1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/zap.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/txg.h> 39 #include <sys/avl.h> 40 #include <sys/bpobj.h> 41 #include <sys/dsl_pool.h> 42 #include <sys/dsl_synctask.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/arc.h> 45 #include <sys/zfeature.h> 46 #include <sys/vdev_indirect_births.h> 47 #include <sys/vdev_indirect_mapping.h> 48 #include <sys/abd.h> 49 #include <sys/vdev_initialize.h> 50 #include <sys/vdev_trim.h> 51 #include <sys/trace_zfs.h> 52 53 /* 54 * This file contains the necessary logic to remove vdevs from a storage 55 * pool. Note that members of a mirror can be removed by the detach 56 * operation. Currently, the only devices that can be removed are: 57 * 58 * 1) Traditional hot spare and cache vdevs. Note that draid distributed 59 * spares are fixed at creation time and cannot be removed. 60 * 61 * 2) Log vdevs are removed by evacuating them and then turning the vdev 62 * into a hole vdev while holding spa config locks. 63 * 64 * 3) Top-level singleton and mirror vdevs, including dedup and special 65 * vdevs, are removed and converted into an indirect vdev via a 66 * multi-step process: 67 * 68 * - Disable allocations from this device (spa_vdev_remove_top). 69 * 70 * - From a new thread (spa_vdev_remove_thread), copy data from the 71 * removing vdev to a different vdev. The copy happens in open context 72 * (spa_vdev_copy_impl) and issues a sync task (vdev_mapping_sync) so 73 * the sync thread can update the partial indirect mappings in core 74 * and on disk. 75 * 76 * - If a free happens during a removal, it is freed from the removing 77 * vdev, and if it has already been copied, from the new location as 78 * well (free_from_removing_vdev). 79 * 80 * - After the removal is completed, the copy thread converts the vdev 81 * into an indirect vdev (vdev_remove_complete) before instructing 82 * the sync thread to destroy the space maps and finish the removal 83 * (spa_finish_removal). 84 * 85 * The following constraints currently apply primary device removal: 86 * 87 * - All vdevs must be online, healthy, and not be missing any data 88 * according to the DTLs. 89 * 90 * - When removing a singleton or mirror vdev, regardless of it's a 91 * special, dedup, or primary device, it must have the same ashift 92 * as the devices in the normal allocation class. Furthermore, all 93 * vdevs in the normal allocation class must have the same ashift to 94 * ensure the new allocations never includes additional padding. 95 * 96 * - The normal allocation class cannot contain any raidz or draid 97 * top-level vdevs since segments are copied without regard for block 98 * boundaries. This makes it impossible to calculate the required 99 * parity columns when using these vdev types as the destination. 100 * 101 * - The encryption keys must be loaded so the ZIL logs can be reset 102 * in order to prevent writing to the device being removed. 103 * 104 * N.B. ashift and raidz/draid constraints for primary top-level device 105 * removal could be slightly relaxed if it were possible to request that 106 * DVAs from a mirror or singleton in the specified allocation class be 107 * used (metaslab_alloc_dva). 108 * 109 * This flexibility would be particularly useful for raidz/draid pools which 110 * often include a mirrored special device. If a mistakenly added top-level 111 * singleton were added it could then still be removed at the cost of some 112 * special device capacity. This may be a worthwhile tradeoff depending on 113 * the pool capacity and expense (cost, complexity, time) of creating a new 114 * pool and copying all of the data to correct the configuration. 115 * 116 * Furthermore, while not currently supported it should be possible to allow 117 * vdevs of any type to be removed as long as they've never been written to. 118 */ 119 120 typedef struct vdev_copy_arg { 121 metaslab_t *vca_msp; 122 uint64_t vca_outstanding_bytes; 123 uint64_t vca_read_error_bytes; 124 uint64_t vca_write_error_bytes; 125 kcondvar_t vca_cv; 126 kmutex_t vca_lock; 127 } vdev_copy_arg_t; 128 129 /* 130 * The maximum amount of memory we can use for outstanding i/o while 131 * doing a device removal. This determines how much i/o we can have 132 * in flight concurrently. 133 */ 134 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024; 135 136 /* 137 * The largest contiguous segment that we will attempt to allocate when 138 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If 139 * there is a performance problem with attempting to allocate large blocks, 140 * consider decreasing this. 141 * 142 * See also the accessor function spa_remove_max_segment(). 143 */ 144 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE; 145 146 /* 147 * Ignore hard IO errors during device removal. When set if a device 148 * encounters hard IO error during the removal process the removal will 149 * not be cancelled. This can result in a normally recoverable block 150 * becoming permanently damaged and is not recommended. 151 */ 152 static int zfs_removal_ignore_errors = 0; 153 154 /* 155 * Allow a remap segment to span free chunks of at most this size. The main 156 * impact of a larger span is that we will read and write larger, more 157 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth 158 * for iops. The value here was chosen to align with 159 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular 160 * reads (but there's no reason it has to be the same). 161 * 162 * Additionally, a higher span will have the following relatively minor 163 * effects: 164 * - the mapping will be smaller, since one entry can cover more allocated 165 * segments 166 * - more of the fragmentation in the removing device will be preserved 167 * - we'll do larger allocations, which may fail and fall back on smaller 168 * allocations 169 */ 170 uint_t vdev_removal_max_span = 32 * 1024; 171 172 /* 173 * This is used by the test suite so that it can ensure that certain 174 * actions happen while in the middle of a removal. 175 */ 176 int zfs_removal_suspend_progress = 0; 177 178 #define VDEV_REMOVAL_ZAP_OBJS "lzap" 179 180 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg); 181 static int spa_vdev_remove_cancel_impl(spa_t *spa); 182 183 static void 184 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx) 185 { 186 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset, 187 DMU_POOL_DIRECTORY_OBJECT, 188 DMU_POOL_REMOVING, sizeof (uint64_t), 189 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 190 &spa->spa_removing_phys, tx)); 191 } 192 193 static nvlist_t * 194 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 195 { 196 for (int i = 0; i < count; i++) { 197 uint64_t guid = 198 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID); 199 200 if (guid == target_guid) 201 return (nvpp[i]); 202 } 203 204 return (NULL); 205 } 206 207 static void 208 vdev_activate(vdev_t *vd) 209 { 210 metaslab_group_t *mg = vd->vdev_mg; 211 212 ASSERT(!vd->vdev_islog); 213 ASSERT(vd->vdev_noalloc); 214 215 metaslab_group_activate(mg); 216 metaslab_group_activate(vd->vdev_log_mg); 217 218 vdev_update_nonallocating_space(vd, B_FALSE); 219 220 vd->vdev_noalloc = B_FALSE; 221 } 222 223 static int 224 vdev_passivate(vdev_t *vd, uint64_t *txg) 225 { 226 spa_t *spa = vd->vdev_spa; 227 int error; 228 229 ASSERT(!vd->vdev_noalloc); 230 231 vdev_t *rvd = spa->spa_root_vdev; 232 metaslab_group_t *mg = vd->vdev_mg; 233 metaslab_class_t *normal = spa_normal_class(spa); 234 if (mg->mg_class == normal) { 235 /* 236 * We must check that this is not the only allocating device in 237 * the pool before passivating, otherwise we will not be able 238 * to make progress because we can't allocate from any vdevs. 239 */ 240 boolean_t last = B_TRUE; 241 for (uint64_t id = 0; id < rvd->vdev_children; id++) { 242 vdev_t *cvd = rvd->vdev_child[id]; 243 244 if (cvd == vd || !vdev_is_concrete(cvd) || 245 vdev_is_dead(cvd)) 246 continue; 247 248 metaslab_class_t *mc = cvd->vdev_mg->mg_class; 249 if (mc != normal) 250 continue; 251 252 if (!cvd->vdev_noalloc) { 253 last = B_FALSE; 254 break; 255 } 256 } 257 if (last) 258 return (SET_ERROR(EINVAL)); 259 } 260 261 metaslab_group_passivate(mg); 262 ASSERT(!vd->vdev_islog); 263 metaslab_group_passivate(vd->vdev_log_mg); 264 265 /* 266 * Wait for the youngest allocations and frees to sync, 267 * and then wait for the deferral of those frees to finish. 268 */ 269 spa_vdev_config_exit(spa, NULL, 270 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 271 272 /* 273 * We must ensure that no "stubby" log blocks are allocated 274 * on the device to be removed. These blocks could be 275 * written at any time, including while we are in the middle 276 * of copying them. 277 */ 278 error = spa_reset_logs(spa); 279 280 *txg = spa_vdev_config_enter(spa); 281 282 if (error != 0) { 283 metaslab_group_activate(mg); 284 ASSERT(!vd->vdev_islog); 285 if (vd->vdev_log_mg != NULL) 286 metaslab_group_activate(vd->vdev_log_mg); 287 return (error); 288 } 289 290 vdev_update_nonallocating_space(vd, B_TRUE); 291 vd->vdev_noalloc = B_TRUE; 292 293 return (0); 294 } 295 296 /* 297 * Turn off allocations for a top-level device from the pool. 298 * 299 * Turning off allocations for a top-level device can take a significant 300 * amount of time. As a result we use the spa_vdev_config_[enter/exit] 301 * functions which allow us to grab and release the spa_config_lock while 302 * still holding the namespace lock. During each step the configuration 303 * is synced out. 304 */ 305 int 306 spa_vdev_noalloc(spa_t *spa, uint64_t guid) 307 { 308 vdev_t *vd; 309 uint64_t txg; 310 int error = 0; 311 312 ASSERT(!MUTEX_HELD(&spa_namespace_lock)); 313 ASSERT(spa_writeable(spa)); 314 315 txg = spa_vdev_enter(spa); 316 317 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 318 319 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 320 321 if (vd == NULL) 322 error = SET_ERROR(ENOENT); 323 else if (vd->vdev_mg == NULL) 324 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP); 325 else if (!vd->vdev_noalloc) 326 error = vdev_passivate(vd, &txg); 327 328 if (error == 0) { 329 vdev_dirty_leaves(vd, VDD_DTL, txg); 330 vdev_config_dirty(vd); 331 } 332 333 error = spa_vdev_exit(spa, NULL, txg, error); 334 335 return (error); 336 } 337 338 int 339 spa_vdev_alloc(spa_t *spa, uint64_t guid) 340 { 341 vdev_t *vd; 342 uint64_t txg; 343 int error = 0; 344 345 ASSERT(!MUTEX_HELD(&spa_namespace_lock)); 346 ASSERT(spa_writeable(spa)); 347 348 txg = spa_vdev_enter(spa); 349 350 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 351 352 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 353 354 if (vd == NULL) 355 error = SET_ERROR(ENOENT); 356 else if (vd->vdev_mg == NULL) 357 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP); 358 else if (!vd->vdev_removing) 359 vdev_activate(vd); 360 361 if (error == 0) { 362 vdev_dirty_leaves(vd, VDD_DTL, txg); 363 vdev_config_dirty(vd); 364 } 365 366 (void) spa_vdev_exit(spa, NULL, txg, error); 367 368 return (error); 369 } 370 371 static void 372 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev, 373 int count, nvlist_t *dev_to_remove) 374 { 375 nvlist_t **newdev = NULL; 376 377 if (count > 1) 378 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 379 380 for (int i = 0, j = 0; i < count; i++) { 381 if (dev[i] == dev_to_remove) 382 continue; 383 VERIFY0(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP)); 384 } 385 386 VERIFY0(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY)); 387 fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev, 388 count - 1); 389 390 for (int i = 0; i < count - 1; i++) 391 nvlist_free(newdev[i]); 392 393 if (count > 1) 394 kmem_free(newdev, (count - 1) * sizeof (void *)); 395 } 396 397 static spa_vdev_removal_t * 398 spa_vdev_removal_create(vdev_t *vd) 399 { 400 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP); 401 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL); 402 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL); 403 svr->svr_allocd_segs = zfs_range_tree_create_flags( 404 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 405 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "svr_allocd_segs")); 406 svr->svr_vdev_id = vd->vdev_id; 407 408 for (int i = 0; i < TXG_SIZE; i++) { 409 svr->svr_frees[i] = zfs_range_tree_create_flags( 410 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 411 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "svr_frees")); 412 list_create(&svr->svr_new_segments[i], 413 sizeof (vdev_indirect_mapping_entry_t), 414 offsetof(vdev_indirect_mapping_entry_t, vime_node)); 415 } 416 417 return (svr); 418 } 419 420 void 421 spa_vdev_removal_destroy(spa_vdev_removal_t *svr) 422 { 423 for (int i = 0; i < TXG_SIZE; i++) { 424 ASSERT0(svr->svr_bytes_done[i]); 425 ASSERT0(svr->svr_max_offset_to_sync[i]); 426 zfs_range_tree_destroy(svr->svr_frees[i]); 427 list_destroy(&svr->svr_new_segments[i]); 428 } 429 430 zfs_range_tree_destroy(svr->svr_allocd_segs); 431 mutex_destroy(&svr->svr_lock); 432 cv_destroy(&svr->svr_cv); 433 kmem_free(svr, sizeof (*svr)); 434 } 435 436 /* 437 * This is called as a synctask in the txg in which we will mark this vdev 438 * as removing (in the config stored in the MOS). 439 * 440 * It begins the evacuation of a toplevel vdev by: 441 * - initializing the spa_removing_phys which tracks this removal 442 * - computing the amount of space to remove for accounting purposes 443 * - dirtying all dbufs in the spa_config_object 444 * - creating the spa_vdev_removal 445 * - starting the spa_vdev_remove_thread 446 */ 447 static void 448 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx) 449 { 450 int vdev_id = (uintptr_t)arg; 451 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 452 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 453 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 454 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset; 455 spa_vdev_removal_t *svr = NULL; 456 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx); 457 458 ASSERT0(vdev_get_nparity(vd)); 459 svr = spa_vdev_removal_create(vd); 460 461 ASSERT(vd->vdev_removing); 462 ASSERT0P(vd->vdev_indirect_mapping); 463 464 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 465 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 466 /* 467 * By activating the OBSOLETE_COUNTS feature, we prevent 468 * the pool from being downgraded and ensure that the 469 * refcounts are precise. 470 */ 471 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 472 uint64_t one = 1; 473 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap, 474 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1, 475 &one, tx)); 476 boolean_t are_precise __maybe_unused; 477 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 478 ASSERT3B(are_precise, ==, B_TRUE); 479 } 480 481 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx); 482 vd->vdev_indirect_mapping = 483 vdev_indirect_mapping_open(mos, vic->vic_mapping_object); 484 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx); 485 vd->vdev_indirect_births = 486 vdev_indirect_births_open(mos, vic->vic_births_object); 487 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id; 488 spa->spa_removing_phys.sr_start_time = gethrestime_sec(); 489 spa->spa_removing_phys.sr_end_time = 0; 490 spa->spa_removing_phys.sr_state = DSS_SCANNING; 491 spa->spa_removing_phys.sr_to_copy = 0; 492 spa->spa_removing_phys.sr_copied = 0; 493 494 /* 495 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because 496 * there may be space in the defer tree, which is free, but still 497 * counted in vs_alloc. 498 */ 499 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 500 metaslab_t *ms = vd->vdev_ms[i]; 501 if (ms->ms_sm == NULL) 502 continue; 503 504 spa->spa_removing_phys.sr_to_copy += 505 metaslab_allocated_space(ms); 506 507 /* 508 * Space which we are freeing this txg does not need to 509 * be copied. 510 */ 511 spa->spa_removing_phys.sr_to_copy -= 512 zfs_range_tree_space(ms->ms_freeing); 513 514 ASSERT0(zfs_range_tree_space(ms->ms_freed)); 515 for (int t = 0; t < TXG_SIZE; t++) 516 ASSERT0(zfs_range_tree_space(ms->ms_allocating[t])); 517 } 518 519 /* 520 * Sync tasks are called before metaslab_sync(), so there should 521 * be no already-synced metaslabs in the TXG_CLEAN list. 522 */ 523 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL); 524 525 spa_sync_removing_state(spa, tx); 526 527 /* 528 * All blocks that we need to read the most recent mapping must be 529 * stored on concrete vdevs. Therefore, we must dirty anything that 530 * is read before spa_remove_init(). Specifically, the 531 * spa_config_object. (Note that although we already modified the 532 * spa_config_object in spa_sync_removing_state, that may not have 533 * modified all blocks of the object.) 534 */ 535 dmu_object_info_t doi; 536 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi)); 537 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) { 538 dmu_buf_t *dbuf; 539 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT, 540 offset, FTAG, &dbuf, 0)); 541 dmu_buf_will_dirty(dbuf, tx); 542 offset += dbuf->db_size; 543 dmu_buf_rele(dbuf, FTAG); 544 } 545 546 /* 547 * Now that we've allocated the im_object, dirty the vdev to ensure 548 * that the object gets written to the config on disk. 549 */ 550 vdev_config_dirty(vd); 551 552 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu " 553 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd, 554 (u_longlong_t)dmu_tx_get_txg(tx), 555 (u_longlong_t)vic->vic_mapping_object); 556 557 spa_history_log_internal(spa, "vdev remove started", tx, 558 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id, 559 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 560 /* 561 * Setting spa_vdev_removal causes subsequent frees to call 562 * free_from_removing_vdev(). Note that we don't need any locking 563 * because we are the sync thread, and metaslab_free_impl() is only 564 * called from syncing context (potentially from a zio taskq thread, 565 * but in any case only when there are outstanding free i/os, which 566 * there are not). 567 */ 568 ASSERT0P(spa->spa_vdev_removal); 569 spa->spa_vdev_removal = svr; 570 svr->svr_thread = thread_create(NULL, 0, 571 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri); 572 } 573 574 /* 575 * When we are opening a pool, we must read the mapping for each 576 * indirect vdev in order from most recently removed to least 577 * recently removed. We do this because the blocks for the mapping 578 * of older indirect vdevs may be stored on more recently removed vdevs. 579 * In order to read each indirect mapping object, we must have 580 * initialized all more recently removed vdevs. 581 */ 582 int 583 spa_remove_init(spa_t *spa) 584 { 585 int error; 586 587 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset, 588 DMU_POOL_DIRECTORY_OBJECT, 589 DMU_POOL_REMOVING, sizeof (uint64_t), 590 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 591 &spa->spa_removing_phys); 592 593 if (error == ENOENT) { 594 spa->spa_removing_phys.sr_state = DSS_NONE; 595 spa->spa_removing_phys.sr_removing_vdev = -1; 596 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 597 spa->spa_indirect_vdevs_loaded = B_TRUE; 598 return (0); 599 } else if (error != 0) { 600 return (error); 601 } 602 603 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) { 604 /* 605 * We are currently removing a vdev. Create and 606 * initialize a spa_vdev_removal_t from the bonus 607 * buffer of the removing vdevs vdev_im_object, and 608 * initialize its partial mapping. 609 */ 610 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 611 vdev_t *vd = vdev_lookup_top(spa, 612 spa->spa_removing_phys.sr_removing_vdev); 613 614 if (vd == NULL) { 615 spa_config_exit(spa, SCL_STATE, FTAG); 616 return (EINVAL); 617 } 618 619 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 620 621 ASSERT(vdev_is_concrete(vd)); 622 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd); 623 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id); 624 ASSERT(vd->vdev_removing); 625 626 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 627 spa->spa_meta_objset, vic->vic_mapping_object); 628 vd->vdev_indirect_births = vdev_indirect_births_open( 629 spa->spa_meta_objset, vic->vic_births_object); 630 spa_config_exit(spa, SCL_STATE, FTAG); 631 632 spa->spa_vdev_removal = svr; 633 } 634 635 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 636 uint64_t indirect_vdev_id = 637 spa->spa_removing_phys.sr_prev_indirect_vdev; 638 while (indirect_vdev_id != UINT64_MAX) { 639 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id); 640 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 641 642 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 643 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 644 spa->spa_meta_objset, vic->vic_mapping_object); 645 vd->vdev_indirect_births = vdev_indirect_births_open( 646 spa->spa_meta_objset, vic->vic_births_object); 647 648 indirect_vdev_id = vic->vic_prev_indirect_vdev; 649 } 650 spa_config_exit(spa, SCL_STATE, FTAG); 651 652 /* 653 * Now that we've loaded all the indirect mappings, we can allow 654 * reads from other blocks (e.g. via predictive prefetch). 655 */ 656 spa->spa_indirect_vdevs_loaded = B_TRUE; 657 return (0); 658 } 659 660 void 661 spa_restart_removal(spa_t *spa) 662 { 663 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 664 665 if (svr == NULL) 666 return; 667 668 /* 669 * In general when this function is called there is no 670 * removal thread running. The only scenario where this 671 * is not true is during spa_import() where this function 672 * is called twice [once from spa_import_impl() and 673 * spa_async_resume()]. Thus, in the scenario where we 674 * import a pool that has an ongoing removal we don't 675 * want to spawn a second thread. 676 */ 677 if (svr->svr_thread != NULL) 678 return; 679 680 if (!spa_writeable(spa)) 681 return; 682 683 zfs_dbgmsg("restarting removal of %llu", 684 (u_longlong_t)svr->svr_vdev_id); 685 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa, 686 0, &p0, TS_RUN, minclsyspri); 687 } 688 689 /* 690 * Process freeing from a device which is in the middle of being removed. 691 * We must handle this carefully so that we attempt to copy freed data, 692 * and we correctly free already-copied data. 693 */ 694 void 695 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size) 696 { 697 spa_t *spa = vd->vdev_spa; 698 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 699 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 700 uint64_t txg = spa_syncing_txg(spa); 701 uint64_t max_offset_yet = 0; 702 703 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 704 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==, 705 vdev_indirect_mapping_object(vim)); 706 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id); 707 708 mutex_enter(&svr->svr_lock); 709 710 /* 711 * Remove the segment from the removing vdev's spacemap. This 712 * ensures that we will not attempt to copy this space (if the 713 * removal thread has not yet visited it), and also ensures 714 * that we know what is actually allocated on the new vdevs 715 * (needed if we cancel the removal). 716 * 717 * Note: we must do the metaslab_free_concrete() with the svr_lock 718 * held, so that the remove_thread can not load this metaslab and then 719 * visit this offset between the time that we metaslab_free_concrete() 720 * and when we check to see if it has been visited. 721 * 722 * Note: The checkpoint flag is set to false as having/taking 723 * a checkpoint and removing a device can't happen at the same 724 * time. 725 */ 726 ASSERT(!spa_has_checkpoint(spa)); 727 metaslab_free_concrete(vd, offset, size, B_FALSE); 728 729 uint64_t synced_size = 0; 730 uint64_t synced_offset = 0; 731 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim); 732 if (offset < max_offset_synced) { 733 /* 734 * The mapping for this offset is already on disk. 735 * Free from the new location. 736 * 737 * Note that we use svr_max_synced_offset because it is 738 * updated atomically with respect to the in-core mapping. 739 * By contrast, vim_max_offset is not. 740 * 741 * This block may be split between a synced entry and an 742 * in-flight or unvisited entry. Only process the synced 743 * portion of it here. 744 */ 745 synced_size = MIN(size, max_offset_synced - offset); 746 synced_offset = offset; 747 748 ASSERT3U(max_offset_yet, <=, max_offset_synced); 749 max_offset_yet = max_offset_synced; 750 751 DTRACE_PROBE3(remove__free__synced, 752 spa_t *, spa, 753 uint64_t, offset, 754 uint64_t, synced_size); 755 756 size -= synced_size; 757 offset += synced_size; 758 } 759 760 /* 761 * Look at all in-flight txgs starting from the currently syncing one 762 * and see if a section of this free is being copied. By starting from 763 * this txg and iterating forward, we might find that this region 764 * was copied in two different txgs and handle it appropriately. 765 */ 766 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) { 767 int txgoff = (txg + i) & TXG_MASK; 768 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) { 769 /* 770 * The mapping for this offset is in flight, and 771 * will be synced in txg+i. 772 */ 773 uint64_t inflight_size = MIN(size, 774 svr->svr_max_offset_to_sync[txgoff] - offset); 775 776 DTRACE_PROBE4(remove__free__inflight, 777 spa_t *, spa, 778 uint64_t, offset, 779 uint64_t, inflight_size, 780 uint64_t, txg + i); 781 782 /* 783 * We copy data in order of increasing offset. 784 * Therefore the max_offset_to_sync[] must increase 785 * (or be zero, indicating that nothing is being 786 * copied in that txg). 787 */ 788 if (svr->svr_max_offset_to_sync[txgoff] != 0) { 789 ASSERT3U(svr->svr_max_offset_to_sync[txgoff], 790 >=, max_offset_yet); 791 max_offset_yet = 792 svr->svr_max_offset_to_sync[txgoff]; 793 } 794 795 /* 796 * We've already committed to copying this segment: 797 * we have allocated space elsewhere in the pool for 798 * it and have an IO outstanding to copy the data. We 799 * cannot free the space before the copy has 800 * completed, or else the copy IO might overwrite any 801 * new data. To free that space, we record the 802 * segment in the appropriate svr_frees tree and free 803 * the mapped space later, in the txg where we have 804 * completed the copy and synced the mapping (see 805 * vdev_mapping_sync). 806 */ 807 zfs_range_tree_add(svr->svr_frees[txgoff], 808 offset, inflight_size); 809 size -= inflight_size; 810 offset += inflight_size; 811 812 /* 813 * This space is already accounted for as being 814 * done, because it is being copied in txg+i. 815 * However, if i!=0, then it is being copied in 816 * a future txg. If we crash after this txg 817 * syncs but before txg+i syncs, then the space 818 * will be free. Therefore we must account 819 * for the space being done in *this* txg 820 * (when it is freed) rather than the future txg 821 * (when it will be copied). 822 */ 823 ASSERT3U(svr->svr_bytes_done[txgoff], >=, 824 inflight_size); 825 svr->svr_bytes_done[txgoff] -= inflight_size; 826 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size; 827 } 828 } 829 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]); 830 831 if (size > 0) { 832 /* 833 * The copy thread has not yet visited this offset. Ensure 834 * that it doesn't. 835 */ 836 837 DTRACE_PROBE3(remove__free__unvisited, 838 spa_t *, spa, 839 uint64_t, offset, 840 uint64_t, size); 841 842 if (svr->svr_allocd_segs != NULL) 843 zfs_range_tree_clear(svr->svr_allocd_segs, offset, 844 size); 845 846 /* 847 * Since we now do not need to copy this data, for 848 * accounting purposes we have done our job and can count 849 * it as completed. 850 */ 851 svr->svr_bytes_done[txg & TXG_MASK] += size; 852 } 853 mutex_exit(&svr->svr_lock); 854 855 /* 856 * Now that we have dropped svr_lock, process the synced portion 857 * of this free. 858 */ 859 if (synced_size > 0) { 860 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size); 861 862 /* 863 * Note: this can only be called from syncing context, 864 * and the vdev_indirect_mapping is only changed from the 865 * sync thread, so we don't need svr_lock while doing 866 * metaslab_free_impl_cb. 867 */ 868 boolean_t checkpoint = B_FALSE; 869 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size, 870 metaslab_free_impl_cb, &checkpoint); 871 } 872 } 873 874 /* 875 * Stop an active removal and update the spa_removing phys. 876 */ 877 static void 878 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx) 879 { 880 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 881 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa)); 882 883 /* Ensure the removal thread has completed before we free the svr. */ 884 spa_vdev_remove_suspend(spa); 885 886 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED); 887 888 if (state == DSS_FINISHED) { 889 spa_removing_phys_t *srp = &spa->spa_removing_phys; 890 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 891 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 892 893 if (srp->sr_prev_indirect_vdev != -1) { 894 vdev_t *pvd; 895 pvd = vdev_lookup_top(spa, 896 srp->sr_prev_indirect_vdev); 897 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops); 898 } 899 900 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev; 901 srp->sr_prev_indirect_vdev = vd->vdev_id; 902 } 903 spa->spa_removing_phys.sr_state = state; 904 spa->spa_removing_phys.sr_end_time = gethrestime_sec(); 905 906 spa->spa_vdev_removal = NULL; 907 spa_vdev_removal_destroy(svr); 908 909 spa_sync_removing_state(spa, tx); 910 spa_notify_waiters(spa); 911 912 vdev_config_dirty(spa->spa_root_vdev); 913 } 914 915 static void 916 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size) 917 { 918 vdev_t *vd = arg; 919 vdev_indirect_mark_obsolete(vd, offset, size); 920 boolean_t checkpoint = B_FALSE; 921 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 922 metaslab_free_impl_cb, &checkpoint); 923 } 924 925 /* 926 * On behalf of the removal thread, syncs an incremental bit more of 927 * the indirect mapping to disk and updates the in-memory mapping. 928 * Called as a sync task in every txg that the removal thread makes progress. 929 */ 930 static void 931 vdev_mapping_sync(void *arg, dmu_tx_t *tx) 932 { 933 spa_vdev_removal_t *svr = arg; 934 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 935 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 936 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config; 937 uint64_t txg = dmu_tx_get_txg(tx); 938 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 939 940 ASSERT(vic->vic_mapping_object != 0); 941 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 942 943 vdev_indirect_mapping_add_entries(vim, 944 &svr->svr_new_segments[txg & TXG_MASK], tx); 945 vdev_indirect_births_add_entry(vd->vdev_indirect_births, 946 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx); 947 948 /* 949 * Free the copied data for anything that was freed while the 950 * mapping entries were in flight. 951 */ 952 mutex_enter(&svr->svr_lock); 953 zfs_range_tree_vacate(svr->svr_frees[txg & TXG_MASK], 954 free_mapped_segment_cb, vd); 955 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=, 956 vdev_indirect_mapping_max_offset(vim)); 957 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0; 958 mutex_exit(&svr->svr_lock); 959 960 spa_sync_removing_state(spa, tx); 961 } 962 963 typedef struct vdev_copy_segment_arg { 964 spa_t *vcsa_spa; 965 dva_t *vcsa_dest_dva; 966 uint64_t vcsa_txg; 967 zfs_range_tree_t *vcsa_obsolete_segs; 968 } vdev_copy_segment_arg_t; 969 970 static void 971 unalloc_seg(void *arg, uint64_t start, uint64_t size) 972 { 973 vdev_copy_segment_arg_t *vcsa = arg; 974 spa_t *spa = vcsa->vcsa_spa; 975 blkptr_t bp = { { { {0} } } }; 976 977 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL); 978 BP_SET_LSIZE(&bp, size); 979 BP_SET_PSIZE(&bp, size); 980 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 981 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF); 982 BP_SET_TYPE(&bp, DMU_OT_NONE); 983 BP_SET_LEVEL(&bp, 0); 984 BP_SET_DEDUP(&bp, 0); 985 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER); 986 987 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva)); 988 DVA_SET_OFFSET(&bp.blk_dva[0], 989 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start); 990 DVA_SET_ASIZE(&bp.blk_dva[0], size); 991 992 zio_free(spa, vcsa->vcsa_txg, &bp); 993 } 994 995 /* 996 * All reads and writes associated with a call to spa_vdev_copy_segment() 997 * are done. 998 */ 999 static void 1000 spa_vdev_copy_segment_done(zio_t *zio) 1001 { 1002 vdev_copy_segment_arg_t *vcsa = zio->io_private; 1003 1004 zfs_range_tree_vacate(vcsa->vcsa_obsolete_segs, 1005 unalloc_seg, vcsa); 1006 zfs_range_tree_destroy(vcsa->vcsa_obsolete_segs); 1007 kmem_free(vcsa, sizeof (*vcsa)); 1008 1009 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa); 1010 } 1011 1012 /* 1013 * The write of the new location is done. 1014 */ 1015 static void 1016 spa_vdev_copy_segment_write_done(zio_t *zio) 1017 { 1018 vdev_copy_arg_t *vca = zio->io_private; 1019 1020 abd_free(zio->io_abd); 1021 1022 mutex_enter(&vca->vca_lock); 1023 vca->vca_outstanding_bytes -= zio->io_size; 1024 1025 if (zio->io_error != 0) 1026 vca->vca_write_error_bytes += zio->io_size; 1027 1028 cv_signal(&vca->vca_cv); 1029 mutex_exit(&vca->vca_lock); 1030 } 1031 1032 /* 1033 * The read of the old location is done. The parent zio is the write to 1034 * the new location. Allow it to start. 1035 */ 1036 static void 1037 spa_vdev_copy_segment_read_done(zio_t *zio) 1038 { 1039 vdev_copy_arg_t *vca = zio->io_private; 1040 1041 if (zio->io_error != 0) { 1042 mutex_enter(&vca->vca_lock); 1043 vca->vca_read_error_bytes += zio->io_size; 1044 mutex_exit(&vca->vca_lock); 1045 } 1046 1047 zio_nowait(zio_unique_parent(zio)); 1048 } 1049 1050 /* 1051 * If the old and new vdevs are mirrors, we will read both sides of the old 1052 * mirror, and write each copy to the corresponding side of the new mirror. 1053 * If the old and new vdevs have a different number of children, we will do 1054 * this as best as possible. Since we aren't verifying checksums, this 1055 * ensures that as long as there's a good copy of the data, we'll have a 1056 * good copy after the removal, even if there's silent damage to one side 1057 * of the mirror. If we're removing a mirror that has some silent damage, 1058 * we'll have exactly the same damage in the new location (assuming that 1059 * the new location is also a mirror). 1060 * 1061 * We accomplish this by creating a tree of zio_t's, with as many writes as 1062 * there are "children" of the new vdev (a non-redundant vdev counts as one 1063 * child, a 2-way mirror has 2 children, etc). Each write has an associated 1064 * read from a child of the old vdev. Typically there will be the same 1065 * number of children of the old and new vdevs. However, if there are more 1066 * children of the new vdev, some child(ren) of the old vdev will be issued 1067 * multiple reads. If there are more children of the old vdev, some copies 1068 * will be dropped. 1069 * 1070 * For example, the tree of zio_t's for a 2-way mirror is: 1071 * 1072 * null 1073 * / \ 1074 * write(new vdev, child 0) write(new vdev, child 1) 1075 * | | 1076 * read(old vdev, child 0) read(old vdev, child 1) 1077 * 1078 * Child zio's complete before their parents complete. However, zio's 1079 * created with zio_vdev_child_io() may be issued before their children 1080 * complete. In this case we need to make sure that the children (reads) 1081 * complete before the parents (writes) are *issued*. We do this by not 1082 * calling zio_nowait() on each write until its corresponding read has 1083 * completed. 1084 * 1085 * The spa_config_lock must be held while zio's created by 1086 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does 1087 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null" 1088 * zio is needed to release the spa_config_lock after all the reads and 1089 * writes complete. (Note that we can't grab the config lock for each read, 1090 * because it is not reentrant - we could deadlock with a thread waiting 1091 * for a write lock.) 1092 */ 1093 static void 1094 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio, 1095 vdev_t *source_vd, uint64_t source_offset, 1096 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size) 1097 { 1098 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0); 1099 1100 /* 1101 * If the destination child in unwritable then there is no point 1102 * in issuing the source reads which cannot be written. 1103 */ 1104 if (!vdev_writeable(dest_child_vd)) 1105 return; 1106 1107 mutex_enter(&vca->vca_lock); 1108 vca->vca_outstanding_bytes += size; 1109 mutex_exit(&vca->vca_lock); 1110 1111 abd_t *abd = abd_alloc_for_io(size, B_FALSE); 1112 1113 vdev_t *source_child_vd = NULL; 1114 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) { 1115 /* 1116 * Source and dest are both mirrors. Copy from the same 1117 * child id as we are copying to (wrapping around if there 1118 * are more dest children than source children). If the 1119 * preferred source child is unreadable select another. 1120 */ 1121 for (int i = 0; i < source_vd->vdev_children; i++) { 1122 source_child_vd = source_vd->vdev_child[ 1123 (dest_id + i) % source_vd->vdev_children]; 1124 if (vdev_readable(source_child_vd)) 1125 break; 1126 } 1127 } else { 1128 source_child_vd = source_vd; 1129 } 1130 1131 /* 1132 * There should always be at least one readable source child or 1133 * the pool would be in a suspended state. Somehow selecting an 1134 * unreadable child would result in IO errors, the removal process 1135 * being cancelled, and the pool reverting to its pre-removal state. 1136 */ 1137 ASSERT3P(source_child_vd, !=, NULL); 1138 1139 zio_t *write_zio = zio_vdev_child_io(nzio, NULL, 1140 dest_child_vd, dest_offset, abd, size, 1141 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL, 1142 ZIO_FLAG_CANFAIL, 1143 spa_vdev_copy_segment_write_done, vca); 1144 1145 zio_nowait(zio_vdev_child_io(write_zio, NULL, 1146 source_child_vd, source_offset, abd, size, 1147 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL, 1148 ZIO_FLAG_CANFAIL, 1149 spa_vdev_copy_segment_read_done, vca)); 1150 } 1151 1152 /* 1153 * Allocate a new location for this segment, and create the zio_t's to 1154 * read from the old location and write to the new location. 1155 */ 1156 static int 1157 spa_vdev_copy_segment(vdev_t *vd, zfs_range_tree_t *segs, 1158 uint64_t maxalloc, uint64_t txg, 1159 vdev_copy_arg_t *vca, zio_alloc_list_t *zal) 1160 { 1161 metaslab_group_t *mg = vd->vdev_mg; 1162 spa_t *spa = vd->vdev_spa; 1163 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1164 vdev_indirect_mapping_entry_t *entry; 1165 dva_t dst = {{ 0 }}; 1166 uint64_t start = zfs_range_tree_min(segs); 1167 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift)); 1168 1169 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE); 1170 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift)); 1171 1172 uint64_t size = zfs_range_tree_span(segs); 1173 if (zfs_range_tree_span(segs) > maxalloc) { 1174 /* 1175 * We can't allocate all the segments. Prefer to end 1176 * the allocation at the end of a segment, thus avoiding 1177 * additional split blocks. 1178 */ 1179 zfs_range_seg_max_t search; 1180 zfs_btree_index_t where; 1181 zfs_rs_set_start(&search, segs, start + maxalloc); 1182 zfs_rs_set_end(&search, segs, start + maxalloc); 1183 (void) zfs_btree_find(&segs->rt_root, &search, &where); 1184 zfs_range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where, 1185 &where); 1186 if (rs != NULL) { 1187 size = zfs_rs_get_end(rs, segs) - start; 1188 } else { 1189 /* 1190 * There are no segments that end before maxalloc. 1191 * I.e. the first segment is larger than maxalloc, 1192 * so we must split it. 1193 */ 1194 size = maxalloc; 1195 } 1196 } 1197 ASSERT3U(size, <=, maxalloc); 1198 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift)); 1199 1200 /* 1201 * An allocation class might not have any remaining vdevs or space 1202 */ 1203 metaslab_class_t *mc = mg->mg_class; 1204 if (mc->mc_groups == 0) 1205 mc = spa_normal_class(spa); 1206 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 1207 0, zal, 0); 1208 if (error == ENOSPC && mc != spa_normal_class(spa)) { 1209 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size, 1210 &dst, 0, NULL, txg, 0, zal, 0); 1211 } 1212 if (error != 0) 1213 return (error); 1214 1215 /* 1216 * Determine the ranges that are not actually needed. Offsets are 1217 * relative to the start of the range to be copied (i.e. relative to the 1218 * local variable "start"). 1219 */ 1220 zfs_range_tree_t *obsolete_segs = zfs_range_tree_create_flags( 1221 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 1222 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "obsolete_segs")); 1223 1224 zfs_btree_index_t where; 1225 zfs_range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where); 1226 ASSERT3U(zfs_rs_get_start(rs, segs), ==, start); 1227 uint64_t prev_seg_end = zfs_rs_get_end(rs, segs); 1228 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) { 1229 if (zfs_rs_get_start(rs, segs) >= start + size) { 1230 break; 1231 } else { 1232 zfs_range_tree_add(obsolete_segs, 1233 prev_seg_end - start, 1234 zfs_rs_get_start(rs, segs) - prev_seg_end); 1235 } 1236 prev_seg_end = zfs_rs_get_end(rs, segs); 1237 } 1238 /* We don't end in the middle of an obsolete range */ 1239 ASSERT3U(start + size, <=, prev_seg_end); 1240 1241 zfs_range_tree_clear(segs, start, size); 1242 1243 /* 1244 * We can't have any padding of the allocated size, otherwise we will 1245 * misunderstand what's allocated, and the size of the mapping. We 1246 * prevent padding by ensuring that all devices in the pool have the 1247 * same ashift, and the allocation size is a multiple of the ashift. 1248 */ 1249 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size); 1250 1251 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP); 1252 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start); 1253 entry->vime_mapping.vimep_dst = dst; 1254 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 1255 entry->vime_obsolete_count = 1256 zfs_range_tree_space(obsolete_segs); 1257 } 1258 1259 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP); 1260 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst; 1261 vcsa->vcsa_obsolete_segs = obsolete_segs; 1262 vcsa->vcsa_spa = spa; 1263 vcsa->vcsa_txg = txg; 1264 1265 /* 1266 * See comment before spa_vdev_copy_one_child(). 1267 */ 1268 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1269 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL, 1270 spa_vdev_copy_segment_done, vcsa, 0); 1271 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst)); 1272 if (dest_vd->vdev_ops == &vdev_mirror_ops) { 1273 for (int i = 0; i < dest_vd->vdev_children; i++) { 1274 vdev_t *child = dest_vd->vdev_child[i]; 1275 spa_vdev_copy_one_child(vca, nzio, vd, start, 1276 child, DVA_GET_OFFSET(&dst), i, size); 1277 } 1278 } else { 1279 spa_vdev_copy_one_child(vca, nzio, vd, start, 1280 dest_vd, DVA_GET_OFFSET(&dst), -1, size); 1281 } 1282 zio_nowait(nzio); 1283 1284 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry); 1285 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift); 1286 vdev_dirty(vd, 0, NULL, txg); 1287 1288 return (0); 1289 } 1290 1291 /* 1292 * Complete the removal of a toplevel vdev. This is called as a 1293 * synctask in the same txg that we will sync out the new config (to the 1294 * MOS object) which indicates that this vdev is indirect. 1295 */ 1296 static void 1297 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx) 1298 { 1299 spa_vdev_removal_t *svr = arg; 1300 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1301 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1302 1303 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 1304 1305 for (int i = 0; i < TXG_SIZE; i++) { 1306 ASSERT0(svr->svr_bytes_done[i]); 1307 } 1308 1309 ASSERT3U(spa->spa_removing_phys.sr_copied, ==, 1310 spa->spa_removing_phys.sr_to_copy); 1311 1312 vdev_destroy_spacemaps(vd, tx); 1313 1314 /* destroy leaf zaps, if any */ 1315 ASSERT3P(svr->svr_zaplist, !=, NULL); 1316 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL); 1317 pair != NULL; 1318 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) { 1319 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx); 1320 } 1321 fnvlist_free(svr->svr_zaplist); 1322 1323 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx); 1324 /* vd->vdev_path is not available here */ 1325 spa_history_log_internal(spa, "vdev remove completed", tx, 1326 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id); 1327 } 1328 1329 static void 1330 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist) 1331 { 1332 ASSERT3P(zlist, !=, NULL); 1333 ASSERT0(vdev_get_nparity(vd)); 1334 1335 if (vd->vdev_leaf_zap != 0) { 1336 char zkey[32]; 1337 (void) snprintf(zkey, sizeof (zkey), "%s-%llu", 1338 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap); 1339 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap); 1340 } 1341 1342 for (uint64_t id = 0; id < vd->vdev_children; id++) { 1343 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist); 1344 } 1345 } 1346 1347 static void 1348 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg) 1349 { 1350 vdev_t *ivd; 1351 dmu_tx_t *tx; 1352 spa_t *spa = vd->vdev_spa; 1353 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1354 1355 /* 1356 * First, build a list of leaf zaps to be destroyed. 1357 * This is passed to the sync context thread, 1358 * which does the actual unlinking. 1359 */ 1360 svr->svr_zaplist = fnvlist_alloc(); 1361 vdev_remove_enlist_zaps(vd, svr->svr_zaplist); 1362 1363 ivd = vdev_add_parent(vd, &vdev_indirect_ops); 1364 ivd->vdev_removing = 0; 1365 1366 vd->vdev_leaf_zap = 0; 1367 1368 vdev_remove_child(ivd, vd); 1369 vdev_compact_children(ivd); 1370 1371 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1372 1373 mutex_enter(&svr->svr_lock); 1374 svr->svr_thread = NULL; 1375 cv_broadcast(&svr->svr_cv); 1376 mutex_exit(&svr->svr_lock); 1377 1378 /* After this, we can not use svr. */ 1379 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1380 dsl_sync_task_nowait(spa->spa_dsl_pool, 1381 vdev_remove_complete_sync, svr, tx); 1382 dmu_tx_commit(tx); 1383 } 1384 1385 /* 1386 * Complete the removal of a toplevel vdev. This is called in open 1387 * context by the removal thread after we have copied all vdev's data. 1388 */ 1389 static void 1390 vdev_remove_complete(spa_t *spa) 1391 { 1392 uint64_t txg; 1393 1394 /* 1395 * Wait for any deferred frees to be synced before we call 1396 * vdev_metaslab_fini() 1397 */ 1398 txg_wait_synced(spa->spa_dsl_pool, 0); 1399 txg = spa_vdev_enter(spa); 1400 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1401 ASSERT0P(vd->vdev_initialize_thread); 1402 ASSERT0P(vd->vdev_trim_thread); 1403 ASSERT0P(vd->vdev_autotrim_thread); 1404 vdev_rebuild_stop_wait(vd); 1405 ASSERT0P(vd->vdev_rebuild_thread); 1406 1407 sysevent_t *ev = spa_event_create(spa, vd, NULL, 1408 ESC_ZFS_VDEV_REMOVE_DEV); 1409 1410 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu", 1411 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg); 1412 1413 /* the vdev is no longer part of the dspace */ 1414 vdev_update_nonallocating_space(vd, B_FALSE); 1415 1416 /* 1417 * Discard allocation state. 1418 */ 1419 if (vd->vdev_mg != NULL) { 1420 vdev_metaslab_fini(vd); 1421 metaslab_group_destroy(vd->vdev_mg); 1422 vd->vdev_mg = NULL; 1423 } 1424 if (vd->vdev_log_mg != NULL) { 1425 ASSERT0(vd->vdev_ms_count); 1426 metaslab_group_destroy(vd->vdev_log_mg); 1427 vd->vdev_log_mg = NULL; 1428 } 1429 ASSERT0(vd->vdev_stat.vs_space); 1430 ASSERT0(vd->vdev_stat.vs_dspace); 1431 1432 vdev_remove_replace_with_indirect(vd, txg); 1433 1434 /* 1435 * We now release the locks, allowing spa_sync to run and finish the 1436 * removal via vdev_remove_complete_sync in syncing context. 1437 * 1438 * Note that we hold on to the vdev_t that has been replaced. Since 1439 * it isn't part of the vdev tree any longer, it can't be concurrently 1440 * manipulated, even while we don't have the config lock. 1441 */ 1442 (void) spa_vdev_exit(spa, NULL, txg, 0); 1443 1444 /* 1445 * Top ZAP should have been transferred to the indirect vdev in 1446 * vdev_remove_replace_with_indirect. 1447 */ 1448 ASSERT0(vd->vdev_top_zap); 1449 1450 /* 1451 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect. 1452 */ 1453 ASSERT0(vd->vdev_leaf_zap); 1454 1455 txg = spa_vdev_enter(spa); 1456 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1457 /* 1458 * Request to update the config and the config cachefile. 1459 */ 1460 vdev_config_dirty(spa->spa_root_vdev); 1461 (void) spa_vdev_exit(spa, vd, txg, 0); 1462 1463 if (ev != NULL) 1464 spa_event_post(ev); 1465 } 1466 1467 /* 1468 * Evacuates a segment of size at most max_alloc from the vdev 1469 * via repeated calls to spa_vdev_copy_segment. If an allocation 1470 * fails, the pool is probably too fragmented to handle such a 1471 * large size, so decrease max_alloc so that the caller will not try 1472 * this size again this txg. 1473 */ 1474 static void 1475 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca, 1476 uint64_t *max_alloc, dmu_tx_t *tx) 1477 { 1478 uint64_t txg = dmu_tx_get_txg(tx); 1479 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1480 1481 mutex_enter(&svr->svr_lock); 1482 1483 /* 1484 * Determine how big of a chunk to copy. We can allocate up 1485 * to max_alloc bytes, and we can span up to vdev_removal_max_span 1486 * bytes of unallocated space at a time. "segs" will track the 1487 * allocated segments that we are copying. We may also be copying 1488 * free segments (of up to vdev_removal_max_span bytes). 1489 */ 1490 zfs_range_tree_t *segs = zfs_range_tree_create_flags( 1491 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 1492 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "spa_vdev_copy_impl:segs")); 1493 for (;;) { 1494 zfs_range_tree_t *rt = svr->svr_allocd_segs; 1495 zfs_range_seg_t *rs = zfs_range_tree_first(rt); 1496 1497 if (rs == NULL) 1498 break; 1499 1500 uint64_t seg_length; 1501 1502 if (zfs_range_tree_is_empty(segs)) { 1503 /* need to truncate the first seg based on max_alloc */ 1504 seg_length = MIN(zfs_rs_get_end(rs, rt) - 1505 zfs_rs_get_start(rs, rt), *max_alloc); 1506 } else { 1507 if (zfs_rs_get_start(rs, rt) - zfs_range_tree_max(segs) 1508 > vdev_removal_max_span) { 1509 /* 1510 * Including this segment would cause us to 1511 * copy a larger unneeded chunk than is allowed. 1512 */ 1513 break; 1514 } else if (zfs_rs_get_end(rs, rt) - 1515 zfs_range_tree_min(segs) > *max_alloc) { 1516 /* 1517 * This additional segment would extend past 1518 * max_alloc. Rather than splitting this 1519 * segment, leave it for the next mapping. 1520 */ 1521 break; 1522 } else { 1523 seg_length = zfs_rs_get_end(rs, rt) - 1524 zfs_rs_get_start(rs, rt); 1525 } 1526 } 1527 1528 zfs_range_tree_add(segs, zfs_rs_get_start(rs, rt), seg_length); 1529 zfs_range_tree_remove(svr->svr_allocd_segs, 1530 zfs_rs_get_start(rs, rt), seg_length); 1531 } 1532 1533 if (zfs_range_tree_is_empty(segs)) { 1534 mutex_exit(&svr->svr_lock); 1535 zfs_range_tree_destroy(segs); 1536 return; 1537 } 1538 1539 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) { 1540 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync, 1541 svr, tx); 1542 } 1543 1544 svr->svr_max_offset_to_sync[txg & TXG_MASK] = zfs_range_tree_max(segs); 1545 1546 /* 1547 * Note: this is the amount of *allocated* space 1548 * that we are taking care of each txg. 1549 */ 1550 svr->svr_bytes_done[txg & TXG_MASK] += zfs_range_tree_space(segs); 1551 1552 mutex_exit(&svr->svr_lock); 1553 1554 zio_alloc_list_t zal; 1555 metaslab_trace_init(&zal); 1556 uint64_t thismax = SPA_MAXBLOCKSIZE; 1557 while (!zfs_range_tree_is_empty(segs)) { 1558 int error = spa_vdev_copy_segment(vd, 1559 segs, thismax, txg, vca, &zal); 1560 1561 if (error == ENOSPC) { 1562 /* 1563 * Cut our segment in half, and don't try this 1564 * segment size again this txg. Note that the 1565 * allocation size must be aligned to the highest 1566 * ashift in the pool, so that the allocation will 1567 * not be padded out to a multiple of the ashift, 1568 * which could cause us to think that this mapping 1569 * is larger than we intended. 1570 */ 1571 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT); 1572 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift); 1573 uint64_t attempted = 1574 MIN(zfs_range_tree_span(segs), thismax); 1575 thismax = P2ROUNDUP(attempted / 2, 1576 1 << spa->spa_max_ashift); 1577 /* 1578 * The minimum-size allocation can not fail. 1579 */ 1580 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift); 1581 *max_alloc = attempted - (1 << spa->spa_max_ashift); 1582 } else { 1583 ASSERT0(error); 1584 1585 /* 1586 * We've performed an allocation, so reset the 1587 * alloc trace list. 1588 */ 1589 metaslab_trace_fini(&zal); 1590 metaslab_trace_init(&zal); 1591 } 1592 } 1593 metaslab_trace_fini(&zal); 1594 zfs_range_tree_destroy(segs); 1595 } 1596 1597 /* 1598 * The size of each removal mapping is limited by the tunable 1599 * zfs_remove_max_segment, but we must adjust this to be a multiple of the 1600 * pool's ashift, so that we don't try to split individual sectors regardless 1601 * of the tunable value. (Note that device removal requires that all devices 1602 * have the same ashift, so there's no difference between spa_min_ashift and 1603 * spa_max_ashift.) The raw tunable should not be used elsewhere. 1604 */ 1605 uint64_t 1606 spa_remove_max_segment(spa_t *spa) 1607 { 1608 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift)); 1609 } 1610 1611 /* 1612 * The removal thread operates in open context. It iterates over all 1613 * allocated space in the vdev, by loading each metaslab's spacemap. 1614 * For each contiguous segment of allocated space (capping the segment 1615 * size at SPA_MAXBLOCKSIZE), we: 1616 * - Allocate space for it on another vdev. 1617 * - Create a new mapping from the old location to the new location 1618 * (as a record in svr_new_segments). 1619 * - Initiate a physical read zio to get the data off the removing disk. 1620 * - In the read zio's done callback, initiate a physical write zio to 1621 * write it to the new vdev. 1622 * Note that all of this will take effect when a particular TXG syncs. 1623 * The sync thread ensures that all the phys reads and writes for the syncing 1624 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk 1625 * (see vdev_mapping_sync()). 1626 */ 1627 static __attribute__((noreturn)) void 1628 spa_vdev_remove_thread(void *arg) 1629 { 1630 spa_t *spa = arg; 1631 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1632 vdev_copy_arg_t vca; 1633 uint64_t max_alloc = spa_remove_max_segment(spa); 1634 uint64_t last_txg = 0; 1635 1636 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1637 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1638 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1639 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim); 1640 1641 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops); 1642 ASSERT(vdev_is_concrete(vd)); 1643 ASSERT(vd->vdev_removing); 1644 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 1645 ASSERT(vim != NULL); 1646 1647 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL); 1648 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL); 1649 vca.vca_outstanding_bytes = 0; 1650 vca.vca_read_error_bytes = 0; 1651 vca.vca_write_error_bytes = 0; 1652 1653 zfs_range_tree_t *segs = zfs_range_tree_create_flags( 1654 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 1655 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "spa_vdev_remove_thread:segs")); 1656 1657 mutex_enter(&svr->svr_lock); 1658 1659 /* 1660 * Start from vim_max_offset so we pick up where we left off 1661 * if we are restarting the removal after opening the pool. 1662 */ 1663 uint64_t msi; 1664 for (msi = start_offset >> vd->vdev_ms_shift; 1665 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) { 1666 metaslab_t *msp = vd->vdev_ms[msi]; 1667 ASSERT3U(msi, <=, vd->vdev_ms_count); 1668 1669 again: 1670 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1671 mutex_exit(&svr->svr_lock); 1672 1673 mutex_enter(&msp->ms_sync_lock); 1674 mutex_enter(&msp->ms_lock); 1675 1676 /* 1677 * Assert nothing in flight -- ms_*tree is empty. 1678 */ 1679 for (int i = 0; i < TXG_SIZE; i++) { 1680 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i])); 1681 } 1682 1683 /* 1684 * If the metaslab has ever been synced (ms_sm != NULL), 1685 * read the allocated segments from the space map object 1686 * into svr_allocd_segs. Since we do this while holding 1687 * ms_lock and ms_sync_lock, concurrent frees (which 1688 * would have modified the space map) will wait for us 1689 * to finish loading the spacemap, and then take the 1690 * appropriate action (see free_from_removing_vdev()). 1691 */ 1692 if (msp->ms_sm != NULL) 1693 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC)); 1694 1695 /* 1696 * We could not hold svr_lock while loading space map, or we 1697 * could hit deadlock in a ZIO pipeline, having to wait for 1698 * it. But we can not block for it here under metaslab locks, 1699 * or it would be a lock ordering violation. 1700 */ 1701 if (!mutex_tryenter(&svr->svr_lock)) { 1702 mutex_exit(&msp->ms_lock); 1703 mutex_exit(&msp->ms_sync_lock); 1704 zfs_range_tree_vacate(segs, NULL, NULL); 1705 mutex_enter(&svr->svr_lock); 1706 goto again; 1707 } 1708 1709 zfs_range_tree_swap(&segs, &svr->svr_allocd_segs); 1710 zfs_range_tree_walk(msp->ms_unflushed_allocs, 1711 zfs_range_tree_add, svr->svr_allocd_segs); 1712 zfs_range_tree_walk(msp->ms_unflushed_frees, 1713 zfs_range_tree_remove, svr->svr_allocd_segs); 1714 zfs_range_tree_walk(msp->ms_freeing, 1715 zfs_range_tree_remove, svr->svr_allocd_segs); 1716 1717 mutex_exit(&msp->ms_lock); 1718 mutex_exit(&msp->ms_sync_lock); 1719 1720 /* 1721 * When we are resuming from a paused removal (i.e. 1722 * when importing a pool with a removal in progress), 1723 * discard any state that we have already processed. 1724 */ 1725 zfs_range_tree_clear(svr->svr_allocd_segs, 0, start_offset); 1726 1727 vca.vca_msp = msp; 1728 zfs_dbgmsg("copying %llu segments for metaslab %llu", 1729 (u_longlong_t)zfs_btree_numnodes( 1730 &svr->svr_allocd_segs->rt_root), 1731 (u_longlong_t)msp->ms_id); 1732 1733 while (!svr->svr_thread_exit && 1734 !zfs_range_tree_is_empty(svr->svr_allocd_segs)) { 1735 1736 mutex_exit(&svr->svr_lock); 1737 1738 /* 1739 * We need to periodically drop the config lock so that 1740 * writers can get in. Additionally, we can't wait 1741 * for a txg to sync while holding a config lock 1742 * (since a waiting writer could cause a 3-way deadlock 1743 * with the sync thread, which also gets a config 1744 * lock for reader). So we can't hold the config lock 1745 * while calling dmu_tx_assign(). 1746 */ 1747 spa_config_exit(spa, SCL_CONFIG, FTAG); 1748 1749 /* 1750 * This delay will pause the removal around the point 1751 * specified by zfs_removal_suspend_progress. We do this 1752 * solely from the test suite or during debugging. 1753 */ 1754 while (zfs_removal_suspend_progress && 1755 !svr->svr_thread_exit) 1756 delay(hz); 1757 1758 mutex_enter(&vca.vca_lock); 1759 while (vca.vca_outstanding_bytes > 1760 zfs_remove_max_copy_bytes) { 1761 cv_wait(&vca.vca_cv, &vca.vca_lock); 1762 } 1763 mutex_exit(&vca.vca_lock); 1764 1765 dmu_tx_t *tx = 1766 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1767 1768 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | 1769 DMU_TX_SUSPEND)); 1770 uint64_t txg = dmu_tx_get_txg(tx); 1771 1772 /* 1773 * Reacquire the vdev_config lock. The vdev_t 1774 * that we're removing may have changed, e.g. due 1775 * to a vdev_attach or vdev_detach. 1776 */ 1777 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1778 vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1779 1780 if (txg != last_txg) 1781 max_alloc = spa_remove_max_segment(spa); 1782 last_txg = txg; 1783 1784 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx); 1785 1786 dmu_tx_commit(tx); 1787 mutex_enter(&svr->svr_lock); 1788 } 1789 1790 mutex_enter(&vca.vca_lock); 1791 if (zfs_removal_ignore_errors == 0 && 1792 (vca.vca_read_error_bytes > 0 || 1793 vca.vca_write_error_bytes > 0)) { 1794 svr->svr_thread_exit = B_TRUE; 1795 } 1796 mutex_exit(&vca.vca_lock); 1797 } 1798 1799 mutex_exit(&svr->svr_lock); 1800 1801 spa_config_exit(spa, SCL_CONFIG, FTAG); 1802 1803 zfs_range_tree_destroy(segs); 1804 1805 /* 1806 * Wait for all copies to finish before cleaning up the vca. 1807 */ 1808 txg_wait_synced(spa->spa_dsl_pool, 0); 1809 ASSERT0(vca.vca_outstanding_bytes); 1810 1811 mutex_destroy(&vca.vca_lock); 1812 cv_destroy(&vca.vca_cv); 1813 1814 if (svr->svr_thread_exit) { 1815 mutex_enter(&svr->svr_lock); 1816 zfs_range_tree_vacate(svr->svr_allocd_segs, NULL, NULL); 1817 svr->svr_thread = NULL; 1818 cv_broadcast(&svr->svr_cv); 1819 mutex_exit(&svr->svr_lock); 1820 1821 /* 1822 * During the removal process an unrecoverable read or write 1823 * error was encountered. The removal process must be 1824 * cancelled or this damage may become permanent. 1825 */ 1826 if (zfs_removal_ignore_errors == 0 && 1827 (vca.vca_read_error_bytes > 0 || 1828 vca.vca_write_error_bytes > 0)) { 1829 zfs_dbgmsg("canceling removal due to IO errors: " 1830 "[read_error_bytes=%llu] [write_error_bytes=%llu]", 1831 (u_longlong_t)vca.vca_read_error_bytes, 1832 (u_longlong_t)vca.vca_write_error_bytes); 1833 spa_vdev_remove_cancel_impl(spa); 1834 } 1835 } else { 1836 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1837 vdev_remove_complete(spa); 1838 } 1839 1840 thread_exit(); 1841 } 1842 1843 void 1844 spa_vdev_remove_suspend(spa_t *spa) 1845 { 1846 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1847 1848 if (svr == NULL) 1849 return; 1850 1851 mutex_enter(&svr->svr_lock); 1852 svr->svr_thread_exit = B_TRUE; 1853 while (svr->svr_thread != NULL) 1854 cv_wait(&svr->svr_cv, &svr->svr_lock); 1855 svr->svr_thread_exit = B_FALSE; 1856 mutex_exit(&svr->svr_lock); 1857 } 1858 1859 /* 1860 * Return true if the "allocating" property has been set to "off" 1861 */ 1862 static boolean_t 1863 vdev_prop_allocating_off(vdev_t *vd) 1864 { 1865 uint64_t objid = vd->vdev_top_zap; 1866 uint64_t allocating = 1; 1867 1868 /* no vdev property object => no props */ 1869 if (objid != 0) { 1870 spa_t *spa = vd->vdev_spa; 1871 objset_t *mos = spa->spa_meta_objset; 1872 1873 mutex_enter(&spa->spa_props_lock); 1874 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t), 1875 1, &allocating); 1876 mutex_exit(&spa->spa_props_lock); 1877 } 1878 return (allocating == 0); 1879 } 1880 1881 static int 1882 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx) 1883 { 1884 (void) arg; 1885 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1886 1887 if (spa->spa_vdev_removal == NULL) 1888 return (ENOTACTIVE); 1889 return (0); 1890 } 1891 1892 /* 1893 * Cancel a removal by freeing all entries from the partial mapping 1894 * and marking the vdev as no longer being removing. 1895 */ 1896 static void 1897 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx) 1898 { 1899 (void) arg; 1900 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1901 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1902 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1903 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1904 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1905 objset_t *mos = spa->spa_meta_objset; 1906 1907 ASSERT0P(svr->svr_thread); 1908 1909 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 1910 1911 boolean_t are_precise; 1912 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 1913 if (are_precise) { 1914 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1915 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1916 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx)); 1917 } 1918 1919 uint64_t obsolete_sm_object; 1920 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1921 if (obsolete_sm_object != 0) { 1922 ASSERT(vd->vdev_obsolete_sm != NULL); 1923 ASSERT3U(obsolete_sm_object, ==, 1924 space_map_object(vd->vdev_obsolete_sm)); 1925 1926 space_map_free(vd->vdev_obsolete_sm, tx); 1927 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1928 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx)); 1929 space_map_close(vd->vdev_obsolete_sm); 1930 vd->vdev_obsolete_sm = NULL; 1931 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1932 } 1933 for (int i = 0; i < TXG_SIZE; i++) { 1934 ASSERT(list_is_empty(&svr->svr_new_segments[i])); 1935 ASSERT3U(svr->svr_max_offset_to_sync[i], <=, 1936 vdev_indirect_mapping_max_offset(vim)); 1937 } 1938 1939 zfs_range_tree_t *segs = zfs_range_tree_create_flags( 1940 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, ZFS_RT_F_DYN_NAME, 1941 vdev_rt_name(vd, "spa_vdev_remove_cancel_sync:segs")); 1942 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 1943 metaslab_t *msp = vd->vdev_ms[msi]; 1944 1945 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim)) 1946 break; 1947 1948 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1949 1950 mutex_enter(&msp->ms_lock); 1951 1952 /* 1953 * Assert nothing in flight -- ms_*tree is empty. 1954 */ 1955 for (int i = 0; i < TXG_SIZE; i++) 1956 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i])); 1957 for (int i = 0; i < TXG_DEFER_SIZE; i++) 1958 ASSERT0(zfs_range_tree_space(msp->ms_defer[i])); 1959 ASSERT0(zfs_range_tree_space(msp->ms_freed)); 1960 1961 if (msp->ms_sm != NULL) 1962 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC)); 1963 1964 zfs_range_tree_walk(msp->ms_unflushed_allocs, 1965 zfs_range_tree_add, segs); 1966 zfs_range_tree_walk(msp->ms_unflushed_frees, 1967 zfs_range_tree_remove, segs); 1968 zfs_range_tree_walk(msp->ms_freeing, 1969 zfs_range_tree_remove, segs); 1970 mutex_exit(&msp->ms_lock); 1971 1972 /* 1973 * Clear everything past what has been synced, 1974 * because we have not allocated mappings for it yet. 1975 */ 1976 uint64_t syncd = vdev_indirect_mapping_max_offset(vim); 1977 uint64_t ms_end = msp->ms_start + msp->ms_size; 1978 if (ms_end > syncd) 1979 zfs_range_tree_clear(segs, syncd, ms_end - syncd); 1980 1981 zfs_range_tree_vacate(segs, free_mapped_segment_cb, vd); 1982 } 1983 zfs_range_tree_destroy(segs); 1984 1985 /* 1986 * Note: this must happen after we invoke free_mapped_segment_cb, 1987 * because it adds to the obsolete_segments. 1988 */ 1989 zfs_range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL); 1990 1991 ASSERT3U(vic->vic_mapping_object, ==, 1992 vdev_indirect_mapping_object(vd->vdev_indirect_mapping)); 1993 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1994 vd->vdev_indirect_mapping = NULL; 1995 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx); 1996 vic->vic_mapping_object = 0; 1997 1998 ASSERT3U(vic->vic_births_object, ==, 1999 vdev_indirect_births_object(vd->vdev_indirect_births)); 2000 vdev_indirect_births_close(vd->vdev_indirect_births); 2001 vd->vdev_indirect_births = NULL; 2002 vdev_indirect_births_free(mos, vic->vic_births_object, tx); 2003 vic->vic_births_object = 0; 2004 2005 /* 2006 * We may have processed some frees from the removing vdev in this 2007 * txg, thus increasing svr_bytes_done; discard that here to 2008 * satisfy the assertions in spa_vdev_removal_destroy(). 2009 * Note that future txg's can not have any bytes_done, because 2010 * future TXG's are only modified from open context, and we have 2011 * already shut down the copying thread. 2012 */ 2013 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0; 2014 spa_finish_removal(spa, DSS_CANCELED, tx); 2015 2016 vd->vdev_removing = B_FALSE; 2017 2018 if (!vdev_prop_allocating_off(vd)) { 2019 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER); 2020 vdev_activate(vd); 2021 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG); 2022 } 2023 2024 vdev_config_dirty(vd); 2025 2026 zfs_dbgmsg("canceled device removal for vdev %llu in %llu", 2027 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx)); 2028 spa_history_log_internal(spa, "vdev remove canceled", tx, 2029 "%s vdev %llu %s", spa_name(spa), 2030 (u_longlong_t)vd->vdev_id, 2031 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 2032 } 2033 2034 static int 2035 spa_vdev_remove_cancel_impl(spa_t *spa) 2036 { 2037 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check, 2038 spa_vdev_remove_cancel_sync, NULL, 0, 2039 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2040 return (error); 2041 } 2042 2043 int 2044 spa_vdev_remove_cancel(spa_t *spa) 2045 { 2046 spa_vdev_remove_suspend(spa); 2047 2048 if (spa->spa_vdev_removal == NULL) 2049 return (ENOTACTIVE); 2050 2051 return (spa_vdev_remove_cancel_impl(spa)); 2052 } 2053 2054 void 2055 svr_sync(spa_t *spa, dmu_tx_t *tx) 2056 { 2057 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 2058 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 2059 2060 if (svr == NULL) 2061 return; 2062 2063 /* 2064 * This check is necessary so that we do not dirty the 2065 * DIRECTORY_OBJECT via spa_sync_removing_state() when there 2066 * is nothing to do. Dirtying it every time would prevent us 2067 * from syncing-to-convergence. 2068 */ 2069 if (svr->svr_bytes_done[txgoff] == 0) 2070 return; 2071 2072 /* 2073 * Update progress accounting. 2074 */ 2075 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff]; 2076 svr->svr_bytes_done[txgoff] = 0; 2077 2078 spa_sync_removing_state(spa, tx); 2079 } 2080 2081 static void 2082 vdev_remove_make_hole_and_free(vdev_t *vd) 2083 { 2084 uint64_t id = vd->vdev_id; 2085 spa_t *spa = vd->vdev_spa; 2086 vdev_t *rvd = spa->spa_root_vdev; 2087 2088 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2089 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2090 2091 vdev_free(vd); 2092 2093 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 2094 vdev_add_child(rvd, vd); 2095 vdev_config_dirty(rvd); 2096 2097 /* 2098 * Reassess the health of our root vdev. 2099 */ 2100 vdev_reopen(rvd); 2101 } 2102 2103 /* 2104 * Remove a log device. The config lock is held for the specified TXG. 2105 */ 2106 static int 2107 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg) 2108 { 2109 metaslab_group_t *mg = vd->vdev_mg; 2110 spa_t *spa = vd->vdev_spa; 2111 int error = 0; 2112 2113 ASSERT(vd->vdev_islog); 2114 ASSERT(vd == vd->vdev_top); 2115 ASSERT0P(vd->vdev_log_mg); 2116 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2117 2118 /* 2119 * Stop allocating from this vdev. 2120 */ 2121 metaslab_group_passivate(mg); 2122 2123 /* 2124 * Wait for the youngest allocations and frees to sync, 2125 * and then wait for the deferral of those frees to finish. 2126 */ 2127 spa_vdev_config_exit(spa, NULL, 2128 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 2129 2130 /* 2131 * Cancel any initialize or TRIM which was in progress. 2132 */ 2133 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED); 2134 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED); 2135 vdev_autotrim_stop_wait(vd); 2136 2137 /* 2138 * Evacuate the device. We don't hold the config lock as 2139 * writer since we need to do I/O but we do keep the 2140 * spa_namespace_lock held. Once this completes the device 2141 * should no longer have any blocks allocated on it. 2142 */ 2143 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2144 if (vd->vdev_stat.vs_alloc != 0) 2145 error = spa_reset_logs(spa); 2146 2147 *txg = spa_vdev_config_enter(spa); 2148 2149 if (error != 0) { 2150 metaslab_group_activate(mg); 2151 ASSERT0P(vd->vdev_log_mg); 2152 return (error); 2153 } 2154 ASSERT0(vd->vdev_stat.vs_alloc); 2155 2156 /* 2157 * The evacuation succeeded. Remove any remaining MOS metadata 2158 * associated with this vdev, and wait for these changes to sync. 2159 */ 2160 vd->vdev_removing = B_TRUE; 2161 2162 vdev_dirty_leaves(vd, VDD_DTL, *txg); 2163 vdev_config_dirty(vd); 2164 2165 /* 2166 * When the log space map feature is enabled we look at 2167 * the vdev's top_zap to find the on-disk flush data of 2168 * the metaslab we just flushed. Thus, while removing a 2169 * log vdev we make sure to call vdev_metaslab_fini() 2170 * first, which removes all metaslabs of this vdev from 2171 * spa_metaslabs_by_flushed before vdev_remove_empty() 2172 * destroys the top_zap of this log vdev. 2173 * 2174 * This avoids the scenario where we flush a metaslab 2175 * from the log vdev being removed that doesn't have a 2176 * top_zap and end up failing to lookup its on-disk flush 2177 * data. 2178 * 2179 * We don't call metaslab_group_destroy() right away 2180 * though (it will be called in vdev_free() later) as 2181 * during metaslab_sync() of metaslabs from other vdevs 2182 * we may touch the metaslab group of this vdev through 2183 * metaslab_class_histogram_verify() 2184 */ 2185 vdev_metaslab_fini(vd); 2186 2187 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG); 2188 *txg = spa_vdev_config_enter(spa); 2189 2190 sysevent_t *ev = spa_event_create(spa, vd, NULL, 2191 ESC_ZFS_VDEV_REMOVE_DEV); 2192 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2193 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2194 2195 /* The top ZAP should have been destroyed by vdev_remove_empty. */ 2196 ASSERT0(vd->vdev_top_zap); 2197 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */ 2198 ASSERT0(vd->vdev_leaf_zap); 2199 2200 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 2201 2202 if (list_link_active(&vd->vdev_state_dirty_node)) 2203 vdev_state_clean(vd); 2204 if (list_link_active(&vd->vdev_config_dirty_node)) 2205 vdev_config_clean(vd); 2206 2207 ASSERT0(vd->vdev_stat.vs_alloc); 2208 2209 /* 2210 * Clean up the vdev namespace. 2211 */ 2212 vdev_remove_make_hole_and_free(vd); 2213 2214 if (ev != NULL) 2215 spa_event_post(ev); 2216 2217 return (0); 2218 } 2219 2220 static int 2221 spa_vdev_remove_top_check(vdev_t *vd) 2222 { 2223 spa_t *spa = vd->vdev_spa; 2224 2225 if (vd != vd->vdev_top) 2226 return (SET_ERROR(ENOTSUP)); 2227 2228 if (!vdev_is_concrete(vd)) 2229 return (SET_ERROR(ENOTSUP)); 2230 2231 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL)) 2232 return (SET_ERROR(ENOTSUP)); 2233 2234 /* 2235 * This device is already being removed 2236 */ 2237 if (vd->vdev_removing) 2238 return (SET_ERROR(EALREADY)); 2239 2240 metaslab_class_t *mc = vd->vdev_mg->mg_class; 2241 metaslab_class_t *normal = spa_normal_class(spa); 2242 if (mc != normal) { 2243 /* 2244 * Space allocated from the special (or dedup) class is 2245 * included in the DMU's space usage, but it's not included 2246 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore 2247 * there is always at least as much free space in the normal 2248 * class, as is allocated from the special (and dedup) class. 2249 * As a backup check, we will return ENOSPC if this is 2250 * violated. See also spa_update_dspace(). 2251 */ 2252 uint64_t available = metaslab_class_get_space(normal) - 2253 metaslab_class_get_alloc(normal); 2254 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc); 2255 if (available < vd->vdev_stat.vs_alloc) 2256 return (SET_ERROR(ENOSPC)); 2257 } else if (!vd->vdev_noalloc) { 2258 /* available space in the pool's normal class */ 2259 uint64_t available = dsl_dir_space_available( 2260 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE); 2261 if (available < vd->vdev_stat.vs_dspace) 2262 return (SET_ERROR(ENOSPC)); 2263 } 2264 2265 /* 2266 * There can not be a removal in progress. 2267 */ 2268 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) 2269 return (SET_ERROR(EBUSY)); 2270 2271 /* 2272 * The device must have all its data. 2273 */ 2274 if (!vdev_dtl_empty(vd, DTL_MISSING) || 2275 !vdev_dtl_empty(vd, DTL_OUTAGE)) 2276 return (SET_ERROR(EBUSY)); 2277 2278 /* 2279 * The device must be healthy. 2280 */ 2281 if (!vdev_readable(vd)) 2282 return (SET_ERROR(EIO)); 2283 2284 /* 2285 * All vdevs in normal class must have the same ashift. 2286 */ 2287 if (spa->spa_max_ashift != spa->spa_min_ashift) { 2288 return (SET_ERROR(EINVAL)); 2289 } 2290 2291 /* 2292 * A removed special/dedup vdev must have same ashift as normal class. 2293 */ 2294 ASSERT(!vd->vdev_islog); 2295 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE && 2296 vd->vdev_ashift != spa->spa_max_ashift) { 2297 return (SET_ERROR(EINVAL)); 2298 } 2299 2300 /* 2301 * All vdevs in normal class must have the same ashift 2302 * and not be raidz or draid. 2303 */ 2304 vdev_t *rvd = spa->spa_root_vdev; 2305 for (uint64_t id = 0; id < rvd->vdev_children; id++) { 2306 vdev_t *cvd = rvd->vdev_child[id]; 2307 2308 /* 2309 * A removed special/dedup vdev must have the same ashift 2310 * across all vdevs in its class. 2311 */ 2312 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE && 2313 cvd->vdev_alloc_bias == vd->vdev_alloc_bias && 2314 cvd->vdev_ashift != vd->vdev_ashift) { 2315 return (SET_ERROR(EINVAL)); 2316 } 2317 if (cvd->vdev_ashift != 0 && 2318 cvd->vdev_alloc_bias == VDEV_BIAS_NONE) 2319 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift); 2320 if (!vdev_is_concrete(cvd)) 2321 continue; 2322 if (vdev_get_nparity(cvd) != 0) 2323 return (SET_ERROR(EINVAL)); 2324 /* 2325 * Need the mirror to be mirror of leaf vdevs only 2326 */ 2327 if (cvd->vdev_ops == &vdev_mirror_ops) { 2328 for (uint64_t cid = 0; 2329 cid < cvd->vdev_children; cid++) { 2330 if (!cvd->vdev_child[cid]->vdev_ops-> 2331 vdev_op_leaf) 2332 return (SET_ERROR(EINVAL)); 2333 } 2334 } 2335 } 2336 2337 return (0); 2338 } 2339 2340 /* 2341 * Initiate removal of a top-level vdev, reducing the total space in the pool. 2342 * The config lock is held for the specified TXG. Once initiated, 2343 * evacuation of all allocated space (copying it to other vdevs) happens 2344 * in the background (see spa_vdev_remove_thread()), and can be canceled 2345 * (see spa_vdev_remove_cancel()). If successful, the vdev will 2346 * be transformed to an indirect vdev (see spa_vdev_remove_complete()). 2347 */ 2348 static int 2349 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg) 2350 { 2351 spa_t *spa = vd->vdev_spa; 2352 boolean_t set_noalloc = B_FALSE; 2353 int error; 2354 2355 /* 2356 * Check for errors up-front, so that we don't waste time 2357 * passivating the metaslab group and clearing the ZIL if there 2358 * are errors. 2359 */ 2360 error = spa_vdev_remove_top_check(vd); 2361 2362 /* 2363 * Stop allocating from this vdev. Note that we must check 2364 * that this is not the only device in the pool before 2365 * passivating, otherwise we will not be able to make 2366 * progress because we can't allocate from any vdevs. 2367 * The above check for sufficient free space serves this 2368 * purpose. 2369 */ 2370 if (error == 0 && !vd->vdev_noalloc) { 2371 set_noalloc = B_TRUE; 2372 error = vdev_passivate(vd, txg); 2373 } 2374 2375 if (error != 0) 2376 return (error); 2377 2378 /* 2379 * We stop any initializing and TRIM that is currently in progress 2380 * but leave the state as "active". This will allow the process to 2381 * resume if the removal is canceled sometime later. 2382 */ 2383 2384 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG); 2385 2386 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE); 2387 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE); 2388 vdev_autotrim_stop_wait(vd); 2389 2390 *txg = spa_vdev_config_enter(spa); 2391 2392 /* 2393 * Things might have changed while the config lock was dropped 2394 * (e.g. space usage). Check for errors again. 2395 */ 2396 error = spa_vdev_remove_top_check(vd); 2397 2398 if (error != 0) { 2399 if (set_noalloc) 2400 vdev_activate(vd); 2401 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 2402 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 2403 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 2404 return (error); 2405 } 2406 2407 vd->vdev_removing = B_TRUE; 2408 2409 vdev_dirty_leaves(vd, VDD_DTL, *txg); 2410 vdev_config_dirty(vd); 2411 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg); 2412 dsl_sync_task_nowait(spa->spa_dsl_pool, 2413 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx); 2414 dmu_tx_commit(tx); 2415 2416 return (0); 2417 } 2418 2419 /* 2420 * Remove a device from the pool. 2421 * 2422 * Removing a device from the vdev namespace requires several steps 2423 * and can take a significant amount of time. As a result we use 2424 * the spa_vdev_config_[enter/exit] functions which allow us to 2425 * grab and release the spa_config_lock while still holding the namespace 2426 * lock. During each step the configuration is synced out. 2427 */ 2428 int 2429 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 2430 { 2431 vdev_t *vd; 2432 nvlist_t **spares, **l2cache, *nv; 2433 uint64_t txg = 0; 2434 uint_t nspares, nl2cache; 2435 int error = 0, error_log; 2436 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 2437 sysevent_t *ev = NULL; 2438 const char *vd_type = NULL; 2439 char *vd_path = NULL; 2440 2441 ASSERT(spa_writeable(spa)); 2442 2443 if (!locked) 2444 txg = spa_vdev_enter(spa); 2445 2446 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2447 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 2448 error = (spa_has_checkpoint(spa)) ? 2449 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 2450 2451 if (!locked) 2452 return (spa_vdev_exit(spa, NULL, txg, error)); 2453 2454 return (error); 2455 } 2456 2457 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 2458 2459 if (spa->spa_spares.sav_vdevs != NULL && 2460 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2461 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 2462 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 2463 /* 2464 * Only remove the hot spare if it's not currently in use 2465 * in this pool. 2466 */ 2467 if (vd == NULL || unspare) { 2468 const char *type; 2469 boolean_t draid_spare = B_FALSE; 2470 2471 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) 2472 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0) 2473 draid_spare = B_TRUE; 2474 2475 if (vd == NULL && draid_spare) { 2476 error = SET_ERROR(ENOTSUP); 2477 } else { 2478 if (vd == NULL) 2479 vd = spa_lookup_by_guid(spa, 2480 guid, B_TRUE); 2481 ev = spa_event_create(spa, vd, NULL, 2482 ESC_ZFS_VDEV_REMOVE_AUX); 2483 2484 vd_type = VDEV_TYPE_SPARE; 2485 vd_path = spa_strdup(fnvlist_lookup_string( 2486 nv, ZPOOL_CONFIG_PATH)); 2487 spa_vdev_remove_aux(spa->spa_spares.sav_config, 2488 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 2489 spa_load_spares(spa); 2490 spa->spa_spares.sav_sync = B_TRUE; 2491 } 2492 } else { 2493 error = SET_ERROR(EBUSY); 2494 } 2495 } else if (spa->spa_l2cache.sav_vdevs != NULL && 2496 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2497 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 2498 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 2499 vd_type = VDEV_TYPE_L2CACHE; 2500 vd_path = spa_strdup(fnvlist_lookup_string( 2501 nv, ZPOOL_CONFIG_PATH)); 2502 /* 2503 * Cache devices can always be removed. 2504 */ 2505 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 2506 2507 /* 2508 * Stop trimming the cache device. We need to release the 2509 * config lock to allow the syncing of TRIM transactions 2510 * without releasing the spa_namespace_lock. The same 2511 * strategy is employed in spa_vdev_remove_top(). 2512 */ 2513 spa_vdev_config_exit(spa, NULL, 2514 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 2515 mutex_enter(&vd->vdev_trim_lock); 2516 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 2517 mutex_exit(&vd->vdev_trim_lock); 2518 txg = spa_vdev_config_enter(spa); 2519 2520 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX); 2521 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 2522 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 2523 spa_load_l2cache(spa); 2524 spa->spa_l2cache.sav_sync = B_TRUE; 2525 } else if (vd != NULL && vd->vdev_islog) { 2526 ASSERT(!locked); 2527 vd_type = VDEV_TYPE_LOG; 2528 vd_path = spa_strdup((vd->vdev_path != NULL) ? 2529 vd->vdev_path : "-"); 2530 error = spa_vdev_remove_log(vd, &txg); 2531 } else if (vd != NULL) { 2532 ASSERT(!locked); 2533 error = spa_vdev_remove_top(vd, &txg); 2534 } else { 2535 /* 2536 * There is no vdev of any kind with the specified guid. 2537 */ 2538 error = SET_ERROR(ENOENT); 2539 } 2540 2541 error_log = error; 2542 2543 if (!locked) 2544 error = spa_vdev_exit(spa, NULL, txg, error); 2545 2546 /* 2547 * Logging must be done outside the spa config lock. Otherwise, 2548 * this code path could end up holding the spa config lock while 2549 * waiting for a txg_sync so it can write to the internal log. 2550 * Doing that would prevent the txg sync from actually happening, 2551 * causing a deadlock. 2552 */ 2553 if (error_log == 0 && vd_type != NULL && vd_path != NULL) { 2554 spa_history_log_internal(spa, "vdev remove", NULL, 2555 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path); 2556 } 2557 if (vd_path != NULL) 2558 spa_strfree(vd_path); 2559 2560 if (ev != NULL) 2561 spa_event_post(ev); 2562 2563 return (error); 2564 } 2565 2566 int 2567 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs) 2568 { 2569 prs->prs_state = spa->spa_removing_phys.sr_state; 2570 2571 if (prs->prs_state == DSS_NONE) 2572 return (SET_ERROR(ENOENT)); 2573 2574 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev; 2575 prs->prs_start_time = spa->spa_removing_phys.sr_start_time; 2576 prs->prs_end_time = spa->spa_removing_phys.sr_end_time; 2577 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy; 2578 prs->prs_copied = spa->spa_removing_phys.sr_copied; 2579 2580 prs->prs_mapping_memory = 0; 2581 uint64_t indirect_vdev_id = 2582 spa->spa_removing_phys.sr_prev_indirect_vdev; 2583 while (indirect_vdev_id != -1) { 2584 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id]; 2585 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 2586 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 2587 2588 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2589 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim); 2590 indirect_vdev_id = vic->vic_prev_indirect_vdev; 2591 } 2592 2593 return (0); 2594 } 2595 2596 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW, 2597 "Ignore hard IO errors when removing device"); 2598 2599 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW, 2600 "Largest contiguous segment to allocate when removing device"); 2601 2602 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW, 2603 "Largest span of free chunks a remap segment can span"); 2604 2605 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW, 2606 "Pause device removal after this many bytes are copied " 2607 "(debug use only - causes removal to hang)"); 2608 2609 EXPORT_SYMBOL(free_from_removing_vdev); 2610 EXPORT_SYMBOL(spa_removal_get_stats); 2611 EXPORT_SYMBOL(spa_remove_init); 2612 EXPORT_SYMBOL(spa_restart_removal); 2613 EXPORT_SYMBOL(spa_vdev_removal_destroy); 2614 EXPORT_SYMBOL(spa_vdev_remove); 2615 EXPORT_SYMBOL(spa_vdev_remove_cancel); 2616 EXPORT_SYMBOL(spa_vdev_remove_suspend); 2617 EXPORT_SYMBOL(svr_sync); 2618