freed.
198 	 */
199 	uint64_t guid = *(uint64_t *)arg;
200 	uint64_t txg = dmu_tx_get_txg(tx);
201 	kmem_free(arg, sizeof (uint64_t));
202 
203 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
204 	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
205 		return;
206 
207 	uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
208 	vd->vdev_trim_offset[txg & TXG_MASK] = 0;
209 
210 	VERIFY3U(vd->vdev_leaf_zap, !=, 0);
211 
212 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
213 
214 	if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
215 
216 		if (vd->vdev_trim_last_offset == UINT64_MAX)
217 			last_offset = 0;
218 
219 		vd->vdev_trim_last_offset = last_offset;
220 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
221 		    VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
222 		    sizeof (last_offset), 1, &last_offset, tx));
223 	}
224 
225 	if (vd->vdev_trim_action_time > 0) {
226 		uint64_t val = (uint64_t)vd->vdev_trim_action_time;
227 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
228 		    VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
229 		    1, &val, tx));
230 	}
231 
232 	if (vd->vdev_trim_rate > 0) {
233 		uint64_t rate = (uint64_t)vd->vdev_trim_rate;
234 
235 		if (rate == UINT64_MAX)
236 			rate = 0;
237 
238 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
239 		    VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
240 	}
241 
242 	uint64_t partial = vd->vdev_trim_partial;
243 	if (partial == UINT64_MAX)
244 		partial = 0;
245 
246 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
247 	    sizeof (partial), 1, &partial, tx));
248 
249 	uint64_t secure = vd->vdev_trim_secure;
250 	if (secure == UINT64_MAX)
251 		secure = 0;
252 
253 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
254 	    sizeof (secure), 1, &secure, tx));
255 
256 
257 	uint64_t trim_state = vd->vdev_trim_state;
258 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
259 	    sizeof (trim_state), 1, &trim_state, tx));
260 }
261 
262 /*
263  * Update the on-disk state of a manual TRIM.  This is called to request
264  * that a TRIM be started/suspended/canceled, or to change one of the
265  * TRIM options (partial, secure, rate).
266  */
267 static void
268 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
269     uint64_t rate, boolean_t partial, boolean_t secure)
270 {
271 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
272 	spa_t *spa = vd->vdev_spa;
273 
274 	if (new_state == vd->vdev_trim_state)
275 		return;
276 
277 	/*
278 	 * Copy the vd's guid, this will be freed by the sync task.
279 	 */
280 	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
281 	*guid = vd->vdev_guid;
282 
283 	/*
284 	 * If we're suspending, then preserve the original start time.
285 	 */
286 	if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
287 		vd->vdev_trim_action_time = gethrestime_sec();
288 	}
289 
290 	/*
291 	 * If we're activating, then preserve the requested rate and trim
292 	 * method.  Setting the last offset and rate to UINT64_MAX is used
293 	 * as a sentinel to indicate they should be reset to default values.
294 	 */
295 	if (new_state == VDEV_TRIM_ACTIVE) {
296 		if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
297 		    vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
298 			vd->vdev_trim_last_offset = UINT64_MAX;
299 			vd->vdev_trim_rate = UINT64_MAX;
300 			vd->vdev_trim_partial = UINT64_MAX;
301 			vd->vdev_trim_secure = UINT64_MAX;
302 		}
303 
304 		if (rate != 0)
305 			vd->vdev_trim_rate = rate;
306 
307 		if (partial != 0)
308 			vd->vdev_trim_partial = partial;
309 
310 		if (secure != 0)
311 			vd->vdev_trim_secure = secure;
312 	}
313 
314 	boolean_t resumed = !!(vd->vdev_trim_state == VDEV_TRIM_SUSPENDED);
315 	vd->vdev_trim_state = new_state;
316 
317 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
318 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
319 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
320 	    guid, 2, ZFS_SPACE_CHECK_NONE, tx);
321 
322 	switch (new_state) {
323 	case VDEV_TRIM_ACTIVE:
324 		spa_event_notify(spa, vd, NULL,
325 		    resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
326 		spa_history_log_internal(spa, "trim", tx,
327 		    "vdev=%s activated", vd->vdev_path);
328 		break;
329 	case VDEV_TRIM_SUSPENDED:
330 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
331 		spa_history_log_internal(spa, "trim", tx,
332 		    "vdev=%s suspended", vd->vdev_path);
333 		break;
334 	case VDEV_TRIM_CANCELED:
335 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
336 		spa_history_log_internal(spa, "trim", tx,
337 		    "vdev=%s canceled", vd->vdev_path);
338 		break;
339 	case VDEV_TRIM_COMPLETE:
340 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
341 		spa_history_log_internal(spa, "trim", tx,
342 		    "vdev=%s complete", vd->vdev_path);
343 		break;
344 	default:
345 		panic("invalid state %llu", (unsigned long long)new_state);
346 	}
347 
348 	dmu_tx_commit(tx);
349 
350 	if (new_state != VDEV_TRIM_ACTIVE)
351 		spa_notify_waiters(spa);
352 }
353 
354 /*
355  * The zio_done_func_t done callback for each manual TRIM issued.  It is
356  * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
357  * and limiting the number of in flight TRIM I/Os.
358  */
359 static void
360 vdev_trim_cb(zio_t *zio)
361 {
362 	vdev_t *vd = zio->io_vd;
363 
364 	mutex_enter(&vd->vdev_trim_io_lock);
365 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
366 		/*
367 		 * The I/O failed because the vdev was unavailable; roll the
368 		 * last offset back. (This works because spa_sync waits on
369 		 * spa_txg_zio before it runs sync tasks.)
370 		 */
371 		uint64_t *offset =
372 		    &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
373 		*offset = MIN(*offset, zio->io_offset);
374 	} else {
375 		if (zio->io_error != 0) {
376 			vd->vdev_stat.vs_trim_errors++;
377 			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
378 			    0, 0, 0, 0, 1, zio->io_orig_size);
379 		} else {
380 			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
381 			    1, zio->io_orig_size, 0, 0, 0, 0);
382 		}
383 
384 		vd->vdev_trim_bytes_done += zio->io_orig_size;
385 	}
386 
387 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
388 	vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
389 	cv_broadcast(&vd->vdev_trim_io_cv);
390 	mutex_exit(&vd->vdev_trim_io_lock);
391 
392 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
393 }
394 
395 /*
396  * The zio_done_func_t done callback for each automatic TRIM issued.  It
397  * is responsible for updating the TRIM stats and limiting the number of
398  * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
399  * never reissued on failure.
400  */
401 static void
402 vdev_autotrim_cb(zio_t *zio)
403 {
404 	vdev_t *vd = zio->io_vd;
405 
406 	mutex_enter(&vd->vdev_trim_io_lock);
407 
408 	if (zio->io_error != 0) {
409 		vd->vdev_stat.vs_trim_errors++;
410 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
411 		    0, 0, 0, 0, 1, zio->io_orig_size);
412 	} else {
413 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
414 		    1, zio->io_orig_size, 0, 0, 0, 0);
415 	}
416 
417 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
418 	vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
419 	cv_broadcast(&vd->vdev_trim_io_cv);
420 	mutex_exit(&vd->vdev_trim_io_lock);
421 
422 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
423 }
424 
425 /*
426  * The zio_done_func_t done callback for each TRIM issued via
427  * vdev_trim_simple(). It is responsible for updating the TRIM stats and
428  * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
429  * effort and are never reissued on failure.
430  */
431 static void
432 vdev_trim_simple_cb(zio_t *zio)
433 {
434 	vdev_t *vd = zio->io_vd;
435 
436 	mutex_enter(&vd->vdev_trim_io_lock);
437 
438 	if (zio->io_error != 0) {
439 		vd->vdev_stat.vs_trim_errors++;
440 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
441 		    0, 0, 0, 0, 1, zio->io_orig_size);
442 	} else {
443 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
444 		    1, zio->io_orig_size, 0, 0, 0, 0);
445 	}
446 
447 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
448 	vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
449 	cv_broadcast(&vd->vdev_trim_io_cv);
450 	mutex_exit(&vd->vdev_trim_io_lock);
451 
452 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
453 }
454 /*
455  * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
456  */
457 static uint64_t
458 vdev_trim_calculate_rate(trim_args_t *ta)
459 {
460 	return (ta->trim_bytes_done * 1000 /
461 	    (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
462 }
463 
464 /*
465  * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
466  * and number of concurrent TRIM I/Os.
467  */
468 static int
469 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
470 {
471 	vdev_t *vd = ta->trim_vdev;
472 	spa_t *spa = vd->vdev_spa;
473 	void *cb;
474 
475 	mutex_enter(&vd->vdev_trim_io_lock);
476 
477 	/*
478 	 * Limit manual TRIM I/Os to the requested rate.  This does not
479 	 * apply to automatic TRIM since no per vdev rate can be specified.
480 	 */
481 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
482 		while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
483 		    vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
484 			cv_timedwait_sig(&vd->vdev_trim_io_cv,
485 			    &vd->vdev_trim_io_lock, ddi_get_lbolt() +
486 			    MSEC_TO_TICK(10));
487 		}
488 	}
489 	ta->trim_bytes_done += size;
490 
491 	/* Limit in flight trimming I/Os */
492 	while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
493 	    vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
494 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
495 	}
496 	vd->vdev_trim_inflight[ta->trim_type]++;
497 	mutex_exit(&vd->vdev_trim_io_lock);
498 
499 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
500 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
501 	uint64_t txg = dmu_tx_get_txg(tx);
502 
503 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
504 	mutex_enter(&vd->vdev_trim_lock);
505 
506 	if (ta->trim_type == TRIM_TYPE_MANUAL &&
507 	    vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
508 		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
509 		*guid = vd->vdev_guid;
510 
511 		/* This is the first write of this txg. */
512 		dsl_sync_task_nowait(spa_get_dsl(spa),
513 		    vdev_trim_zap_update_sync, guid, 2,
514 		    ZFS_SPACE_CHECK_RESERVED, tx);
515 	}
516 
517 	/*
518 	 * We know the vdev_t will still be around since all consumers of
519 	 * vdev_free must stop the trimming first.
520 	 */
521 	if ((ta->trim_type == TRIM_TYPE_MANUAL &&
522 	    vdev_trim_should_stop(vd)) ||
523 	    (ta->trim_type == TRIM_TYPE_AUTO &&
524 	    vdev_autotrim_should_stop(vd->vdev_top))) {
525 		mutex_enter(&vd->vdev_trim_io_lock);
526 		vd->vdev_trim_inflight[ta->trim_type]--;
527 		mutex_exit(&vd->vdev_trim_io_lock);
528 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
529 		mutex_exit(&vd->vdev_trim_lock);
530 		dmu_tx_commit(tx);
531 		return (SET_ERROR(EINTR));
532 	}
533 	mutex_exit(&vd->vdev_trim_lock);
534 
535 	if (ta->trim_type == TRIM_TYPE_MANUAL)
536 		vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
537 
538 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
539 		cb = vdev_trim_cb;
540 	} else if (ta->trim_type == TRIM_TYPE_AUTO) {
541 		cb = vdev_autotrim_cb;
542 	} else {
543 		cb = vdev_trim_simple_cb;
544 	}
545 
546 	zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
547 	    start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
548 	    ta->trim_flags));
549 	/* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
550 
551 	dmu_tx_commit(tx);
552 
553 	return (0);
554 }
555 
556 /*
557  * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
558  * Additional parameters describing how the TRIM should be performed must
559  * be set in the trim_args structure.  See the trim_args definition for
560  * additional information.
561  */
562 static int
563 vdev_trim_ranges(trim_args_t *ta)
564 {
565 	vdev_t *vd = ta->trim_vdev;
566 	zfs_btree_t *t = &ta->trim_tree->rt_root;
567 	zfs_btree_index_t idx;
568 	uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
569 	uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
570 	spa_t *spa = vd->vdev_spa;
571 
572 	ta->trim_start_time = gethrtime();
573 	ta->trim_bytes_done = 0;
574 
575 	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
576 	    rs = zfs_btree_next(t, &idx, &idx)) {
577 		uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
578 		    ta->trim_tree);
579 
580 		if (extent_bytes_min && size < extent_bytes_min) {
581 			spa_iostats_trim_add(spa, ta->trim_type,
582 			    0, 0, 1, size, 0, 0);
583 			continue;
584 		}
585 
586 		/* Split range into legally-sized physical chunks */
587 		uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
588 
589 		for (uint64_t w = 0; w < writes_required; w++) {
590 			int error;
591 
592 			error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
593 			    rs_get_start(rs, ta->trim_tree) +
594 			    (w *extent_bytes_max), MIN(size -
595 			    (w * extent_bytes_max), extent_bytes_max));
596 			if (error != 0) {
597 				return (error);
598 			}
599 		}
600 	}
601 
602 	return (0);
603 }
604 
605 /*
606  * Calculates the completion percentage of a manual TRIM.
607  */
608 static void
609 vdev_trim_calculate_progress(vdev_t *vd)
610 {
611 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
612 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
613 	ASSERT(vd->vdev_leaf_zap != 0);
614 
615 	vd->vdev_trim_bytes_est = 0;
616 	vd->vdev_trim_bytes_done = 0;
617 
618 	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
619 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
620 		mutex_enter(&msp->ms_lock);
621 
622 		uint64_t ms_free = msp->ms_size -
623 		    metaslab_allocated_space(msp);
624 
625 		if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
626 			ms_free /= vd->vdev_top->vdev_children;
627 
628 		/*
629 		 * Convert the metaslab range to a physical range
630 		 * on our vdev. We use this to determine if we are
631 		 * in the middle of this metaslab range.
632 		 */
633 		range_seg64_t logical_rs, physical_rs;
634 		logical_rs.rs_start = msp->ms_start;
635 		logical_rs.rs_end = msp->ms_start + msp->ms_size;
636 		vdev_xlate(vd, &logical_rs, &physical_rs);
637 
638 		if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
639 			vd->vdev_trim_bytes_est += ms_free;
640 			mutex_exit(&msp->ms_lock);
641 			continue;
642 		} else if (vd->vdev_trim_last_offset > physical_rs.rs_end) {
643 			vd->vdev_trim_bytes_done += ms_free;
644 			vd->vdev_trim_bytes_est += ms_free;
645 			mutex_exit(&msp->ms_lock);
646 			continue;
647 		}
648 
649 		/*
650 		 * If we get here, we're in the middle of trimming this
651 		 * metaslab.  Load it and walk the free tree for more
652 		 * accurate progress estimation.
653 		 */
654 		VERIFY0(metaslab_load(msp));
655 
656 		range_tree_t *rt = msp->ms_allocatable;
657 		zfs_btree_t *bt = &rt->rt_root;
658 		zfs_btree_index_t idx;
659 		for (range_seg_t *rs = zfs_btree_first(bt, &idx);
660 		    rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
661 			logical_rs.rs_start = rs_get_start(rs, rt);
662 			logical_rs.rs_end = rs_get_end(rs, rt);
663 			vdev_xlate(vd, &logical_rs, &physical_rs);
664 
665 			uint64_t size = physical_rs.rs_end -
666 			    physical_rs.rs_start;
667 			vd->vdev_trim_bytes_est += size;
668 			if (vd->vdev_trim_last_offset >= physical_rs.rs_end) {
669 				vd->vdev_trim_bytes_done += size;
670 			} else if (vd->vdev_trim_last_offset >
671 			    physical_rs.rs_start &&
672 			    vd->vdev_trim_last_offset <=
673 			    physical_rs.rs_end) {
674 				vd->vdev_trim_bytes_done +=
675 				    vd->vdev_trim_last_offset -
676 				    physical_rs.rs_start;
677 			}
678 		}
679 		mutex_exit(&msp->ms_lock);
680 	}
681 }
682 
683 /*
684  * Load from disk the vdev's manual TRIM information.  This includes the
685  * state, progress, and options provided when initiating the manual TRIM.
686  */
687 static int
688 vdev_trim_load(vdev_t *vd)
689 {
690 	int err = 0;
691 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
692 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
693 	ASSERT(vd->vdev_leaf_zap != 0);
694 
695 	if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
696 	    vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
697 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
698 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
699 		    sizeof (vd->vdev_trim_last_offset), 1,
700 		    &vd->vdev_trim_last_offset);
701 		if (err == ENOENT) {
702 			vd->vdev_trim_last_offset = 0;
703 			err = 0;
704 		}
705 
706 		if (err == 0) {
707 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
708 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
709 			    sizeof (vd->vdev_trim_rate), 1,
710 			    &vd->vdev_trim_rate);
711 			if (err == ENOENT) {
712 				vd->vdev_trim_rate = 0;
713 				err = 0;
714 			}
715 		}
716 
717 		if (err == 0) {
718 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
719 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
720 			    sizeof (vd->vdev_trim_partial), 1,
721 			    &vd->vdev_trim_partial);
722 			if (err == ENOENT) {
723 				vd->vdev_trim_partial = 0;
724 				err = 0;
725 			}
726 		}
727 
728 		if (err == 0) {
729 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
730 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
731 			    sizeof (vd->vdev_trim_secure), 1,
732 			    &vd->vdev_trim_secure);
733 			if (err == ENOENT) {
734 				vd->vdev_trim_secure = 0;
735 				err = 0;
736 			}
737 		}
738 	}
739 
740 	vdev_trim_calculate_progress(vd);
741 
742 	return (err);
743 }
744 
745 /*
746  * Convert the logical range into a physical range and add it to the
747  * range tree passed in the trim_args_t.
748  */
749 static void
750 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
751 {
752 	trim_args_t *ta = arg;
753 	vdev_t *vd = ta->trim_vdev;
754 	range_seg64_t logical_rs, physical_rs;
755 	logical_rs.rs_start = start;
756 	logical_rs.rs_end = start + size;
757 
758 	/*
759 	 * Every range to be trimmed must be part of ms_allocatable.
760 	 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
761 	 * is always the case.
762 	 */
763 	if (zfs_flags & ZFS_DEBUG_TRIM) {
764 		metaslab_t *msp = ta->trim_msp;
765 		VERIFY0(metaslab_load(msp));
766 		VERIFY3B(msp->ms_loaded, ==, B_TRUE);
767 		VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
768 	}
769 
770 	ASSERT(vd->vdev_ops->vdev_op_leaf);
771 	vdev_xlate(vd, &logical_rs, &physical_rs);
772 
773 	IMPLY(vd->vdev_top == vd,
774 	    logical_rs.rs_start == physical_rs.rs_start);
775 	IMPLY(vd->vdev_top == vd,
776 	    logical_rs.rs_end == physical_rs.rs_end);
777 
778 	/*
779 	 * Only a manual trim will be traversing the vdev sequentially.
780 	 * For an auto trim all valid ranges should be added.
781 	 */
782 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
783 
784 		/* Only add segments that we have not visited yet */
785 		if (physical_rs.rs_end <= vd->vdev_trim_last_offset)
786 			return;
787 
788 		/* Pick up where we left off mid-range. */
789 		if (vd->vdev_trim_last_offset > physical_rs.rs_start) {
790 			ASSERT3U(physical_rs.rs_end, >,
791 			    vd->vdev_trim_last_offset);
792 			physical_rs.rs_start = vd->vdev_trim_last_offset;
793 		}
794 	}
795 
796 	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
797 
798 	/*
799 	 * With raidz, it's possible that the logical range does not live on
800 	 * this leaf vdev. We only add the physical range to this vdev's if it
801 	 * has a length greater than 0.
802 	 */
803 	if (physical_rs.rs_end > physical_rs.rs_start) {
804 		range_tree_add(ta->trim_tree, physical_rs.rs_start,
805 		    physical_rs.rs_end - physical_rs.rs_start);
806 	} else {
807 		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
808 	}
809 }
810 
811 /*
812  * Each manual TRIM thread is responsible for trimming the unallocated
813  * space for each leaf vdev.  This is accomplished by sequentially iterating
814  * over its top-level metaslabs and issuing TRIM I/O for the space described
815  * by its ms_allocatable.  While a metaslab is undergoing trimming it is
816  * not eligible for new allocations.
817  */
818 static void
819 vdev_trim_thread(void *arg)
820 {
821 	vdev_t *vd = arg;
822 	spa_t *spa = vd->vdev_spa;
823 	trim_args_t ta;
824 	int error = 0;
825 
826 	/*
827 	 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
828 	 * vdev_trim().  Wait for the updated values to be reflected
829 	 * in the zap in order to start with the requested settings.
830 	 */
831 	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
832 
833 	ASSERT(vdev_is_concrete(vd));
834 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
835 
836 	vd->vdev_trim_last_offset = 0;
837 	vd->vdev_trim_rate = 0;
838 	vd->vdev_trim_partial = 0;
839 	vd->vdev_trim_secure = 0;
840 
841 	VERIFY0(vdev_trim_load(vd));
842 
843 	ta.trim_vdev = vd;
844 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
845 	ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
846 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
847 	ta.trim_type = TRIM_TYPE_MANUAL;
848 	ta.trim_flags = 0;
849 
850 	/*
851 	 * When a secure TRIM has been requested infer that the intent
852 	 * is that everything must be trimmed.  Override the default
853 	 * minimum TRIM size to prevent ranges from being skipped.
854 	 */
855 	if (vd->vdev_trim_secure) {
856 		ta.trim_flags |= ZIO_TRIM_SECURE;
857 		ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
858 	}
859 
860 	uint64_t ms_count = 0;
861 	for (uint64_t i = 0; !vd->vdev_detached &&
862 	    i < vd->vdev_top->vdev_ms_count; i++) {
863 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
864 
865 		/*
866 		 * If we've expanded the top-level vdev or it's our
867 		 * first pass, calculate our progress.
868 		 */
869 		if (vd->vdev_top->vdev_ms_count != ms_count) {
870 			vdev_trim_calculate_progress(vd);
871 			ms_count = vd->vdev_top->vdev_ms_count;
872 		}
873 
874 		spa_config_exit(spa, SCL_CONFIG, FTAG);
875 		metaslab_disable(msp);
876 		mutex_enter(&msp->ms_lock);
877 		VERIFY0(metaslab_load(msp));
878 
879 		/*
880 		 * If a partial TRIM was requested skip metaslabs which have
881 		 * never been initialized and thus have never been written.
882 		 */
883 		if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
884 			mutex_exit(&msp->ms_lock);
885 			metaslab_enable(msp, B_FALSE, B_FALSE);
886 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
887 			vdev_trim_calculate_progress(vd);
888 			continue;
889 		}
890 
891 		ta.trim_msp = msp;
892 		range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
893 		range_tree_vacate(msp->ms_trim, NULL, NULL);
894 		mutex_exit(&msp->ms_lock);
895 
896 		error = vdev_trim_ranges(&ta);
897 		metaslab_enable(msp, B_TRUE, B_FALSE);
898 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
899 
900 		range_tree_vacate(ta.trim_tree, NULL, NULL);
901 		if (error != 0)
902 			break;
903 	}
904 
905 	spa_config_exit(spa, SCL_CONFIG, FTAG);
906 	mutex_enter(&vd->vdev_trim_io_lock);
907 	while (vd->vdev_trim_inflight[0] > 0) {
908 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
909 	}
910 	mutex_exit(&vd->vdev_trim_io_lock);
911 
912 	range_tree_destroy(ta.trim_tree);
913 
914 	mutex_enter(&vd->vdev_trim_lock);
915 	if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
916 		vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
917 		    vd->vdev_trim_rate, vd->vdev_trim_partial,
918 		    vd->vdev_trim_secure);
919 	}
920 	ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
921 
922 	/*
923 	 * Drop the vdev_trim_lock while we sync out the txg since it's
924 	 * possible that a device might be trying to come online and must
925 	 * check to see if it needs to restart a trim. That thread will be
926 	 * holding the spa_config_lock which would prevent the txg_wait_synced
927 	 * from completing.
928 	 */
929 	mutex_exit(&vd->vdev_trim_lock);
930 	txg_wait_synced(spa_get_dsl(spa), 0);
931 	mutex_enter(&vd->vdev_trim_lock);
932 
933 	vd->vdev_trim_thread = NULL;
934 	cv_broadcast(&vd->vdev_trim_cv);
935 	mutex_exit(&vd->vdev_trim_lock);
936 
937 	thread_exit();
938 }
939 
940 /*
941  * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
942  * the vdev_t must be a leaf and cannot already be manually trimming.
943  */
944 void
945 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
946 {
947 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
948 	ASSERT(vd->vdev_ops->vdev_op_leaf);
949 	ASSERT(vdev_is_concrete(vd));
950 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
951 	ASSERT(!vd->vdev_detached);
952 	ASSERT(!vd->vdev_trim_exit_wanted);
953 	ASSERT(!vd->vdev_top->vdev_removing);
954 
955 	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
956 	vd->vdev_trim_thread = thread_create(NULL, 0,
957 	    vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
958 }
959 
960 /*
961  * Wait for the trimming thread to be terminated (canceled or stopped).
962  */
963 static void
964 vdev_trim_stop_wait_impl(vdev_t *vd)
965 {
966 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
967 
968 	while (vd->vdev_trim_thread != NULL)
969 		cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
970 
971 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
972 	vd->vdev_trim_exit_wanted = B_FALSE;
973 }
974 
975 /*
976  * Wait for vdev trim threads which were listed to cleanly exit.
977  */
978 void
979 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
980 {
981 	vdev_t *vd;
982 
983 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
984 
985 	while ((vd = list_remove_head(vd_list)) != NULL) {
986 		mutex_enter(&vd->vdev_trim_lock);
987 		vdev_trim_stop_wait_impl(vd);
988 		mutex_exit(&vd->vdev_trim_lock);
989 	}
990 }
991 
992 /*
993  * Stop trimming a device, with the resultant trimming state being tgt_state.
994  * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
995  * provided the stopping vdev is inserted in to the list.  Callers are then
996  * required to call vdev_trim_stop_wait() to block for all the trim threads
997  * to exit.  The caller must hold vdev_trim_lock and must not be writing to
998  * the spa config, as the trimming thread may try to enter the config as a
999  * reader before exiting.
1000  */
1001 void
1002 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1003 {
1004 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1005 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1006 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1007 	ASSERT(vdev_is_concrete(vd));
1008 
1009 	/*
1010 	 * Allow cancel requests to proceed even if the trim thread has
1011 	 * stopped.
1012 	 */
1013 	if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1014 		return;
1015 
1016 	vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1017 	vd->vdev_trim_exit_wanted = B_TRUE;
1018 
1019 	if (vd_list == NULL) {
1020 		vdev_trim_stop_wait_impl(vd);
1021 	} else {
1022 		ASSERT(MUTEX_HELD(&spa_namespace_lock));
1023 		list_insert_tail(vd_list, vd);
1024 	}
1025 }
1026 
1027 /*
1028  * Requests that all listed vdevs stop trimming.
1029  */
1030 static void
1031 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1032     list_t *vd_list)
1033 {
1034 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1035 		mutex_enter(&vd->vdev_trim_lock);
1036 		vdev_trim_stop(vd, tgt_state, vd_list);
1037 		mutex_exit(&vd->vdev_trim_lock);
1038 		return;
1039 	}
1040 
1041 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1042 		vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1043 		    vd_list);
1044 	}
1045 }
1046 
1047 /*
1048  * Convenience function to stop trimming of a vdev tree and set all trim
1049  * thread pointers to NULL.
1050  */
1051 void
1052 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1053 {
1054 	spa_t *spa = vd->vdev_spa;
1055 	list_t vd_list;
1056 	vdev_t *vd_l2cache;
1057 
1058 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1059 
1060 	list_create(&vd_list, sizeof (vdev_t),
1061 	    offsetof(vdev_t, vdev_trim_node));
1062 
1063 	vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1064 
1065 	/*
1066 	 * Iterate over cache devices and request stop trimming the
1067 	 * whole device in case we export the pool or remove the cache
1068 	 * device prematurely.
1069 	 */
1070 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1071 		vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1072 		vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1073 	}
1074 
1075 	vdev_trim_stop_wait(spa, &vd_list);
1076 
1077 	if (vd->vdev_spa->spa_sync_on) {
1078 		/* Make sure that our state has been synced to disk */
1079 		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1080 	}
1081 
1082 	list_destroy(&vd_list);
1083 }
1084 
1085 /*
1086  * Conditionally restarts a manual TRIM given its on-disk state.
1087  */
1088 void
1089 vdev_trim_restart(vdev_t *vd)
1090 {
1091 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1092 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1093 
1094 	if (vd->vdev_leaf_zap != 0) {
1095 		mutex_enter(&vd->vdev_trim_lock);
1096 		uint64_t trim_state = VDEV_TRIM_NONE;
1097 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1098 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1099 		    sizeof (trim_state), 1, &trim_state);
1100 		ASSERT(err == 0 || err == ENOENT);
1101 		vd->vdev_trim_state = trim_state;
1102 
1103 		uint64_t timestamp = 0;
1104 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1105 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1106 		    sizeof (timestamp), 1, &timestamp);
1107 		ASSERT(err == 0 || err == ENOENT);
1108 		vd->vdev_trim_action_time = timestamp;
1109 
1110 		if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1111 		    vd->vdev_offline) {
1112 			/* load progress for reporting, but don't resume */
1113 			VERIFY0(vdev_trim_load(vd));
1114 		} else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1115 		    vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1116 		    vd->vdev_trim_thread == NULL) {
1117 			VERIFY0(vdev_trim_load(vd));
1118 			vdev_trim(vd, vd->vdev_trim_rate,
1119 			    vd->vdev_trim_partial, vd->vdev_trim_secure);
1120 		}
1121 
1122 		mutex_exit(&vd->vdev_trim_lock);
1123 	}
1124 
1125 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1126 		vdev_trim_restart(vd->vdev_child[i]);
1127 	}
1128 }
1129 
1130 /*
1131  * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1132  * every TRIM range is contained within ms_allocatable.
1133  */
1134 static void
1135 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1136 {
1137 	trim_args_t *ta = arg;
1138 	metaslab_t *msp = ta->trim_msp;
1139 
1140 	VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1141 	VERIFY3U(msp->ms_disabled, >, 0);
1142 	VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1143 }
1144 
1145 /*
1146  * Each automatic TRIM thread is responsible for managing the trimming of a
1147  * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1148  *
1149  * N.B. This behavior is different from a manual TRIM where a thread
1150  * is created for each leaf vdev, instead of each top-level vdev.
1151  */
1152 static void
1153 vdev_autotrim_thread(void *arg)
1154 {
1155 	vdev_t *vd = arg;
1156 	spa_t *spa = vd->vdev_spa;
1157 	int shift = 0;
1158 
1159 	mutex_enter(&vd->vdev_autotrim_lock);
1160 	ASSERT3P(vd->vdev_top, ==, vd);
1161 	ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1162 	mutex_exit(&vd->vdev_autotrim_lock);
1163 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1164 
1165 	uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1166 	uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1167 
1168 	while (!vdev_autotrim_should_stop(vd)) {
1169 		int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1170 		boolean_t issued_trim = B_FALSE;
1171 
1172 		/*
1173 		 * All of the metaslabs are divided in to groups of size
1174 		 * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1175 		 * is composed of metaslabs which are spread evenly over the
1176 		 * device.
1177 		 *
1178 		 * For example, when zfs_trim_txg_batch = 32 (default) then
1179 		 * group 0 will contain metaslabs 0, 32, 64, ...;
1180 		 * group 1 will contain metaslabs 1, 33, 65, ...;
1181 		 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1182 		 *
1183 		 * On each pass through the while() loop one of these groups
1184 		 * is selected.  This is accomplished by using a shift value
1185 		 * to select the starting metaslab, then striding over the
1186 		 * metaslabs using the zfs_trim_txg_batch size.  This is
1187 		 * done to accomplish two things.
1188 		 *
1189 		 * 1) By dividing the metaslabs in to groups, and making sure
1190 		 *    that each group takes a minimum of one txg to process.
1191 		 *    Then zfs_trim_txg_batch controls the minimum number of
1192 		 *    txgs which must occur before a metaslab is revisited.
1193 		 *
1194 		 * 2) Selecting non-consecutive metaslabs distributes the
1195 		 *    TRIM commands for a group evenly over the entire device.
1196 		 *    This can be advantageous for certain types of devices.
1197 		 */
1198 		for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1199 		    i += txgs_per_trim) {
1200 			metaslab_t *msp = vd->vdev_ms[i];
1201 			range_tree_t *trim_tree;
1202 
1203 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1204 			metaslab_disable(msp);
1205 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1206 
1207 			mutex_enter(&msp->ms_lock);
1208 
1209 			/*
1210 			 * Skip the metaslab when it has never been allocated
1211 			 * or when there are no recent frees to trim.
1212 			 */
1213 			if (msp->ms_sm == NULL ||
1214 			    range_tree_is_empty(msp->ms_trim)) {
1215 				mutex_exit(&msp->ms_lock);
1216 				metaslab_enable(msp, B_FALSE, B_FALSE);
1217 				continue;
1218 			}
1219 
1220 			/*
1221 			 * Skip the metaslab when it has already been disabled.
1222 			 * This may happen when a manual TRIM or initialize
1223 			 * operation is running concurrently.  In the case
1224 			 * of a manual TRIM, the ms_trim tree will have been
1225 			 * vacated.  Only ranges added after the manual TRIM
1226 			 * disabled the metaslab will be included in the tree.
1227 			 * These will be processed when the automatic TRIM
1228 			 * next revisits this metaslab.
1229 			 */
1230 			if (msp->ms_disabled > 1) {
1231 				mutex_exit(&msp->ms_lock);
1232 				metaslab_enable(msp, B_FALSE, B_FALSE);
1233 				continue;
1234 			}
1235 
1236 			/*
1237 			 * Allocate an empty range tree which is swapped in
1238 			 * for the existing ms_trim tree while it is processed.
1239 			 */
1240 			trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1241 			    0, 0);
1242 			range_tree_swap(&msp->ms_trim, &trim_tree);
1243 			ASSERT(range_tree_is_empty(msp->ms_trim));
1244 
1245 			/*
1246 			 * There are two cases when constructing the per-vdev
1247 			 * trim trees for a metaslab.  If the top-level vdev
1248 			 * has no children then it is also a leaf and should
1249 			 * be trimmed.  Otherwise our children are the leaves
1250 			 * and a trim tree should be constructed for each.
1251 			 */
1252 			trim_args_t *tap;
1253 			uint64_t children = vd->vdev_children;
1254 			if (children == 0) {
1255 				children = 1;
1256 				tap = kmem_zalloc(sizeof (trim_args_t) *
1257 				    children, KM_SLEEP);
1258 				tap[0].trim_vdev = vd;
1259 			} else {
1260 				tap = kmem_zalloc(sizeof (trim_args_t) *
1261 				    children, KM_SLEEP);
1262 
1263 				for (uint64_t c = 0; c < children; c++) {
1264 					tap[c].trim_vdev = vd->vdev_child[c];
1265 				}
1266 			}
1267 
1268 			for (uint64_t c = 0; c < children; c++) {
1269 				trim_args_t *ta = &tap[c];
1270 				vdev_t *cvd = ta->trim_vdev;
1271 
1272 				ta->trim_msp = msp;
1273 				ta->trim_extent_bytes_max = extent_bytes_max;
1274 				ta->trim_extent_bytes_min = extent_bytes_min;
1275 				ta->trim_type = TRIM_TYPE_AUTO;
1276 				ta->trim_flags = 0;
1277 
1278 				if (cvd->vdev_detached ||
1279 				    !vdev_writeable(cvd) ||
1280 				    !cvd->vdev_has_trim ||
1281 				    cvd->vdev_trim_thread != NULL) {
1282 					continue;
1283 				}
1284 
1285 				/*
1286 				 * When a device has an attached hot spare, or
1287 				 * is being replaced it will not be trimmed.
1288 				 * This is done to avoid adding additional
1289 				 * stress to a potentially unhealthy device,
1290 				 * and to minimize the required rebuild time.
1291 				 */
1292 				if (!cvd->vdev_ops->vdev_op_leaf)
1293 					continue;
1294 
1295 				ta->trim_tree = range_tree_create(NULL,
1296 				    RANGE_SEG64, NULL, 0, 0);
1297 				range_tree_walk(trim_tree,
1298 				    vdev_trim_range_add, ta);
1299 			}
1300 
1301 			mutex_exit(&msp->ms_lock);
1302 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1303 
1304 			/*
1305 			 * Issue the TRIM I/Os for all ranges covered by the
1306 			 * TRIM trees.  These ranges are safe to TRIM because
1307 			 * no new allocations will be performed until the call
1308 			 * to metaslab_enabled() below.
1309 			 */
1310 			for (uint64_t c = 0; c < children; c++) {
1311 				trim_args_t *ta = &tap[c];
1312 
1313 				/*
1314 				 * Always yield to a manual TRIM if one has
1315 				 * been started for the child vdev.
1316 				 */
1317 				if (ta->trim_tree == NULL ||
1318 				    ta->trim_vdev->vdev_trim_thread != NULL) {
1319 					continue;
1320 				}
1321 
1322 				/*
1323 				 * After this point metaslab_enable() must be
1324 				 * called with the sync flag set.  This is done
1325 				 * here because vdev_trim_ranges() is allowed
1326 				 * to be interrupted (EINTR) before issuing all
1327 				 * of the required TRIM I/Os.
1328 				 */
1329 				issued_trim = B_TRUE;
1330 
1331 				int error = vdev_trim_ranges(ta);
1332 				if (error)
1333 					break;
1334 			}
1335 
1336 			/*
1337 			 * Verify every range which was trimmed is still
1338 			 * contained within the ms_allocatable tree.
1339 			 */
1340 			if (zfs_flags & ZFS_DEBUG_TRIM) {
1341 				mutex_enter(&msp->ms_lock);
1342 				VERIFY0(metaslab_load(msp));
1343 				VERIFY3P(tap[0].trim_msp, ==, msp);
1344 				range_tree_walk(trim_tree,
1345 				    vdev_trim_range_verify, &tap[0]);
1346 				mutex_exit(&msp->ms_lock);
1347 			}
1348 
1349 			range_tree_vacate(trim_tree, NULL, NULL);
1350 			range_tree_destroy(trim_tree);
1351 
1352 			metaslab_enable(msp, issued_trim, B_FALSE);
1353 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1354 
1355 			for (uint64_t c = 0; c < children; c++) {
1356 				trim_args_t *ta = &tap[c];
1357 
1358 				if (ta->trim_tree == NULL)
1359 					continue;
1360 
1361 				range_tree_vacate(ta->trim_tree, NULL, NULL);
1362 				range_tree_destroy(ta->trim_tree);
1363 			}
1364 
1365 			kmem_free(tap, sizeof (trim_args_t) * children);
1366 		}
1367 
1368 		spa_config_exit(spa, SCL_CONFIG, FTAG);
1369 
1370 		/*
1371 		 * After completing the group of metaslabs wait for the next
1372 		 * open txg.  This is done to make sure that a minimum of
1373 		 * zfs_trim_txg_batch txgs will occur before these metaslabs
1374 		 * are trimmed again.
1375 		 */
1376 		txg_wait_open(spa_get_dsl(spa), 0, issued_trim);
1377 
1378 		shift++;
1379 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1380 	}
1381 
1382 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1383 		vdev_t *cvd = vd->vdev_child[c];
1384 		mutex_enter(&cvd->vdev_trim_io_lock);
1385 
1386 		while (cvd->vdev_trim_inflight[1] > 0) {
1387 			cv_wait(&cvd->vdev_trim_io_cv,
1388 			    &cvd->vdev_trim_io_lock);
1389 		}
1390 		mutex_exit(&cvd->vdev_trim_io_lock);
1391 	}
1392 
1393 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1394 
1395 	/*
1396 	 * When exiting because the autotrim property was set to off, then
1397 	 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1398 	 */
1399 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1400 		for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1401 			metaslab_t *msp = vd->vdev_ms[i];
1402 
1403 			mutex_enter(&msp->ms_lock);
1404 			range_tree_vacate(msp->ms_trim, NULL, NULL);
1405 			mutex_exit(&msp->ms_lock);
1406 		}
1407 	}
1408 
1409 	mutex_enter(&vd->vdev_autotrim_lock);
1410 	ASSERT(vd->vdev_autotrim_thread != NULL);
1411 	vd->vdev_autotrim_thread = NULL;
1412 	cv_broadcast(&vd->vdev_autotrim_cv);
1413 	mutex_exit(&vd->vdev_autotrim_lock);
1414 
1415 	thread_exit();
1416 }
1417 
1418 /*
1419  * Starts an autotrim thread, if needed, for each top-level vdev which can be
1420  * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1421  */
1422 void
1423 vdev_autotrim(spa_t *spa)
1424 {
1425 	vdev_t *root_vd = spa->spa_root_vdev;
1426 
1427 	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1428 		vdev_t *tvd = root_vd->vdev_child[i];
1429 
1430 		mutex_enter(&tvd->vdev_autotrim_lock);
1431 		if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1432 		    tvd->vdev_autotrim_thread == NULL) {
1433 			ASSERT3P(tvd->vdev_top, ==, tvd);
1434 
1435 			tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1436 			    vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1437 			    maxclsyspri);
1438 			ASSERT(tvd->vdev_autotrim_thread != NULL);
1439 		}
1440 		mutex_exit(&tvd->vdev_autotrim_lock);
1441 	}
1442 }
1443 
1444 /*
1445  * Wait for the vdev_autotrim_thread associated with the passed top-level
1446  * vdev to be terminated (canceled or stopped).
1447  */
1448 void
1449 vdev_autotrim_stop_wait(vdev_t *tvd)
1450 {
1451 	mutex_enter(&tvd->vdev_autotrim_lock);
1452 	if (tvd->vdev_autotrim_thread != NULL) {
1453 		tvd->vdev_autotrim_exit_wanted = B_TRUE;
1454 
1455 		while (tvd->vdev_autotrim_thread != NULL) {
1456 			cv_wait(&tvd->vdev_autotrim_cv,
1457 			    &tvd->vdev_autotrim_lock);
1458 		}
1459 
1460 		ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1461 		tvd->vdev_autotrim_exit_wanted = B_FALSE;
1462 	}
1463 	mutex_exit(&tvd->vdev_autotrim_lock);
1464 }
1465 
1466 /*
1467  * Wait for all of the vdev_autotrim_thread associated with the pool to
1468  * be terminated (canceled or stopped).
1469  */
1470 void
1471 vdev_autotrim_stop_all(spa_t *spa)
1472 {
1473 	vdev_t *root_vd = spa->spa_root_vdev;
1474 
1475 	for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1476 		vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1477 }
1478 
1479 /*
1480  * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1481  */
1482 void
1483 vdev_autotrim_restart(spa_t *spa)
1484 {
1485 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1486 
1487 	if (spa->spa_autotrim)
1488 		vdev_autotrim(spa);
1489 }
1490 
1491 static void
1492 vdev_trim_l2arc_thread(void *arg)
1493 {
1494 	vdev_t		*vd = arg;
1495 	spa_t		*spa = vd->vdev_spa;
1496 	l2arc_dev_t	*dev = l2arc_vdev_get(vd);
1497 	trim_args_t	ta;
1498 	range_seg64_t 	physical_rs;
1499 
1500 	ASSERT(vdev_is_concrete(vd));
1501 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1502 
1503 	vd->vdev_trim_last_offset = 0;
1504 	vd->vdev_trim_rate = 0;
1505 	vd->vdev_trim_partial = 0;
1506 	vd->vdev_trim_secure = 0;
1507 
1508 	bzero(&ta, sizeof (ta));
1509 	ta.trim_vdev = vd;
1510 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1511 	ta.trim_type = TRIM_TYPE_MANUAL;
1512 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1513 	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1514 	ta.trim_flags = 0;
1515 
1516 	physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1517 	physical_rs.rs_end = vd->vdev_trim_bytes_est =
1518 	    vdev_get_min_asize(vd);
1519 
1520 	range_tree_add(ta.trim_tree, physical_rs.rs_start,
1521 	    physical_rs.rs_end - physical_rs.rs_start);
1522 
1523 	mutex_enter(&vd->vdev_trim_lock);
1524 	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1525 	mutex_exit(&vd->vdev_trim_lock);
1526 
1527 	(void) vdev_trim_ranges(&ta);
1528 
1529 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1530 	mutex_enter(&vd->vdev_trim_io_lock);
1531 	while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1532 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1533 	}
1534 	mutex_exit(&vd->vdev_trim_io_lock);
1535 
1536 	range_tree_vacate(ta.trim_tree, NULL, NULL);
1537 	range_tree_destroy(ta.trim_tree);
1538 
1539 	mutex_enter(&vd->vdev_trim_lock);
1540 	if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1541 		vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1542 		    vd->vdev_trim_rate, vd->vdev_trim_partial,
1543 		    vd->vdev_trim_secure);
1544 	}
1545 	ASSERT(vd->vdev_trim_thread != NULL ||
1546 	    vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1547 
1548 	/*
1549 	 * Drop the vdev_trim_lock while we sync out the txg since it's
1550 	 * possible that a device might be trying to come online and
1551 	 * must check to see if it needs to restart a trim. That thread
1552 	 * will be holding the spa_config_lock which would prevent the
1553 	 * txg_wait_synced from completing. Same strategy as in
1554 	 * vdev_trim_thread().
1555 	 */
1556 	mutex_exit(&vd->vdev_trim_lock);
1557 	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1558 	mutex_enter(&vd->vdev_trim_lock);
1559 
1560 	/*
1561 	 * Update the header of the cache device here, before
1562 	 * broadcasting vdev_trim_cv which may lead to the removal
1563 	 * of the device. The same applies for setting l2ad_trim_all to
1564 	 * false.
1565 	 */
1566 	spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1567 	    RW_READER);
1568 	bzero(dev->l2ad_dev_hdr, dev->l2ad_dev_hdr_asize);
1569 	l2arc_dev_hdr_update(dev);
1570 	spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1571 
1572 	vd->vdev_trim_thread = NULL;
1573 	if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1574 		dev->l2ad_trim_all = B_FALSE;
1575 
1576 	cv_broadcast(&vd->vdev_trim_cv);
1577 	mutex_exit(&vd->vdev_trim_lock);
1578 
1579 	thread_exit();
1580 }
1581 
1582 /*
1583  * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1584  * to vd->vdev_trim_thread variable. This facilitates the management of
1585  * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1586  * to a pool or pool creation or when the header of the device is invalid.
1587  */
1588 void
1589 vdev_trim_l2arc(spa_t *spa)
1590 {
1591 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1592 
1593 	/*
1594 	 * Locate the spa's l2arc devices and kick off TRIM threads.
1595 	 */
1596 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1597 		vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1598 		l2arc_dev_t *dev = l2arc_vdev_get(vd);
1599 
1600 		if (dev == NULL || !dev->l2ad_trim_all) {
1601 			/*
1602 			 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1603 			 * cache device was not marked for whole device TRIM
1604 			 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1605 			 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1606 			 * l2ad_log_entries > 0).
1607 			 */
1608 			continue;
1609 		}
1610 
1611 		mutex_enter(&vd->vdev_trim_lock);
1612 		ASSERT(vd->vdev_ops->vdev_op_leaf);
1613 		ASSERT(vdev_is_concrete(vd));
1614 		ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1615 		ASSERT(!vd->vdev_detached);
1616 		ASSERT(!vd->vdev_trim_exit_wanted);
1617 		ASSERT(!vd->vdev_top->vdev_removing);
1618 		vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1619 		vd->vdev_trim_thread = thread_create(NULL, 0,
1620 		    vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1621 		mutex_exit(&vd->vdev_trim_lock);
1622 	}
1623 }
1624 
1625 /*
1626  * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1627  * on leaf vdevs.
1628  */
1629 int
1630 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1631 {
1632 	trim_args_t		ta;
1633 	range_seg64_t 		physical_rs;
1634 	int			error;
1635 	physical_rs.rs_start = start;
1636 	physical_rs.rs_end = start + size;
1637 
1638 	ASSERT(vdev_is_concrete(vd));
1639 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1640 	ASSERT(!vd->vdev_detached);
1641 	ASSERT(!vd->vdev_top->vdev_removing);
1642 
1643 	bzero(&ta, sizeof (ta));
1644 	ta.trim_vdev = vd;
1645 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1646 	ta.trim_type = TRIM_TYPE_SIMPLE;
1647 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1648 	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1649 	ta.trim_flags = 0;
1650 
1651 	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1652 
1653 	if (physical_rs.rs_end > physical_rs.rs_start) {
1654 		range_tree_add(ta.trim_tree, physical_rs.rs_start,
1655 		    physical_rs.rs_end - physical_rs.rs_start);
1656 	} else {
1657 		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1658 	}
1659 
1660 	error = vdev_trim_ranges(&ta);
1661 
1662 	mutex_enter(&vd->vdev_trim_io_lock);
1663 	while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1664 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1665 	}
1666 	mutex_exit(&vd->vdev_trim_io_lock);
1667 
1668 	range_tree_vacate(ta.trim_tree, NULL, NULL);
1669 	range_tree_destroy(ta.trim_tree);
1670 
1671 	return (error);
1672 }
1673 
1674 EXPORT_SYMBOL(vdev_trim);
1675 EXPORT_SYMBOL(vdev_trim_stop);
1676 EXPORT_SYMBOL(vdev_trim_stop_all);
1677 EXPORT_SYMBOL(vdev_trim_stop_wait);
1678 EXPORT_SYMBOL(vdev_trim_restart);
1679 EXPORT_SYMBOL(vdev_autotrim);
1680 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1681 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1682 EXPORT_SYMBOL(vdev_autotrim_restart);
1683 EXPORT_SYMBOL(vdev_trim_l2arc);
1684 EXPORT_SYMBOL(vdev_trim_simple);
1685 
1686 /* BEGIN CSTYLED */
1687 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1688     "Max size of TRIM commands, larger will be split");
1689 
1690 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1691     "Min size of TRIM commands, smaller will be skipped");
1692 
1693 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1694     "Skip metaslabs which have never been initialized");
1695 
1696 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1697     "Min number of txgs to aggregate frees before issuing TRIM");
1698 
1699 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1700     "Max queued TRIMs outstanding per leaf vdev");
1701 /* END CSTYLED */
1702