1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/zap.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/txg.h> 39 #include <sys/avl.h> 40 #include <sys/bpobj.h> 41 #include <sys/dsl_pool.h> 42 #include <sys/dsl_synctask.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/arc.h> 45 #include <sys/zfeature.h> 46 #include <sys/vdev_indirect_births.h> 47 #include <sys/vdev_indirect_mapping.h> 48 #include <sys/abd.h> 49 #include <sys/vdev_initialize.h> 50 #include <sys/vdev_trim.h> 51 #include <sys/trace_zfs.h> 52 53 /* 54 * This file contains the necessary logic to remove vdevs from a 55 * storage pool. Currently, the only devices that can be removed 56 * are log, cache, and spare devices; and top level vdevs from a pool 57 * w/o raidz or mirrors. (Note that members of a mirror can be removed 58 * by the detach operation.) 59 * 60 * Log vdevs are removed by evacuating them and then turning the vdev 61 * into a hole vdev while holding spa config locks. 62 * 63 * Top level vdevs are removed and converted into an indirect vdev via 64 * a multi-step process: 65 * 66 * - Disable allocations from this device (spa_vdev_remove_top). 67 * 68 * - From a new thread (spa_vdev_remove_thread), copy data from 69 * the removing vdev to a different vdev. The copy happens in open 70 * context (spa_vdev_copy_impl) and issues a sync task 71 * (vdev_mapping_sync) so the sync thread can update the partial 72 * indirect mappings in core and on disk. 73 * 74 * - If a free happens during a removal, it is freed from the 75 * removing vdev, and if it has already been copied, from the new 76 * location as well (free_from_removing_vdev). 77 * 78 * - After the removal is completed, the copy thread converts the vdev 79 * into an indirect vdev (vdev_remove_complete) before instructing 80 * the sync thread to destroy the space maps and finish the removal 81 * (spa_finish_removal). 82 */ 83 84 typedef struct vdev_copy_arg { 85 metaslab_t *vca_msp; 86 uint64_t vca_outstanding_bytes; 87 uint64_t vca_read_error_bytes; 88 uint64_t vca_write_error_bytes; 89 kcondvar_t vca_cv; 90 kmutex_t vca_lock; 91 } vdev_copy_arg_t; 92 93 /* 94 * The maximum amount of memory we can use for outstanding i/o while 95 * doing a device removal. This determines how much i/o we can have 96 * in flight concurrently. 97 */ 98 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024; 99 100 /* 101 * The largest contiguous segment that we will attempt to allocate when 102 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If 103 * there is a performance problem with attempting to allocate large blocks, 104 * consider decreasing this. 105 * 106 * See also the accessor function spa_remove_max_segment(). 107 */ 108 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE; 109 110 /* 111 * Ignore hard IO errors during device removal. When set if a device 112 * encounters hard IO error during the removal process the removal will 113 * not be cancelled. This can result in a normally recoverable block 114 * becoming permanently damaged and is not recommended. 115 */ 116 static int zfs_removal_ignore_errors = 0; 117 118 /* 119 * Allow a remap segment to span free chunks of at most this size. The main 120 * impact of a larger span is that we will read and write larger, more 121 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth 122 * for iops. The value here was chosen to align with 123 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular 124 * reads (but there's no reason it has to be the same). 125 * 126 * Additionally, a higher span will have the following relatively minor 127 * effects: 128 * - the mapping will be smaller, since one entry can cover more allocated 129 * segments 130 * - more of the fragmentation in the removing device will be preserved 131 * - we'll do larger allocations, which may fail and fall back on smaller 132 * allocations 133 */ 134 uint_t vdev_removal_max_span = 32 * 1024; 135 136 /* 137 * This is used by the test suite so that it can ensure that certain 138 * actions happen while in the middle of a removal. 139 */ 140 int zfs_removal_suspend_progress = 0; 141 142 #define VDEV_REMOVAL_ZAP_OBJS "lzap" 143 144 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg); 145 static int spa_vdev_remove_cancel_impl(spa_t *spa); 146 147 static void 148 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx) 149 { 150 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset, 151 DMU_POOL_DIRECTORY_OBJECT, 152 DMU_POOL_REMOVING, sizeof (uint64_t), 153 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 154 &spa->spa_removing_phys, tx)); 155 } 156 157 static nvlist_t * 158 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 159 { 160 for (int i = 0; i < count; i++) { 161 uint64_t guid = 162 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID); 163 164 if (guid == target_guid) 165 return (nvpp[i]); 166 } 167 168 return (NULL); 169 } 170 171 static void 172 vdev_activate(vdev_t *vd) 173 { 174 metaslab_group_t *mg = vd->vdev_mg; 175 spa_t *spa = vd->vdev_spa; 176 uint64_t vdev_space = spa_deflate(spa) ? 177 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 178 179 ASSERT(!vd->vdev_islog); 180 ASSERT(vd->vdev_noalloc); 181 182 metaslab_group_activate(mg); 183 metaslab_group_activate(vd->vdev_log_mg); 184 185 ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space); 186 187 spa->spa_nonallocating_dspace -= vdev_space; 188 189 vd->vdev_noalloc = B_FALSE; 190 } 191 192 static int 193 vdev_passivate(vdev_t *vd, uint64_t *txg) 194 { 195 spa_t *spa = vd->vdev_spa; 196 int error; 197 198 ASSERT(!vd->vdev_noalloc); 199 200 vdev_t *rvd = spa->spa_root_vdev; 201 metaslab_group_t *mg = vd->vdev_mg; 202 metaslab_class_t *normal = spa_normal_class(spa); 203 if (mg->mg_class == normal) { 204 /* 205 * We must check that this is not the only allocating device in 206 * the pool before passivating, otherwise we will not be able 207 * to make progress because we can't allocate from any vdevs. 208 */ 209 boolean_t last = B_TRUE; 210 for (uint64_t id = 0; id < rvd->vdev_children; id++) { 211 vdev_t *cvd = rvd->vdev_child[id]; 212 213 if (cvd == vd || !vdev_is_concrete(cvd) || 214 vdev_is_dead(cvd)) 215 continue; 216 217 metaslab_class_t *mc = cvd->vdev_mg->mg_class; 218 if (mc != normal) 219 continue; 220 221 if (!cvd->vdev_noalloc) { 222 last = B_FALSE; 223 break; 224 } 225 } 226 if (last) 227 return (SET_ERROR(EINVAL)); 228 } 229 230 metaslab_group_passivate(mg); 231 ASSERT(!vd->vdev_islog); 232 metaslab_group_passivate(vd->vdev_log_mg); 233 234 /* 235 * Wait for the youngest allocations and frees to sync, 236 * and then wait for the deferral of those frees to finish. 237 */ 238 spa_vdev_config_exit(spa, NULL, 239 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 240 241 /* 242 * We must ensure that no "stubby" log blocks are allocated 243 * on the device to be removed. These blocks could be 244 * written at any time, including while we are in the middle 245 * of copying them. 246 */ 247 error = spa_reset_logs(spa); 248 249 *txg = spa_vdev_config_enter(spa); 250 251 if (error != 0) { 252 metaslab_group_activate(mg); 253 ASSERT(!vd->vdev_islog); 254 if (vd->vdev_log_mg != NULL) 255 metaslab_group_activate(vd->vdev_log_mg); 256 return (error); 257 } 258 259 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 260 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 261 vd->vdev_noalloc = B_TRUE; 262 263 return (0); 264 } 265 266 /* 267 * Turn off allocations for a top-level device from the pool. 268 * 269 * Turning off allocations for a top-level device can take a significant 270 * amount of time. As a result we use the spa_vdev_config_[enter/exit] 271 * functions which allow us to grab and release the spa_config_lock while 272 * still holding the namespace lock. During each step the configuration 273 * is synced out. 274 */ 275 int 276 spa_vdev_noalloc(spa_t *spa, uint64_t guid) 277 { 278 vdev_t *vd; 279 uint64_t txg; 280 int error = 0; 281 282 ASSERT(!MUTEX_HELD(&spa_namespace_lock)); 283 ASSERT(spa_writeable(spa)); 284 285 txg = spa_vdev_enter(spa); 286 287 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 288 289 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 290 291 if (vd == NULL) 292 error = SET_ERROR(ENOENT); 293 else if (vd->vdev_mg == NULL) 294 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP); 295 else if (!vd->vdev_noalloc) 296 error = vdev_passivate(vd, &txg); 297 298 if (error == 0) { 299 vdev_dirty_leaves(vd, VDD_DTL, txg); 300 vdev_config_dirty(vd); 301 } 302 303 error = spa_vdev_exit(spa, NULL, txg, error); 304 305 return (error); 306 } 307 308 int 309 spa_vdev_alloc(spa_t *spa, uint64_t guid) 310 { 311 vdev_t *vd; 312 uint64_t txg; 313 int error = 0; 314 315 ASSERT(!MUTEX_HELD(&spa_namespace_lock)); 316 ASSERT(spa_writeable(spa)); 317 318 txg = spa_vdev_enter(spa); 319 320 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 321 322 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 323 324 if (vd == NULL) 325 error = SET_ERROR(ENOENT); 326 else if (vd->vdev_mg == NULL) 327 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP); 328 else if (!vd->vdev_removing) 329 vdev_activate(vd); 330 331 if (error == 0) { 332 vdev_dirty_leaves(vd, VDD_DTL, txg); 333 vdev_config_dirty(vd); 334 } 335 336 (void) spa_vdev_exit(spa, NULL, txg, error); 337 338 return (error); 339 } 340 341 static void 342 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev, 343 int count, nvlist_t *dev_to_remove) 344 { 345 nvlist_t **newdev = NULL; 346 347 if (count > 1) 348 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 349 350 for (int i = 0, j = 0; i < count; i++) { 351 if (dev[i] == dev_to_remove) 352 continue; 353 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 354 } 355 356 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 357 fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev, 358 count - 1); 359 360 for (int i = 0; i < count - 1; i++) 361 nvlist_free(newdev[i]); 362 363 if (count > 1) 364 kmem_free(newdev, (count - 1) * sizeof (void *)); 365 } 366 367 static spa_vdev_removal_t * 368 spa_vdev_removal_create(vdev_t *vd) 369 { 370 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP); 371 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL); 372 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL); 373 svr->svr_allocd_segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 374 NULL, 0, 0); 375 svr->svr_vdev_id = vd->vdev_id; 376 377 for (int i = 0; i < TXG_SIZE; i++) { 378 svr->svr_frees[i] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 379 NULL, 0, 0); 380 list_create(&svr->svr_new_segments[i], 381 sizeof (vdev_indirect_mapping_entry_t), 382 offsetof(vdev_indirect_mapping_entry_t, vime_node)); 383 } 384 385 return (svr); 386 } 387 388 void 389 spa_vdev_removal_destroy(spa_vdev_removal_t *svr) 390 { 391 for (int i = 0; i < TXG_SIZE; i++) { 392 ASSERT0(svr->svr_bytes_done[i]); 393 ASSERT0(svr->svr_max_offset_to_sync[i]); 394 zfs_range_tree_destroy(svr->svr_frees[i]); 395 list_destroy(&svr->svr_new_segments[i]); 396 } 397 398 zfs_range_tree_destroy(svr->svr_allocd_segs); 399 mutex_destroy(&svr->svr_lock); 400 cv_destroy(&svr->svr_cv); 401 kmem_free(svr, sizeof (*svr)); 402 } 403 404 /* 405 * This is called as a synctask in the txg in which we will mark this vdev 406 * as removing (in the config stored in the MOS). 407 * 408 * It begins the evacuation of a toplevel vdev by: 409 * - initializing the spa_removing_phys which tracks this removal 410 * - computing the amount of space to remove for accounting purposes 411 * - dirtying all dbufs in the spa_config_object 412 * - creating the spa_vdev_removal 413 * - starting the spa_vdev_remove_thread 414 */ 415 static void 416 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx) 417 { 418 int vdev_id = (uintptr_t)arg; 419 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 420 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 421 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 422 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset; 423 spa_vdev_removal_t *svr = NULL; 424 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx); 425 426 ASSERT0(vdev_get_nparity(vd)); 427 svr = spa_vdev_removal_create(vd); 428 429 ASSERT(vd->vdev_removing); 430 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 431 432 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 433 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 434 /* 435 * By activating the OBSOLETE_COUNTS feature, we prevent 436 * the pool from being downgraded and ensure that the 437 * refcounts are precise. 438 */ 439 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 440 uint64_t one = 1; 441 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap, 442 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1, 443 &one, tx)); 444 boolean_t are_precise __maybe_unused; 445 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 446 ASSERT3B(are_precise, ==, B_TRUE); 447 } 448 449 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx); 450 vd->vdev_indirect_mapping = 451 vdev_indirect_mapping_open(mos, vic->vic_mapping_object); 452 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx); 453 vd->vdev_indirect_births = 454 vdev_indirect_births_open(mos, vic->vic_births_object); 455 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id; 456 spa->spa_removing_phys.sr_start_time = gethrestime_sec(); 457 spa->spa_removing_phys.sr_end_time = 0; 458 spa->spa_removing_phys.sr_state = DSS_SCANNING; 459 spa->spa_removing_phys.sr_to_copy = 0; 460 spa->spa_removing_phys.sr_copied = 0; 461 462 /* 463 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because 464 * there may be space in the defer tree, which is free, but still 465 * counted in vs_alloc. 466 */ 467 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 468 metaslab_t *ms = vd->vdev_ms[i]; 469 if (ms->ms_sm == NULL) 470 continue; 471 472 spa->spa_removing_phys.sr_to_copy += 473 metaslab_allocated_space(ms); 474 475 /* 476 * Space which we are freeing this txg does not need to 477 * be copied. 478 */ 479 spa->spa_removing_phys.sr_to_copy -= 480 zfs_range_tree_space(ms->ms_freeing); 481 482 ASSERT0(zfs_range_tree_space(ms->ms_freed)); 483 for (int t = 0; t < TXG_SIZE; t++) 484 ASSERT0(zfs_range_tree_space(ms->ms_allocating[t])); 485 } 486 487 /* 488 * Sync tasks are called before metaslab_sync(), so there should 489 * be no already-synced metaslabs in the TXG_CLEAN list. 490 */ 491 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL); 492 493 spa_sync_removing_state(spa, tx); 494 495 /* 496 * All blocks that we need to read the most recent mapping must be 497 * stored on concrete vdevs. Therefore, we must dirty anything that 498 * is read before spa_remove_init(). Specifically, the 499 * spa_config_object. (Note that although we already modified the 500 * spa_config_object in spa_sync_removing_state, that may not have 501 * modified all blocks of the object.) 502 */ 503 dmu_object_info_t doi; 504 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi)); 505 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) { 506 dmu_buf_t *dbuf; 507 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT, 508 offset, FTAG, &dbuf, 0)); 509 dmu_buf_will_dirty(dbuf, tx); 510 offset += dbuf->db_size; 511 dmu_buf_rele(dbuf, FTAG); 512 } 513 514 /* 515 * Now that we've allocated the im_object, dirty the vdev to ensure 516 * that the object gets written to the config on disk. 517 */ 518 vdev_config_dirty(vd); 519 520 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu " 521 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd, 522 (u_longlong_t)dmu_tx_get_txg(tx), 523 (u_longlong_t)vic->vic_mapping_object); 524 525 spa_history_log_internal(spa, "vdev remove started", tx, 526 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id, 527 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 528 /* 529 * Setting spa_vdev_removal causes subsequent frees to call 530 * free_from_removing_vdev(). Note that we don't need any locking 531 * because we are the sync thread, and metaslab_free_impl() is only 532 * called from syncing context (potentially from a zio taskq thread, 533 * but in any case only when there are outstanding free i/os, which 534 * there are not). 535 */ 536 ASSERT3P(spa->spa_vdev_removal, ==, NULL); 537 spa->spa_vdev_removal = svr; 538 svr->svr_thread = thread_create(NULL, 0, 539 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri); 540 } 541 542 /* 543 * When we are opening a pool, we must read the mapping for each 544 * indirect vdev in order from most recently removed to least 545 * recently removed. We do this because the blocks for the mapping 546 * of older indirect vdevs may be stored on more recently removed vdevs. 547 * In order to read each indirect mapping object, we must have 548 * initialized all more recently removed vdevs. 549 */ 550 int 551 spa_remove_init(spa_t *spa) 552 { 553 int error; 554 555 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset, 556 DMU_POOL_DIRECTORY_OBJECT, 557 DMU_POOL_REMOVING, sizeof (uint64_t), 558 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 559 &spa->spa_removing_phys); 560 561 if (error == ENOENT) { 562 spa->spa_removing_phys.sr_state = DSS_NONE; 563 spa->spa_removing_phys.sr_removing_vdev = -1; 564 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 565 spa->spa_indirect_vdevs_loaded = B_TRUE; 566 return (0); 567 } else if (error != 0) { 568 return (error); 569 } 570 571 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) { 572 /* 573 * We are currently removing a vdev. Create and 574 * initialize a spa_vdev_removal_t from the bonus 575 * buffer of the removing vdevs vdev_im_object, and 576 * initialize its partial mapping. 577 */ 578 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 579 vdev_t *vd = vdev_lookup_top(spa, 580 spa->spa_removing_phys.sr_removing_vdev); 581 582 if (vd == NULL) { 583 spa_config_exit(spa, SCL_STATE, FTAG); 584 return (EINVAL); 585 } 586 587 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 588 589 ASSERT(vdev_is_concrete(vd)); 590 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd); 591 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id); 592 ASSERT(vd->vdev_removing); 593 594 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 595 spa->spa_meta_objset, vic->vic_mapping_object); 596 vd->vdev_indirect_births = vdev_indirect_births_open( 597 spa->spa_meta_objset, vic->vic_births_object); 598 spa_config_exit(spa, SCL_STATE, FTAG); 599 600 spa->spa_vdev_removal = svr; 601 } 602 603 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 604 uint64_t indirect_vdev_id = 605 spa->spa_removing_phys.sr_prev_indirect_vdev; 606 while (indirect_vdev_id != UINT64_MAX) { 607 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id); 608 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 609 610 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 611 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 612 spa->spa_meta_objset, vic->vic_mapping_object); 613 vd->vdev_indirect_births = vdev_indirect_births_open( 614 spa->spa_meta_objset, vic->vic_births_object); 615 616 indirect_vdev_id = vic->vic_prev_indirect_vdev; 617 } 618 spa_config_exit(spa, SCL_STATE, FTAG); 619 620 /* 621 * Now that we've loaded all the indirect mappings, we can allow 622 * reads from other blocks (e.g. via predictive prefetch). 623 */ 624 spa->spa_indirect_vdevs_loaded = B_TRUE; 625 return (0); 626 } 627 628 void 629 spa_restart_removal(spa_t *spa) 630 { 631 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 632 633 if (svr == NULL) 634 return; 635 636 /* 637 * In general when this function is called there is no 638 * removal thread running. The only scenario where this 639 * is not true is during spa_import() where this function 640 * is called twice [once from spa_import_impl() and 641 * spa_async_resume()]. Thus, in the scenario where we 642 * import a pool that has an ongoing removal we don't 643 * want to spawn a second thread. 644 */ 645 if (svr->svr_thread != NULL) 646 return; 647 648 if (!spa_writeable(spa)) 649 return; 650 651 zfs_dbgmsg("restarting removal of %llu", 652 (u_longlong_t)svr->svr_vdev_id); 653 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa, 654 0, &p0, TS_RUN, minclsyspri); 655 } 656 657 /* 658 * Process freeing from a device which is in the middle of being removed. 659 * We must handle this carefully so that we attempt to copy freed data, 660 * and we correctly free already-copied data. 661 */ 662 void 663 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size) 664 { 665 spa_t *spa = vd->vdev_spa; 666 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 667 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 668 uint64_t txg = spa_syncing_txg(spa); 669 uint64_t max_offset_yet = 0; 670 671 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 672 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==, 673 vdev_indirect_mapping_object(vim)); 674 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id); 675 676 mutex_enter(&svr->svr_lock); 677 678 /* 679 * Remove the segment from the removing vdev's spacemap. This 680 * ensures that we will not attempt to copy this space (if the 681 * removal thread has not yet visited it), and also ensures 682 * that we know what is actually allocated on the new vdevs 683 * (needed if we cancel the removal). 684 * 685 * Note: we must do the metaslab_free_concrete() with the svr_lock 686 * held, so that the remove_thread can not load this metaslab and then 687 * visit this offset between the time that we metaslab_free_concrete() 688 * and when we check to see if it has been visited. 689 * 690 * Note: The checkpoint flag is set to false as having/taking 691 * a checkpoint and removing a device can't happen at the same 692 * time. 693 */ 694 ASSERT(!spa_has_checkpoint(spa)); 695 metaslab_free_concrete(vd, offset, size, B_FALSE); 696 697 uint64_t synced_size = 0; 698 uint64_t synced_offset = 0; 699 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim); 700 if (offset < max_offset_synced) { 701 /* 702 * The mapping for this offset is already on disk. 703 * Free from the new location. 704 * 705 * Note that we use svr_max_synced_offset because it is 706 * updated atomically with respect to the in-core mapping. 707 * By contrast, vim_max_offset is not. 708 * 709 * This block may be split between a synced entry and an 710 * in-flight or unvisited entry. Only process the synced 711 * portion of it here. 712 */ 713 synced_size = MIN(size, max_offset_synced - offset); 714 synced_offset = offset; 715 716 ASSERT3U(max_offset_yet, <=, max_offset_synced); 717 max_offset_yet = max_offset_synced; 718 719 DTRACE_PROBE3(remove__free__synced, 720 spa_t *, spa, 721 uint64_t, offset, 722 uint64_t, synced_size); 723 724 size -= synced_size; 725 offset += synced_size; 726 } 727 728 /* 729 * Look at all in-flight txgs starting from the currently syncing one 730 * and see if a section of this free is being copied. By starting from 731 * this txg and iterating forward, we might find that this region 732 * was copied in two different txgs and handle it appropriately. 733 */ 734 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) { 735 int txgoff = (txg + i) & TXG_MASK; 736 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) { 737 /* 738 * The mapping for this offset is in flight, and 739 * will be synced in txg+i. 740 */ 741 uint64_t inflight_size = MIN(size, 742 svr->svr_max_offset_to_sync[txgoff] - offset); 743 744 DTRACE_PROBE4(remove__free__inflight, 745 spa_t *, spa, 746 uint64_t, offset, 747 uint64_t, inflight_size, 748 uint64_t, txg + i); 749 750 /* 751 * We copy data in order of increasing offset. 752 * Therefore the max_offset_to_sync[] must increase 753 * (or be zero, indicating that nothing is being 754 * copied in that txg). 755 */ 756 if (svr->svr_max_offset_to_sync[txgoff] != 0) { 757 ASSERT3U(svr->svr_max_offset_to_sync[txgoff], 758 >=, max_offset_yet); 759 max_offset_yet = 760 svr->svr_max_offset_to_sync[txgoff]; 761 } 762 763 /* 764 * We've already committed to copying this segment: 765 * we have allocated space elsewhere in the pool for 766 * it and have an IO outstanding to copy the data. We 767 * cannot free the space before the copy has 768 * completed, or else the copy IO might overwrite any 769 * new data. To free that space, we record the 770 * segment in the appropriate svr_frees tree and free 771 * the mapped space later, in the txg where we have 772 * completed the copy and synced the mapping (see 773 * vdev_mapping_sync). 774 */ 775 zfs_range_tree_add(svr->svr_frees[txgoff], 776 offset, inflight_size); 777 size -= inflight_size; 778 offset += inflight_size; 779 780 /* 781 * This space is already accounted for as being 782 * done, because it is being copied in txg+i. 783 * However, if i!=0, then it is being copied in 784 * a future txg. If we crash after this txg 785 * syncs but before txg+i syncs, then the space 786 * will be free. Therefore we must account 787 * for the space being done in *this* txg 788 * (when it is freed) rather than the future txg 789 * (when it will be copied). 790 */ 791 ASSERT3U(svr->svr_bytes_done[txgoff], >=, 792 inflight_size); 793 svr->svr_bytes_done[txgoff] -= inflight_size; 794 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size; 795 } 796 } 797 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]); 798 799 if (size > 0) { 800 /* 801 * The copy thread has not yet visited this offset. Ensure 802 * that it doesn't. 803 */ 804 805 DTRACE_PROBE3(remove__free__unvisited, 806 spa_t *, spa, 807 uint64_t, offset, 808 uint64_t, size); 809 810 if (svr->svr_allocd_segs != NULL) 811 zfs_range_tree_clear(svr->svr_allocd_segs, offset, 812 size); 813 814 /* 815 * Since we now do not need to copy this data, for 816 * accounting purposes we have done our job and can count 817 * it as completed. 818 */ 819 svr->svr_bytes_done[txg & TXG_MASK] += size; 820 } 821 mutex_exit(&svr->svr_lock); 822 823 /* 824 * Now that we have dropped svr_lock, process the synced portion 825 * of this free. 826 */ 827 if (synced_size > 0) { 828 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size); 829 830 /* 831 * Note: this can only be called from syncing context, 832 * and the vdev_indirect_mapping is only changed from the 833 * sync thread, so we don't need svr_lock while doing 834 * metaslab_free_impl_cb. 835 */ 836 boolean_t checkpoint = B_FALSE; 837 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size, 838 metaslab_free_impl_cb, &checkpoint); 839 } 840 } 841 842 /* 843 * Stop an active removal and update the spa_removing phys. 844 */ 845 static void 846 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx) 847 { 848 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 849 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa)); 850 851 /* Ensure the removal thread has completed before we free the svr. */ 852 spa_vdev_remove_suspend(spa); 853 854 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED); 855 856 if (state == DSS_FINISHED) { 857 spa_removing_phys_t *srp = &spa->spa_removing_phys; 858 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 859 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 860 861 if (srp->sr_prev_indirect_vdev != -1) { 862 vdev_t *pvd; 863 pvd = vdev_lookup_top(spa, 864 srp->sr_prev_indirect_vdev); 865 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops); 866 } 867 868 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev; 869 srp->sr_prev_indirect_vdev = vd->vdev_id; 870 } 871 spa->spa_removing_phys.sr_state = state; 872 spa->spa_removing_phys.sr_end_time = gethrestime_sec(); 873 874 spa->spa_vdev_removal = NULL; 875 spa_vdev_removal_destroy(svr); 876 877 spa_sync_removing_state(spa, tx); 878 spa_notify_waiters(spa); 879 880 vdev_config_dirty(spa->spa_root_vdev); 881 } 882 883 static void 884 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size) 885 { 886 vdev_t *vd = arg; 887 vdev_indirect_mark_obsolete(vd, offset, size); 888 boolean_t checkpoint = B_FALSE; 889 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 890 metaslab_free_impl_cb, &checkpoint); 891 } 892 893 /* 894 * On behalf of the removal thread, syncs an incremental bit more of 895 * the indirect mapping to disk and updates the in-memory mapping. 896 * Called as a sync task in every txg that the removal thread makes progress. 897 */ 898 static void 899 vdev_mapping_sync(void *arg, dmu_tx_t *tx) 900 { 901 spa_vdev_removal_t *svr = arg; 902 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 903 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 904 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config; 905 uint64_t txg = dmu_tx_get_txg(tx); 906 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 907 908 ASSERT(vic->vic_mapping_object != 0); 909 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 910 911 vdev_indirect_mapping_add_entries(vim, 912 &svr->svr_new_segments[txg & TXG_MASK], tx); 913 vdev_indirect_births_add_entry(vd->vdev_indirect_births, 914 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx); 915 916 /* 917 * Free the copied data for anything that was freed while the 918 * mapping entries were in flight. 919 */ 920 mutex_enter(&svr->svr_lock); 921 zfs_range_tree_vacate(svr->svr_frees[txg & TXG_MASK], 922 free_mapped_segment_cb, vd); 923 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=, 924 vdev_indirect_mapping_max_offset(vim)); 925 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0; 926 mutex_exit(&svr->svr_lock); 927 928 spa_sync_removing_state(spa, tx); 929 } 930 931 typedef struct vdev_copy_segment_arg { 932 spa_t *vcsa_spa; 933 dva_t *vcsa_dest_dva; 934 uint64_t vcsa_txg; 935 zfs_range_tree_t *vcsa_obsolete_segs; 936 } vdev_copy_segment_arg_t; 937 938 static void 939 unalloc_seg(void *arg, uint64_t start, uint64_t size) 940 { 941 vdev_copy_segment_arg_t *vcsa = arg; 942 spa_t *spa = vcsa->vcsa_spa; 943 blkptr_t bp = { { { {0} } } }; 944 945 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL); 946 BP_SET_LSIZE(&bp, size); 947 BP_SET_PSIZE(&bp, size); 948 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 949 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF); 950 BP_SET_TYPE(&bp, DMU_OT_NONE); 951 BP_SET_LEVEL(&bp, 0); 952 BP_SET_DEDUP(&bp, 0); 953 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER); 954 955 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva)); 956 DVA_SET_OFFSET(&bp.blk_dva[0], 957 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start); 958 DVA_SET_ASIZE(&bp.blk_dva[0], size); 959 960 zio_free(spa, vcsa->vcsa_txg, &bp); 961 } 962 963 /* 964 * All reads and writes associated with a call to spa_vdev_copy_segment() 965 * are done. 966 */ 967 static void 968 spa_vdev_copy_segment_done(zio_t *zio) 969 { 970 vdev_copy_segment_arg_t *vcsa = zio->io_private; 971 972 zfs_range_tree_vacate(vcsa->vcsa_obsolete_segs, 973 unalloc_seg, vcsa); 974 zfs_range_tree_destroy(vcsa->vcsa_obsolete_segs); 975 kmem_free(vcsa, sizeof (*vcsa)); 976 977 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa); 978 } 979 980 /* 981 * The write of the new location is done. 982 */ 983 static void 984 spa_vdev_copy_segment_write_done(zio_t *zio) 985 { 986 vdev_copy_arg_t *vca = zio->io_private; 987 988 abd_free(zio->io_abd); 989 990 mutex_enter(&vca->vca_lock); 991 vca->vca_outstanding_bytes -= zio->io_size; 992 993 if (zio->io_error != 0) 994 vca->vca_write_error_bytes += zio->io_size; 995 996 cv_signal(&vca->vca_cv); 997 mutex_exit(&vca->vca_lock); 998 } 999 1000 /* 1001 * The read of the old location is done. The parent zio is the write to 1002 * the new location. Allow it to start. 1003 */ 1004 static void 1005 spa_vdev_copy_segment_read_done(zio_t *zio) 1006 { 1007 vdev_copy_arg_t *vca = zio->io_private; 1008 1009 if (zio->io_error != 0) { 1010 mutex_enter(&vca->vca_lock); 1011 vca->vca_read_error_bytes += zio->io_size; 1012 mutex_exit(&vca->vca_lock); 1013 } 1014 1015 zio_nowait(zio_unique_parent(zio)); 1016 } 1017 1018 /* 1019 * If the old and new vdevs are mirrors, we will read both sides of the old 1020 * mirror, and write each copy to the corresponding side of the new mirror. 1021 * If the old and new vdevs have a different number of children, we will do 1022 * this as best as possible. Since we aren't verifying checksums, this 1023 * ensures that as long as there's a good copy of the data, we'll have a 1024 * good copy after the removal, even if there's silent damage to one side 1025 * of the mirror. If we're removing a mirror that has some silent damage, 1026 * we'll have exactly the same damage in the new location (assuming that 1027 * the new location is also a mirror). 1028 * 1029 * We accomplish this by creating a tree of zio_t's, with as many writes as 1030 * there are "children" of the new vdev (a non-redundant vdev counts as one 1031 * child, a 2-way mirror has 2 children, etc). Each write has an associated 1032 * read from a child of the old vdev. Typically there will be the same 1033 * number of children of the old and new vdevs. However, if there are more 1034 * children of the new vdev, some child(ren) of the old vdev will be issued 1035 * multiple reads. If there are more children of the old vdev, some copies 1036 * will be dropped. 1037 * 1038 * For example, the tree of zio_t's for a 2-way mirror is: 1039 * 1040 * null 1041 * / \ 1042 * write(new vdev, child 0) write(new vdev, child 1) 1043 * | | 1044 * read(old vdev, child 0) read(old vdev, child 1) 1045 * 1046 * Child zio's complete before their parents complete. However, zio's 1047 * created with zio_vdev_child_io() may be issued before their children 1048 * complete. In this case we need to make sure that the children (reads) 1049 * complete before the parents (writes) are *issued*. We do this by not 1050 * calling zio_nowait() on each write until its corresponding read has 1051 * completed. 1052 * 1053 * The spa_config_lock must be held while zio's created by 1054 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does 1055 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null" 1056 * zio is needed to release the spa_config_lock after all the reads and 1057 * writes complete. (Note that we can't grab the config lock for each read, 1058 * because it is not reentrant - we could deadlock with a thread waiting 1059 * for a write lock.) 1060 */ 1061 static void 1062 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio, 1063 vdev_t *source_vd, uint64_t source_offset, 1064 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size) 1065 { 1066 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0); 1067 1068 /* 1069 * If the destination child in unwritable then there is no point 1070 * in issuing the source reads which cannot be written. 1071 */ 1072 if (!vdev_writeable(dest_child_vd)) 1073 return; 1074 1075 mutex_enter(&vca->vca_lock); 1076 vca->vca_outstanding_bytes += size; 1077 mutex_exit(&vca->vca_lock); 1078 1079 abd_t *abd = abd_alloc_for_io(size, B_FALSE); 1080 1081 vdev_t *source_child_vd = NULL; 1082 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) { 1083 /* 1084 * Source and dest are both mirrors. Copy from the same 1085 * child id as we are copying to (wrapping around if there 1086 * are more dest children than source children). If the 1087 * preferred source child is unreadable select another. 1088 */ 1089 for (int i = 0; i < source_vd->vdev_children; i++) { 1090 source_child_vd = source_vd->vdev_child[ 1091 (dest_id + i) % source_vd->vdev_children]; 1092 if (vdev_readable(source_child_vd)) 1093 break; 1094 } 1095 } else { 1096 source_child_vd = source_vd; 1097 } 1098 1099 /* 1100 * There should always be at least one readable source child or 1101 * the pool would be in a suspended state. Somehow selecting an 1102 * unreadable child would result in IO errors, the removal process 1103 * being cancelled, and the pool reverting to its pre-removal state. 1104 */ 1105 ASSERT3P(source_child_vd, !=, NULL); 1106 1107 zio_t *write_zio = zio_vdev_child_io(nzio, NULL, 1108 dest_child_vd, dest_offset, abd, size, 1109 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL, 1110 ZIO_FLAG_CANFAIL, 1111 spa_vdev_copy_segment_write_done, vca); 1112 1113 zio_nowait(zio_vdev_child_io(write_zio, NULL, 1114 source_child_vd, source_offset, abd, size, 1115 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL, 1116 ZIO_FLAG_CANFAIL, 1117 spa_vdev_copy_segment_read_done, vca)); 1118 } 1119 1120 /* 1121 * Allocate a new location for this segment, and create the zio_t's to 1122 * read from the old location and write to the new location. 1123 */ 1124 static int 1125 spa_vdev_copy_segment(vdev_t *vd, zfs_range_tree_t *segs, 1126 uint64_t maxalloc, uint64_t txg, 1127 vdev_copy_arg_t *vca, zio_alloc_list_t *zal) 1128 { 1129 metaslab_group_t *mg = vd->vdev_mg; 1130 spa_t *spa = vd->vdev_spa; 1131 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1132 vdev_indirect_mapping_entry_t *entry; 1133 dva_t dst = {{ 0 }}; 1134 uint64_t start = zfs_range_tree_min(segs); 1135 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift)); 1136 1137 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE); 1138 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift)); 1139 1140 uint64_t size = zfs_range_tree_span(segs); 1141 if (zfs_range_tree_span(segs) > maxalloc) { 1142 /* 1143 * We can't allocate all the segments. Prefer to end 1144 * the allocation at the end of a segment, thus avoiding 1145 * additional split blocks. 1146 */ 1147 zfs_range_seg_max_t search; 1148 zfs_btree_index_t where; 1149 zfs_rs_set_start(&search, segs, start + maxalloc); 1150 zfs_rs_set_end(&search, segs, start + maxalloc); 1151 (void) zfs_btree_find(&segs->rt_root, &search, &where); 1152 zfs_range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where, 1153 &where); 1154 if (rs != NULL) { 1155 size = zfs_rs_get_end(rs, segs) - start; 1156 } else { 1157 /* 1158 * There are no segments that end before maxalloc. 1159 * I.e. the first segment is larger than maxalloc, 1160 * so we must split it. 1161 */ 1162 size = maxalloc; 1163 } 1164 } 1165 ASSERT3U(size, <=, maxalloc); 1166 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift)); 1167 1168 /* 1169 * An allocation class might not have any remaining vdevs or space 1170 */ 1171 metaslab_class_t *mc = mg->mg_class; 1172 if (mc->mc_groups == 0) 1173 mc = spa_normal_class(spa); 1174 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 1175 0, zal, 0); 1176 if (error == ENOSPC && mc != spa_normal_class(spa)) { 1177 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size, 1178 &dst, 0, NULL, txg, 0, zal, 0); 1179 } 1180 if (error != 0) 1181 return (error); 1182 1183 /* 1184 * Determine the ranges that are not actually needed. Offsets are 1185 * relative to the start of the range to be copied (i.e. relative to the 1186 * local variable "start"). 1187 */ 1188 zfs_range_tree_t *obsolete_segs = zfs_range_tree_create(NULL, 1189 ZFS_RANGE_SEG64, NULL, 0, 0); 1190 1191 zfs_btree_index_t where; 1192 zfs_range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where); 1193 ASSERT3U(zfs_rs_get_start(rs, segs), ==, start); 1194 uint64_t prev_seg_end = zfs_rs_get_end(rs, segs); 1195 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) { 1196 if (zfs_rs_get_start(rs, segs) >= start + size) { 1197 break; 1198 } else { 1199 zfs_range_tree_add(obsolete_segs, 1200 prev_seg_end - start, 1201 zfs_rs_get_start(rs, segs) - prev_seg_end); 1202 } 1203 prev_seg_end = zfs_rs_get_end(rs, segs); 1204 } 1205 /* We don't end in the middle of an obsolete range */ 1206 ASSERT3U(start + size, <=, prev_seg_end); 1207 1208 zfs_range_tree_clear(segs, start, size); 1209 1210 /* 1211 * We can't have any padding of the allocated size, otherwise we will 1212 * misunderstand what's allocated, and the size of the mapping. We 1213 * prevent padding by ensuring that all devices in the pool have the 1214 * same ashift, and the allocation size is a multiple of the ashift. 1215 */ 1216 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size); 1217 1218 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP); 1219 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start); 1220 entry->vime_mapping.vimep_dst = dst; 1221 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 1222 entry->vime_obsolete_count = 1223 zfs_range_tree_space(obsolete_segs); 1224 } 1225 1226 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP); 1227 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst; 1228 vcsa->vcsa_obsolete_segs = obsolete_segs; 1229 vcsa->vcsa_spa = spa; 1230 vcsa->vcsa_txg = txg; 1231 1232 /* 1233 * See comment before spa_vdev_copy_one_child(). 1234 */ 1235 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1236 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL, 1237 spa_vdev_copy_segment_done, vcsa, 0); 1238 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst)); 1239 if (dest_vd->vdev_ops == &vdev_mirror_ops) { 1240 for (int i = 0; i < dest_vd->vdev_children; i++) { 1241 vdev_t *child = dest_vd->vdev_child[i]; 1242 spa_vdev_copy_one_child(vca, nzio, vd, start, 1243 child, DVA_GET_OFFSET(&dst), i, size); 1244 } 1245 } else { 1246 spa_vdev_copy_one_child(vca, nzio, vd, start, 1247 dest_vd, DVA_GET_OFFSET(&dst), -1, size); 1248 } 1249 zio_nowait(nzio); 1250 1251 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry); 1252 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift); 1253 vdev_dirty(vd, 0, NULL, txg); 1254 1255 return (0); 1256 } 1257 1258 /* 1259 * Complete the removal of a toplevel vdev. This is called as a 1260 * synctask in the same txg that we will sync out the new config (to the 1261 * MOS object) which indicates that this vdev is indirect. 1262 */ 1263 static void 1264 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx) 1265 { 1266 spa_vdev_removal_t *svr = arg; 1267 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1268 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1269 1270 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 1271 1272 for (int i = 0; i < TXG_SIZE; i++) { 1273 ASSERT0(svr->svr_bytes_done[i]); 1274 } 1275 1276 ASSERT3U(spa->spa_removing_phys.sr_copied, ==, 1277 spa->spa_removing_phys.sr_to_copy); 1278 1279 vdev_destroy_spacemaps(vd, tx); 1280 1281 /* destroy leaf zaps, if any */ 1282 ASSERT3P(svr->svr_zaplist, !=, NULL); 1283 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL); 1284 pair != NULL; 1285 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) { 1286 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx); 1287 } 1288 fnvlist_free(svr->svr_zaplist); 1289 1290 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx); 1291 /* vd->vdev_path is not available here */ 1292 spa_history_log_internal(spa, "vdev remove completed", tx, 1293 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id); 1294 } 1295 1296 static void 1297 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist) 1298 { 1299 ASSERT3P(zlist, !=, NULL); 1300 ASSERT0(vdev_get_nparity(vd)); 1301 1302 if (vd->vdev_leaf_zap != 0) { 1303 char zkey[32]; 1304 (void) snprintf(zkey, sizeof (zkey), "%s-%llu", 1305 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap); 1306 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap); 1307 } 1308 1309 for (uint64_t id = 0; id < vd->vdev_children; id++) { 1310 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist); 1311 } 1312 } 1313 1314 static void 1315 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg) 1316 { 1317 vdev_t *ivd; 1318 dmu_tx_t *tx; 1319 spa_t *spa = vd->vdev_spa; 1320 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1321 1322 /* 1323 * First, build a list of leaf zaps to be destroyed. 1324 * This is passed to the sync context thread, 1325 * which does the actual unlinking. 1326 */ 1327 svr->svr_zaplist = fnvlist_alloc(); 1328 vdev_remove_enlist_zaps(vd, svr->svr_zaplist); 1329 1330 ivd = vdev_add_parent(vd, &vdev_indirect_ops); 1331 ivd->vdev_removing = 0; 1332 1333 vd->vdev_leaf_zap = 0; 1334 1335 vdev_remove_child(ivd, vd); 1336 vdev_compact_children(ivd); 1337 1338 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1339 1340 mutex_enter(&svr->svr_lock); 1341 svr->svr_thread = NULL; 1342 cv_broadcast(&svr->svr_cv); 1343 mutex_exit(&svr->svr_lock); 1344 1345 /* After this, we can not use svr. */ 1346 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1347 dsl_sync_task_nowait(spa->spa_dsl_pool, 1348 vdev_remove_complete_sync, svr, tx); 1349 dmu_tx_commit(tx); 1350 } 1351 1352 /* 1353 * Complete the removal of a toplevel vdev. This is called in open 1354 * context by the removal thread after we have copied all vdev's data. 1355 */ 1356 static void 1357 vdev_remove_complete(spa_t *spa) 1358 { 1359 uint64_t txg; 1360 1361 /* 1362 * Wait for any deferred frees to be synced before we call 1363 * vdev_metaslab_fini() 1364 */ 1365 txg_wait_synced(spa->spa_dsl_pool, 0); 1366 txg = spa_vdev_enter(spa); 1367 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1368 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1369 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1370 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1371 vdev_rebuild_stop_wait(vd); 1372 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1373 uint64_t vdev_space = spa_deflate(spa) ? 1374 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1375 1376 sysevent_t *ev = spa_event_create(spa, vd, NULL, 1377 ESC_ZFS_VDEV_REMOVE_DEV); 1378 1379 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu", 1380 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg); 1381 1382 ASSERT3U(0, !=, vdev_space); 1383 ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space); 1384 1385 /* the vdev is no longer part of the dspace */ 1386 spa->spa_nonallocating_dspace -= vdev_space; 1387 1388 /* 1389 * Discard allocation state. 1390 */ 1391 if (vd->vdev_mg != NULL) { 1392 vdev_metaslab_fini(vd); 1393 metaslab_group_destroy(vd->vdev_mg); 1394 vd->vdev_mg = NULL; 1395 } 1396 if (vd->vdev_log_mg != NULL) { 1397 ASSERT0(vd->vdev_ms_count); 1398 metaslab_group_destroy(vd->vdev_log_mg); 1399 vd->vdev_log_mg = NULL; 1400 } 1401 ASSERT0(vd->vdev_stat.vs_space); 1402 ASSERT0(vd->vdev_stat.vs_dspace); 1403 1404 vdev_remove_replace_with_indirect(vd, txg); 1405 1406 /* 1407 * We now release the locks, allowing spa_sync to run and finish the 1408 * removal via vdev_remove_complete_sync in syncing context. 1409 * 1410 * Note that we hold on to the vdev_t that has been replaced. Since 1411 * it isn't part of the vdev tree any longer, it can't be concurrently 1412 * manipulated, even while we don't have the config lock. 1413 */ 1414 (void) spa_vdev_exit(spa, NULL, txg, 0); 1415 1416 /* 1417 * Top ZAP should have been transferred to the indirect vdev in 1418 * vdev_remove_replace_with_indirect. 1419 */ 1420 ASSERT0(vd->vdev_top_zap); 1421 1422 /* 1423 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect. 1424 */ 1425 ASSERT0(vd->vdev_leaf_zap); 1426 1427 txg = spa_vdev_enter(spa); 1428 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1429 /* 1430 * Request to update the config and the config cachefile. 1431 */ 1432 vdev_config_dirty(spa->spa_root_vdev); 1433 (void) spa_vdev_exit(spa, vd, txg, 0); 1434 1435 if (ev != NULL) 1436 spa_event_post(ev); 1437 } 1438 1439 /* 1440 * Evacuates a segment of size at most max_alloc from the vdev 1441 * via repeated calls to spa_vdev_copy_segment. If an allocation 1442 * fails, the pool is probably too fragmented to handle such a 1443 * large size, so decrease max_alloc so that the caller will not try 1444 * this size again this txg. 1445 */ 1446 static void 1447 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca, 1448 uint64_t *max_alloc, dmu_tx_t *tx) 1449 { 1450 uint64_t txg = dmu_tx_get_txg(tx); 1451 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1452 1453 mutex_enter(&svr->svr_lock); 1454 1455 /* 1456 * Determine how big of a chunk to copy. We can allocate up 1457 * to max_alloc bytes, and we can span up to vdev_removal_max_span 1458 * bytes of unallocated space at a time. "segs" will track the 1459 * allocated segments that we are copying. We may also be copying 1460 * free segments (of up to vdev_removal_max_span bytes). 1461 */ 1462 zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 1463 NULL, 0, 0); 1464 for (;;) { 1465 zfs_range_tree_t *rt = svr->svr_allocd_segs; 1466 zfs_range_seg_t *rs = zfs_range_tree_first(rt); 1467 1468 if (rs == NULL) 1469 break; 1470 1471 uint64_t seg_length; 1472 1473 if (zfs_range_tree_is_empty(segs)) { 1474 /* need to truncate the first seg based on max_alloc */ 1475 seg_length = MIN(zfs_rs_get_end(rs, rt) - 1476 zfs_rs_get_start(rs, rt), *max_alloc); 1477 } else { 1478 if (zfs_rs_get_start(rs, rt) - zfs_range_tree_max(segs) 1479 > vdev_removal_max_span) { 1480 /* 1481 * Including this segment would cause us to 1482 * copy a larger unneeded chunk than is allowed. 1483 */ 1484 break; 1485 } else if (zfs_rs_get_end(rs, rt) - 1486 zfs_range_tree_min(segs) > *max_alloc) { 1487 /* 1488 * This additional segment would extend past 1489 * max_alloc. Rather than splitting this 1490 * segment, leave it for the next mapping. 1491 */ 1492 break; 1493 } else { 1494 seg_length = zfs_rs_get_end(rs, rt) - 1495 zfs_rs_get_start(rs, rt); 1496 } 1497 } 1498 1499 zfs_range_tree_add(segs, zfs_rs_get_start(rs, rt), seg_length); 1500 zfs_range_tree_remove(svr->svr_allocd_segs, 1501 zfs_rs_get_start(rs, rt), seg_length); 1502 } 1503 1504 if (zfs_range_tree_is_empty(segs)) { 1505 mutex_exit(&svr->svr_lock); 1506 zfs_range_tree_destroy(segs); 1507 return; 1508 } 1509 1510 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) { 1511 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync, 1512 svr, tx); 1513 } 1514 1515 svr->svr_max_offset_to_sync[txg & TXG_MASK] = zfs_range_tree_max(segs); 1516 1517 /* 1518 * Note: this is the amount of *allocated* space 1519 * that we are taking care of each txg. 1520 */ 1521 svr->svr_bytes_done[txg & TXG_MASK] += zfs_range_tree_space(segs); 1522 1523 mutex_exit(&svr->svr_lock); 1524 1525 zio_alloc_list_t zal; 1526 metaslab_trace_init(&zal); 1527 uint64_t thismax = SPA_MAXBLOCKSIZE; 1528 while (!zfs_range_tree_is_empty(segs)) { 1529 int error = spa_vdev_copy_segment(vd, 1530 segs, thismax, txg, vca, &zal); 1531 1532 if (error == ENOSPC) { 1533 /* 1534 * Cut our segment in half, and don't try this 1535 * segment size again this txg. Note that the 1536 * allocation size must be aligned to the highest 1537 * ashift in the pool, so that the allocation will 1538 * not be padded out to a multiple of the ashift, 1539 * which could cause us to think that this mapping 1540 * is larger than we intended. 1541 */ 1542 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT); 1543 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift); 1544 uint64_t attempted = 1545 MIN(zfs_range_tree_span(segs), thismax); 1546 thismax = P2ROUNDUP(attempted / 2, 1547 1 << spa->spa_max_ashift); 1548 /* 1549 * The minimum-size allocation can not fail. 1550 */ 1551 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift); 1552 *max_alloc = attempted - (1 << spa->spa_max_ashift); 1553 } else { 1554 ASSERT0(error); 1555 1556 /* 1557 * We've performed an allocation, so reset the 1558 * alloc trace list. 1559 */ 1560 metaslab_trace_fini(&zal); 1561 metaslab_trace_init(&zal); 1562 } 1563 } 1564 metaslab_trace_fini(&zal); 1565 zfs_range_tree_destroy(segs); 1566 } 1567 1568 /* 1569 * The size of each removal mapping is limited by the tunable 1570 * zfs_remove_max_segment, but we must adjust this to be a multiple of the 1571 * pool's ashift, so that we don't try to split individual sectors regardless 1572 * of the tunable value. (Note that device removal requires that all devices 1573 * have the same ashift, so there's no difference between spa_min_ashift and 1574 * spa_max_ashift.) The raw tunable should not be used elsewhere. 1575 */ 1576 uint64_t 1577 spa_remove_max_segment(spa_t *spa) 1578 { 1579 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift)); 1580 } 1581 1582 /* 1583 * The removal thread operates in open context. It iterates over all 1584 * allocated space in the vdev, by loading each metaslab's spacemap. 1585 * For each contiguous segment of allocated space (capping the segment 1586 * size at SPA_MAXBLOCKSIZE), we: 1587 * - Allocate space for it on another vdev. 1588 * - Create a new mapping from the old location to the new location 1589 * (as a record in svr_new_segments). 1590 * - Initiate a physical read zio to get the data off the removing disk. 1591 * - In the read zio's done callback, initiate a physical write zio to 1592 * write it to the new vdev. 1593 * Note that all of this will take effect when a particular TXG syncs. 1594 * The sync thread ensures that all the phys reads and writes for the syncing 1595 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk 1596 * (see vdev_mapping_sync()). 1597 */ 1598 static __attribute__((noreturn)) void 1599 spa_vdev_remove_thread(void *arg) 1600 { 1601 spa_t *spa = arg; 1602 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1603 vdev_copy_arg_t vca; 1604 uint64_t max_alloc = spa_remove_max_segment(spa); 1605 uint64_t last_txg = 0; 1606 1607 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1608 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1609 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1610 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim); 1611 1612 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops); 1613 ASSERT(vdev_is_concrete(vd)); 1614 ASSERT(vd->vdev_removing); 1615 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 1616 ASSERT(vim != NULL); 1617 1618 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL); 1619 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL); 1620 vca.vca_outstanding_bytes = 0; 1621 vca.vca_read_error_bytes = 0; 1622 vca.vca_write_error_bytes = 0; 1623 1624 zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 1625 NULL, 0, 0); 1626 1627 mutex_enter(&svr->svr_lock); 1628 1629 /* 1630 * Start from vim_max_offset so we pick up where we left off 1631 * if we are restarting the removal after opening the pool. 1632 */ 1633 uint64_t msi; 1634 for (msi = start_offset >> vd->vdev_ms_shift; 1635 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) { 1636 metaslab_t *msp = vd->vdev_ms[msi]; 1637 ASSERT3U(msi, <=, vd->vdev_ms_count); 1638 1639 again: 1640 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1641 mutex_exit(&svr->svr_lock); 1642 1643 mutex_enter(&msp->ms_sync_lock); 1644 mutex_enter(&msp->ms_lock); 1645 1646 /* 1647 * Assert nothing in flight -- ms_*tree is empty. 1648 */ 1649 for (int i = 0; i < TXG_SIZE; i++) { 1650 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i])); 1651 } 1652 1653 /* 1654 * If the metaslab has ever been synced (ms_sm != NULL), 1655 * read the allocated segments from the space map object 1656 * into svr_allocd_segs. Since we do this while holding 1657 * ms_lock and ms_sync_lock, concurrent frees (which 1658 * would have modified the space map) will wait for us 1659 * to finish loading the spacemap, and then take the 1660 * appropriate action (see free_from_removing_vdev()). 1661 */ 1662 if (msp->ms_sm != NULL) 1663 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC)); 1664 1665 /* 1666 * We could not hold svr_lock while loading space map, or we 1667 * could hit deadlock in a ZIO pipeline, having to wait for 1668 * it. But we can not block for it here under metaslab locks, 1669 * or it would be a lock ordering violation. 1670 */ 1671 if (!mutex_tryenter(&svr->svr_lock)) { 1672 mutex_exit(&msp->ms_lock); 1673 mutex_exit(&msp->ms_sync_lock); 1674 zfs_range_tree_vacate(segs, NULL, NULL); 1675 mutex_enter(&svr->svr_lock); 1676 goto again; 1677 } 1678 1679 zfs_range_tree_swap(&segs, &svr->svr_allocd_segs); 1680 zfs_range_tree_walk(msp->ms_unflushed_allocs, 1681 zfs_range_tree_add, svr->svr_allocd_segs); 1682 zfs_range_tree_walk(msp->ms_unflushed_frees, 1683 zfs_range_tree_remove, svr->svr_allocd_segs); 1684 zfs_range_tree_walk(msp->ms_freeing, 1685 zfs_range_tree_remove, svr->svr_allocd_segs); 1686 1687 mutex_exit(&msp->ms_lock); 1688 mutex_exit(&msp->ms_sync_lock); 1689 1690 /* 1691 * When we are resuming from a paused removal (i.e. 1692 * when importing a pool with a removal in progress), 1693 * discard any state that we have already processed. 1694 */ 1695 zfs_range_tree_clear(svr->svr_allocd_segs, 0, start_offset); 1696 1697 vca.vca_msp = msp; 1698 zfs_dbgmsg("copying %llu segments for metaslab %llu", 1699 (u_longlong_t)zfs_btree_numnodes( 1700 &svr->svr_allocd_segs->rt_root), 1701 (u_longlong_t)msp->ms_id); 1702 1703 while (!svr->svr_thread_exit && 1704 !zfs_range_tree_is_empty(svr->svr_allocd_segs)) { 1705 1706 mutex_exit(&svr->svr_lock); 1707 1708 /* 1709 * We need to periodically drop the config lock so that 1710 * writers can get in. Additionally, we can't wait 1711 * for a txg to sync while holding a config lock 1712 * (since a waiting writer could cause a 3-way deadlock 1713 * with the sync thread, which also gets a config 1714 * lock for reader). So we can't hold the config lock 1715 * while calling dmu_tx_assign(). 1716 */ 1717 spa_config_exit(spa, SCL_CONFIG, FTAG); 1718 1719 /* 1720 * This delay will pause the removal around the point 1721 * specified by zfs_removal_suspend_progress. We do this 1722 * solely from the test suite or during debugging. 1723 */ 1724 while (zfs_removal_suspend_progress && 1725 !svr->svr_thread_exit) 1726 delay(hz); 1727 1728 mutex_enter(&vca.vca_lock); 1729 while (vca.vca_outstanding_bytes > 1730 zfs_remove_max_copy_bytes) { 1731 cv_wait(&vca.vca_cv, &vca.vca_lock); 1732 } 1733 mutex_exit(&vca.vca_lock); 1734 1735 dmu_tx_t *tx = 1736 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1737 1738 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT)); 1739 uint64_t txg = dmu_tx_get_txg(tx); 1740 1741 /* 1742 * Reacquire the vdev_config lock. The vdev_t 1743 * that we're removing may have changed, e.g. due 1744 * to a vdev_attach or vdev_detach. 1745 */ 1746 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1747 vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1748 1749 if (txg != last_txg) 1750 max_alloc = spa_remove_max_segment(spa); 1751 last_txg = txg; 1752 1753 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx); 1754 1755 dmu_tx_commit(tx); 1756 mutex_enter(&svr->svr_lock); 1757 } 1758 1759 mutex_enter(&vca.vca_lock); 1760 if (zfs_removal_ignore_errors == 0 && 1761 (vca.vca_read_error_bytes > 0 || 1762 vca.vca_write_error_bytes > 0)) { 1763 svr->svr_thread_exit = B_TRUE; 1764 } 1765 mutex_exit(&vca.vca_lock); 1766 } 1767 1768 mutex_exit(&svr->svr_lock); 1769 1770 spa_config_exit(spa, SCL_CONFIG, FTAG); 1771 1772 zfs_range_tree_destroy(segs); 1773 1774 /* 1775 * Wait for all copies to finish before cleaning up the vca. 1776 */ 1777 txg_wait_synced(spa->spa_dsl_pool, 0); 1778 ASSERT0(vca.vca_outstanding_bytes); 1779 1780 mutex_destroy(&vca.vca_lock); 1781 cv_destroy(&vca.vca_cv); 1782 1783 if (svr->svr_thread_exit) { 1784 mutex_enter(&svr->svr_lock); 1785 zfs_range_tree_vacate(svr->svr_allocd_segs, NULL, NULL); 1786 svr->svr_thread = NULL; 1787 cv_broadcast(&svr->svr_cv); 1788 mutex_exit(&svr->svr_lock); 1789 1790 /* 1791 * During the removal process an unrecoverable read or write 1792 * error was encountered. The removal process must be 1793 * cancelled or this damage may become permanent. 1794 */ 1795 if (zfs_removal_ignore_errors == 0 && 1796 (vca.vca_read_error_bytes > 0 || 1797 vca.vca_write_error_bytes > 0)) { 1798 zfs_dbgmsg("canceling removal due to IO errors: " 1799 "[read_error_bytes=%llu] [write_error_bytes=%llu]", 1800 (u_longlong_t)vca.vca_read_error_bytes, 1801 (u_longlong_t)vca.vca_write_error_bytes); 1802 spa_vdev_remove_cancel_impl(spa); 1803 } 1804 } else { 1805 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1806 vdev_remove_complete(spa); 1807 } 1808 1809 thread_exit(); 1810 } 1811 1812 void 1813 spa_vdev_remove_suspend(spa_t *spa) 1814 { 1815 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1816 1817 if (svr == NULL) 1818 return; 1819 1820 mutex_enter(&svr->svr_lock); 1821 svr->svr_thread_exit = B_TRUE; 1822 while (svr->svr_thread != NULL) 1823 cv_wait(&svr->svr_cv, &svr->svr_lock); 1824 svr->svr_thread_exit = B_FALSE; 1825 mutex_exit(&svr->svr_lock); 1826 } 1827 1828 /* 1829 * Return true if the "allocating" property has been set to "off" 1830 */ 1831 static boolean_t 1832 vdev_prop_allocating_off(vdev_t *vd) 1833 { 1834 uint64_t objid = vd->vdev_top_zap; 1835 uint64_t allocating = 1; 1836 1837 /* no vdev property object => no props */ 1838 if (objid != 0) { 1839 spa_t *spa = vd->vdev_spa; 1840 objset_t *mos = spa->spa_meta_objset; 1841 1842 mutex_enter(&spa->spa_props_lock); 1843 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t), 1844 1, &allocating); 1845 mutex_exit(&spa->spa_props_lock); 1846 } 1847 return (allocating == 0); 1848 } 1849 1850 static int 1851 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx) 1852 { 1853 (void) arg; 1854 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1855 1856 if (spa->spa_vdev_removal == NULL) 1857 return (ENOTACTIVE); 1858 return (0); 1859 } 1860 1861 /* 1862 * Cancel a removal by freeing all entries from the partial mapping 1863 * and marking the vdev as no longer being removing. 1864 */ 1865 static void 1866 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx) 1867 { 1868 (void) arg; 1869 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1870 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1871 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1872 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1873 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1874 objset_t *mos = spa->spa_meta_objset; 1875 1876 ASSERT3P(svr->svr_thread, ==, NULL); 1877 1878 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 1879 1880 boolean_t are_precise; 1881 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 1882 if (are_precise) { 1883 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1884 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1885 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx)); 1886 } 1887 1888 uint64_t obsolete_sm_object; 1889 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1890 if (obsolete_sm_object != 0) { 1891 ASSERT(vd->vdev_obsolete_sm != NULL); 1892 ASSERT3U(obsolete_sm_object, ==, 1893 space_map_object(vd->vdev_obsolete_sm)); 1894 1895 space_map_free(vd->vdev_obsolete_sm, tx); 1896 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1897 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx)); 1898 space_map_close(vd->vdev_obsolete_sm); 1899 vd->vdev_obsolete_sm = NULL; 1900 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1901 } 1902 for (int i = 0; i < TXG_SIZE; i++) { 1903 ASSERT(list_is_empty(&svr->svr_new_segments[i])); 1904 ASSERT3U(svr->svr_max_offset_to_sync[i], <=, 1905 vdev_indirect_mapping_max_offset(vim)); 1906 } 1907 1908 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 1909 metaslab_t *msp = vd->vdev_ms[msi]; 1910 1911 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim)) 1912 break; 1913 1914 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1915 1916 mutex_enter(&msp->ms_lock); 1917 1918 /* 1919 * Assert nothing in flight -- ms_*tree is empty. 1920 */ 1921 for (int i = 0; i < TXG_SIZE; i++) 1922 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i])); 1923 for (int i = 0; i < TXG_DEFER_SIZE; i++) 1924 ASSERT0(zfs_range_tree_space(msp->ms_defer[i])); 1925 ASSERT0(zfs_range_tree_space(msp->ms_freed)); 1926 1927 if (msp->ms_sm != NULL) { 1928 mutex_enter(&svr->svr_lock); 1929 VERIFY0(space_map_load(msp->ms_sm, 1930 svr->svr_allocd_segs, SM_ALLOC)); 1931 1932 zfs_range_tree_walk(msp->ms_unflushed_allocs, 1933 zfs_range_tree_add, svr->svr_allocd_segs); 1934 zfs_range_tree_walk(msp->ms_unflushed_frees, 1935 zfs_range_tree_remove, svr->svr_allocd_segs); 1936 zfs_range_tree_walk(msp->ms_freeing, 1937 zfs_range_tree_remove, svr->svr_allocd_segs); 1938 1939 /* 1940 * Clear everything past what has been synced, 1941 * because we have not allocated mappings for it yet. 1942 */ 1943 uint64_t syncd = vdev_indirect_mapping_max_offset(vim); 1944 uint64_t sm_end = msp->ms_sm->sm_start + 1945 msp->ms_sm->sm_size; 1946 if (sm_end > syncd) 1947 zfs_range_tree_clear(svr->svr_allocd_segs, 1948 syncd, sm_end - syncd); 1949 1950 mutex_exit(&svr->svr_lock); 1951 } 1952 mutex_exit(&msp->ms_lock); 1953 1954 mutex_enter(&svr->svr_lock); 1955 zfs_range_tree_vacate(svr->svr_allocd_segs, 1956 free_mapped_segment_cb, vd); 1957 mutex_exit(&svr->svr_lock); 1958 } 1959 1960 /* 1961 * Note: this must happen after we invoke free_mapped_segment_cb, 1962 * because it adds to the obsolete_segments. 1963 */ 1964 zfs_range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL); 1965 1966 ASSERT3U(vic->vic_mapping_object, ==, 1967 vdev_indirect_mapping_object(vd->vdev_indirect_mapping)); 1968 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1969 vd->vdev_indirect_mapping = NULL; 1970 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx); 1971 vic->vic_mapping_object = 0; 1972 1973 ASSERT3U(vic->vic_births_object, ==, 1974 vdev_indirect_births_object(vd->vdev_indirect_births)); 1975 vdev_indirect_births_close(vd->vdev_indirect_births); 1976 vd->vdev_indirect_births = NULL; 1977 vdev_indirect_births_free(mos, vic->vic_births_object, tx); 1978 vic->vic_births_object = 0; 1979 1980 /* 1981 * We may have processed some frees from the removing vdev in this 1982 * txg, thus increasing svr_bytes_done; discard that here to 1983 * satisfy the assertions in spa_vdev_removal_destroy(). 1984 * Note that future txg's can not have any bytes_done, because 1985 * future TXG's are only modified from open context, and we have 1986 * already shut down the copying thread. 1987 */ 1988 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0; 1989 spa_finish_removal(spa, DSS_CANCELED, tx); 1990 1991 vd->vdev_removing = B_FALSE; 1992 1993 if (!vdev_prop_allocating_off(vd)) { 1994 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER); 1995 vdev_activate(vd); 1996 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG); 1997 } 1998 1999 vdev_config_dirty(vd); 2000 2001 zfs_dbgmsg("canceled device removal for vdev %llu in %llu", 2002 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx)); 2003 spa_history_log_internal(spa, "vdev remove canceled", tx, 2004 "%s vdev %llu %s", spa_name(spa), 2005 (u_longlong_t)vd->vdev_id, 2006 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 2007 } 2008 2009 static int 2010 spa_vdev_remove_cancel_impl(spa_t *spa) 2011 { 2012 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check, 2013 spa_vdev_remove_cancel_sync, NULL, 0, 2014 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2015 return (error); 2016 } 2017 2018 int 2019 spa_vdev_remove_cancel(spa_t *spa) 2020 { 2021 spa_vdev_remove_suspend(spa); 2022 2023 if (spa->spa_vdev_removal == NULL) 2024 return (ENOTACTIVE); 2025 2026 return (spa_vdev_remove_cancel_impl(spa)); 2027 } 2028 2029 void 2030 svr_sync(spa_t *spa, dmu_tx_t *tx) 2031 { 2032 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 2033 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 2034 2035 if (svr == NULL) 2036 return; 2037 2038 /* 2039 * This check is necessary so that we do not dirty the 2040 * DIRECTORY_OBJECT via spa_sync_removing_state() when there 2041 * is nothing to do. Dirtying it every time would prevent us 2042 * from syncing-to-convergence. 2043 */ 2044 if (svr->svr_bytes_done[txgoff] == 0) 2045 return; 2046 2047 /* 2048 * Update progress accounting. 2049 */ 2050 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff]; 2051 svr->svr_bytes_done[txgoff] = 0; 2052 2053 spa_sync_removing_state(spa, tx); 2054 } 2055 2056 static void 2057 vdev_remove_make_hole_and_free(vdev_t *vd) 2058 { 2059 uint64_t id = vd->vdev_id; 2060 spa_t *spa = vd->vdev_spa; 2061 vdev_t *rvd = spa->spa_root_vdev; 2062 2063 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2064 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2065 2066 vdev_free(vd); 2067 2068 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 2069 vdev_add_child(rvd, vd); 2070 vdev_config_dirty(rvd); 2071 2072 /* 2073 * Reassess the health of our root vdev. 2074 */ 2075 vdev_reopen(rvd); 2076 } 2077 2078 /* 2079 * Remove a log device. The config lock is held for the specified TXG. 2080 */ 2081 static int 2082 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg) 2083 { 2084 metaslab_group_t *mg = vd->vdev_mg; 2085 spa_t *spa = vd->vdev_spa; 2086 int error = 0; 2087 2088 ASSERT(vd->vdev_islog); 2089 ASSERT(vd == vd->vdev_top); 2090 ASSERT3P(vd->vdev_log_mg, ==, NULL); 2091 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2092 2093 /* 2094 * Stop allocating from this vdev. 2095 */ 2096 metaslab_group_passivate(mg); 2097 2098 /* 2099 * Wait for the youngest allocations and frees to sync, 2100 * and then wait for the deferral of those frees to finish. 2101 */ 2102 spa_vdev_config_exit(spa, NULL, 2103 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 2104 2105 /* 2106 * Cancel any initialize or TRIM which was in progress. 2107 */ 2108 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED); 2109 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED); 2110 vdev_autotrim_stop_wait(vd); 2111 2112 /* 2113 * Evacuate the device. We don't hold the config lock as 2114 * writer since we need to do I/O but we do keep the 2115 * spa_namespace_lock held. Once this completes the device 2116 * should no longer have any blocks allocated on it. 2117 */ 2118 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2119 if (vd->vdev_stat.vs_alloc != 0) 2120 error = spa_reset_logs(spa); 2121 2122 *txg = spa_vdev_config_enter(spa); 2123 2124 if (error != 0) { 2125 metaslab_group_activate(mg); 2126 ASSERT3P(vd->vdev_log_mg, ==, NULL); 2127 return (error); 2128 } 2129 ASSERT0(vd->vdev_stat.vs_alloc); 2130 2131 /* 2132 * The evacuation succeeded. Remove any remaining MOS metadata 2133 * associated with this vdev, and wait for these changes to sync. 2134 */ 2135 vd->vdev_removing = B_TRUE; 2136 2137 vdev_dirty_leaves(vd, VDD_DTL, *txg); 2138 vdev_config_dirty(vd); 2139 2140 /* 2141 * When the log space map feature is enabled we look at 2142 * the vdev's top_zap to find the on-disk flush data of 2143 * the metaslab we just flushed. Thus, while removing a 2144 * log vdev we make sure to call vdev_metaslab_fini() 2145 * first, which removes all metaslabs of this vdev from 2146 * spa_metaslabs_by_flushed before vdev_remove_empty() 2147 * destroys the top_zap of this log vdev. 2148 * 2149 * This avoids the scenario where we flush a metaslab 2150 * from the log vdev being removed that doesn't have a 2151 * top_zap and end up failing to lookup its on-disk flush 2152 * data. 2153 * 2154 * We don't call metaslab_group_destroy() right away 2155 * though (it will be called in vdev_free() later) as 2156 * during metaslab_sync() of metaslabs from other vdevs 2157 * we may touch the metaslab group of this vdev through 2158 * metaslab_class_histogram_verify() 2159 */ 2160 vdev_metaslab_fini(vd); 2161 2162 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG); 2163 *txg = spa_vdev_config_enter(spa); 2164 2165 sysevent_t *ev = spa_event_create(spa, vd, NULL, 2166 ESC_ZFS_VDEV_REMOVE_DEV); 2167 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2168 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2169 2170 /* The top ZAP should have been destroyed by vdev_remove_empty. */ 2171 ASSERT0(vd->vdev_top_zap); 2172 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */ 2173 ASSERT0(vd->vdev_leaf_zap); 2174 2175 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 2176 2177 if (list_link_active(&vd->vdev_state_dirty_node)) 2178 vdev_state_clean(vd); 2179 if (list_link_active(&vd->vdev_config_dirty_node)) 2180 vdev_config_clean(vd); 2181 2182 ASSERT0(vd->vdev_stat.vs_alloc); 2183 2184 /* 2185 * Clean up the vdev namespace. 2186 */ 2187 vdev_remove_make_hole_and_free(vd); 2188 2189 if (ev != NULL) 2190 spa_event_post(ev); 2191 2192 return (0); 2193 } 2194 2195 static int 2196 spa_vdev_remove_top_check(vdev_t *vd) 2197 { 2198 spa_t *spa = vd->vdev_spa; 2199 2200 if (vd != vd->vdev_top) 2201 return (SET_ERROR(ENOTSUP)); 2202 2203 if (!vdev_is_concrete(vd)) 2204 return (SET_ERROR(ENOTSUP)); 2205 2206 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL)) 2207 return (SET_ERROR(ENOTSUP)); 2208 2209 /* 2210 * This device is already being removed 2211 */ 2212 if (vd->vdev_removing) 2213 return (SET_ERROR(EALREADY)); 2214 2215 metaslab_class_t *mc = vd->vdev_mg->mg_class; 2216 metaslab_class_t *normal = spa_normal_class(spa); 2217 if (mc != normal) { 2218 /* 2219 * Space allocated from the special (or dedup) class is 2220 * included in the DMU's space usage, but it's not included 2221 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore 2222 * there is always at least as much free space in the normal 2223 * class, as is allocated from the special (and dedup) class. 2224 * As a backup check, we will return ENOSPC if this is 2225 * violated. See also spa_update_dspace(). 2226 */ 2227 uint64_t available = metaslab_class_get_space(normal) - 2228 metaslab_class_get_alloc(normal); 2229 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc); 2230 if (available < vd->vdev_stat.vs_alloc) 2231 return (SET_ERROR(ENOSPC)); 2232 } else if (!vd->vdev_noalloc) { 2233 /* available space in the pool's normal class */ 2234 uint64_t available = dsl_dir_space_available( 2235 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE); 2236 if (available < vd->vdev_stat.vs_dspace) 2237 return (SET_ERROR(ENOSPC)); 2238 } 2239 2240 /* 2241 * There can not be a removal in progress. 2242 */ 2243 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) 2244 return (SET_ERROR(EBUSY)); 2245 2246 /* 2247 * The device must have all its data. 2248 */ 2249 if (!vdev_dtl_empty(vd, DTL_MISSING) || 2250 !vdev_dtl_empty(vd, DTL_OUTAGE)) 2251 return (SET_ERROR(EBUSY)); 2252 2253 /* 2254 * The device must be healthy. 2255 */ 2256 if (!vdev_readable(vd)) 2257 return (SET_ERROR(EIO)); 2258 2259 /* 2260 * All vdevs in normal class must have the same ashift. 2261 */ 2262 if (spa->spa_max_ashift != spa->spa_min_ashift) { 2263 return (SET_ERROR(EINVAL)); 2264 } 2265 2266 /* 2267 * A removed special/dedup vdev must have same ashift as normal class. 2268 */ 2269 ASSERT(!vd->vdev_islog); 2270 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE && 2271 vd->vdev_ashift != spa->spa_max_ashift) { 2272 return (SET_ERROR(EINVAL)); 2273 } 2274 2275 /* 2276 * All vdevs in normal class must have the same ashift 2277 * and not be raidz or draid. 2278 */ 2279 vdev_t *rvd = spa->spa_root_vdev; 2280 for (uint64_t id = 0; id < rvd->vdev_children; id++) { 2281 vdev_t *cvd = rvd->vdev_child[id]; 2282 2283 /* 2284 * A removed special/dedup vdev must have the same ashift 2285 * across all vdevs in its class. 2286 */ 2287 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE && 2288 cvd->vdev_alloc_bias == vd->vdev_alloc_bias && 2289 cvd->vdev_ashift != vd->vdev_ashift) { 2290 return (SET_ERROR(EINVAL)); 2291 } 2292 if (cvd->vdev_ashift != 0 && 2293 cvd->vdev_alloc_bias == VDEV_BIAS_NONE) 2294 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift); 2295 if (!vdev_is_concrete(cvd)) 2296 continue; 2297 if (vdev_get_nparity(cvd) != 0) 2298 return (SET_ERROR(EINVAL)); 2299 /* 2300 * Need the mirror to be mirror of leaf vdevs only 2301 */ 2302 if (cvd->vdev_ops == &vdev_mirror_ops) { 2303 for (uint64_t cid = 0; 2304 cid < cvd->vdev_children; cid++) { 2305 if (!cvd->vdev_child[cid]->vdev_ops-> 2306 vdev_op_leaf) 2307 return (SET_ERROR(EINVAL)); 2308 } 2309 } 2310 } 2311 2312 return (0); 2313 } 2314 2315 /* 2316 * Initiate removal of a top-level vdev, reducing the total space in the pool. 2317 * The config lock is held for the specified TXG. Once initiated, 2318 * evacuation of all allocated space (copying it to other vdevs) happens 2319 * in the background (see spa_vdev_remove_thread()), and can be canceled 2320 * (see spa_vdev_remove_cancel()). If successful, the vdev will 2321 * be transformed to an indirect vdev (see spa_vdev_remove_complete()). 2322 */ 2323 static int 2324 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg) 2325 { 2326 spa_t *spa = vd->vdev_spa; 2327 boolean_t set_noalloc = B_FALSE; 2328 int error; 2329 2330 /* 2331 * Check for errors up-front, so that we don't waste time 2332 * passivating the metaslab group and clearing the ZIL if there 2333 * are errors. 2334 */ 2335 error = spa_vdev_remove_top_check(vd); 2336 2337 /* 2338 * Stop allocating from this vdev. Note that we must check 2339 * that this is not the only device in the pool before 2340 * passivating, otherwise we will not be able to make 2341 * progress because we can't allocate from any vdevs. 2342 * The above check for sufficient free space serves this 2343 * purpose. 2344 */ 2345 if (error == 0 && !vd->vdev_noalloc) { 2346 set_noalloc = B_TRUE; 2347 error = vdev_passivate(vd, txg); 2348 } 2349 2350 if (error != 0) 2351 return (error); 2352 2353 /* 2354 * We stop any initializing and TRIM that is currently in progress 2355 * but leave the state as "active". This will allow the process to 2356 * resume if the removal is canceled sometime later. 2357 */ 2358 2359 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG); 2360 2361 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE); 2362 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE); 2363 vdev_autotrim_stop_wait(vd); 2364 2365 *txg = spa_vdev_config_enter(spa); 2366 2367 /* 2368 * Things might have changed while the config lock was dropped 2369 * (e.g. space usage). Check for errors again. 2370 */ 2371 error = spa_vdev_remove_top_check(vd); 2372 2373 if (error != 0) { 2374 if (set_noalloc) 2375 vdev_activate(vd); 2376 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 2377 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 2378 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 2379 return (error); 2380 } 2381 2382 vd->vdev_removing = B_TRUE; 2383 2384 vdev_dirty_leaves(vd, VDD_DTL, *txg); 2385 vdev_config_dirty(vd); 2386 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg); 2387 dsl_sync_task_nowait(spa->spa_dsl_pool, 2388 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx); 2389 dmu_tx_commit(tx); 2390 2391 return (0); 2392 } 2393 2394 /* 2395 * Remove a device from the pool. 2396 * 2397 * Removing a device from the vdev namespace requires several steps 2398 * and can take a significant amount of time. As a result we use 2399 * the spa_vdev_config_[enter/exit] functions which allow us to 2400 * grab and release the spa_config_lock while still holding the namespace 2401 * lock. During each step the configuration is synced out. 2402 */ 2403 int 2404 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 2405 { 2406 vdev_t *vd; 2407 nvlist_t **spares, **l2cache, *nv; 2408 uint64_t txg = 0; 2409 uint_t nspares, nl2cache; 2410 int error = 0, error_log; 2411 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 2412 sysevent_t *ev = NULL; 2413 const char *vd_type = NULL; 2414 char *vd_path = NULL; 2415 2416 ASSERT(spa_writeable(spa)); 2417 2418 if (!locked) 2419 txg = spa_vdev_enter(spa); 2420 2421 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2422 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 2423 error = (spa_has_checkpoint(spa)) ? 2424 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 2425 2426 if (!locked) 2427 return (spa_vdev_exit(spa, NULL, txg, error)); 2428 2429 return (error); 2430 } 2431 2432 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 2433 2434 if (spa->spa_spares.sav_vdevs != NULL && 2435 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2436 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 2437 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 2438 /* 2439 * Only remove the hot spare if it's not currently in use 2440 * in this pool. 2441 */ 2442 if (vd == NULL || unspare) { 2443 const char *type; 2444 boolean_t draid_spare = B_FALSE; 2445 2446 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) 2447 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0) 2448 draid_spare = B_TRUE; 2449 2450 if (vd == NULL && draid_spare) { 2451 error = SET_ERROR(ENOTSUP); 2452 } else { 2453 if (vd == NULL) 2454 vd = spa_lookup_by_guid(spa, 2455 guid, B_TRUE); 2456 ev = spa_event_create(spa, vd, NULL, 2457 ESC_ZFS_VDEV_REMOVE_AUX); 2458 2459 vd_type = VDEV_TYPE_SPARE; 2460 vd_path = spa_strdup(fnvlist_lookup_string( 2461 nv, ZPOOL_CONFIG_PATH)); 2462 spa_vdev_remove_aux(spa->spa_spares.sav_config, 2463 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 2464 spa_load_spares(spa); 2465 spa->spa_spares.sav_sync = B_TRUE; 2466 } 2467 } else { 2468 error = SET_ERROR(EBUSY); 2469 } 2470 } else if (spa->spa_l2cache.sav_vdevs != NULL && 2471 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2472 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 2473 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 2474 vd_type = VDEV_TYPE_L2CACHE; 2475 vd_path = spa_strdup(fnvlist_lookup_string( 2476 nv, ZPOOL_CONFIG_PATH)); 2477 /* 2478 * Cache devices can always be removed. 2479 */ 2480 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 2481 2482 /* 2483 * Stop trimming the cache device. We need to release the 2484 * config lock to allow the syncing of TRIM transactions 2485 * without releasing the spa_namespace_lock. The same 2486 * strategy is employed in spa_vdev_remove_top(). 2487 */ 2488 spa_vdev_config_exit(spa, NULL, 2489 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 2490 mutex_enter(&vd->vdev_trim_lock); 2491 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 2492 mutex_exit(&vd->vdev_trim_lock); 2493 txg = spa_vdev_config_enter(spa); 2494 2495 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX); 2496 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 2497 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 2498 spa_load_l2cache(spa); 2499 spa->spa_l2cache.sav_sync = B_TRUE; 2500 } else if (vd != NULL && vd->vdev_islog) { 2501 ASSERT(!locked); 2502 vd_type = VDEV_TYPE_LOG; 2503 vd_path = spa_strdup((vd->vdev_path != NULL) ? 2504 vd->vdev_path : "-"); 2505 error = spa_vdev_remove_log(vd, &txg); 2506 } else if (vd != NULL) { 2507 ASSERT(!locked); 2508 error = spa_vdev_remove_top(vd, &txg); 2509 } else { 2510 /* 2511 * There is no vdev of any kind with the specified guid. 2512 */ 2513 error = SET_ERROR(ENOENT); 2514 } 2515 2516 error_log = error; 2517 2518 if (!locked) 2519 error = spa_vdev_exit(spa, NULL, txg, error); 2520 2521 /* 2522 * Logging must be done outside the spa config lock. Otherwise, 2523 * this code path could end up holding the spa config lock while 2524 * waiting for a txg_sync so it can write to the internal log. 2525 * Doing that would prevent the txg sync from actually happening, 2526 * causing a deadlock. 2527 */ 2528 if (error_log == 0 && vd_type != NULL && vd_path != NULL) { 2529 spa_history_log_internal(spa, "vdev remove", NULL, 2530 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path); 2531 } 2532 if (vd_path != NULL) 2533 spa_strfree(vd_path); 2534 2535 if (ev != NULL) 2536 spa_event_post(ev); 2537 2538 return (error); 2539 } 2540 2541 int 2542 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs) 2543 { 2544 prs->prs_state = spa->spa_removing_phys.sr_state; 2545 2546 if (prs->prs_state == DSS_NONE) 2547 return (SET_ERROR(ENOENT)); 2548 2549 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev; 2550 prs->prs_start_time = spa->spa_removing_phys.sr_start_time; 2551 prs->prs_end_time = spa->spa_removing_phys.sr_end_time; 2552 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy; 2553 prs->prs_copied = spa->spa_removing_phys.sr_copied; 2554 2555 prs->prs_mapping_memory = 0; 2556 uint64_t indirect_vdev_id = 2557 spa->spa_removing_phys.sr_prev_indirect_vdev; 2558 while (indirect_vdev_id != -1) { 2559 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id]; 2560 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 2561 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 2562 2563 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2564 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim); 2565 indirect_vdev_id = vic->vic_prev_indirect_vdev; 2566 } 2567 2568 return (0); 2569 } 2570 2571 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW, 2572 "Ignore hard IO errors when removing device"); 2573 2574 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW, 2575 "Largest contiguous segment to allocate when removing device"); 2576 2577 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW, 2578 "Largest span of free chunks a remap segment can span"); 2579 2580 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW, 2581 "Pause device removal after this many bytes are copied " 2582 "(debug use only - causes removal to hang)"); 2583 2584 EXPORT_SYMBOL(free_from_removing_vdev); 2585 EXPORT_SYMBOL(spa_removal_get_stats); 2586 EXPORT_SYMBOL(spa_remove_init); 2587 EXPORT_SYMBOL(spa_restart_removal); 2588 EXPORT_SYMBOL(spa_vdev_removal_destroy); 2589 EXPORT_SYMBOL(spa_vdev_remove); 2590 EXPORT_SYMBOL(spa_vdev_remove_cancel); 2591 EXPORT_SYMBOL(spa_vdev_remove_suspend); 2592 EXPORT_SYMBOL(svr_sync); 2593