1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC. 25 * Copyright (c) 2021 Hewlett Packard Enterprise Development LP 26 * Copyright 2023 RackTop Systems, Inc. 27 */ 28 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/txg.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/vdev_trim.h> 34 #include <sys/metaslab_impl.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/zap.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/arc_impl.h> 39 40 /* 41 * TRIM is a feature which is used to notify a SSD that some previously 42 * written space is no longer allocated by the pool. This is useful because 43 * writes to a SSD must be performed to blocks which have first been erased. 44 * Ensuring the SSD always has a supply of erased blocks for new writes 45 * helps prevent the performance from deteriorating. 46 * 47 * There are two supported TRIM methods; manual and automatic. 48 * 49 * Manual TRIM: 50 * 51 * A manual TRIM is initiated by running the 'zpool trim' command. A single 52 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for 53 * managing that vdev TRIM process. This involves iterating over all the 54 * metaslabs, calculating the unallocated space ranges, and then issuing the 55 * required TRIM I/Os. 56 * 57 * While a metaslab is being actively trimmed it is not eligible to perform 58 * new allocations. After traversing all of the metaslabs the thread is 59 * terminated. Finally, both the requested options and current progress of 60 * the TRIM are regularly written to the pool. This allows the TRIM to be 61 * suspended and resumed as needed. 62 * 63 * Automatic TRIM: 64 * 65 * An automatic TRIM is enabled by setting the 'autotrim' pool property 66 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each 67 * top-level (not leaf) vdev in the pool. These threads perform the same 68 * core TRIM process as a manual TRIM, but with a few key differences. 69 * 70 * 1) Automatic TRIM happens continuously in the background and operates 71 * solely on recently freed blocks (ms_trim not ms_allocatable). 72 * 73 * 2) Each thread is associated with a top-level (not leaf) vdev. This has 74 * the benefit of simplifying the threading model, it makes it easier 75 * to coordinate administrative commands, and it ensures only a single 76 * metaslab is disabled at a time. Unlike manual TRIM, this means each 77 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its 78 * children. 79 * 80 * 3) There is no automatic TRIM progress information stored on disk, nor 81 * is it reported by 'zpool status'. 82 * 83 * While the automatic TRIM process is highly effective it is more likely 84 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to 85 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently 86 * TRIM and are skipped. This means small amounts of freed space may not 87 * be automatically trimmed. 88 * 89 * Furthermore, devices with attached hot spares and devices being actively 90 * replaced are skipped. This is done to avoid adding additional stress to 91 * a potentially unhealthy device and to minimize the required rebuild time. 92 * 93 * For this reason it may be beneficial to occasionally manually TRIM a pool 94 * even when automatic TRIM is enabled. 95 */ 96 97 /* 98 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths. 99 */ 100 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024; 101 102 /* 103 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped. 104 */ 105 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024; 106 107 /* 108 * Skip uninitialized metaslabs during the TRIM process. This option is 109 * useful for pools constructed from large thinly-provisioned devices where 110 * TRIM operations are slow. As a pool ages an increasing fraction of 111 * the pools metaslabs will be initialized progressively degrading the 112 * usefulness of this option. This setting is stored when starting a 113 * manual TRIM and will persist for the duration of the requested TRIM. 114 */ 115 unsigned int zfs_trim_metaslab_skip = 0; 116 117 /* 118 * Maximum number of queued TRIM I/Os per leaf vdev. The number of 119 * concurrent TRIM I/Os issued to the device is controlled by the 120 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options. 121 */ 122 static unsigned int zfs_trim_queue_limit = 10; 123 124 /* 125 * The minimum number of transaction groups between automatic trims of a 126 * metaslab. This setting represents a trade-off between issuing more 127 * efficient TRIM operations, by allowing them to be aggregated longer, 128 * and issuing them promptly so the trimmed space is available. Note 129 * that this value is a minimum; metaslabs can be trimmed less frequently 130 * when there are a large number of ranges which need to be trimmed. 131 * 132 * Increasing this value will allow frees to be aggregated for a longer 133 * time. This can result is larger TRIM operations, and increased memory 134 * usage in order to track the ranges to be trimmed. Decreasing this value 135 * has the opposite effect. The default value of 32 was determined though 136 * testing to be a reasonable compromise. 137 */ 138 static unsigned int zfs_trim_txg_batch = 32; 139 140 /* 141 * The trim_args are a control structure which describe how a leaf vdev 142 * should be trimmed. The core elements are the vdev, the metaslab being 143 * trimmed and a range tree containing the extents to TRIM. All provided 144 * ranges must be within the metaslab. 145 */ 146 typedef struct trim_args { 147 /* 148 * These fields are set by the caller of vdev_trim_ranges(). 149 */ 150 vdev_t *trim_vdev; /* Leaf vdev to TRIM */ 151 metaslab_t *trim_msp; /* Disabled metaslab */ 152 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */ 153 trim_type_t trim_type; /* Manual or auto TRIM */ 154 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */ 155 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */ 156 enum trim_flag trim_flags; /* TRIM flags (secure) */ 157 158 /* 159 * These fields are updated by vdev_trim_ranges(). 160 */ 161 hrtime_t trim_start_time; /* Start time */ 162 uint64_t trim_bytes_done; /* Bytes trimmed */ 163 } trim_args_t; 164 165 /* 166 * Determines whether a vdev_trim_thread() should be stopped. 167 */ 168 static boolean_t 169 vdev_trim_should_stop(vdev_t *vd) 170 { 171 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) || 172 vd->vdev_detached || vd->vdev_top->vdev_removing); 173 } 174 175 /* 176 * Determines whether a vdev_autotrim_thread() should be stopped. 177 */ 178 static boolean_t 179 vdev_autotrim_should_stop(vdev_t *tvd) 180 { 181 return (tvd->vdev_autotrim_exit_wanted || 182 !vdev_writeable(tvd) || tvd->vdev_removing || 183 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF); 184 } 185 186 /* 187 * Wait for given number of kicks, return true if the wait is aborted due to 188 * vdev_autotrim_exit_wanted. 189 */ 190 static boolean_t 191 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick) 192 { 193 mutex_enter(&vd->vdev_autotrim_lock); 194 for (int i = 0; i < num_of_kick; i++) { 195 if (vd->vdev_autotrim_exit_wanted) 196 break; 197 cv_wait(&vd->vdev_autotrim_kick_cv, &vd->vdev_autotrim_lock); 198 } 199 boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted; 200 mutex_exit(&vd->vdev_autotrim_lock); 201 202 return (exit_wanted); 203 } 204 205 /* 206 * The sync task for updating the on-disk state of a manual TRIM. This 207 * is scheduled by vdev_trim_change_state(). 208 */ 209 static void 210 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx) 211 { 212 /* 213 * We pass in the guid instead of the vdev_t since the vdev may 214 * have been freed prior to the sync task being processed. This 215 * happens when a vdev is detached as we call spa_config_vdev_exit(), 216 * stop the trimming thread, schedule the sync task, and free 217 * the vdev. Later when the scheduled sync task is invoked, it would 218 * find that the vdev has been freed. 219 */ 220 uint64_t guid = *(uint64_t *)arg; 221 uint64_t txg = dmu_tx_get_txg(tx); 222 kmem_free(arg, sizeof (uint64_t)); 223 224 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 225 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 226 return; 227 228 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK]; 229 vd->vdev_trim_offset[txg & TXG_MASK] = 0; 230 231 VERIFY3U(vd->vdev_leaf_zap, !=, 0); 232 233 objset_t *mos = vd->vdev_spa->spa_meta_objset; 234 235 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) { 236 237 if (vd->vdev_trim_last_offset == UINT64_MAX) 238 last_offset = 0; 239 240 vd->vdev_trim_last_offset = last_offset; 241 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 242 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 243 sizeof (last_offset), 1, &last_offset, tx)); 244 } 245 246 if (vd->vdev_trim_action_time > 0) { 247 uint64_t val = (uint64_t)vd->vdev_trim_action_time; 248 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 249 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val), 250 1, &val, tx)); 251 } 252 253 if (vd->vdev_trim_rate > 0) { 254 uint64_t rate = (uint64_t)vd->vdev_trim_rate; 255 256 if (rate == UINT64_MAX) 257 rate = 0; 258 259 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 260 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx)); 261 } 262 263 uint64_t partial = vd->vdev_trim_partial; 264 if (partial == UINT64_MAX) 265 partial = 0; 266 267 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 268 sizeof (partial), 1, &partial, tx)); 269 270 uint64_t secure = vd->vdev_trim_secure; 271 if (secure == UINT64_MAX) 272 secure = 0; 273 274 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 275 sizeof (secure), 1, &secure, tx)); 276 277 278 uint64_t trim_state = vd->vdev_trim_state; 279 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 280 sizeof (trim_state), 1, &trim_state, tx)); 281 } 282 283 /* 284 * Update the on-disk state of a manual TRIM. This is called to request 285 * that a TRIM be started/suspended/canceled, or to change one of the 286 * TRIM options (partial, secure, rate). 287 */ 288 static void 289 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state, 290 uint64_t rate, boolean_t partial, boolean_t secure) 291 { 292 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 293 spa_t *spa = vd->vdev_spa; 294 295 if (new_state == vd->vdev_trim_state) 296 return; 297 298 /* 299 * Copy the vd's guid, this will be freed by the sync task. 300 */ 301 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 302 *guid = vd->vdev_guid; 303 304 /* 305 * If we're suspending, then preserve the original start time. 306 */ 307 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) { 308 vd->vdev_trim_action_time = gethrestime_sec(); 309 } 310 311 /* 312 * If we're activating, then preserve the requested rate and trim 313 * method. Setting the last offset and rate to UINT64_MAX is used 314 * as a sentinel to indicate they should be reset to default values. 315 */ 316 if (new_state == VDEV_TRIM_ACTIVE) { 317 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE || 318 vd->vdev_trim_state == VDEV_TRIM_CANCELED) { 319 vd->vdev_trim_last_offset = UINT64_MAX; 320 vd->vdev_trim_rate = UINT64_MAX; 321 vd->vdev_trim_partial = UINT64_MAX; 322 vd->vdev_trim_secure = UINT64_MAX; 323 } 324 325 if (rate != 0) 326 vd->vdev_trim_rate = rate; 327 328 if (partial != 0) 329 vd->vdev_trim_partial = partial; 330 331 if (secure != 0) 332 vd->vdev_trim_secure = secure; 333 } 334 335 vdev_trim_state_t old_state = vd->vdev_trim_state; 336 boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED); 337 vd->vdev_trim_state = new_state; 338 339 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 340 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 341 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync, 342 guid, tx); 343 344 switch (new_state) { 345 case VDEV_TRIM_ACTIVE: 346 spa_event_notify(spa, vd, NULL, 347 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START); 348 spa_history_log_internal(spa, "trim", tx, 349 "vdev=%s activated", vd->vdev_path); 350 break; 351 case VDEV_TRIM_SUSPENDED: 352 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND); 353 spa_history_log_internal(spa, "trim", tx, 354 "vdev=%s suspended", vd->vdev_path); 355 break; 356 case VDEV_TRIM_CANCELED: 357 if (old_state == VDEV_TRIM_ACTIVE || 358 old_state == VDEV_TRIM_SUSPENDED) { 359 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL); 360 spa_history_log_internal(spa, "trim", tx, 361 "vdev=%s canceled", vd->vdev_path); 362 } 363 break; 364 case VDEV_TRIM_COMPLETE: 365 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH); 366 spa_history_log_internal(spa, "trim", tx, 367 "vdev=%s complete", vd->vdev_path); 368 break; 369 default: 370 panic("invalid state %llu", (unsigned long long)new_state); 371 } 372 373 dmu_tx_commit(tx); 374 375 if (new_state != VDEV_TRIM_ACTIVE) 376 spa_notify_waiters(spa); 377 } 378 379 /* 380 * The zio_done_func_t done callback for each manual TRIM issued. It is 381 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os, 382 * and limiting the number of in flight TRIM I/Os. 383 */ 384 static void 385 vdev_trim_cb(zio_t *zio) 386 { 387 vdev_t *vd = zio->io_vd; 388 389 mutex_enter(&vd->vdev_trim_io_lock); 390 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 391 /* 392 * The I/O failed because the vdev was unavailable; roll the 393 * last offset back. (This works because spa_sync waits on 394 * spa_txg_zio before it runs sync tasks.) 395 */ 396 uint64_t *offset = 397 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK]; 398 *offset = MIN(*offset, zio->io_offset); 399 } else { 400 if (zio->io_error != 0) { 401 vd->vdev_stat.vs_trim_errors++; 402 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 403 0, 0, 0, 0, 1, zio->io_orig_size); 404 } else { 405 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 406 1, zio->io_orig_size, 0, 0, 0, 0); 407 } 408 409 vd->vdev_trim_bytes_done += zio->io_orig_size; 410 } 411 412 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0); 413 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--; 414 cv_broadcast(&vd->vdev_trim_io_cv); 415 mutex_exit(&vd->vdev_trim_io_lock); 416 417 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 418 } 419 420 /* 421 * The zio_done_func_t done callback for each automatic TRIM issued. It 422 * is responsible for updating the TRIM stats and limiting the number of 423 * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are 424 * never reissued on failure. 425 */ 426 static void 427 vdev_autotrim_cb(zio_t *zio) 428 { 429 vdev_t *vd = zio->io_vd; 430 431 mutex_enter(&vd->vdev_trim_io_lock); 432 433 if (zio->io_error != 0) { 434 vd->vdev_stat.vs_trim_errors++; 435 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 436 0, 0, 0, 0, 1, zio->io_orig_size); 437 } else { 438 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 439 1, zio->io_orig_size, 0, 0, 0, 0); 440 } 441 442 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0); 443 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--; 444 cv_broadcast(&vd->vdev_trim_io_cv); 445 mutex_exit(&vd->vdev_trim_io_lock); 446 447 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 448 } 449 450 /* 451 * The zio_done_func_t done callback for each TRIM issued via 452 * vdev_trim_simple(). It is responsible for updating the TRIM stats and 453 * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best 454 * effort and are never reissued on failure. 455 */ 456 static void 457 vdev_trim_simple_cb(zio_t *zio) 458 { 459 vdev_t *vd = zio->io_vd; 460 461 mutex_enter(&vd->vdev_trim_io_lock); 462 463 if (zio->io_error != 0) { 464 vd->vdev_stat.vs_trim_errors++; 465 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 466 0, 0, 0, 0, 1, zio->io_orig_size); 467 } else { 468 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 469 1, zio->io_orig_size, 0, 0, 0, 0); 470 } 471 472 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0); 473 vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--; 474 cv_broadcast(&vd->vdev_trim_io_cv); 475 mutex_exit(&vd->vdev_trim_io_lock); 476 477 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 478 } 479 /* 480 * Returns the average trim rate in bytes/sec for the ta->trim_vdev. 481 */ 482 static uint64_t 483 vdev_trim_calculate_rate(trim_args_t *ta) 484 { 485 return (ta->trim_bytes_done * 1000 / 486 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1)); 487 } 488 489 /* 490 * Issues a physical TRIM and takes care of rate limiting (bytes/sec) 491 * and number of concurrent TRIM I/Os. 492 */ 493 static int 494 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size) 495 { 496 vdev_t *vd = ta->trim_vdev; 497 spa_t *spa = vd->vdev_spa; 498 void *cb; 499 500 mutex_enter(&vd->vdev_trim_io_lock); 501 502 /* 503 * Limit manual TRIM I/Os to the requested rate. This does not 504 * apply to automatic TRIM since no per vdev rate can be specified. 505 */ 506 if (ta->trim_type == TRIM_TYPE_MANUAL) { 507 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) && 508 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) { 509 cv_timedwait_idle(&vd->vdev_trim_io_cv, 510 &vd->vdev_trim_io_lock, ddi_get_lbolt() + 511 MSEC_TO_TICK(10)); 512 } 513 } 514 ta->trim_bytes_done += size; 515 516 /* Limit in flight trimming I/Os */ 517 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] + 518 vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) { 519 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 520 } 521 vd->vdev_trim_inflight[ta->trim_type]++; 522 mutex_exit(&vd->vdev_trim_io_lock); 523 524 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 525 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 526 uint64_t txg = dmu_tx_get_txg(tx); 527 528 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 529 mutex_enter(&vd->vdev_trim_lock); 530 531 if (ta->trim_type == TRIM_TYPE_MANUAL && 532 vd->vdev_trim_offset[txg & TXG_MASK] == 0) { 533 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 534 *guid = vd->vdev_guid; 535 536 /* This is the first write of this txg. */ 537 dsl_sync_task_nowait(spa_get_dsl(spa), 538 vdev_trim_zap_update_sync, guid, tx); 539 } 540 541 /* 542 * We know the vdev_t will still be around since all consumers of 543 * vdev_free must stop the trimming first. 544 */ 545 if ((ta->trim_type == TRIM_TYPE_MANUAL && 546 vdev_trim_should_stop(vd)) || 547 (ta->trim_type == TRIM_TYPE_AUTO && 548 vdev_autotrim_should_stop(vd->vdev_top))) { 549 mutex_enter(&vd->vdev_trim_io_lock); 550 vd->vdev_trim_inflight[ta->trim_type]--; 551 mutex_exit(&vd->vdev_trim_io_lock); 552 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 553 mutex_exit(&vd->vdev_trim_lock); 554 dmu_tx_commit(tx); 555 return (SET_ERROR(EINTR)); 556 } 557 mutex_exit(&vd->vdev_trim_lock); 558 559 if (ta->trim_type == TRIM_TYPE_MANUAL) 560 vd->vdev_trim_offset[txg & TXG_MASK] = start + size; 561 562 if (ta->trim_type == TRIM_TYPE_MANUAL) { 563 cb = vdev_trim_cb; 564 } else if (ta->trim_type == TRIM_TYPE_AUTO) { 565 cb = vdev_autotrim_cb; 566 } else { 567 cb = vdev_trim_simple_cb; 568 } 569 570 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd, 571 start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL, 572 ta->trim_flags)); 573 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */ 574 575 dmu_tx_commit(tx); 576 577 return (0); 578 } 579 580 /* 581 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree. 582 * Additional parameters describing how the TRIM should be performed must 583 * be set in the trim_args structure. See the trim_args definition for 584 * additional information. 585 */ 586 static int 587 vdev_trim_ranges(trim_args_t *ta) 588 { 589 vdev_t *vd = ta->trim_vdev; 590 zfs_btree_t *t = &ta->trim_tree->rt_root; 591 zfs_btree_index_t idx; 592 uint64_t extent_bytes_max = ta->trim_extent_bytes_max; 593 uint64_t extent_bytes_min = ta->trim_extent_bytes_min; 594 spa_t *spa = vd->vdev_spa; 595 int error = 0; 596 597 ta->trim_start_time = gethrtime(); 598 ta->trim_bytes_done = 0; 599 600 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL; 601 rs = zfs_btree_next(t, &idx, &idx)) { 602 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs, 603 ta->trim_tree); 604 605 if (extent_bytes_min && size < extent_bytes_min) { 606 spa_iostats_trim_add(spa, ta->trim_type, 607 0, 0, 1, size, 0, 0); 608 continue; 609 } 610 611 /* Split range into legally-sized physical chunks */ 612 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1; 613 614 for (uint64_t w = 0; w < writes_required; w++) { 615 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE + 616 rs_get_start(rs, ta->trim_tree) + 617 (w *extent_bytes_max), MIN(size - 618 (w * extent_bytes_max), extent_bytes_max)); 619 if (error != 0) { 620 goto done; 621 } 622 } 623 } 624 625 done: 626 /* 627 * Make sure all TRIMs for this metaslab have completed before 628 * returning. TRIM zios have lower priority over regular or syncing 629 * zios, so all TRIM zios for this metaslab must complete before the 630 * metaslab is re-enabled. Otherwise it's possible write zios to 631 * this metaslab could cut ahead of still queued TRIM zios for this 632 * metaslab causing corruption if the ranges overlap. 633 */ 634 mutex_enter(&vd->vdev_trim_io_lock); 635 while (vd->vdev_trim_inflight[0] > 0) { 636 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 637 } 638 mutex_exit(&vd->vdev_trim_io_lock); 639 640 return (error); 641 } 642 643 static void 644 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs) 645 { 646 uint64_t *last_rs_end = (uint64_t *)arg; 647 648 if (physical_rs->rs_end > *last_rs_end) 649 *last_rs_end = physical_rs->rs_end; 650 } 651 652 static void 653 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs) 654 { 655 vdev_t *vd = (vdev_t *)arg; 656 657 uint64_t size = physical_rs->rs_end - physical_rs->rs_start; 658 vd->vdev_trim_bytes_est += size; 659 660 if (vd->vdev_trim_last_offset >= physical_rs->rs_end) { 661 vd->vdev_trim_bytes_done += size; 662 } else if (vd->vdev_trim_last_offset > physical_rs->rs_start && 663 vd->vdev_trim_last_offset <= physical_rs->rs_end) { 664 vd->vdev_trim_bytes_done += 665 vd->vdev_trim_last_offset - physical_rs->rs_start; 666 } 667 } 668 669 /* 670 * Calculates the completion percentage of a manual TRIM. 671 */ 672 static void 673 vdev_trim_calculate_progress(vdev_t *vd) 674 { 675 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 676 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 677 ASSERT(vd->vdev_leaf_zap != 0); 678 679 vd->vdev_trim_bytes_est = 0; 680 vd->vdev_trim_bytes_done = 0; 681 682 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 683 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 684 mutex_enter(&msp->ms_lock); 685 686 uint64_t ms_free = (msp->ms_size - 687 metaslab_allocated_space(msp)) / 688 vdev_get_ndisks(vd->vdev_top); 689 690 /* 691 * Convert the metaslab range to a physical range 692 * on our vdev. We use this to determine if we are 693 * in the middle of this metaslab range. 694 */ 695 range_seg64_t logical_rs, physical_rs, remain_rs; 696 logical_rs.rs_start = msp->ms_start; 697 logical_rs.rs_end = msp->ms_start + msp->ms_size; 698 699 /* Metaslab space after this offset has not been trimmed. */ 700 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs); 701 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) { 702 vd->vdev_trim_bytes_est += ms_free; 703 mutex_exit(&msp->ms_lock); 704 continue; 705 } 706 707 /* Metaslab space before this offset has been trimmed */ 708 uint64_t last_rs_end = physical_rs.rs_end; 709 if (!vdev_xlate_is_empty(&remain_rs)) { 710 vdev_xlate_walk(vd, &remain_rs, 711 vdev_trim_xlate_last_rs_end, &last_rs_end); 712 } 713 714 if (vd->vdev_trim_last_offset > last_rs_end) { 715 vd->vdev_trim_bytes_done += ms_free; 716 vd->vdev_trim_bytes_est += ms_free; 717 mutex_exit(&msp->ms_lock); 718 continue; 719 } 720 721 /* 722 * If we get here, we're in the middle of trimming this 723 * metaslab. Load it and walk the free tree for more 724 * accurate progress estimation. 725 */ 726 VERIFY0(metaslab_load(msp)); 727 728 range_tree_t *rt = msp->ms_allocatable; 729 zfs_btree_t *bt = &rt->rt_root; 730 zfs_btree_index_t idx; 731 for (range_seg_t *rs = zfs_btree_first(bt, &idx); 732 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) { 733 logical_rs.rs_start = rs_get_start(rs, rt); 734 logical_rs.rs_end = rs_get_end(rs, rt); 735 736 vdev_xlate_walk(vd, &logical_rs, 737 vdev_trim_xlate_progress, vd); 738 } 739 mutex_exit(&msp->ms_lock); 740 } 741 } 742 743 /* 744 * Load from disk the vdev's manual TRIM information. This includes the 745 * state, progress, and options provided when initiating the manual TRIM. 746 */ 747 static int 748 vdev_trim_load(vdev_t *vd) 749 { 750 int err = 0; 751 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 752 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 753 ASSERT(vd->vdev_leaf_zap != 0); 754 755 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE || 756 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) { 757 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 758 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 759 sizeof (vd->vdev_trim_last_offset), 1, 760 &vd->vdev_trim_last_offset); 761 if (err == ENOENT) { 762 vd->vdev_trim_last_offset = 0; 763 err = 0; 764 } 765 766 if (err == 0) { 767 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 768 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE, 769 sizeof (vd->vdev_trim_rate), 1, 770 &vd->vdev_trim_rate); 771 if (err == ENOENT) { 772 vd->vdev_trim_rate = 0; 773 err = 0; 774 } 775 } 776 777 if (err == 0) { 778 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 779 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 780 sizeof (vd->vdev_trim_partial), 1, 781 &vd->vdev_trim_partial); 782 if (err == ENOENT) { 783 vd->vdev_trim_partial = 0; 784 err = 0; 785 } 786 } 787 788 if (err == 0) { 789 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 790 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 791 sizeof (vd->vdev_trim_secure), 1, 792 &vd->vdev_trim_secure); 793 if (err == ENOENT) { 794 vd->vdev_trim_secure = 0; 795 err = 0; 796 } 797 } 798 } 799 800 vdev_trim_calculate_progress(vd); 801 802 return (err); 803 } 804 805 static void 806 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs) 807 { 808 trim_args_t *ta = arg; 809 vdev_t *vd = ta->trim_vdev; 810 811 /* 812 * Only a manual trim will be traversing the vdev sequentially. 813 * For an auto trim all valid ranges should be added. 814 */ 815 if (ta->trim_type == TRIM_TYPE_MANUAL) { 816 817 /* Only add segments that we have not visited yet */ 818 if (physical_rs->rs_end <= vd->vdev_trim_last_offset) 819 return; 820 821 /* Pick up where we left off mid-range. */ 822 if (vd->vdev_trim_last_offset > physical_rs->rs_start) { 823 ASSERT3U(physical_rs->rs_end, >, 824 vd->vdev_trim_last_offset); 825 physical_rs->rs_start = vd->vdev_trim_last_offset; 826 } 827 } 828 829 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start); 830 831 range_tree_add(ta->trim_tree, physical_rs->rs_start, 832 physical_rs->rs_end - physical_rs->rs_start); 833 } 834 835 /* 836 * Convert the logical range into physical ranges and add them to the 837 * range tree passed in the trim_args_t. 838 */ 839 static void 840 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size) 841 { 842 trim_args_t *ta = arg; 843 vdev_t *vd = ta->trim_vdev; 844 range_seg64_t logical_rs; 845 logical_rs.rs_start = start; 846 logical_rs.rs_end = start + size; 847 848 /* 849 * Every range to be trimmed must be part of ms_allocatable. 850 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this 851 * is always the case. 852 */ 853 if (zfs_flags & ZFS_DEBUG_TRIM) { 854 metaslab_t *msp = ta->trim_msp; 855 VERIFY0(metaslab_load(msp)); 856 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 857 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 858 } 859 860 ASSERT(vd->vdev_ops->vdev_op_leaf); 861 vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg); 862 } 863 864 /* 865 * Each manual TRIM thread is responsible for trimming the unallocated 866 * space for each leaf vdev. This is accomplished by sequentially iterating 867 * over its top-level metaslabs and issuing TRIM I/O for the space described 868 * by its ms_allocatable. While a metaslab is undergoing trimming it is 869 * not eligible for new allocations. 870 */ 871 static __attribute__((noreturn)) void 872 vdev_trim_thread(void *arg) 873 { 874 vdev_t *vd = arg; 875 spa_t *spa = vd->vdev_spa; 876 trim_args_t ta; 877 int error = 0; 878 879 /* 880 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by 881 * vdev_trim(). Wait for the updated values to be reflected 882 * in the zap in order to start with the requested settings. 883 */ 884 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 885 886 ASSERT(vdev_is_concrete(vd)); 887 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 888 889 vd->vdev_trim_last_offset = 0; 890 vd->vdev_trim_rate = 0; 891 vd->vdev_trim_partial = 0; 892 vd->vdev_trim_secure = 0; 893 894 VERIFY0(vdev_trim_load(vd)); 895 896 ta.trim_vdev = vd; 897 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 898 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min; 899 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 900 ta.trim_type = TRIM_TYPE_MANUAL; 901 ta.trim_flags = 0; 902 903 /* 904 * When a secure TRIM has been requested infer that the intent 905 * is that everything must be trimmed. Override the default 906 * minimum TRIM size to prevent ranges from being skipped. 907 */ 908 if (vd->vdev_trim_secure) { 909 ta.trim_flags |= ZIO_TRIM_SECURE; 910 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 911 } 912 913 uint64_t ms_count = 0; 914 for (uint64_t i = 0; !vd->vdev_detached && 915 i < vd->vdev_top->vdev_ms_count; i++) { 916 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 917 918 /* 919 * If we've expanded the top-level vdev or it's our 920 * first pass, calculate our progress. 921 */ 922 if (vd->vdev_top->vdev_ms_count != ms_count) { 923 vdev_trim_calculate_progress(vd); 924 ms_count = vd->vdev_top->vdev_ms_count; 925 } 926 927 spa_config_exit(spa, SCL_CONFIG, FTAG); 928 metaslab_disable(msp); 929 mutex_enter(&msp->ms_lock); 930 VERIFY0(metaslab_load(msp)); 931 932 /* 933 * If a partial TRIM was requested skip metaslabs which have 934 * never been initialized and thus have never been written. 935 */ 936 if (msp->ms_sm == NULL && vd->vdev_trim_partial) { 937 mutex_exit(&msp->ms_lock); 938 metaslab_enable(msp, B_FALSE, B_FALSE); 939 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 940 vdev_trim_calculate_progress(vd); 941 continue; 942 } 943 944 ta.trim_msp = msp; 945 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta); 946 range_tree_vacate(msp->ms_trim, NULL, NULL); 947 mutex_exit(&msp->ms_lock); 948 949 error = vdev_trim_ranges(&ta); 950 metaslab_enable(msp, B_TRUE, B_FALSE); 951 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 952 953 range_tree_vacate(ta.trim_tree, NULL, NULL); 954 if (error != 0) 955 break; 956 } 957 958 spa_config_exit(spa, SCL_CONFIG, FTAG); 959 960 range_tree_destroy(ta.trim_tree); 961 962 mutex_enter(&vd->vdev_trim_lock); 963 if (!vd->vdev_trim_exit_wanted) { 964 if (vdev_writeable(vd)) { 965 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 966 vd->vdev_trim_rate, vd->vdev_trim_partial, 967 vd->vdev_trim_secure); 968 } else if (vd->vdev_faulted) { 969 vdev_trim_change_state(vd, VDEV_TRIM_CANCELED, 970 vd->vdev_trim_rate, vd->vdev_trim_partial, 971 vd->vdev_trim_secure); 972 } 973 } 974 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0); 975 976 /* 977 * Drop the vdev_trim_lock while we sync out the txg since it's 978 * possible that a device might be trying to come online and must 979 * check to see if it needs to restart a trim. That thread will be 980 * holding the spa_config_lock which would prevent the txg_wait_synced 981 * from completing. 982 */ 983 mutex_exit(&vd->vdev_trim_lock); 984 txg_wait_synced(spa_get_dsl(spa), 0); 985 mutex_enter(&vd->vdev_trim_lock); 986 987 vd->vdev_trim_thread = NULL; 988 cv_broadcast(&vd->vdev_trim_cv); 989 mutex_exit(&vd->vdev_trim_lock); 990 991 thread_exit(); 992 } 993 994 /* 995 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock, 996 * the vdev_t must be a leaf and cannot already be manually trimming. 997 */ 998 void 999 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure) 1000 { 1001 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1002 ASSERT(vd->vdev_ops->vdev_op_leaf); 1003 ASSERT(vdev_is_concrete(vd)); 1004 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1005 ASSERT(!vd->vdev_detached); 1006 ASSERT(!vd->vdev_trim_exit_wanted); 1007 ASSERT(!vd->vdev_top->vdev_removing); 1008 1009 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure); 1010 vd->vdev_trim_thread = thread_create(NULL, 0, 1011 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 1012 } 1013 1014 /* 1015 * Wait for the trimming thread to be terminated (canceled or stopped). 1016 */ 1017 static void 1018 vdev_trim_stop_wait_impl(vdev_t *vd) 1019 { 1020 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1021 1022 while (vd->vdev_trim_thread != NULL) 1023 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock); 1024 1025 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1026 vd->vdev_trim_exit_wanted = B_FALSE; 1027 } 1028 1029 /* 1030 * Wait for vdev trim threads which were listed to cleanly exit. 1031 */ 1032 void 1033 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list) 1034 { 1035 (void) spa; 1036 vdev_t *vd; 1037 1038 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1039 1040 while ((vd = list_remove_head(vd_list)) != NULL) { 1041 mutex_enter(&vd->vdev_trim_lock); 1042 vdev_trim_stop_wait_impl(vd); 1043 mutex_exit(&vd->vdev_trim_lock); 1044 } 1045 } 1046 1047 /* 1048 * Stop trimming a device, with the resultant trimming state being tgt_state. 1049 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is 1050 * provided the stopping vdev is inserted in to the list. Callers are then 1051 * required to call vdev_trim_stop_wait() to block for all the trim threads 1052 * to exit. The caller must hold vdev_trim_lock and must not be writing to 1053 * the spa config, as the trimming thread may try to enter the config as a 1054 * reader before exiting. 1055 */ 1056 void 1057 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list) 1058 { 1059 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 1060 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1061 ASSERT(vd->vdev_ops->vdev_op_leaf); 1062 ASSERT(vdev_is_concrete(vd)); 1063 1064 /* 1065 * Allow cancel requests to proceed even if the trim thread has 1066 * stopped. 1067 */ 1068 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED) 1069 return; 1070 1071 vdev_trim_change_state(vd, tgt_state, 0, 0, 0); 1072 vd->vdev_trim_exit_wanted = B_TRUE; 1073 1074 if (vd_list == NULL) { 1075 vdev_trim_stop_wait_impl(vd); 1076 } else { 1077 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1078 list_insert_tail(vd_list, vd); 1079 } 1080 } 1081 1082 /* 1083 * Requests that all listed vdevs stop trimming. 1084 */ 1085 static void 1086 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state, 1087 list_t *vd_list) 1088 { 1089 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 1090 mutex_enter(&vd->vdev_trim_lock); 1091 vdev_trim_stop(vd, tgt_state, vd_list); 1092 mutex_exit(&vd->vdev_trim_lock); 1093 return; 1094 } 1095 1096 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1097 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state, 1098 vd_list); 1099 } 1100 } 1101 1102 /* 1103 * Convenience function to stop trimming of a vdev tree and set all trim 1104 * thread pointers to NULL. 1105 */ 1106 void 1107 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state) 1108 { 1109 spa_t *spa = vd->vdev_spa; 1110 list_t vd_list; 1111 vdev_t *vd_l2cache; 1112 1113 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1114 1115 list_create(&vd_list, sizeof (vdev_t), 1116 offsetof(vdev_t, vdev_trim_node)); 1117 1118 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list); 1119 1120 /* 1121 * Iterate over cache devices and request stop trimming the 1122 * whole device in case we export the pool or remove the cache 1123 * device prematurely. 1124 */ 1125 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1126 vd_l2cache = spa->spa_l2cache.sav_vdevs[i]; 1127 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list); 1128 } 1129 1130 vdev_trim_stop_wait(spa, &vd_list); 1131 1132 if (vd->vdev_spa->spa_sync_on) { 1133 /* Make sure that our state has been synced to disk */ 1134 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1135 } 1136 1137 list_destroy(&vd_list); 1138 } 1139 1140 /* 1141 * Conditionally restarts a manual TRIM given its on-disk state. 1142 */ 1143 void 1144 vdev_trim_restart(vdev_t *vd) 1145 { 1146 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1147 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 1148 1149 if (vd->vdev_leaf_zap != 0) { 1150 mutex_enter(&vd->vdev_trim_lock); 1151 uint64_t trim_state = VDEV_TRIM_NONE; 1152 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1153 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 1154 sizeof (trim_state), 1, &trim_state); 1155 ASSERT(err == 0 || err == ENOENT); 1156 vd->vdev_trim_state = trim_state; 1157 1158 uint64_t timestamp = 0; 1159 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1160 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME, 1161 sizeof (timestamp), 1, ×tamp); 1162 ASSERT(err == 0 || err == ENOENT); 1163 vd->vdev_trim_action_time = timestamp; 1164 1165 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED || 1166 vd->vdev_offline) { 1167 /* load progress for reporting, but don't resume */ 1168 VERIFY0(vdev_trim_load(vd)); 1169 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE && 1170 vdev_writeable(vd) && !vd->vdev_top->vdev_removing && 1171 vd->vdev_trim_thread == NULL) { 1172 VERIFY0(vdev_trim_load(vd)); 1173 vdev_trim(vd, vd->vdev_trim_rate, 1174 vd->vdev_trim_partial, vd->vdev_trim_secure); 1175 } 1176 1177 mutex_exit(&vd->vdev_trim_lock); 1178 } 1179 1180 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1181 vdev_trim_restart(vd->vdev_child[i]); 1182 } 1183 } 1184 1185 /* 1186 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that 1187 * every TRIM range is contained within ms_allocatable. 1188 */ 1189 static void 1190 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size) 1191 { 1192 trim_args_t *ta = arg; 1193 metaslab_t *msp = ta->trim_msp; 1194 1195 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 1196 VERIFY3U(msp->ms_disabled, >, 0); 1197 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 1198 } 1199 1200 /* 1201 * Each automatic TRIM thread is responsible for managing the trimming of a 1202 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk. 1203 * 1204 * N.B. This behavior is different from a manual TRIM where a thread 1205 * is created for each leaf vdev, instead of each top-level vdev. 1206 */ 1207 static __attribute__((noreturn)) void 1208 vdev_autotrim_thread(void *arg) 1209 { 1210 vdev_t *vd = arg; 1211 spa_t *spa = vd->vdev_spa; 1212 int shift = 0; 1213 1214 mutex_enter(&vd->vdev_autotrim_lock); 1215 ASSERT3P(vd->vdev_top, ==, vd); 1216 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL); 1217 mutex_exit(&vd->vdev_autotrim_lock); 1218 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1219 1220 while (!vdev_autotrim_should_stop(vd)) { 1221 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1); 1222 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max; 1223 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min; 1224 1225 /* 1226 * All of the metaslabs are divided in to groups of size 1227 * num_metaslabs / zfs_trim_txg_batch. Each of these groups 1228 * is composed of metaslabs which are spread evenly over the 1229 * device. 1230 * 1231 * For example, when zfs_trim_txg_batch = 32 (default) then 1232 * group 0 will contain metaslabs 0, 32, 64, ...; 1233 * group 1 will contain metaslabs 1, 33, 65, ...; 1234 * group 2 will contain metaslabs 2, 34, 66, ...; and so on. 1235 * 1236 * On each pass through the while() loop one of these groups 1237 * is selected. This is accomplished by using a shift value 1238 * to select the starting metaslab, then striding over the 1239 * metaslabs using the zfs_trim_txg_batch size. This is 1240 * done to accomplish two things. 1241 * 1242 * 1) By dividing the metaslabs in to groups, and making sure 1243 * that each group takes a minimum of one txg to process. 1244 * Then zfs_trim_txg_batch controls the minimum number of 1245 * txgs which must occur before a metaslab is revisited. 1246 * 1247 * 2) Selecting non-consecutive metaslabs distributes the 1248 * TRIM commands for a group evenly over the entire device. 1249 * This can be advantageous for certain types of devices. 1250 */ 1251 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count; 1252 i += txgs_per_trim) { 1253 metaslab_t *msp = vd->vdev_ms[i]; 1254 range_tree_t *trim_tree; 1255 boolean_t issued_trim = B_FALSE; 1256 boolean_t wait_aborted = B_FALSE; 1257 1258 spa_config_exit(spa, SCL_CONFIG, FTAG); 1259 metaslab_disable(msp); 1260 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1261 1262 mutex_enter(&msp->ms_lock); 1263 1264 /* 1265 * Skip the metaslab when it has never been allocated 1266 * or when there are no recent frees to trim. 1267 */ 1268 if (msp->ms_sm == NULL || 1269 range_tree_is_empty(msp->ms_trim)) { 1270 mutex_exit(&msp->ms_lock); 1271 metaslab_enable(msp, B_FALSE, B_FALSE); 1272 continue; 1273 } 1274 1275 /* 1276 * Skip the metaslab when it has already been disabled. 1277 * This may happen when a manual TRIM or initialize 1278 * operation is running concurrently. In the case 1279 * of a manual TRIM, the ms_trim tree will have been 1280 * vacated. Only ranges added after the manual TRIM 1281 * disabled the metaslab will be included in the tree. 1282 * These will be processed when the automatic TRIM 1283 * next revisits this metaslab. 1284 */ 1285 if (msp->ms_disabled > 1) { 1286 mutex_exit(&msp->ms_lock); 1287 metaslab_enable(msp, B_FALSE, B_FALSE); 1288 continue; 1289 } 1290 1291 /* 1292 * Allocate an empty range tree which is swapped in 1293 * for the existing ms_trim tree while it is processed. 1294 */ 1295 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 1296 0, 0); 1297 range_tree_swap(&msp->ms_trim, &trim_tree); 1298 ASSERT(range_tree_is_empty(msp->ms_trim)); 1299 1300 /* 1301 * There are two cases when constructing the per-vdev 1302 * trim trees for a metaslab. If the top-level vdev 1303 * has no children then it is also a leaf and should 1304 * be trimmed. Otherwise our children are the leaves 1305 * and a trim tree should be constructed for each. 1306 */ 1307 trim_args_t *tap; 1308 uint64_t children = vd->vdev_children; 1309 if (children == 0) { 1310 children = 1; 1311 tap = kmem_zalloc(sizeof (trim_args_t) * 1312 children, KM_SLEEP); 1313 tap[0].trim_vdev = vd; 1314 } else { 1315 tap = kmem_zalloc(sizeof (trim_args_t) * 1316 children, KM_SLEEP); 1317 1318 for (uint64_t c = 0; c < children; c++) { 1319 tap[c].trim_vdev = vd->vdev_child[c]; 1320 } 1321 } 1322 1323 for (uint64_t c = 0; c < children; c++) { 1324 trim_args_t *ta = &tap[c]; 1325 vdev_t *cvd = ta->trim_vdev; 1326 1327 ta->trim_msp = msp; 1328 ta->trim_extent_bytes_max = extent_bytes_max; 1329 ta->trim_extent_bytes_min = extent_bytes_min; 1330 ta->trim_type = TRIM_TYPE_AUTO; 1331 ta->trim_flags = 0; 1332 1333 if (cvd->vdev_detached || 1334 !vdev_writeable(cvd) || 1335 !cvd->vdev_has_trim || 1336 cvd->vdev_trim_thread != NULL) { 1337 continue; 1338 } 1339 1340 /* 1341 * When a device has an attached hot spare, or 1342 * is being replaced it will not be trimmed. 1343 * This is done to avoid adding additional 1344 * stress to a potentially unhealthy device, 1345 * and to minimize the required rebuild time. 1346 */ 1347 if (!cvd->vdev_ops->vdev_op_leaf) 1348 continue; 1349 1350 ta->trim_tree = range_tree_create(NULL, 1351 RANGE_SEG64, NULL, 0, 0); 1352 range_tree_walk(trim_tree, 1353 vdev_trim_range_add, ta); 1354 } 1355 1356 mutex_exit(&msp->ms_lock); 1357 spa_config_exit(spa, SCL_CONFIG, FTAG); 1358 1359 /* 1360 * Issue the TRIM I/Os for all ranges covered by the 1361 * TRIM trees. These ranges are safe to TRIM because 1362 * no new allocations will be performed until the call 1363 * to metaslab_enabled() below. 1364 */ 1365 for (uint64_t c = 0; c < children; c++) { 1366 trim_args_t *ta = &tap[c]; 1367 1368 /* 1369 * Always yield to a manual TRIM if one has 1370 * been started for the child vdev. 1371 */ 1372 if (ta->trim_tree == NULL || 1373 ta->trim_vdev->vdev_trim_thread != NULL) { 1374 continue; 1375 } 1376 1377 /* 1378 * After this point metaslab_enable() must be 1379 * called with the sync flag set. This is done 1380 * here because vdev_trim_ranges() is allowed 1381 * to be interrupted (EINTR) before issuing all 1382 * of the required TRIM I/Os. 1383 */ 1384 issued_trim = B_TRUE; 1385 1386 int error = vdev_trim_ranges(ta); 1387 if (error) 1388 break; 1389 } 1390 1391 /* 1392 * Verify every range which was trimmed is still 1393 * contained within the ms_allocatable tree. 1394 */ 1395 if (zfs_flags & ZFS_DEBUG_TRIM) { 1396 mutex_enter(&msp->ms_lock); 1397 VERIFY0(metaslab_load(msp)); 1398 VERIFY3P(tap[0].trim_msp, ==, msp); 1399 range_tree_walk(trim_tree, 1400 vdev_trim_range_verify, &tap[0]); 1401 mutex_exit(&msp->ms_lock); 1402 } 1403 1404 range_tree_vacate(trim_tree, NULL, NULL); 1405 range_tree_destroy(trim_tree); 1406 1407 /* 1408 * Wait for couples of kicks, to ensure the trim io is 1409 * synced. If the wait is aborted due to 1410 * vdev_autotrim_exit_wanted, we need to signal 1411 * metaslab_enable() to wait for sync. 1412 */ 1413 if (issued_trim) { 1414 wait_aborted = vdev_autotrim_wait_kick(vd, 1415 TXG_CONCURRENT_STATES + TXG_DEFER_SIZE); 1416 } 1417 1418 metaslab_enable(msp, wait_aborted, B_FALSE); 1419 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1420 1421 for (uint64_t c = 0; c < children; c++) { 1422 trim_args_t *ta = &tap[c]; 1423 1424 if (ta->trim_tree == NULL) 1425 continue; 1426 1427 range_tree_vacate(ta->trim_tree, NULL, NULL); 1428 range_tree_destroy(ta->trim_tree); 1429 } 1430 1431 kmem_free(tap, sizeof (trim_args_t) * children); 1432 1433 if (vdev_autotrim_should_stop(vd)) 1434 break; 1435 } 1436 1437 spa_config_exit(spa, SCL_CONFIG, FTAG); 1438 1439 vdev_autotrim_wait_kick(vd, 1); 1440 1441 shift++; 1442 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1443 } 1444 1445 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1446 vdev_t *cvd = vd->vdev_child[c]; 1447 mutex_enter(&cvd->vdev_trim_io_lock); 1448 1449 while (cvd->vdev_trim_inflight[1] > 0) { 1450 cv_wait(&cvd->vdev_trim_io_cv, 1451 &cvd->vdev_trim_io_lock); 1452 } 1453 mutex_exit(&cvd->vdev_trim_io_lock); 1454 } 1455 1456 spa_config_exit(spa, SCL_CONFIG, FTAG); 1457 1458 /* 1459 * When exiting because the autotrim property was set to off, then 1460 * abandon any unprocessed ms_trim ranges to reclaim the memory. 1461 */ 1462 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) { 1463 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 1464 metaslab_t *msp = vd->vdev_ms[i]; 1465 1466 mutex_enter(&msp->ms_lock); 1467 range_tree_vacate(msp->ms_trim, NULL, NULL); 1468 mutex_exit(&msp->ms_lock); 1469 } 1470 } 1471 1472 mutex_enter(&vd->vdev_autotrim_lock); 1473 ASSERT(vd->vdev_autotrim_thread != NULL); 1474 vd->vdev_autotrim_thread = NULL; 1475 cv_broadcast(&vd->vdev_autotrim_cv); 1476 mutex_exit(&vd->vdev_autotrim_lock); 1477 1478 thread_exit(); 1479 } 1480 1481 /* 1482 * Starts an autotrim thread, if needed, for each top-level vdev which can be 1483 * trimmed. A top-level vdev which has been evacuated will never be trimmed. 1484 */ 1485 void 1486 vdev_autotrim(spa_t *spa) 1487 { 1488 vdev_t *root_vd = spa->spa_root_vdev; 1489 1490 for (uint64_t i = 0; i < root_vd->vdev_children; i++) { 1491 vdev_t *tvd = root_vd->vdev_child[i]; 1492 1493 mutex_enter(&tvd->vdev_autotrim_lock); 1494 if (vdev_writeable(tvd) && !tvd->vdev_removing && 1495 tvd->vdev_autotrim_thread == NULL) { 1496 ASSERT3P(tvd->vdev_top, ==, tvd); 1497 1498 tvd->vdev_autotrim_thread = thread_create(NULL, 0, 1499 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN, 1500 maxclsyspri); 1501 ASSERT(tvd->vdev_autotrim_thread != NULL); 1502 } 1503 mutex_exit(&tvd->vdev_autotrim_lock); 1504 } 1505 } 1506 1507 /* 1508 * Wait for the vdev_autotrim_thread associated with the passed top-level 1509 * vdev to be terminated (canceled or stopped). 1510 */ 1511 void 1512 vdev_autotrim_stop_wait(vdev_t *tvd) 1513 { 1514 mutex_enter(&tvd->vdev_autotrim_lock); 1515 if (tvd->vdev_autotrim_thread != NULL) { 1516 tvd->vdev_autotrim_exit_wanted = B_TRUE; 1517 cv_broadcast(&tvd->vdev_autotrim_kick_cv); 1518 cv_wait(&tvd->vdev_autotrim_cv, 1519 &tvd->vdev_autotrim_lock); 1520 1521 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL); 1522 tvd->vdev_autotrim_exit_wanted = B_FALSE; 1523 } 1524 mutex_exit(&tvd->vdev_autotrim_lock); 1525 } 1526 1527 void 1528 vdev_autotrim_kick(spa_t *spa) 1529 { 1530 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 1531 1532 vdev_t *root_vd = spa->spa_root_vdev; 1533 vdev_t *tvd; 1534 1535 for (uint64_t i = 0; i < root_vd->vdev_children; i++) { 1536 tvd = root_vd->vdev_child[i]; 1537 1538 mutex_enter(&tvd->vdev_autotrim_lock); 1539 if (tvd->vdev_autotrim_thread != NULL) 1540 cv_broadcast(&tvd->vdev_autotrim_kick_cv); 1541 mutex_exit(&tvd->vdev_autotrim_lock); 1542 } 1543 } 1544 1545 /* 1546 * Wait for all of the vdev_autotrim_thread associated with the pool to 1547 * be terminated (canceled or stopped). 1548 */ 1549 void 1550 vdev_autotrim_stop_all(spa_t *spa) 1551 { 1552 vdev_t *root_vd = spa->spa_root_vdev; 1553 1554 for (uint64_t i = 0; i < root_vd->vdev_children; i++) 1555 vdev_autotrim_stop_wait(root_vd->vdev_child[i]); 1556 } 1557 1558 /* 1559 * Conditionally restart all of the vdev_autotrim_thread's for the pool. 1560 */ 1561 void 1562 vdev_autotrim_restart(spa_t *spa) 1563 { 1564 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1565 1566 if (spa->spa_autotrim) 1567 vdev_autotrim(spa); 1568 } 1569 1570 static __attribute__((noreturn)) void 1571 vdev_trim_l2arc_thread(void *arg) 1572 { 1573 vdev_t *vd = arg; 1574 spa_t *spa = vd->vdev_spa; 1575 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1576 trim_args_t ta = {0}; 1577 range_seg64_t physical_rs; 1578 1579 ASSERT(vdev_is_concrete(vd)); 1580 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1581 1582 vd->vdev_trim_last_offset = 0; 1583 vd->vdev_trim_rate = 0; 1584 vd->vdev_trim_partial = 0; 1585 vd->vdev_trim_secure = 0; 1586 1587 ta.trim_vdev = vd; 1588 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1589 ta.trim_type = TRIM_TYPE_MANUAL; 1590 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1591 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1592 ta.trim_flags = 0; 1593 1594 physical_rs.rs_start = vd->vdev_trim_bytes_done = 0; 1595 physical_rs.rs_end = vd->vdev_trim_bytes_est = 1596 vdev_get_min_asize(vd); 1597 1598 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1599 physical_rs.rs_end - physical_rs.rs_start); 1600 1601 mutex_enter(&vd->vdev_trim_lock); 1602 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1603 mutex_exit(&vd->vdev_trim_lock); 1604 1605 (void) vdev_trim_ranges(&ta); 1606 1607 spa_config_exit(spa, SCL_CONFIG, FTAG); 1608 mutex_enter(&vd->vdev_trim_io_lock); 1609 while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) { 1610 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1611 } 1612 mutex_exit(&vd->vdev_trim_io_lock); 1613 1614 range_tree_vacate(ta.trim_tree, NULL, NULL); 1615 range_tree_destroy(ta.trim_tree); 1616 1617 mutex_enter(&vd->vdev_trim_lock); 1618 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { 1619 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 1620 vd->vdev_trim_rate, vd->vdev_trim_partial, 1621 vd->vdev_trim_secure); 1622 } 1623 ASSERT(vd->vdev_trim_thread != NULL || 1624 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0); 1625 1626 /* 1627 * Drop the vdev_trim_lock while we sync out the txg since it's 1628 * possible that a device might be trying to come online and 1629 * must check to see if it needs to restart a trim. That thread 1630 * will be holding the spa_config_lock which would prevent the 1631 * txg_wait_synced from completing. Same strategy as in 1632 * vdev_trim_thread(). 1633 */ 1634 mutex_exit(&vd->vdev_trim_lock); 1635 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1636 mutex_enter(&vd->vdev_trim_lock); 1637 1638 /* 1639 * Update the header of the cache device here, before 1640 * broadcasting vdev_trim_cv which may lead to the removal 1641 * of the device. The same applies for setting l2ad_trim_all to 1642 * false. 1643 */ 1644 spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd, 1645 RW_READER); 1646 memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize); 1647 l2arc_dev_hdr_update(dev); 1648 spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd); 1649 1650 vd->vdev_trim_thread = NULL; 1651 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE) 1652 dev->l2ad_trim_all = B_FALSE; 1653 1654 cv_broadcast(&vd->vdev_trim_cv); 1655 mutex_exit(&vd->vdev_trim_lock); 1656 1657 thread_exit(); 1658 } 1659 1660 /* 1661 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them 1662 * to vd->vdev_trim_thread variable. This facilitates the management of 1663 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition 1664 * to a pool or pool creation or when the header of the device is invalid. 1665 */ 1666 void 1667 vdev_trim_l2arc(spa_t *spa) 1668 { 1669 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1670 1671 /* 1672 * Locate the spa's l2arc devices and kick off TRIM threads. 1673 */ 1674 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1675 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i]; 1676 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1677 1678 if (dev == NULL || !dev->l2ad_trim_all) { 1679 /* 1680 * Don't attempt TRIM if the vdev is UNAVAIL or if the 1681 * cache device was not marked for whole device TRIM 1682 * (ie l2arc_trim_ahead = 0, or the L2ARC device header 1683 * is valid with trim_state = VDEV_TRIM_COMPLETE and 1684 * l2ad_log_entries > 0). 1685 */ 1686 continue; 1687 } 1688 1689 mutex_enter(&vd->vdev_trim_lock); 1690 ASSERT(vd->vdev_ops->vdev_op_leaf); 1691 ASSERT(vdev_is_concrete(vd)); 1692 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1693 ASSERT(!vd->vdev_detached); 1694 ASSERT(!vd->vdev_trim_exit_wanted); 1695 ASSERT(!vd->vdev_top->vdev_removing); 1696 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1697 vd->vdev_trim_thread = thread_create(NULL, 0, 1698 vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 1699 mutex_exit(&vd->vdev_trim_lock); 1700 } 1701 } 1702 1703 /* 1704 * A wrapper which calls vdev_trim_ranges(). It is intended to be called 1705 * on leaf vdevs. 1706 */ 1707 int 1708 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size) 1709 { 1710 trim_args_t ta = {0}; 1711 range_seg64_t physical_rs; 1712 int error; 1713 physical_rs.rs_start = start; 1714 physical_rs.rs_end = start + size; 1715 1716 ASSERT(vdev_is_concrete(vd)); 1717 ASSERT(vd->vdev_ops->vdev_op_leaf); 1718 ASSERT(!vd->vdev_detached); 1719 ASSERT(!vd->vdev_top->vdev_removing); 1720 1721 ta.trim_vdev = vd; 1722 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1723 ta.trim_type = TRIM_TYPE_SIMPLE; 1724 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1725 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1726 ta.trim_flags = 0; 1727 1728 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 1729 1730 if (physical_rs.rs_end > physical_rs.rs_start) { 1731 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1732 physical_rs.rs_end - physical_rs.rs_start); 1733 } else { 1734 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 1735 } 1736 1737 error = vdev_trim_ranges(&ta); 1738 1739 mutex_enter(&vd->vdev_trim_io_lock); 1740 while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) { 1741 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1742 } 1743 mutex_exit(&vd->vdev_trim_io_lock); 1744 1745 range_tree_vacate(ta.trim_tree, NULL, NULL); 1746 range_tree_destroy(ta.trim_tree); 1747 1748 return (error); 1749 } 1750 1751 EXPORT_SYMBOL(vdev_trim); 1752 EXPORT_SYMBOL(vdev_trim_stop); 1753 EXPORT_SYMBOL(vdev_trim_stop_all); 1754 EXPORT_SYMBOL(vdev_trim_stop_wait); 1755 EXPORT_SYMBOL(vdev_trim_restart); 1756 EXPORT_SYMBOL(vdev_autotrim); 1757 EXPORT_SYMBOL(vdev_autotrim_stop_all); 1758 EXPORT_SYMBOL(vdev_autotrim_stop_wait); 1759 EXPORT_SYMBOL(vdev_autotrim_restart); 1760 EXPORT_SYMBOL(vdev_trim_l2arc); 1761 EXPORT_SYMBOL(vdev_trim_simple); 1762 1763 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW, 1764 "Max size of TRIM commands, larger will be split"); 1765 1766 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW, 1767 "Min size of TRIM commands, smaller will be skipped"); 1768 1769 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW, 1770 "Skip metaslabs which have never been initialized"); 1771 1772 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW, 1773 "Min number of txgs to aggregate frees before issuing TRIM"); 1774 1775 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW, 1776 "Max queued TRIMs outstanding per leaf vdev"); 1777