xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_removal.c (revision f9fd7337f63698f33239c58c07bf430198235a22)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/arc.h>
44 #include <sys/zfeature.h>
45 #include <sys/vdev_indirect_births.h>
46 #include <sys/vdev_indirect_mapping.h>
47 #include <sys/abd.h>
48 #include <sys/vdev_initialize.h>
49 #include <sys/vdev_trim.h>
50 #include <sys/trace_zfs.h>
51 
52 /*
53  * This file contains the necessary logic to remove vdevs from a
54  * storage pool.  Currently, the only devices that can be removed
55  * are log, cache, and spare devices; and top level vdevs from a pool
56  * w/o raidz or mirrors.  (Note that members of a mirror can be removed
57  * by the detach operation.)
58  *
59  * Log vdevs are removed by evacuating them and then turning the vdev
60  * into a hole vdev while holding spa config locks.
61  *
62  * Top level vdevs are removed and converted into an indirect vdev via
63  * a multi-step process:
64  *
65  *  - Disable allocations from this device (spa_vdev_remove_top).
66  *
67  *  - From a new thread (spa_vdev_remove_thread), copy data from
68  *    the removing vdev to a different vdev.  The copy happens in open
69  *    context (spa_vdev_copy_impl) and issues a sync task
70  *    (vdev_mapping_sync) so the sync thread can update the partial
71  *    indirect mappings in core and on disk.
72  *
73  *  - If a free happens during a removal, it is freed from the
74  *    removing vdev, and if it has already been copied, from the new
75  *    location as well (free_from_removing_vdev).
76  *
77  *  - After the removal is completed, the copy thread converts the vdev
78  *    into an indirect vdev (vdev_remove_complete) before instructing
79  *    the sync thread to destroy the space maps and finish the removal
80  *    (spa_finish_removal).
81  */
82 
83 typedef struct vdev_copy_arg {
84 	metaslab_t	*vca_msp;
85 	uint64_t	vca_outstanding_bytes;
86 	uint64_t	vca_read_error_bytes;
87 	uint64_t	vca_write_error_bytes;
88 	kcondvar_t	vca_cv;
89 	kmutex_t	vca_lock;
90 } vdev_copy_arg_t;
91 
92 /*
93  * The maximum amount of memory we can use for outstanding i/o while
94  * doing a device removal.  This determines how much i/o we can have
95  * in flight concurrently.
96  */
97 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
98 
99 /*
100  * The largest contiguous segment that we will attempt to allocate when
101  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
102  * there is a performance problem with attempting to allocate large blocks,
103  * consider decreasing this.
104  *
105  * See also the accessor function spa_remove_max_segment().
106  */
107 int zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
108 
109 /*
110  * Ignore hard IO errors during device removal.  When set if a device
111  * encounters hard IO error during the removal process the removal will
112  * not be cancelled.  This can result in a normally recoverable block
113  * becoming permanently damaged and is not recommended.
114  */
115 int zfs_removal_ignore_errors = 0;
116 
117 /*
118  * Allow a remap segment to span free chunks of at most this size. The main
119  * impact of a larger span is that we will read and write larger, more
120  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
121  * for iops.  The value here was chosen to align with
122  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
123  * reads (but there's no reason it has to be the same).
124  *
125  * Additionally, a higher span will have the following relatively minor
126  * effects:
127  *  - the mapping will be smaller, since one entry can cover more allocated
128  *    segments
129  *  - more of the fragmentation in the removing device will be preserved
130  *  - we'll do larger allocations, which may fail and fall back on smaller
131  *    allocations
132  */
133 int vdev_removal_max_span = 32 * 1024;
134 
135 /*
136  * This is used by the test suite so that it can ensure that certain
137  * actions happen while in the middle of a removal.
138  */
139 int zfs_removal_suspend_progress = 0;
140 
141 #define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
142 
143 static void spa_vdev_remove_thread(void *arg);
144 static int spa_vdev_remove_cancel_impl(spa_t *spa);
145 
146 static void
147 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
148 {
149 	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
150 	    DMU_POOL_DIRECTORY_OBJECT,
151 	    DMU_POOL_REMOVING, sizeof (uint64_t),
152 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
153 	    &spa->spa_removing_phys, tx));
154 }
155 
156 static nvlist_t *
157 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
158 {
159 	for (int i = 0; i < count; i++) {
160 		uint64_t guid =
161 		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
162 
163 		if (guid == target_guid)
164 			return (nvpp[i]);
165 	}
166 
167 	return (NULL);
168 }
169 
170 static void
171 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
172     nvlist_t *dev_to_remove)
173 {
174 	nvlist_t **newdev = NULL;
175 
176 	if (count > 1)
177 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
178 
179 	for (int i = 0, j = 0; i < count; i++) {
180 		if (dev[i] == dev_to_remove)
181 			continue;
182 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
183 	}
184 
185 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
186 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
187 
188 	for (int i = 0; i < count - 1; i++)
189 		nvlist_free(newdev[i]);
190 
191 	if (count > 1)
192 		kmem_free(newdev, (count - 1) * sizeof (void *));
193 }
194 
195 static spa_vdev_removal_t *
196 spa_vdev_removal_create(vdev_t *vd)
197 {
198 	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
199 	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
200 	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
201 	svr->svr_allocd_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
202 	svr->svr_vdev_id = vd->vdev_id;
203 
204 	for (int i = 0; i < TXG_SIZE; i++) {
205 		svr->svr_frees[i] = range_tree_create(NULL, RANGE_SEG64, NULL,
206 		    0, 0);
207 		list_create(&svr->svr_new_segments[i],
208 		    sizeof (vdev_indirect_mapping_entry_t),
209 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
210 	}
211 
212 	return (svr);
213 }
214 
215 void
216 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
217 {
218 	for (int i = 0; i < TXG_SIZE; i++) {
219 		ASSERT0(svr->svr_bytes_done[i]);
220 		ASSERT0(svr->svr_max_offset_to_sync[i]);
221 		range_tree_destroy(svr->svr_frees[i]);
222 		list_destroy(&svr->svr_new_segments[i]);
223 	}
224 
225 	range_tree_destroy(svr->svr_allocd_segs);
226 	mutex_destroy(&svr->svr_lock);
227 	cv_destroy(&svr->svr_cv);
228 	kmem_free(svr, sizeof (*svr));
229 }
230 
231 /*
232  * This is called as a synctask in the txg in which we will mark this vdev
233  * as removing (in the config stored in the MOS).
234  *
235  * It begins the evacuation of a toplevel vdev by:
236  * - initializing the spa_removing_phys which tracks this removal
237  * - computing the amount of space to remove for accounting purposes
238  * - dirtying all dbufs in the spa_config_object
239  * - creating the spa_vdev_removal
240  * - starting the spa_vdev_remove_thread
241  */
242 static void
243 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
244 {
245 	int vdev_id = (uintptr_t)arg;
246 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
247 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
248 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
249 	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
250 	spa_vdev_removal_t *svr = NULL;
251 	uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
252 
253 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
254 	svr = spa_vdev_removal_create(vd);
255 
256 	ASSERT(vd->vdev_removing);
257 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
258 
259 	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
260 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
261 		/*
262 		 * By activating the OBSOLETE_COUNTS feature, we prevent
263 		 * the pool from being downgraded and ensure that the
264 		 * refcounts are precise.
265 		 */
266 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
267 		uint64_t one = 1;
268 		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
269 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
270 		    &one, tx));
271 		boolean_t are_precise __maybe_unused;
272 		ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
273 		ASSERT3B(are_precise, ==, B_TRUE);
274 	}
275 
276 	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
277 	vd->vdev_indirect_mapping =
278 	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
279 	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
280 	vd->vdev_indirect_births =
281 	    vdev_indirect_births_open(mos, vic->vic_births_object);
282 	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
283 	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
284 	spa->spa_removing_phys.sr_end_time = 0;
285 	spa->spa_removing_phys.sr_state = DSS_SCANNING;
286 	spa->spa_removing_phys.sr_to_copy = 0;
287 	spa->spa_removing_phys.sr_copied = 0;
288 
289 	/*
290 	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
291 	 * there may be space in the defer tree, which is free, but still
292 	 * counted in vs_alloc.
293 	 */
294 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
295 		metaslab_t *ms = vd->vdev_ms[i];
296 		if (ms->ms_sm == NULL)
297 			continue;
298 
299 		spa->spa_removing_phys.sr_to_copy +=
300 		    metaslab_allocated_space(ms);
301 
302 		/*
303 		 * Space which we are freeing this txg does not need to
304 		 * be copied.
305 		 */
306 		spa->spa_removing_phys.sr_to_copy -=
307 		    range_tree_space(ms->ms_freeing);
308 
309 		ASSERT0(range_tree_space(ms->ms_freed));
310 		for (int t = 0; t < TXG_SIZE; t++)
311 			ASSERT0(range_tree_space(ms->ms_allocating[t]));
312 	}
313 
314 	/*
315 	 * Sync tasks are called before metaslab_sync(), so there should
316 	 * be no already-synced metaslabs in the TXG_CLEAN list.
317 	 */
318 	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
319 
320 	spa_sync_removing_state(spa, tx);
321 
322 	/*
323 	 * All blocks that we need to read the most recent mapping must be
324 	 * stored on concrete vdevs.  Therefore, we must dirty anything that
325 	 * is read before spa_remove_init().  Specifically, the
326 	 * spa_config_object.  (Note that although we already modified the
327 	 * spa_config_object in spa_sync_removing_state, that may not have
328 	 * modified all blocks of the object.)
329 	 */
330 	dmu_object_info_t doi;
331 	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
332 	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
333 		dmu_buf_t *dbuf;
334 		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
335 		    offset, FTAG, &dbuf, 0));
336 		dmu_buf_will_dirty(dbuf, tx);
337 		offset += dbuf->db_size;
338 		dmu_buf_rele(dbuf, FTAG);
339 	}
340 
341 	/*
342 	 * Now that we've allocated the im_object, dirty the vdev to ensure
343 	 * that the object gets written to the config on disk.
344 	 */
345 	vdev_config_dirty(vd);
346 
347 	zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
348 	    "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
349 	    vic->vic_mapping_object);
350 
351 	spa_history_log_internal(spa, "vdev remove started", tx,
352 	    "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
353 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
354 	/*
355 	 * Setting spa_vdev_removal causes subsequent frees to call
356 	 * free_from_removing_vdev().  Note that we don't need any locking
357 	 * because we are the sync thread, and metaslab_free_impl() is only
358 	 * called from syncing context (potentially from a zio taskq thread,
359 	 * but in any case only when there are outstanding free i/os, which
360 	 * there are not).
361 	 */
362 	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
363 	spa->spa_vdev_removal = svr;
364 	svr->svr_thread = thread_create(NULL, 0,
365 	    spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
366 }
367 
368 /*
369  * When we are opening a pool, we must read the mapping for each
370  * indirect vdev in order from most recently removed to least
371  * recently removed.  We do this because the blocks for the mapping
372  * of older indirect vdevs may be stored on more recently removed vdevs.
373  * In order to read each indirect mapping object, we must have
374  * initialized all more recently removed vdevs.
375  */
376 int
377 spa_remove_init(spa_t *spa)
378 {
379 	int error;
380 
381 	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
382 	    DMU_POOL_DIRECTORY_OBJECT,
383 	    DMU_POOL_REMOVING, sizeof (uint64_t),
384 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
385 	    &spa->spa_removing_phys);
386 
387 	if (error == ENOENT) {
388 		spa->spa_removing_phys.sr_state = DSS_NONE;
389 		spa->spa_removing_phys.sr_removing_vdev = -1;
390 		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
391 		spa->spa_indirect_vdevs_loaded = B_TRUE;
392 		return (0);
393 	} else if (error != 0) {
394 		return (error);
395 	}
396 
397 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
398 		/*
399 		 * We are currently removing a vdev.  Create and
400 		 * initialize a spa_vdev_removal_t from the bonus
401 		 * buffer of the removing vdevs vdev_im_object, and
402 		 * initialize its partial mapping.
403 		 */
404 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
405 		vdev_t *vd = vdev_lookup_top(spa,
406 		    spa->spa_removing_phys.sr_removing_vdev);
407 
408 		if (vd == NULL) {
409 			spa_config_exit(spa, SCL_STATE, FTAG);
410 			return (EINVAL);
411 		}
412 
413 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
414 
415 		ASSERT(vdev_is_concrete(vd));
416 		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
417 		ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
418 		ASSERT(vd->vdev_removing);
419 
420 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
421 		    spa->spa_meta_objset, vic->vic_mapping_object);
422 		vd->vdev_indirect_births = vdev_indirect_births_open(
423 		    spa->spa_meta_objset, vic->vic_births_object);
424 		spa_config_exit(spa, SCL_STATE, FTAG);
425 
426 		spa->spa_vdev_removal = svr;
427 	}
428 
429 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
430 	uint64_t indirect_vdev_id =
431 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
432 	while (indirect_vdev_id != UINT64_MAX) {
433 		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
434 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
435 
436 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
437 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
438 		    spa->spa_meta_objset, vic->vic_mapping_object);
439 		vd->vdev_indirect_births = vdev_indirect_births_open(
440 		    spa->spa_meta_objset, vic->vic_births_object);
441 
442 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
443 	}
444 	spa_config_exit(spa, SCL_STATE, FTAG);
445 
446 	/*
447 	 * Now that we've loaded all the indirect mappings, we can allow
448 	 * reads from other blocks (e.g. via predictive prefetch).
449 	 */
450 	spa->spa_indirect_vdevs_loaded = B_TRUE;
451 	return (0);
452 }
453 
454 void
455 spa_restart_removal(spa_t *spa)
456 {
457 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
458 
459 	if (svr == NULL)
460 		return;
461 
462 	/*
463 	 * In general when this function is called there is no
464 	 * removal thread running. The only scenario where this
465 	 * is not true is during spa_import() where this function
466 	 * is called twice [once from spa_import_impl() and
467 	 * spa_async_resume()]. Thus, in the scenario where we
468 	 * import a pool that has an ongoing removal we don't
469 	 * want to spawn a second thread.
470 	 */
471 	if (svr->svr_thread != NULL)
472 		return;
473 
474 	if (!spa_writeable(spa))
475 		return;
476 
477 	zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
478 	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
479 	    0, &p0, TS_RUN, minclsyspri);
480 }
481 
482 /*
483  * Process freeing from a device which is in the middle of being removed.
484  * We must handle this carefully so that we attempt to copy freed data,
485  * and we correctly free already-copied data.
486  */
487 void
488 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
489 {
490 	spa_t *spa = vd->vdev_spa;
491 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
492 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
493 	uint64_t txg = spa_syncing_txg(spa);
494 	uint64_t max_offset_yet = 0;
495 
496 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
497 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
498 	    vdev_indirect_mapping_object(vim));
499 	ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
500 
501 	mutex_enter(&svr->svr_lock);
502 
503 	/*
504 	 * Remove the segment from the removing vdev's spacemap.  This
505 	 * ensures that we will not attempt to copy this space (if the
506 	 * removal thread has not yet visited it), and also ensures
507 	 * that we know what is actually allocated on the new vdevs
508 	 * (needed if we cancel the removal).
509 	 *
510 	 * Note: we must do the metaslab_free_concrete() with the svr_lock
511 	 * held, so that the remove_thread can not load this metaslab and then
512 	 * visit this offset between the time that we metaslab_free_concrete()
513 	 * and when we check to see if it has been visited.
514 	 *
515 	 * Note: The checkpoint flag is set to false as having/taking
516 	 * a checkpoint and removing a device can't happen at the same
517 	 * time.
518 	 */
519 	ASSERT(!spa_has_checkpoint(spa));
520 	metaslab_free_concrete(vd, offset, size, B_FALSE);
521 
522 	uint64_t synced_size = 0;
523 	uint64_t synced_offset = 0;
524 	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
525 	if (offset < max_offset_synced) {
526 		/*
527 		 * The mapping for this offset is already on disk.
528 		 * Free from the new location.
529 		 *
530 		 * Note that we use svr_max_synced_offset because it is
531 		 * updated atomically with respect to the in-core mapping.
532 		 * By contrast, vim_max_offset is not.
533 		 *
534 		 * This block may be split between a synced entry and an
535 		 * in-flight or unvisited entry.  Only process the synced
536 		 * portion of it here.
537 		 */
538 		synced_size = MIN(size, max_offset_synced - offset);
539 		synced_offset = offset;
540 
541 		ASSERT3U(max_offset_yet, <=, max_offset_synced);
542 		max_offset_yet = max_offset_synced;
543 
544 		DTRACE_PROBE3(remove__free__synced,
545 		    spa_t *, spa,
546 		    uint64_t, offset,
547 		    uint64_t, synced_size);
548 
549 		size -= synced_size;
550 		offset += synced_size;
551 	}
552 
553 	/*
554 	 * Look at all in-flight txgs starting from the currently syncing one
555 	 * and see if a section of this free is being copied. By starting from
556 	 * this txg and iterating forward, we might find that this region
557 	 * was copied in two different txgs and handle it appropriately.
558 	 */
559 	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
560 		int txgoff = (txg + i) & TXG_MASK;
561 		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
562 			/*
563 			 * The mapping for this offset is in flight, and
564 			 * will be synced in txg+i.
565 			 */
566 			uint64_t inflight_size = MIN(size,
567 			    svr->svr_max_offset_to_sync[txgoff] - offset);
568 
569 			DTRACE_PROBE4(remove__free__inflight,
570 			    spa_t *, spa,
571 			    uint64_t, offset,
572 			    uint64_t, inflight_size,
573 			    uint64_t, txg + i);
574 
575 			/*
576 			 * We copy data in order of increasing offset.
577 			 * Therefore the max_offset_to_sync[] must increase
578 			 * (or be zero, indicating that nothing is being
579 			 * copied in that txg).
580 			 */
581 			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
582 				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
583 				    >=, max_offset_yet);
584 				max_offset_yet =
585 				    svr->svr_max_offset_to_sync[txgoff];
586 			}
587 
588 			/*
589 			 * We've already committed to copying this segment:
590 			 * we have allocated space elsewhere in the pool for
591 			 * it and have an IO outstanding to copy the data. We
592 			 * cannot free the space before the copy has
593 			 * completed, or else the copy IO might overwrite any
594 			 * new data. To free that space, we record the
595 			 * segment in the appropriate svr_frees tree and free
596 			 * the mapped space later, in the txg where we have
597 			 * completed the copy and synced the mapping (see
598 			 * vdev_mapping_sync).
599 			 */
600 			range_tree_add(svr->svr_frees[txgoff],
601 			    offset, inflight_size);
602 			size -= inflight_size;
603 			offset += inflight_size;
604 
605 			/*
606 			 * This space is already accounted for as being
607 			 * done, because it is being copied in txg+i.
608 			 * However, if i!=0, then it is being copied in
609 			 * a future txg.  If we crash after this txg
610 			 * syncs but before txg+i syncs, then the space
611 			 * will be free.  Therefore we must account
612 			 * for the space being done in *this* txg
613 			 * (when it is freed) rather than the future txg
614 			 * (when it will be copied).
615 			 */
616 			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
617 			    inflight_size);
618 			svr->svr_bytes_done[txgoff] -= inflight_size;
619 			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
620 		}
621 	}
622 	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
623 
624 	if (size > 0) {
625 		/*
626 		 * The copy thread has not yet visited this offset.  Ensure
627 		 * that it doesn't.
628 		 */
629 
630 		DTRACE_PROBE3(remove__free__unvisited,
631 		    spa_t *, spa,
632 		    uint64_t, offset,
633 		    uint64_t, size);
634 
635 		if (svr->svr_allocd_segs != NULL)
636 			range_tree_clear(svr->svr_allocd_segs, offset, size);
637 
638 		/*
639 		 * Since we now do not need to copy this data, for
640 		 * accounting purposes we have done our job and can count
641 		 * it as completed.
642 		 */
643 		svr->svr_bytes_done[txg & TXG_MASK] += size;
644 	}
645 	mutex_exit(&svr->svr_lock);
646 
647 	/*
648 	 * Now that we have dropped svr_lock, process the synced portion
649 	 * of this free.
650 	 */
651 	if (synced_size > 0) {
652 		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
653 
654 		/*
655 		 * Note: this can only be called from syncing context,
656 		 * and the vdev_indirect_mapping is only changed from the
657 		 * sync thread, so we don't need svr_lock while doing
658 		 * metaslab_free_impl_cb.
659 		 */
660 		boolean_t checkpoint = B_FALSE;
661 		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
662 		    metaslab_free_impl_cb, &checkpoint);
663 	}
664 }
665 
666 /*
667  * Stop an active removal and update the spa_removing phys.
668  */
669 static void
670 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
671 {
672 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
673 	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
674 
675 	/* Ensure the removal thread has completed before we free the svr. */
676 	spa_vdev_remove_suspend(spa);
677 
678 	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
679 
680 	if (state == DSS_FINISHED) {
681 		spa_removing_phys_t *srp = &spa->spa_removing_phys;
682 		vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
683 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
684 
685 		if (srp->sr_prev_indirect_vdev != -1) {
686 			vdev_t *pvd;
687 			pvd = vdev_lookup_top(spa,
688 			    srp->sr_prev_indirect_vdev);
689 			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
690 		}
691 
692 		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
693 		srp->sr_prev_indirect_vdev = vd->vdev_id;
694 	}
695 	spa->spa_removing_phys.sr_state = state;
696 	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
697 
698 	spa->spa_vdev_removal = NULL;
699 	spa_vdev_removal_destroy(svr);
700 
701 	spa_sync_removing_state(spa, tx);
702 	spa_notify_waiters(spa);
703 
704 	vdev_config_dirty(spa->spa_root_vdev);
705 }
706 
707 static void
708 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
709 {
710 	vdev_t *vd = arg;
711 	vdev_indirect_mark_obsolete(vd, offset, size);
712 	boolean_t checkpoint = B_FALSE;
713 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
714 	    metaslab_free_impl_cb, &checkpoint);
715 }
716 
717 /*
718  * On behalf of the removal thread, syncs an incremental bit more of
719  * the indirect mapping to disk and updates the in-memory mapping.
720  * Called as a sync task in every txg that the removal thread makes progress.
721  */
722 static void
723 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
724 {
725 	spa_vdev_removal_t *svr = arg;
726 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
727 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
728 	vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
729 	uint64_t txg = dmu_tx_get_txg(tx);
730 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
731 
732 	ASSERT(vic->vic_mapping_object != 0);
733 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
734 
735 	vdev_indirect_mapping_add_entries(vim,
736 	    &svr->svr_new_segments[txg & TXG_MASK], tx);
737 	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
738 	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
739 
740 	/*
741 	 * Free the copied data for anything that was freed while the
742 	 * mapping entries were in flight.
743 	 */
744 	mutex_enter(&svr->svr_lock);
745 	range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
746 	    free_mapped_segment_cb, vd);
747 	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
748 	    vdev_indirect_mapping_max_offset(vim));
749 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
750 	mutex_exit(&svr->svr_lock);
751 
752 	spa_sync_removing_state(spa, tx);
753 }
754 
755 typedef struct vdev_copy_segment_arg {
756 	spa_t *vcsa_spa;
757 	dva_t *vcsa_dest_dva;
758 	uint64_t vcsa_txg;
759 	range_tree_t *vcsa_obsolete_segs;
760 } vdev_copy_segment_arg_t;
761 
762 static void
763 unalloc_seg(void *arg, uint64_t start, uint64_t size)
764 {
765 	vdev_copy_segment_arg_t *vcsa = arg;
766 	spa_t *spa = vcsa->vcsa_spa;
767 	blkptr_t bp = { { { {0} } } };
768 
769 	BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
770 	BP_SET_LSIZE(&bp, size);
771 	BP_SET_PSIZE(&bp, size);
772 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
773 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
774 	BP_SET_TYPE(&bp, DMU_OT_NONE);
775 	BP_SET_LEVEL(&bp, 0);
776 	BP_SET_DEDUP(&bp, 0);
777 	BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
778 
779 	DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
780 	DVA_SET_OFFSET(&bp.blk_dva[0],
781 	    DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
782 	DVA_SET_ASIZE(&bp.blk_dva[0], size);
783 
784 	zio_free(spa, vcsa->vcsa_txg, &bp);
785 }
786 
787 /*
788  * All reads and writes associated with a call to spa_vdev_copy_segment()
789  * are done.
790  */
791 static void
792 spa_vdev_copy_segment_done(zio_t *zio)
793 {
794 	vdev_copy_segment_arg_t *vcsa = zio->io_private;
795 
796 	range_tree_vacate(vcsa->vcsa_obsolete_segs,
797 	    unalloc_seg, vcsa);
798 	range_tree_destroy(vcsa->vcsa_obsolete_segs);
799 	kmem_free(vcsa, sizeof (*vcsa));
800 
801 	spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
802 }
803 
804 /*
805  * The write of the new location is done.
806  */
807 static void
808 spa_vdev_copy_segment_write_done(zio_t *zio)
809 {
810 	vdev_copy_arg_t *vca = zio->io_private;
811 
812 	abd_free(zio->io_abd);
813 
814 	mutex_enter(&vca->vca_lock);
815 	vca->vca_outstanding_bytes -= zio->io_size;
816 
817 	if (zio->io_error != 0)
818 		vca->vca_write_error_bytes += zio->io_size;
819 
820 	cv_signal(&vca->vca_cv);
821 	mutex_exit(&vca->vca_lock);
822 }
823 
824 /*
825  * The read of the old location is done.  The parent zio is the write to
826  * the new location.  Allow it to start.
827  */
828 static void
829 spa_vdev_copy_segment_read_done(zio_t *zio)
830 {
831 	vdev_copy_arg_t *vca = zio->io_private;
832 
833 	if (zio->io_error != 0) {
834 		mutex_enter(&vca->vca_lock);
835 		vca->vca_read_error_bytes += zio->io_size;
836 		mutex_exit(&vca->vca_lock);
837 	}
838 
839 	zio_nowait(zio_unique_parent(zio));
840 }
841 
842 /*
843  * If the old and new vdevs are mirrors, we will read both sides of the old
844  * mirror, and write each copy to the corresponding side of the new mirror.
845  * If the old and new vdevs have a different number of children, we will do
846  * this as best as possible.  Since we aren't verifying checksums, this
847  * ensures that as long as there's a good copy of the data, we'll have a
848  * good copy after the removal, even if there's silent damage to one side
849  * of the mirror. If we're removing a mirror that has some silent damage,
850  * we'll have exactly the same damage in the new location (assuming that
851  * the new location is also a mirror).
852  *
853  * We accomplish this by creating a tree of zio_t's, with as many writes as
854  * there are "children" of the new vdev (a non-redundant vdev counts as one
855  * child, a 2-way mirror has 2 children, etc). Each write has an associated
856  * read from a child of the old vdev. Typically there will be the same
857  * number of children of the old and new vdevs.  However, if there are more
858  * children of the new vdev, some child(ren) of the old vdev will be issued
859  * multiple reads.  If there are more children of the old vdev, some copies
860  * will be dropped.
861  *
862  * For example, the tree of zio_t's for a 2-way mirror is:
863  *
864  *                            null
865  *                           /    \
866  *    write(new vdev, child 0)      write(new vdev, child 1)
867  *      |                             |
868  *    read(old vdev, child 0)       read(old vdev, child 1)
869  *
870  * Child zio's complete before their parents complete.  However, zio's
871  * created with zio_vdev_child_io() may be issued before their children
872  * complete.  In this case we need to make sure that the children (reads)
873  * complete before the parents (writes) are *issued*.  We do this by not
874  * calling zio_nowait() on each write until its corresponding read has
875  * completed.
876  *
877  * The spa_config_lock must be held while zio's created by
878  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
879  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
880  * zio is needed to release the spa_config_lock after all the reads and
881  * writes complete. (Note that we can't grab the config lock for each read,
882  * because it is not reentrant - we could deadlock with a thread waiting
883  * for a write lock.)
884  */
885 static void
886 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
887     vdev_t *source_vd, uint64_t source_offset,
888     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
889 {
890 	ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
891 
892 	/*
893 	 * If the destination child in unwritable then there is no point
894 	 * in issuing the source reads which cannot be written.
895 	 */
896 	if (!vdev_writeable(dest_child_vd))
897 		return;
898 
899 	mutex_enter(&vca->vca_lock);
900 	vca->vca_outstanding_bytes += size;
901 	mutex_exit(&vca->vca_lock);
902 
903 	abd_t *abd = abd_alloc_for_io(size, B_FALSE);
904 
905 	vdev_t *source_child_vd = NULL;
906 	if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
907 		/*
908 		 * Source and dest are both mirrors.  Copy from the same
909 		 * child id as we are copying to (wrapping around if there
910 		 * are more dest children than source children).  If the
911 		 * preferred source child is unreadable select another.
912 		 */
913 		for (int i = 0; i < source_vd->vdev_children; i++) {
914 			source_child_vd = source_vd->vdev_child[
915 			    (dest_id + i) % source_vd->vdev_children];
916 			if (vdev_readable(source_child_vd))
917 				break;
918 		}
919 	} else {
920 		source_child_vd = source_vd;
921 	}
922 
923 	/*
924 	 * There should always be at least one readable source child or
925 	 * the pool would be in a suspended state.  Somehow selecting an
926 	 * unreadable child would result in IO errors, the removal process
927 	 * being cancelled, and the pool reverting to its pre-removal state.
928 	 */
929 	ASSERT3P(source_child_vd, !=, NULL);
930 
931 	zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
932 	    dest_child_vd, dest_offset, abd, size,
933 	    ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
934 	    ZIO_FLAG_CANFAIL,
935 	    spa_vdev_copy_segment_write_done, vca);
936 
937 	zio_nowait(zio_vdev_child_io(write_zio, NULL,
938 	    source_child_vd, source_offset, abd, size,
939 	    ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
940 	    ZIO_FLAG_CANFAIL,
941 	    spa_vdev_copy_segment_read_done, vca));
942 }
943 
944 /*
945  * Allocate a new location for this segment, and create the zio_t's to
946  * read from the old location and write to the new location.
947  */
948 static int
949 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
950     uint64_t maxalloc, uint64_t txg,
951     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
952 {
953 	metaslab_group_t *mg = vd->vdev_mg;
954 	spa_t *spa = vd->vdev_spa;
955 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
956 	vdev_indirect_mapping_entry_t *entry;
957 	dva_t dst = {{ 0 }};
958 	uint64_t start = range_tree_min(segs);
959 	ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
960 
961 	ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
962 	ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
963 
964 	uint64_t size = range_tree_span(segs);
965 	if (range_tree_span(segs) > maxalloc) {
966 		/*
967 		 * We can't allocate all the segments.  Prefer to end
968 		 * the allocation at the end of a segment, thus avoiding
969 		 * additional split blocks.
970 		 */
971 		range_seg_max_t search;
972 		zfs_btree_index_t where;
973 		rs_set_start(&search, segs, start + maxalloc);
974 		rs_set_end(&search, segs, start + maxalloc);
975 		(void) zfs_btree_find(&segs->rt_root, &search, &where);
976 		range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
977 		    &where);
978 		if (rs != NULL) {
979 			size = rs_get_end(rs, segs) - start;
980 		} else {
981 			/*
982 			 * There are no segments that end before maxalloc.
983 			 * I.e. the first segment is larger than maxalloc,
984 			 * so we must split it.
985 			 */
986 			size = maxalloc;
987 		}
988 	}
989 	ASSERT3U(size, <=, maxalloc);
990 	ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
991 
992 	/*
993 	 * An allocation class might not have any remaining vdevs or space
994 	 */
995 	metaslab_class_t *mc = mg->mg_class;
996 	if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
997 		mc = spa_normal_class(spa);
998 	int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
999 	    zal, 0);
1000 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
1001 		error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1002 		    &dst, 0, NULL, txg, 0, zal, 0);
1003 	}
1004 	if (error != 0)
1005 		return (error);
1006 
1007 	/*
1008 	 * Determine the ranges that are not actually needed.  Offsets are
1009 	 * relative to the start of the range to be copied (i.e. relative to the
1010 	 * local variable "start").
1011 	 */
1012 	range_tree_t *obsolete_segs = range_tree_create(NULL, RANGE_SEG64, NULL,
1013 	    0, 0);
1014 
1015 	zfs_btree_index_t where;
1016 	range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1017 	ASSERT3U(rs_get_start(rs, segs), ==, start);
1018 	uint64_t prev_seg_end = rs_get_end(rs, segs);
1019 	while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1020 		if (rs_get_start(rs, segs) >= start + size) {
1021 			break;
1022 		} else {
1023 			range_tree_add(obsolete_segs,
1024 			    prev_seg_end - start,
1025 			    rs_get_start(rs, segs) - prev_seg_end);
1026 		}
1027 		prev_seg_end = rs_get_end(rs, segs);
1028 	}
1029 	/* We don't end in the middle of an obsolete range */
1030 	ASSERT3U(start + size, <=, prev_seg_end);
1031 
1032 	range_tree_clear(segs, start, size);
1033 
1034 	/*
1035 	 * We can't have any padding of the allocated size, otherwise we will
1036 	 * misunderstand what's allocated, and the size of the mapping. We
1037 	 * prevent padding by ensuring that all devices in the pool have the
1038 	 * same ashift, and the allocation size is a multiple of the ashift.
1039 	 */
1040 	VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1041 
1042 	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1043 	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1044 	entry->vime_mapping.vimep_dst = dst;
1045 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1046 		entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1047 	}
1048 
1049 	vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1050 	vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1051 	vcsa->vcsa_obsolete_segs = obsolete_segs;
1052 	vcsa->vcsa_spa = spa;
1053 	vcsa->vcsa_txg = txg;
1054 
1055 	/*
1056 	 * See comment before spa_vdev_copy_one_child().
1057 	 */
1058 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1059 	zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1060 	    spa_vdev_copy_segment_done, vcsa, 0);
1061 	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1062 	if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1063 		for (int i = 0; i < dest_vd->vdev_children; i++) {
1064 			vdev_t *child = dest_vd->vdev_child[i];
1065 			spa_vdev_copy_one_child(vca, nzio, vd, start,
1066 			    child, DVA_GET_OFFSET(&dst), i, size);
1067 		}
1068 	} else {
1069 		spa_vdev_copy_one_child(vca, nzio, vd, start,
1070 		    dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1071 	}
1072 	zio_nowait(nzio);
1073 
1074 	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1075 	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1076 	vdev_dirty(vd, 0, NULL, txg);
1077 
1078 	return (0);
1079 }
1080 
1081 /*
1082  * Complete the removal of a toplevel vdev. This is called as a
1083  * synctask in the same txg that we will sync out the new config (to the
1084  * MOS object) which indicates that this vdev is indirect.
1085  */
1086 static void
1087 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1088 {
1089 	spa_vdev_removal_t *svr = arg;
1090 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1091 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1092 
1093 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1094 
1095 	for (int i = 0; i < TXG_SIZE; i++) {
1096 		ASSERT0(svr->svr_bytes_done[i]);
1097 	}
1098 
1099 	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1100 	    spa->spa_removing_phys.sr_to_copy);
1101 
1102 	vdev_destroy_spacemaps(vd, tx);
1103 
1104 	/* destroy leaf zaps, if any */
1105 	ASSERT3P(svr->svr_zaplist, !=, NULL);
1106 	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1107 	    pair != NULL;
1108 	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1109 		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1110 	}
1111 	fnvlist_free(svr->svr_zaplist);
1112 
1113 	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1114 	/* vd->vdev_path is not available here */
1115 	spa_history_log_internal(spa, "vdev remove completed",  tx,
1116 	    "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1117 }
1118 
1119 static void
1120 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1121 {
1122 	ASSERT3P(zlist, !=, NULL);
1123 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1124 
1125 	if (vd->vdev_leaf_zap != 0) {
1126 		char zkey[32];
1127 		(void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1128 		    VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1129 		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1130 	}
1131 
1132 	for (uint64_t id = 0; id < vd->vdev_children; id++) {
1133 		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1134 	}
1135 }
1136 
1137 static void
1138 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1139 {
1140 	vdev_t *ivd;
1141 	dmu_tx_t *tx;
1142 	spa_t *spa = vd->vdev_spa;
1143 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1144 
1145 	/*
1146 	 * First, build a list of leaf zaps to be destroyed.
1147 	 * This is passed to the sync context thread,
1148 	 * which does the actual unlinking.
1149 	 */
1150 	svr->svr_zaplist = fnvlist_alloc();
1151 	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1152 
1153 	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1154 	ivd->vdev_removing = 0;
1155 
1156 	vd->vdev_leaf_zap = 0;
1157 
1158 	vdev_remove_child(ivd, vd);
1159 	vdev_compact_children(ivd);
1160 
1161 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1162 
1163 	mutex_enter(&svr->svr_lock);
1164 	svr->svr_thread = NULL;
1165 	cv_broadcast(&svr->svr_cv);
1166 	mutex_exit(&svr->svr_lock);
1167 
1168 	/* After this, we can not use svr. */
1169 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1170 	dsl_sync_task_nowait(spa->spa_dsl_pool,
1171 	    vdev_remove_complete_sync, svr, tx);
1172 	dmu_tx_commit(tx);
1173 }
1174 
1175 /*
1176  * Complete the removal of a toplevel vdev. This is called in open
1177  * context by the removal thread after we have copied all vdev's data.
1178  */
1179 static void
1180 vdev_remove_complete(spa_t *spa)
1181 {
1182 	uint64_t txg;
1183 
1184 	/*
1185 	 * Wait for any deferred frees to be synced before we call
1186 	 * vdev_metaslab_fini()
1187 	 */
1188 	txg_wait_synced(spa->spa_dsl_pool, 0);
1189 	txg = spa_vdev_enter(spa);
1190 	vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1191 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1192 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1193 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1194 
1195 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1196 	    ESC_ZFS_VDEV_REMOVE_DEV);
1197 
1198 	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1199 	    vd->vdev_id, txg);
1200 
1201 	/*
1202 	 * Discard allocation state.
1203 	 */
1204 	if (vd->vdev_mg != NULL) {
1205 		vdev_metaslab_fini(vd);
1206 		metaslab_group_destroy(vd->vdev_mg);
1207 		vd->vdev_mg = NULL;
1208 		spa_log_sm_set_blocklimit(spa);
1209 	}
1210 	ASSERT0(vd->vdev_stat.vs_space);
1211 	ASSERT0(vd->vdev_stat.vs_dspace);
1212 
1213 	vdev_remove_replace_with_indirect(vd, txg);
1214 
1215 	/*
1216 	 * We now release the locks, allowing spa_sync to run and finish the
1217 	 * removal via vdev_remove_complete_sync in syncing context.
1218 	 *
1219 	 * Note that we hold on to the vdev_t that has been replaced.  Since
1220 	 * it isn't part of the vdev tree any longer, it can't be concurrently
1221 	 * manipulated, even while we don't have the config lock.
1222 	 */
1223 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1224 
1225 	/*
1226 	 * Top ZAP should have been transferred to the indirect vdev in
1227 	 * vdev_remove_replace_with_indirect.
1228 	 */
1229 	ASSERT0(vd->vdev_top_zap);
1230 
1231 	/*
1232 	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1233 	 */
1234 	ASSERT0(vd->vdev_leaf_zap);
1235 
1236 	txg = spa_vdev_enter(spa);
1237 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1238 	/*
1239 	 * Request to update the config and the config cachefile.
1240 	 */
1241 	vdev_config_dirty(spa->spa_root_vdev);
1242 	(void) spa_vdev_exit(spa, vd, txg, 0);
1243 
1244 	if (ev != NULL)
1245 		spa_event_post(ev);
1246 }
1247 
1248 /*
1249  * Evacuates a segment of size at most max_alloc from the vdev
1250  * via repeated calls to spa_vdev_copy_segment. If an allocation
1251  * fails, the pool is probably too fragmented to handle such a
1252  * large size, so decrease max_alloc so that the caller will not try
1253  * this size again this txg.
1254  */
1255 static void
1256 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1257     uint64_t *max_alloc, dmu_tx_t *tx)
1258 {
1259 	uint64_t txg = dmu_tx_get_txg(tx);
1260 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1261 
1262 	mutex_enter(&svr->svr_lock);
1263 
1264 	/*
1265 	 * Determine how big of a chunk to copy.  We can allocate up
1266 	 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1267 	 * bytes of unallocated space at a time.  "segs" will track the
1268 	 * allocated segments that we are copying.  We may also be copying
1269 	 * free segments (of up to vdev_removal_max_span bytes).
1270 	 */
1271 	range_tree_t *segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1272 	for (;;) {
1273 		range_tree_t *rt = svr->svr_allocd_segs;
1274 		range_seg_t *rs = range_tree_first(rt);
1275 
1276 		if (rs == NULL)
1277 			break;
1278 
1279 		uint64_t seg_length;
1280 
1281 		if (range_tree_is_empty(segs)) {
1282 			/* need to truncate the first seg based on max_alloc */
1283 			seg_length = MIN(rs_get_end(rs, rt) - rs_get_start(rs,
1284 			    rt), *max_alloc);
1285 		} else {
1286 			if (rs_get_start(rs, rt) - range_tree_max(segs) >
1287 			    vdev_removal_max_span) {
1288 				/*
1289 				 * Including this segment would cause us to
1290 				 * copy a larger unneeded chunk than is allowed.
1291 				 */
1292 				break;
1293 			} else if (rs_get_end(rs, rt) - range_tree_min(segs) >
1294 			    *max_alloc) {
1295 				/*
1296 				 * This additional segment would extend past
1297 				 * max_alloc. Rather than splitting this
1298 				 * segment, leave it for the next mapping.
1299 				 */
1300 				break;
1301 			} else {
1302 				seg_length = rs_get_end(rs, rt) -
1303 				    rs_get_start(rs, rt);
1304 			}
1305 		}
1306 
1307 		range_tree_add(segs, rs_get_start(rs, rt), seg_length);
1308 		range_tree_remove(svr->svr_allocd_segs,
1309 		    rs_get_start(rs, rt), seg_length);
1310 	}
1311 
1312 	if (range_tree_is_empty(segs)) {
1313 		mutex_exit(&svr->svr_lock);
1314 		range_tree_destroy(segs);
1315 		return;
1316 	}
1317 
1318 	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1319 		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1320 		    svr, tx);
1321 	}
1322 
1323 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1324 
1325 	/*
1326 	 * Note: this is the amount of *allocated* space
1327 	 * that we are taking care of each txg.
1328 	 */
1329 	svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1330 
1331 	mutex_exit(&svr->svr_lock);
1332 
1333 	zio_alloc_list_t zal;
1334 	metaslab_trace_init(&zal);
1335 	uint64_t thismax = SPA_MAXBLOCKSIZE;
1336 	while (!range_tree_is_empty(segs)) {
1337 		int error = spa_vdev_copy_segment(vd,
1338 		    segs, thismax, txg, vca, &zal);
1339 
1340 		if (error == ENOSPC) {
1341 			/*
1342 			 * Cut our segment in half, and don't try this
1343 			 * segment size again this txg.  Note that the
1344 			 * allocation size must be aligned to the highest
1345 			 * ashift in the pool, so that the allocation will
1346 			 * not be padded out to a multiple of the ashift,
1347 			 * which could cause us to think that this mapping
1348 			 * is larger than we intended.
1349 			 */
1350 			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1351 			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1352 			uint64_t attempted =
1353 			    MIN(range_tree_span(segs), thismax);
1354 			thismax = P2ROUNDUP(attempted / 2,
1355 			    1 << spa->spa_max_ashift);
1356 			/*
1357 			 * The minimum-size allocation can not fail.
1358 			 */
1359 			ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1360 			*max_alloc = attempted - (1 << spa->spa_max_ashift);
1361 		} else {
1362 			ASSERT0(error);
1363 
1364 			/*
1365 			 * We've performed an allocation, so reset the
1366 			 * alloc trace list.
1367 			 */
1368 			metaslab_trace_fini(&zal);
1369 			metaslab_trace_init(&zal);
1370 		}
1371 	}
1372 	metaslab_trace_fini(&zal);
1373 	range_tree_destroy(segs);
1374 }
1375 
1376 /*
1377  * The size of each removal mapping is limited by the tunable
1378  * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1379  * pool's ashift, so that we don't try to split individual sectors regardless
1380  * of the tunable value.  (Note that device removal requires that all devices
1381  * have the same ashift, so there's no difference between spa_min_ashift and
1382  * spa_max_ashift.) The raw tunable should not be used elsewhere.
1383  */
1384 uint64_t
1385 spa_remove_max_segment(spa_t *spa)
1386 {
1387 	return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1388 }
1389 
1390 /*
1391  * The removal thread operates in open context.  It iterates over all
1392  * allocated space in the vdev, by loading each metaslab's spacemap.
1393  * For each contiguous segment of allocated space (capping the segment
1394  * size at SPA_MAXBLOCKSIZE), we:
1395  *    - Allocate space for it on another vdev.
1396  *    - Create a new mapping from the old location to the new location
1397  *      (as a record in svr_new_segments).
1398  *    - Initiate a physical read zio to get the data off the removing disk.
1399  *    - In the read zio's done callback, initiate a physical write zio to
1400  *      write it to the new vdev.
1401  * Note that all of this will take effect when a particular TXG syncs.
1402  * The sync thread ensures that all the phys reads and writes for the syncing
1403  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1404  * (see vdev_mapping_sync()).
1405  */
1406 static void
1407 spa_vdev_remove_thread(void *arg)
1408 {
1409 	spa_t *spa = arg;
1410 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1411 	vdev_copy_arg_t vca;
1412 	uint64_t max_alloc = spa_remove_max_segment(spa);
1413 	uint64_t last_txg = 0;
1414 
1415 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1416 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1417 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1418 	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1419 
1420 	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1421 	ASSERT(vdev_is_concrete(vd));
1422 	ASSERT(vd->vdev_removing);
1423 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1424 	ASSERT(vim != NULL);
1425 
1426 	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1427 	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1428 	vca.vca_outstanding_bytes = 0;
1429 	vca.vca_read_error_bytes = 0;
1430 	vca.vca_write_error_bytes = 0;
1431 
1432 	mutex_enter(&svr->svr_lock);
1433 
1434 	/*
1435 	 * Start from vim_max_offset so we pick up where we left off
1436 	 * if we are restarting the removal after opening the pool.
1437 	 */
1438 	uint64_t msi;
1439 	for (msi = start_offset >> vd->vdev_ms_shift;
1440 	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1441 		metaslab_t *msp = vd->vdev_ms[msi];
1442 		ASSERT3U(msi, <=, vd->vdev_ms_count);
1443 
1444 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1445 
1446 		mutex_enter(&msp->ms_sync_lock);
1447 		mutex_enter(&msp->ms_lock);
1448 
1449 		/*
1450 		 * Assert nothing in flight -- ms_*tree is empty.
1451 		 */
1452 		for (int i = 0; i < TXG_SIZE; i++) {
1453 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1454 		}
1455 
1456 		/*
1457 		 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1458 		 * read the allocated segments from the space map object
1459 		 * into svr_allocd_segs. Since we do this while holding
1460 		 * svr_lock and ms_sync_lock, concurrent frees (which
1461 		 * would have modified the space map) will wait for us
1462 		 * to finish loading the spacemap, and then take the
1463 		 * appropriate action (see free_from_removing_vdev()).
1464 		 */
1465 		if (msp->ms_sm != NULL) {
1466 			VERIFY0(space_map_load(msp->ms_sm,
1467 			    svr->svr_allocd_segs, SM_ALLOC));
1468 
1469 			range_tree_walk(msp->ms_unflushed_allocs,
1470 			    range_tree_add, svr->svr_allocd_segs);
1471 			range_tree_walk(msp->ms_unflushed_frees,
1472 			    range_tree_remove, svr->svr_allocd_segs);
1473 			range_tree_walk(msp->ms_freeing,
1474 			    range_tree_remove, svr->svr_allocd_segs);
1475 
1476 			/*
1477 			 * When we are resuming from a paused removal (i.e.
1478 			 * when importing a pool with a removal in progress),
1479 			 * discard any state that we have already processed.
1480 			 */
1481 			range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1482 		}
1483 		mutex_exit(&msp->ms_lock);
1484 		mutex_exit(&msp->ms_sync_lock);
1485 
1486 		vca.vca_msp = msp;
1487 		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1488 		    zfs_btree_numnodes(&svr->svr_allocd_segs->rt_root),
1489 		    msp->ms_id);
1490 
1491 		while (!svr->svr_thread_exit &&
1492 		    !range_tree_is_empty(svr->svr_allocd_segs)) {
1493 
1494 			mutex_exit(&svr->svr_lock);
1495 
1496 			/*
1497 			 * We need to periodically drop the config lock so that
1498 			 * writers can get in.  Additionally, we can't wait
1499 			 * for a txg to sync while holding a config lock
1500 			 * (since a waiting writer could cause a 3-way deadlock
1501 			 * with the sync thread, which also gets a config
1502 			 * lock for reader).  So we can't hold the config lock
1503 			 * while calling dmu_tx_assign().
1504 			 */
1505 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1506 
1507 			/*
1508 			 * This delay will pause the removal around the point
1509 			 * specified by zfs_removal_suspend_progress. We do this
1510 			 * solely from the test suite or during debugging.
1511 			 */
1512 			uint64_t bytes_copied =
1513 			    spa->spa_removing_phys.sr_copied;
1514 			for (int i = 0; i < TXG_SIZE; i++)
1515 				bytes_copied += svr->svr_bytes_done[i];
1516 			while (zfs_removal_suspend_progress &&
1517 			    !svr->svr_thread_exit)
1518 				delay(hz);
1519 
1520 			mutex_enter(&vca.vca_lock);
1521 			while (vca.vca_outstanding_bytes >
1522 			    zfs_remove_max_copy_bytes) {
1523 				cv_wait(&vca.vca_cv, &vca.vca_lock);
1524 			}
1525 			mutex_exit(&vca.vca_lock);
1526 
1527 			dmu_tx_t *tx =
1528 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1529 
1530 			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1531 			uint64_t txg = dmu_tx_get_txg(tx);
1532 
1533 			/*
1534 			 * Reacquire the vdev_config lock.  The vdev_t
1535 			 * that we're removing may have changed, e.g. due
1536 			 * to a vdev_attach or vdev_detach.
1537 			 */
1538 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1539 			vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1540 
1541 			if (txg != last_txg)
1542 				max_alloc = spa_remove_max_segment(spa);
1543 			last_txg = txg;
1544 
1545 			spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1546 
1547 			dmu_tx_commit(tx);
1548 			mutex_enter(&svr->svr_lock);
1549 		}
1550 
1551 		mutex_enter(&vca.vca_lock);
1552 		if (zfs_removal_ignore_errors == 0 &&
1553 		    (vca.vca_read_error_bytes > 0 ||
1554 		    vca.vca_write_error_bytes > 0)) {
1555 			svr->svr_thread_exit = B_TRUE;
1556 		}
1557 		mutex_exit(&vca.vca_lock);
1558 	}
1559 
1560 	mutex_exit(&svr->svr_lock);
1561 
1562 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1563 
1564 	/*
1565 	 * Wait for all copies to finish before cleaning up the vca.
1566 	 */
1567 	txg_wait_synced(spa->spa_dsl_pool, 0);
1568 	ASSERT0(vca.vca_outstanding_bytes);
1569 
1570 	mutex_destroy(&vca.vca_lock);
1571 	cv_destroy(&vca.vca_cv);
1572 
1573 	if (svr->svr_thread_exit) {
1574 		mutex_enter(&svr->svr_lock);
1575 		range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1576 		svr->svr_thread = NULL;
1577 		cv_broadcast(&svr->svr_cv);
1578 		mutex_exit(&svr->svr_lock);
1579 
1580 		/*
1581 		 * During the removal process an unrecoverable read or write
1582 		 * error was encountered.  The removal process must be
1583 		 * cancelled or this damage may become permanent.
1584 		 */
1585 		if (zfs_removal_ignore_errors == 0 &&
1586 		    (vca.vca_read_error_bytes > 0 ||
1587 		    vca.vca_write_error_bytes > 0)) {
1588 			zfs_dbgmsg("canceling removal due to IO errors: "
1589 			    "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1590 			    vca.vca_read_error_bytes,
1591 			    vca.vca_write_error_bytes);
1592 			spa_vdev_remove_cancel_impl(spa);
1593 		}
1594 	} else {
1595 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1596 		vdev_remove_complete(spa);
1597 	}
1598 
1599 	thread_exit();
1600 }
1601 
1602 void
1603 spa_vdev_remove_suspend(spa_t *spa)
1604 {
1605 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1606 
1607 	if (svr == NULL)
1608 		return;
1609 
1610 	mutex_enter(&svr->svr_lock);
1611 	svr->svr_thread_exit = B_TRUE;
1612 	while (svr->svr_thread != NULL)
1613 		cv_wait(&svr->svr_cv, &svr->svr_lock);
1614 	svr->svr_thread_exit = B_FALSE;
1615 	mutex_exit(&svr->svr_lock);
1616 }
1617 
1618 /* ARGSUSED */
1619 static int
1620 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1621 {
1622 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1623 
1624 	if (spa->spa_vdev_removal == NULL)
1625 		return (ENOTACTIVE);
1626 	return (0);
1627 }
1628 
1629 /*
1630  * Cancel a removal by freeing all entries from the partial mapping
1631  * and marking the vdev as no longer being removing.
1632  */
1633 /* ARGSUSED */
1634 static void
1635 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1636 {
1637 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1638 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1639 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1640 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1641 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1642 	objset_t *mos = spa->spa_meta_objset;
1643 
1644 	ASSERT3P(svr->svr_thread, ==, NULL);
1645 
1646 	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1647 
1648 	boolean_t are_precise;
1649 	VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1650 	if (are_precise) {
1651 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1652 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1653 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1654 	}
1655 
1656 	uint64_t obsolete_sm_object;
1657 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1658 	if (obsolete_sm_object != 0) {
1659 		ASSERT(vd->vdev_obsolete_sm != NULL);
1660 		ASSERT3U(obsolete_sm_object, ==,
1661 		    space_map_object(vd->vdev_obsolete_sm));
1662 
1663 		space_map_free(vd->vdev_obsolete_sm, tx);
1664 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1665 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1666 		space_map_close(vd->vdev_obsolete_sm);
1667 		vd->vdev_obsolete_sm = NULL;
1668 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1669 	}
1670 	for (int i = 0; i < TXG_SIZE; i++) {
1671 		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1672 		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1673 		    vdev_indirect_mapping_max_offset(vim));
1674 	}
1675 
1676 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1677 		metaslab_t *msp = vd->vdev_ms[msi];
1678 
1679 		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1680 			break;
1681 
1682 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1683 
1684 		mutex_enter(&msp->ms_lock);
1685 
1686 		/*
1687 		 * Assert nothing in flight -- ms_*tree is empty.
1688 		 */
1689 		for (int i = 0; i < TXG_SIZE; i++)
1690 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1691 		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1692 			ASSERT0(range_tree_space(msp->ms_defer[i]));
1693 		ASSERT0(range_tree_space(msp->ms_freed));
1694 
1695 		if (msp->ms_sm != NULL) {
1696 			mutex_enter(&svr->svr_lock);
1697 			VERIFY0(space_map_load(msp->ms_sm,
1698 			    svr->svr_allocd_segs, SM_ALLOC));
1699 
1700 			range_tree_walk(msp->ms_unflushed_allocs,
1701 			    range_tree_add, svr->svr_allocd_segs);
1702 			range_tree_walk(msp->ms_unflushed_frees,
1703 			    range_tree_remove, svr->svr_allocd_segs);
1704 			range_tree_walk(msp->ms_freeing,
1705 			    range_tree_remove, svr->svr_allocd_segs);
1706 
1707 			/*
1708 			 * Clear everything past what has been synced,
1709 			 * because we have not allocated mappings for it yet.
1710 			 */
1711 			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1712 			uint64_t sm_end = msp->ms_sm->sm_start +
1713 			    msp->ms_sm->sm_size;
1714 			if (sm_end > syncd)
1715 				range_tree_clear(svr->svr_allocd_segs,
1716 				    syncd, sm_end - syncd);
1717 
1718 			mutex_exit(&svr->svr_lock);
1719 		}
1720 		mutex_exit(&msp->ms_lock);
1721 
1722 		mutex_enter(&svr->svr_lock);
1723 		range_tree_vacate(svr->svr_allocd_segs,
1724 		    free_mapped_segment_cb, vd);
1725 		mutex_exit(&svr->svr_lock);
1726 	}
1727 
1728 	/*
1729 	 * Note: this must happen after we invoke free_mapped_segment_cb,
1730 	 * because it adds to the obsolete_segments.
1731 	 */
1732 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1733 
1734 	ASSERT3U(vic->vic_mapping_object, ==,
1735 	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1736 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1737 	vd->vdev_indirect_mapping = NULL;
1738 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1739 	vic->vic_mapping_object = 0;
1740 
1741 	ASSERT3U(vic->vic_births_object, ==,
1742 	    vdev_indirect_births_object(vd->vdev_indirect_births));
1743 	vdev_indirect_births_close(vd->vdev_indirect_births);
1744 	vd->vdev_indirect_births = NULL;
1745 	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1746 	vic->vic_births_object = 0;
1747 
1748 	/*
1749 	 * We may have processed some frees from the removing vdev in this
1750 	 * txg, thus increasing svr_bytes_done; discard that here to
1751 	 * satisfy the assertions in spa_vdev_removal_destroy().
1752 	 * Note that future txg's can not have any bytes_done, because
1753 	 * future TXG's are only modified from open context, and we have
1754 	 * already shut down the copying thread.
1755 	 */
1756 	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1757 	spa_finish_removal(spa, DSS_CANCELED, tx);
1758 
1759 	vd->vdev_removing = B_FALSE;
1760 	vdev_config_dirty(vd);
1761 
1762 	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1763 	    vd->vdev_id, dmu_tx_get_txg(tx));
1764 	spa_history_log_internal(spa, "vdev remove canceled", tx,
1765 	    "%s vdev %llu %s", spa_name(spa),
1766 	    (u_longlong_t)vd->vdev_id,
1767 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1768 }
1769 
1770 static int
1771 spa_vdev_remove_cancel_impl(spa_t *spa)
1772 {
1773 	uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1774 
1775 	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1776 	    spa_vdev_remove_cancel_sync, NULL, 0,
1777 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
1778 
1779 	if (error == 0) {
1780 		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1781 		vdev_t *vd = vdev_lookup_top(spa, vdid);
1782 		metaslab_group_activate(vd->vdev_mg);
1783 		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1784 	}
1785 
1786 	return (error);
1787 }
1788 
1789 int
1790 spa_vdev_remove_cancel(spa_t *spa)
1791 {
1792 	spa_vdev_remove_suspend(spa);
1793 
1794 	if (spa->spa_vdev_removal == NULL)
1795 		return (ENOTACTIVE);
1796 
1797 	return (spa_vdev_remove_cancel_impl(spa));
1798 }
1799 
1800 void
1801 svr_sync(spa_t *spa, dmu_tx_t *tx)
1802 {
1803 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1804 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1805 
1806 	if (svr == NULL)
1807 		return;
1808 
1809 	/*
1810 	 * This check is necessary so that we do not dirty the
1811 	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1812 	 * is nothing to do.  Dirtying it every time would prevent us
1813 	 * from syncing-to-convergence.
1814 	 */
1815 	if (svr->svr_bytes_done[txgoff] == 0)
1816 		return;
1817 
1818 	/*
1819 	 * Update progress accounting.
1820 	 */
1821 	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1822 	svr->svr_bytes_done[txgoff] = 0;
1823 
1824 	spa_sync_removing_state(spa, tx);
1825 }
1826 
1827 static void
1828 vdev_remove_make_hole_and_free(vdev_t *vd)
1829 {
1830 	uint64_t id = vd->vdev_id;
1831 	spa_t *spa = vd->vdev_spa;
1832 	vdev_t *rvd = spa->spa_root_vdev;
1833 
1834 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1835 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1836 
1837 	vdev_free(vd);
1838 
1839 	vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1840 	vdev_add_child(rvd, vd);
1841 	vdev_config_dirty(rvd);
1842 
1843 	/*
1844 	 * Reassess the health of our root vdev.
1845 	 */
1846 	vdev_reopen(rvd);
1847 }
1848 
1849 /*
1850  * Remove a log device.  The config lock is held for the specified TXG.
1851  */
1852 static int
1853 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1854 {
1855 	metaslab_group_t *mg = vd->vdev_mg;
1856 	spa_t *spa = vd->vdev_spa;
1857 	int error = 0;
1858 
1859 	ASSERT(vd->vdev_islog);
1860 	ASSERT(vd == vd->vdev_top);
1861 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1862 
1863 	/*
1864 	 * Stop allocating from this vdev.
1865 	 */
1866 	metaslab_group_passivate(mg);
1867 
1868 	/*
1869 	 * Wait for the youngest allocations and frees to sync,
1870 	 * and then wait for the deferral of those frees to finish.
1871 	 */
1872 	spa_vdev_config_exit(spa, NULL,
1873 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1874 
1875 	/*
1876 	 * Cancel any initialize or TRIM which was in progress.
1877 	 */
1878 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1879 	vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
1880 	vdev_autotrim_stop_wait(vd);
1881 
1882 	/*
1883 	 * Evacuate the device.  We don't hold the config lock as
1884 	 * writer since we need to do I/O but we do keep the
1885 	 * spa_namespace_lock held.  Once this completes the device
1886 	 * should no longer have any blocks allocated on it.
1887 	 */
1888 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1889 	if (vd->vdev_stat.vs_alloc != 0)
1890 		error = spa_reset_logs(spa);
1891 
1892 	*txg = spa_vdev_config_enter(spa);
1893 
1894 	if (error != 0) {
1895 		metaslab_group_activate(mg);
1896 		return (error);
1897 	}
1898 	ASSERT0(vd->vdev_stat.vs_alloc);
1899 
1900 	/*
1901 	 * The evacuation succeeded.  Remove any remaining MOS metadata
1902 	 * associated with this vdev, and wait for these changes to sync.
1903 	 */
1904 	vd->vdev_removing = B_TRUE;
1905 
1906 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1907 	vdev_config_dirty(vd);
1908 
1909 	/*
1910 	 * When the log space map feature is enabled we look at
1911 	 * the vdev's top_zap to find the on-disk flush data of
1912 	 * the metaslab we just flushed. Thus, while removing a
1913 	 * log vdev we make sure to call vdev_metaslab_fini()
1914 	 * first, which removes all metaslabs of this vdev from
1915 	 * spa_metaslabs_by_flushed before vdev_remove_empty()
1916 	 * destroys the top_zap of this log vdev.
1917 	 *
1918 	 * This avoids the scenario where we flush a metaslab
1919 	 * from the log vdev being removed that doesn't have a
1920 	 * top_zap and end up failing to lookup its on-disk flush
1921 	 * data.
1922 	 *
1923 	 * We don't call metaslab_group_destroy() right away
1924 	 * though (it will be called in vdev_free() later) as
1925 	 * during metaslab_sync() of metaslabs from other vdevs
1926 	 * we may touch the metaslab group of this vdev through
1927 	 * metaslab_class_histogram_verify()
1928 	 */
1929 	vdev_metaslab_fini(vd);
1930 	spa_log_sm_set_blocklimit(spa);
1931 
1932 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1933 	*txg = spa_vdev_config_enter(spa);
1934 
1935 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1936 	    ESC_ZFS_VDEV_REMOVE_DEV);
1937 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1938 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1939 
1940 	/* The top ZAP should have been destroyed by vdev_remove_empty. */
1941 	ASSERT0(vd->vdev_top_zap);
1942 	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1943 	ASSERT0(vd->vdev_leaf_zap);
1944 
1945 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1946 
1947 	if (list_link_active(&vd->vdev_state_dirty_node))
1948 		vdev_state_clean(vd);
1949 	if (list_link_active(&vd->vdev_config_dirty_node))
1950 		vdev_config_clean(vd);
1951 
1952 	ASSERT0(vd->vdev_stat.vs_alloc);
1953 
1954 	/*
1955 	 * Clean up the vdev namespace.
1956 	 */
1957 	vdev_remove_make_hole_and_free(vd);
1958 
1959 	if (ev != NULL)
1960 		spa_event_post(ev);
1961 
1962 	return (0);
1963 }
1964 
1965 static int
1966 spa_vdev_remove_top_check(vdev_t *vd)
1967 {
1968 	spa_t *spa = vd->vdev_spa;
1969 
1970 	if (vd != vd->vdev_top)
1971 		return (SET_ERROR(ENOTSUP));
1972 
1973 	if (!vdev_is_concrete(vd))
1974 		return (SET_ERROR(ENOTSUP));
1975 
1976 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1977 		return (SET_ERROR(ENOTSUP));
1978 
1979 	/* available space in the pool's normal class */
1980 	uint64_t available = dsl_dir_space_available(
1981 	    spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1982 
1983 	metaslab_class_t *mc = vd->vdev_mg->mg_class;
1984 
1985 	/*
1986 	 * When removing a vdev from an allocation class that has
1987 	 * remaining vdevs, include available space from the class.
1988 	 */
1989 	if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1990 		uint64_t class_avail = metaslab_class_get_space(mc) -
1991 		    metaslab_class_get_alloc(mc);
1992 
1993 		/* add class space, adjusted for overhead */
1994 		available += (class_avail * 94) / 100;
1995 	}
1996 
1997 	/*
1998 	 * There has to be enough free space to remove the
1999 	 * device and leave double the "slop" space (i.e. we
2000 	 * must leave at least 3% of the pool free, in addition to
2001 	 * the normal slop space).
2002 	 */
2003 	if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
2004 		return (SET_ERROR(ENOSPC));
2005 	}
2006 
2007 	/*
2008 	 * There can not be a removal in progress.
2009 	 */
2010 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2011 		return (SET_ERROR(EBUSY));
2012 
2013 	/*
2014 	 * The device must have all its data.
2015 	 */
2016 	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2017 	    !vdev_dtl_empty(vd, DTL_OUTAGE))
2018 		return (SET_ERROR(EBUSY));
2019 
2020 	/*
2021 	 * The device must be healthy.
2022 	 */
2023 	if (!vdev_readable(vd))
2024 		return (SET_ERROR(EIO));
2025 
2026 	/*
2027 	 * All vdevs in normal class must have the same ashift.
2028 	 */
2029 	if (spa->spa_max_ashift != spa->spa_min_ashift) {
2030 		return (SET_ERROR(EINVAL));
2031 	}
2032 
2033 	/*
2034 	 * A removed special/dedup vdev must have same ashift as normal class.
2035 	 */
2036 	ASSERT(!vd->vdev_islog);
2037 	if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2038 	    vd->vdev_ashift != spa->spa_max_ashift) {
2039 		return (SET_ERROR(EINVAL));
2040 	}
2041 
2042 	/*
2043 	 * All vdevs in normal class must have the same ashift
2044 	 * and not be raidz.
2045 	 */
2046 	vdev_t *rvd = spa->spa_root_vdev;
2047 	int num_indirect = 0;
2048 	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2049 		vdev_t *cvd = rvd->vdev_child[id];
2050 
2051 		/*
2052 		 * A removed special/dedup vdev must have the same ashift
2053 		 * across all vdevs in its class.
2054 		 */
2055 		if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2056 		    cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2057 		    cvd->vdev_ashift != vd->vdev_ashift) {
2058 			return (SET_ERROR(EINVAL));
2059 		}
2060 		if (cvd->vdev_ashift != 0 &&
2061 		    cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2062 			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2063 		if (cvd->vdev_ops == &vdev_indirect_ops)
2064 			num_indirect++;
2065 		if (!vdev_is_concrete(cvd))
2066 			continue;
2067 		if (cvd->vdev_ops == &vdev_raidz_ops)
2068 			return (SET_ERROR(EINVAL));
2069 		/*
2070 		 * Need the mirror to be mirror of leaf vdevs only
2071 		 */
2072 		if (cvd->vdev_ops == &vdev_mirror_ops) {
2073 			for (uint64_t cid = 0;
2074 			    cid < cvd->vdev_children; cid++) {
2075 				if (!cvd->vdev_child[cid]->vdev_ops->
2076 				    vdev_op_leaf)
2077 					return (SET_ERROR(EINVAL));
2078 			}
2079 		}
2080 	}
2081 
2082 	return (0);
2083 }
2084 
2085 /*
2086  * Initiate removal of a top-level vdev, reducing the total space in the pool.
2087  * The config lock is held for the specified TXG.  Once initiated,
2088  * evacuation of all allocated space (copying it to other vdevs) happens
2089  * in the background (see spa_vdev_remove_thread()), and can be canceled
2090  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
2091  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2092  */
2093 static int
2094 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2095 {
2096 	spa_t *spa = vd->vdev_spa;
2097 	int error;
2098 
2099 	/*
2100 	 * Check for errors up-front, so that we don't waste time
2101 	 * passivating the metaslab group and clearing the ZIL if there
2102 	 * are errors.
2103 	 */
2104 	error = spa_vdev_remove_top_check(vd);
2105 	if (error != 0)
2106 		return (error);
2107 
2108 	/*
2109 	 * Stop allocating from this vdev.  Note that we must check
2110 	 * that this is not the only device in the pool before
2111 	 * passivating, otherwise we will not be able to make
2112 	 * progress because we can't allocate from any vdevs.
2113 	 * The above check for sufficient free space serves this
2114 	 * purpose.
2115 	 */
2116 	metaslab_group_t *mg = vd->vdev_mg;
2117 	metaslab_group_passivate(mg);
2118 
2119 	/*
2120 	 * Wait for the youngest allocations and frees to sync,
2121 	 * and then wait for the deferral of those frees to finish.
2122 	 */
2123 	spa_vdev_config_exit(spa, NULL,
2124 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2125 
2126 	/*
2127 	 * We must ensure that no "stubby" log blocks are allocated
2128 	 * on the device to be removed.  These blocks could be
2129 	 * written at any time, including while we are in the middle
2130 	 * of copying them.
2131 	 */
2132 	error = spa_reset_logs(spa);
2133 
2134 	/*
2135 	 * We stop any initializing and TRIM that is currently in progress
2136 	 * but leave the state as "active". This will allow the process to
2137 	 * resume if the removal is canceled sometime later.
2138 	 */
2139 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2140 	vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2141 	vdev_autotrim_stop_wait(vd);
2142 
2143 	*txg = spa_vdev_config_enter(spa);
2144 
2145 	/*
2146 	 * Things might have changed while the config lock was dropped
2147 	 * (e.g. space usage).  Check for errors again.
2148 	 */
2149 	if (error == 0)
2150 		error = spa_vdev_remove_top_check(vd);
2151 
2152 	if (error != 0) {
2153 		metaslab_group_activate(mg);
2154 		spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2155 		spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2156 		spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2157 		return (error);
2158 	}
2159 
2160 	vd->vdev_removing = B_TRUE;
2161 
2162 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
2163 	vdev_config_dirty(vd);
2164 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2165 	dsl_sync_task_nowait(spa->spa_dsl_pool,
2166 	    vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2167 	dmu_tx_commit(tx);
2168 
2169 	return (0);
2170 }
2171 
2172 /*
2173  * Remove a device from the pool.
2174  *
2175  * Removing a device from the vdev namespace requires several steps
2176  * and can take a significant amount of time.  As a result we use
2177  * the spa_vdev_config_[enter/exit] functions which allow us to
2178  * grab and release the spa_config_lock while still holding the namespace
2179  * lock.  During each step the configuration is synced out.
2180  */
2181 int
2182 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2183 {
2184 	vdev_t *vd;
2185 	nvlist_t **spares, **l2cache, *nv;
2186 	uint64_t txg = 0;
2187 	uint_t nspares, nl2cache;
2188 	int error = 0, error_log;
2189 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2190 	sysevent_t *ev = NULL;
2191 	char *vd_type = NULL, *vd_path = NULL;
2192 
2193 	ASSERT(spa_writeable(spa));
2194 
2195 	if (!locked)
2196 		txg = spa_vdev_enter(spa);
2197 
2198 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2199 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2200 		error = (spa_has_checkpoint(spa)) ?
2201 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2202 
2203 		if (!locked)
2204 			return (spa_vdev_exit(spa, NULL, txg, error));
2205 
2206 		return (error);
2207 	}
2208 
2209 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2210 
2211 	if (spa->spa_spares.sav_vdevs != NULL &&
2212 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2213 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2214 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2215 		/*
2216 		 * Only remove the hot spare if it's not currently in use
2217 		 * in this pool.
2218 		 */
2219 		if (vd == NULL || unspare) {
2220 			if (vd == NULL)
2221 				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2222 			ev = spa_event_create(spa, vd, NULL,
2223 			    ESC_ZFS_VDEV_REMOVE_AUX);
2224 
2225 			vd_type = VDEV_TYPE_SPARE;
2226 			vd_path = spa_strdup(fnvlist_lookup_string(
2227 			    nv, ZPOOL_CONFIG_PATH));
2228 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
2229 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2230 			spa_load_spares(spa);
2231 			spa->spa_spares.sav_sync = B_TRUE;
2232 		} else {
2233 			error = SET_ERROR(EBUSY);
2234 		}
2235 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
2236 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2237 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2238 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2239 		vd_type = VDEV_TYPE_L2CACHE;
2240 		vd_path = spa_strdup(fnvlist_lookup_string(
2241 		    nv, ZPOOL_CONFIG_PATH));
2242 		/*
2243 		 * Cache devices can always be removed.
2244 		 */
2245 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2246 
2247 		/*
2248 		 * Stop trimming the cache device. We need to release the
2249 		 * config lock to allow the syncing of TRIM transactions
2250 		 * without releasing the spa_namespace_lock. The same
2251 		 * strategy is employed in spa_vdev_remove_top().
2252 		 */
2253 		spa_vdev_config_exit(spa, NULL,
2254 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2255 		mutex_enter(&vd->vdev_trim_lock);
2256 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2257 		mutex_exit(&vd->vdev_trim_lock);
2258 		txg = spa_vdev_config_enter(spa);
2259 
2260 		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2261 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2262 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2263 		spa_load_l2cache(spa);
2264 		spa->spa_l2cache.sav_sync = B_TRUE;
2265 	} else if (vd != NULL && vd->vdev_islog) {
2266 		ASSERT(!locked);
2267 		vd_type = VDEV_TYPE_LOG;
2268 		vd_path = spa_strdup((vd->vdev_path != NULL) ?
2269 		    vd->vdev_path : "-");
2270 		error = spa_vdev_remove_log(vd, &txg);
2271 	} else if (vd != NULL) {
2272 		ASSERT(!locked);
2273 		error = spa_vdev_remove_top(vd, &txg);
2274 	} else {
2275 		/*
2276 		 * There is no vdev of any kind with the specified guid.
2277 		 */
2278 		error = SET_ERROR(ENOENT);
2279 	}
2280 
2281 	error_log = error;
2282 
2283 	if (!locked)
2284 		error = spa_vdev_exit(spa, NULL, txg, error);
2285 
2286 	/*
2287 	 * Logging must be done outside the spa config lock. Otherwise,
2288 	 * this code path could end up holding the spa config lock while
2289 	 * waiting for a txg_sync so it can write to the internal log.
2290 	 * Doing that would prevent the txg sync from actually happening,
2291 	 * causing a deadlock.
2292 	 */
2293 	if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2294 		spa_history_log_internal(spa, "vdev remove", NULL,
2295 		    "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2296 	}
2297 	if (vd_path != NULL)
2298 		spa_strfree(vd_path);
2299 
2300 	if (ev != NULL)
2301 		spa_event_post(ev);
2302 
2303 	return (error);
2304 }
2305 
2306 int
2307 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2308 {
2309 	prs->prs_state = spa->spa_removing_phys.sr_state;
2310 
2311 	if (prs->prs_state == DSS_NONE)
2312 		return (SET_ERROR(ENOENT));
2313 
2314 	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2315 	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2316 	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2317 	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2318 	prs->prs_copied = spa->spa_removing_phys.sr_copied;
2319 
2320 	prs->prs_mapping_memory = 0;
2321 	uint64_t indirect_vdev_id =
2322 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
2323 	while (indirect_vdev_id != -1) {
2324 		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2325 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2326 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2327 
2328 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2329 		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2330 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
2331 	}
2332 
2333 	return (0);
2334 }
2335 
2336 /* BEGIN CSTYLED */
2337 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2338 	"Ignore hard IO errors when removing device");
2339 
2340 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, INT, ZMOD_RW,
2341 	"Largest contiguous segment to allocate when removing device");
2342 
2343 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, INT, ZMOD_RW,
2344 	"Largest span of free chunks a remap segment can span");
2345 
2346 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, INT, ZMOD_RW,
2347 	"Pause device removal after this many bytes are copied "
2348 	"(debug use only - causes removal to hang)");
2349 /* END CSTYLED */
2350 
2351 EXPORT_SYMBOL(free_from_removing_vdev);
2352 EXPORT_SYMBOL(spa_removal_get_stats);
2353 EXPORT_SYMBOL(spa_remove_init);
2354 EXPORT_SYMBOL(spa_restart_removal);
2355 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2356 EXPORT_SYMBOL(spa_vdev_remove);
2357 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2358 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2359 EXPORT_SYMBOL(svr_sync);
2360